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PERTURBATIONS OF SHIFTS OF FINITE TYPE*

D. A. LIND,"

Abstract. Shifts of finite type describe the infinite trips on a labeled graph, and provide theoretical models
for data storage and transmission. The consequences of forbidding a fixed word to occur, which can be considered
as a small change or perturbation in the system, are investigated. This situation arises in prefix synchronized
codes, where a certain prefix, used to synchronize code words, is forbidden to occur in the rest of the word. If
T is the adjacency matrix of the graph, and Xr is its spectral radius, then forbidding a word of length k results
in a drop in spectral radius that lies between two positive constants times Xk. The zeta function summarizes
the number of possible periodic trips. The author gives an explicit calculation of the zeta function for the
resulting subshift, which involves the characteristic polynomial of T, a cofactor of tI T, and the correlation
polynomial ofthe word. A modification ofthe Knuth-Morris-Pratt pattern matching algorithm shows that this
calculation can be done in time that is linear in the word length, answering a question of Bowen and Lanford.
The structure of this correlation polynomial is used to obtain sharp bounds on the degree of the denominator
ofthe zeta function. The Jordan form ofthe higher order presentations ofthe shift offinite type is also computed,
and that ofthe perturbation in many cases. Most ofthe results were discovered experimentally with a computer.

Key words, shift of finite type, symbolic dynamics, channel capacity, topological entropy, zeta function,
perturbation, correlation polynomial
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1. Introduction. A dynamical system is a pair (X, a), whereXis a topological space
and a is a continuous map from X to itself. Shifts of finite type are combinatorially
defined dynamical systems that arise naturally in the study ofdata storage and transmission

]. They also play a central role in the analysis of other dynamical systems such as
diffeomorphisms of manifolds [3], an idea which goes back to Hadamard’s analysis in
1898 ofgeodesic flows. Roughly speaking, shifts of finite type are the topological analogues
of the probabilistic Markov chains used in information theory.

There are two equivalent definitions ofshifts offinite type. The first definition begins
with a nonnegative integral matrix T, and forms the directed graph GT having T, distinct
edges from vertex to vertex j. Let o denote the set of edges of GT. The space XT c o z

consists of all bi-infinite sequences from o that give an allowed trip on GT. The map

aT: XT -- XT shifts a sequence one edge to the left. As an example, let T [I ], so that
GT has two vertices, say labeled 0 and 1, and three edges, say labeled 00, 01, and 10. A
sequence "’’i-lJ-I ioJoilJl’’" is in XT exactly when, for every k, the terminal vertex of

ikJk agrees with the initial vertex of ik+ lJk+ l’ i.e., whenj i/ 1.

The second definition starts with a finite alphabet A, and a finite collection of
"forbidden" finite words over A. The spaceX c AZ consists of all bi-infinite sequences
from A that do not contain any word from . The shift map as: X -- X acts as
before. For example, if.4 { 0, } and { 11 }, then X is the set of all bi-infinite
sequences of O’s and ’s that do not contain consecutive ’s.

In each definition there is a distance function on bi-infinite sequences defined by
d( { Xk }, { Yk } 2-n, where n is the largest integer such that x y for -n =< k =< n.
Thus two points are close if their coordinates agree on a large symmetric interval of
indices. The shift map is continuous with respect to the topology induced by the
metric d.
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It is usual to consider two dynamical systems to be the "same" ifone can be obtained
from the other by a continuous relabeling of points. More precisely, we say that (X1, z l)
is topologically conjugate to (X2, z2) if there is a continuous map : X1 -- X2 with a
continuous inverse such that z2 z. The two examples of shifts of finite type given
above are topologically conjugate using the map p: Xr -- Xs given by ( {ikJk ik },
so that assigns to a sequence ofedges the corresponding sequence oftheir initial vertices.

A topological invariant of dynamical systems is an object (real number, group, etc.)
assigned to every dynamical system that is the same for topologically conjugate systems.
Examples of such invariants are entropy and the zeta function, which are defined below.

Our two definitions of shifts of finite type are equivalent in the sense that any
dynamical system constructed using one definition is topologically conjugate to a dy-
namical system constructed by the other. If (Xr, at) is a system from the first definition,
let be the alphabet, and let be the set of pairs of edges satisfying the condition that
the terminal vertex of the first edge is not the initial vertex of the second. Then
(Xs, as) is topologically conjugate to (Xr, at). Conversely, if (Xs, as) is constructed
using the second definition, it is possible to determine, as in 2, a directed graph with
adjacency matrix T so that (Xr, rr) is conjugate to (Xs,

We shall use the first definition of shift of finite type throughout. When a shift arises
by forbidding words, we will convert this to a conjugate shift defined by a nonnegative
integer matrix using the process describe.d in 2. We shall also assume throughout that
for each pair of nodes there is a path from the first to the second or, equivalently, that
ar is topologically transitive. To avoid trivial exceptions, we also require T q: ].

Prefix synchronized codes [7], [8] can be described as follows. Select a fixed block
B, and choose code words ofthe form BA subject to the constraint that B occurs in BAB
only as the first and last subblock. Thus an occurrence ofB guarantees that a decoder is
at the beginning of a code word. In estimating the number of code words available, we
are quickly led to the study of the shift of finite type obtained by forbidding B to occur.
If B is long, this shift can be considered as a small change in the original shift.

Let B e o k be an allowed path in the graph Gr oflength k BI. The shift of finite
type obtained from (Xr, trr) by forbidding B to occur can be presented by a matrix we
denote by T(B) that is typically much larger than T. The details of this construction
are given in 2. For the purposes of this paper we regard passing from ar to rr(B) as a
small perturbation of at, with the perturbation tending to zero as BI o. Our main
theorems give precise information about the resulting changes in topological entropy,
zeta function, and Jordan form.

To describe the change in entropy, let T have spectral radius ,r. The topological
entropy h(ar) is then log ,r. Standard Perron-Frobenius theory 16, Thm. 1.1 (e)] shows
h(trr) h(trr(B)) > 0. During the investigation [5] of the automorphism group of
it was necessary to prove this difference tends to zero as BI [5, Thm. 5.1 ]. The
analysis of the speed of convergence was one motivation for this paper. We show in
Theorem 3 that there are computable constants Cr, dr > 0 so that for all blocks B with
sufficiently large length BI we have

crI1 < h(r)- h(rr())<drI1

The zeta function ofa map was introduced by Artin and Mazur 2 to conveniently
summarize periodic point data. If Nn denotes the number of points in Xr fixed by try,
then the zeta function of trr is defined as
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Bowen and Lanford [4] showed ’r(t) /det (I- tT), which we reformulate differently
as follows. Iff(t) 7/[ t, t -1 is a Laurent polynomial, choose the unique d 7/so that
taf(t) 7/[ t] with nonzero constant term. Let f(t) denote this taf(t). If Xr(t)
det (tI T) is the characteristic polynomial of T, then clearly

’r(t) Xr(t-1)x.
To describe the zeta function of the perturbed matrix, we first recall the notion of

correlation polynomial introduced by J. H. Conway and exploited in a series of papers
by Guibas and Odlyzko 8 10 ]. IfB gk, the correlation polynomial ofB is bB(t)= cjtj- 1, where cj if B overlaps itself in j symbols, and c 0 otherwise. A
recursive description ofthe set ofpossible correlation polynomials is given in 9 ], having
the surprising consequence that this set is independent of g for I1 - 2. These poly-
nomials arise in a wide range of applications, including the computation of the number
of strings of a given length omitting a fixed block 8 ], the analysis of pattern matching
algorithms [9], the study of nerve impulses in crayfish [6], and some astonishing prob-
ability calculations concerning "paradoxical" nontransitive games 10].

Suppose B is a path from node to node j. Call B reduced if no proper subblock of
B determines B. Let cof0. (tI- T) denote (-1 );+ times the determinant of the matrix
tI- T with its ith row and jth column removed. We show in Theorem that

(1.1) ’r(>(t) [xr(t-)4s(t-)+cofo(t-I T)]"
When T [n], so trr is the full n-shift, every block is reduced, and our result sim-
plifies to

Since T(B) has size that is exponential in BI, it is not clear whether there is an
algorithm to compute r()(t) in time polynomial in BI. But since there is a trivial
algorithm to compute (t) in time that is quadratic in B I, one consequence ofTheorem

is the existence of a quadratic-time algorithm to compute ’r(B)(t). This is sharpened
in Corollary 2 to a linear algorithm based on the Knuth-Morris-Pratt pattern matching
algorithm [13 ], answering a question raised by Bowen and Lanford [4, p. 45 ]. Also,
although there are roughly ,r blocks of length k, Guibas and Odlyzko show that there
are only O(k 1o k) distinct correlation polynomials for these blocks. Thus another con-
sequence of our calculation, stated in Corollary 3, is that the number of distinct zeta
functions produced by omitting blocks of length k is only O(kc log k). In Corollary 4 we
show that the number of distinct zeta functions produced by deleting blocks of length k
is the same for all full shifts.

Because of possible divisibility by powers of in r(t), n(t), and cof0. (tI- T),
together with possible cancellations, the formula 1.1 does not immediately yield the
degree of ’n)(t). Using machinery in 2-3, combined with the recursive character-
ization of (t) from [9], we show in Theorem 2 that

[B[-4r-_<deg ’)=< [B[ +r- 1,

where r is the size of T, and that the upper bound is attained precisely when

(1.2) (det T)cbB(O)+cofo(-T)4:0.
In particular, the upper bound obtains for all blocks in a full shift.
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The Jordan form of T is not a topological invariant, but our analysis allows the
determination in Theorem 4 of the Jordan form of all higher block presentations of T.
Also, if (1.2) holds, then the Jordan form of T(B) is obtained from that of the k-block
presentation of T by deleting a single Jordan nilpotent block of size k 1. Again, every
block in a full shift satisfies this condition.

The paper is organized as follows. We begin in 2 by setting up the machinery for
higher block presentations of T. In 3 we determine a low-dimensional subspace con-
taining the "interesting part" of T(B) and compute the matrix of T(B) with respect
to a certain natural basis. This matrix contains the companion matrix of B(t) as a
principal submatrix and is used in 4 to compute r(B)(t) and to estimate
deg ’n)(t). In 5 we first motivate the estimate on decrease in entropy using an ele-
mentary but apparently little-known fact on the rate of change in an eigenvalue with
respect to the matrix entries. We then prove the estimate by using the calculation of
Xr()(t) together with the recursive structure of n(t). Finally, we apply this machinery
in 6 to derive the results on Jordan forms mentioned above.

Most of our results were discovered experimentally using the Matlab interactive
linear algebra computer program. Jim Scherer (private communication) has indicated
to us an alternative approach to an upper bound on deg -1’r(), but his results are not as
sharp as Theorem 2. Razmik Karabed (private communication) has described an inter-
esting method for obtaining an exponential upper bound in Theorem 3, but his method
does not yield either the best exponent or the lower bound.

2. Higher order lresentations. In this section we introduce the linear algebra ma-
chinery we will use to analyze T(B). Our treatment ofhigher block presentations varies
slightly from the standard one, since we use a consistent treatment for all nonnegative
integer matrices rather than just 0-1 matrices.

Let T= [To] be an r r matrix over the nonnegative integers. Let 6e
{ 1, ..., r} be the indexing set of T, and call the elements of S the 1-states. For

-< p -< T/, introduce 1-symbols , and let o {" -< p -< TU, -< i, j <= r}. Thus
o is a labeling ofthe edges ofthe directed graph determined by T. Define beginning and
ending maps r, : g - 6 by (,) and r/(,) j. Thus

To.= { g’/() iand() =j} 1.
Put

Xr= {x (x) g" (x) {3(x+ 1) for n; },
and define the shift at" Xr -- Xr by (arX)n Xn +. Then ar is a homeomorphism of
the compact totally disconnected metric space Xr. The pair (XT, ) is the shift offinite
type determined by T.

Next we recode points in Xr by k-blocks of symbols. For k _-> let

lJk-- k(XT) {1"" "k’gk’(m)--(m+ 1) for <=m<=k- 1}
be the set of allowed k-blocks in Xr. By convention we put 30 9. For k >- 1, let
6etkJ k- denote the k-states and gtkJ 3k be the k-symbols. Note that 5t 6e
and gill . For k >- 2, define , r/: tkl .. 6,tkl by fl(l’" "k) ’" "g- and
0("" ") 2"" "/. Since 6etkJ gtk-l 3_ , we may compose various/’s and
r/’s in any order, and they clearly commute.

We will now define the kth order presentation matrix Ttk of T, which is indexed
by k-states if’ tk. For A, B e 5et define

TtkJ)aB { Ce 8tkl /3(C) A and r/(C) B } 1.
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Note that Ttl is just T. Ifk >= 2, then T[k] is a 0-1 matrix. Let [k] denote Ietkt with
its basis the elementary vectors {etk :A 6etk}. Then Ttk is a linear map oftkl. It
is notationally convenient to have all matrices act on the right. Thus, for k >= 2,

e tak Ttk etk
{Be 6etk] :fiB hA}

PROPOSITION. The systems (XT, aT) and (XTtk, Ttl)are topologically conjugate.

Proof. This holds for k by definition. Suppose k >- 2. Denote a: XTt -- oZ

by a((Cn)nz) (ilk- 1Cn)n," Clearly, a is continuous. Since Cn flCn+ l, we have

so the image of a is contained in Xr. Clearly, rra aart). Define 3" XT -- XTt by
(X)m XmXm+ 1’’" Xm+k-1 C:_ lJk. Then is continuous, and aq and 3’a are the identity
maps. This shows a is a topological conjugacy of aTtkl with aT. []

3. Invariant subspaces for perturbations. Let B k(XT), where we assume from
now on that k ->_ 2. Forbidding B in XT is the same as forbidding the transition from fib
to r/B in T[kl. Thus a matrix presentation of the resulting shift of finite type is
Tt] EE,,,, where E Ea,,, has a in the (BB, B)th place and is zero elsewhere. Let
T(B) T] E denote this perturbed matrix. In this section we will find a Tt]-

invariant subspace Vk tl on which Tt] mimics T. Then we extend V to a T(B-
invariant subspace I/V,, containing the "interesting part" of T(B. Finally, we compute
the matrix of T(B with respect to a certain basis for Wk,. and show how the companion
matrix for the correlation polynomial ofB appears as a principal submatrix.

Define : [l _. tl by

(3.1) k(el ’)) E eta, _--< _--< r.
{Atkl-k- A i}

Note that the sum is over k-states A whose initial state (not initial symbol) is i. Let V
be the image of ff in tg. The eventual range of a linear map on a vector space is the
intersection of the images of its nonnegative powers.

LEMMA 1. The map / in (3.1) is an isomorphism from 1 to Vk, its range Vk is
Tt -invariant andbT Tt /. Furthermore, T is nilpotent on g / Vk so V contains
the eventual range ofTtk.

Proof. Since the sets 3-tg- l)(i) 6etl are disjoint for e re, it follows that is
injective. Recalling our convention that matrices act on the fight, we compute the action
of Ttk on a basis vector el l for e 6’ by

Tt)ff(el ’) Ttk(
{A: k- A= i}

etl | X etakT[k]
/ {A." 3 Ia i}

{A:fl k- A i} {B:3B hA} {C[k] "[Jkc= i}

[k]
tiC"

Similarly,

j 6’ {A: 0 k- A j} C $[k]. 3kc= i}

e[k]C"
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Thus fiT Ttk], which also shows Vk is Ttk]-invariant. To show that T[k] is nilpotent
on t/V, let A 9t have terminal state j n- A. Then

(3.2) e[](Tt])-’= Z e[zl=p(e’])eV.
{Be o’[k] /3 k- IB r/k- 1A}

Suppose B ... k, and thatj n(k- 1) has the property that = Tt 1. Then
the subblock B’ . k- determines B, and forbidding B’ is the same as forbidding
B. Call a block reduced if no proper subblock determines it. We shall prove our results
for reduced blocks. By irreducibility of T, every block oflength k > 2r contains a reduced
subblock of length greater than k 2r that determines it. Hence most of our results hold
for all blocks of length k, perhaps with different constants, by applying them to this
reduced subblock.

Let B e 3k(XT) be reduced. We will enlarge Vk by k dimensions to obtain a
T(B)-invariant subspace Wk Wk,B containing the nonnilpotent part of T(B) and
calculate the matrix of T(B) with respect to a natural basis of

For notational simplicity, let U denote Ttk], and E EB,,n, so T(B) U- E.
.,[k]Also, let e , so the range ofE is e. Since B is reduced, it follows that e Vk, since

otherwise the proper subblock/3k- B would determine B.
The next result shows that the absorption time of e into Vk under U is k 1.
LEMMA 2. With the above notations, min { rn > 0 eU Vk } k- 1.
Proof. By (3.2) the minimum is at most k 1.
Equality is proven by observing that the next to last state in B must be followed

by at least two symbols since B is reduced. Hence, the set of blocks in 6etk] whose
first symbol is the last symbol of B is a proper subset of the set of those whose initial
state is i.

Let ( r/k- B be the terminal symbol of B, and =/3/k- 1B its initial state. Since
B is reduced, j..9o T >- 2. Hence

eUk- 2 ,[k] Ttkl)k_ 2,( , etck]
C" flk- 2c= }

is summed over a proper subset of/-k+, (i). For fixed i, every vector in Vk must have
the same coordinate on each e for C e r-k+ 1( i). Hence eUk- 2 Vk" [-

LEMMA 3. With the above notations, the vectors e, eU, ..., eUk-2 are linearly
independent ofeach other and of Vk.

Proof. Suppose ale + aEeU + + ak-leUk-2 + v 0 for some v Vk. If all
aj 0, we are done. If not, choose j minimal so a 4 0. Applying Uk-J- on the
fight gives

eU2k 3- J)6aeU- v aj + eU- + + a_

contradicting Lemma 2.
In view of Lemma 3, we can introduce the subspace

Wk Wk,B-- Vk,eeU (eUk-2 [k],

having dimension r + k 1, where r dim Vk dim tl is the size of T. Although Vk
depends only on k, note that Wk also depends on B.

LEMMA 4. The subspace Wk is invariant under both U and U- E, and it contains
the eventual range ofboth transformations.

Proof. The invariance of Wk under U is clear. Since the range ofE is e, it follows
that Wk is also invariant under U- E. Since by Lemma we have U nilpotent on
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Rtk]/Wk, and E vanishes there, U- E is nilpotent on Rtk]/W, so the eventual range of
U- E is contained in Wk.

If6 is the map defined by (3.1), by Lemma the set {k(e111) e 6f} forms a
basis for Vg. Hence

B { (e]’l), p(e’]), e, eU, eUk- 2 }
is a basis for Wk.

To describe the matrix of U E with respect to B, let CB(t) :_- Cjtj- be the
correlation polynomial of B ... k, where cj if l’" "j k-+ l’’" k and c
0 otherwise. Note that Ck 1, SO deg CB(t) k 1. Define

C(4,,)

--Ck-1 0 0
--Ck-2 0 0

-c: 66 ..:
-c 0 0 0

to be its companion matrix. Our definition differs from the usual one by permuting the
rows and columns with the permutation -- k i, but the characteristic polynomial is
still b(t). Let e be the r row vector [0...0 0...0], and ef be the transpose of
ei. Denote the m n zero matrix by Om,n

LEMMA 5. Let B 3k(Xr) be a reduced block with initial state [3kB and terminal
statej kB. Then the matrix ofT(B) U- E with respect to is

Ms(U E)=

T -ear 0,._

O_z., C()

Proof. We first compute Ma(U). By Lemma 1, on Vk the matrix of U with respect
to the ff(e1) is just T. Also, by (3.1) and (3.2), (eUk-E)u- ff(ell). Hence if

(3.3) Jo(k- 1)=

0 0 0
0 0 0

666..:i
0 0 0 0

denotes the Jordan nilpotent block of size k- 1, we have

Ms(U) 0_2., Jo(k 1)
e

Next we compute Ma(E). Using (3.1), we see for m 6f that

ifm= i= [3B,
otherwise,
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and for 0 =< m -< k- 2 that

eUm)EaB’nB=
0

Thus

M(E)

Subtraction gives the result.

if riB and fiB overlap in k- m symbols,

otherwise.

Ok- l,r Ok -1,k -2

It is perhaps interesting to note that although U- E is nonnegative integral, we
have represented its "interesting part" by a far smaller matrix Ma( U- E) containing
negative entries.

4. Zeta functions. We will use the results of the previous section to compute the
zeta function of T(B) in terms ofxr(t), B(t), and cof0 tI T described in 1. Recall
our notation from thatf(t) denotesf(t) multiplied by the unique power of making
the product a polynomial with nonzero constant term.

THEOREM 1. IfB E tk(XT) is reduced with initial state kB and terminal state
j rikB, then

g.r()(t) [Xr(t-l)s(t-)+cofo(t-I T)]"
COROLLARY 1. IfT [n], thenfor every B e lk(Xr) we have

’r)(t) nt)ck.(t- )t + "
In particular, ifB has only the trivial overlap with itself, then

’T(s)(t) 1--nt+t"
Proof of Corollary 1. Since r 1, here cofl (t/-T)= 1, and the constant

term of

(t-n)cks(t)+cof (tI- T)

is ns(0) +_ 4:0 since n >_- 2 and B(0) 0 or 1. Hence

[(t-l-n)4s(t-)+ 1]=tg[(t--n)cks(t-)+ 1]

nt)( - )tk- + t.
IfB overlaps itself only in the entire block, then Cs(t) k- 1, completing the proof.

Proof of Theorem 1. Recall from 3 our notations that U T[k], E Eg,
T(B) U E, e e,s, and that T(B) is nilpotent on a kl/Wk,B. The matrix of T(B
on Wk,S is given in Lemma 5, and expansion by the last row shows

(4.1) Xr(B)lWk,s(t) X(t)B(t)+cofo.(tI-- T).

Applying [4, Thm. finishes the proof.
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Bowen and Lanford [4, p. 45] have pointed out that although deg ’)(t) for full
shifts is linear in BI, the straightforward calculation of XT()(t) is exponential in BI,
and they asked whether there is a more efficient algorithm. Our reduction ofRtkl to Wk
provides such an algorithm. The obvious method of computing 4(t) is quadratic in
BI, so Theorem provides a computation of T(a)(t) that is also quadratic in BI.

However, a slight modification of one part ofthe Knuth-Morris-Pratt pattern matching
algorithm 13] actually gives a linear algorithm. (We are indebted to Andrew Odlyzko
for suggesting this possibility.)

COROLLARY 2. Forfixed T there is an algorithm to compute T()( t) in time that
is linear in B I.

Proof. By Theorem 1, we need only find a linear algorithm to compute 4n(t). Let
B ... k. Define f: { 1, ..., k} -- { 0, ..., k- 1} by setting f(j) to be the largest
nonnegative < j such that -. i j -i+ 1" j. As in 13, 2 ], the table of values of
f can be computed in O(k) steps. Our definition of f differs slightly from that in 13 ],
but this has no consequence for the algorithm.

Since f is strictly decreasing, there is a first iterate fS(k) that equals zero. Let
k0 k, k =f(k), k2 =f(f(k)), ..., ks- =fs-(k). We claim

s-1

(t) g .
j=0

For by definition, kl --f(k) records the largest nontrivial overlap of B with itself. It
follows that the next largest overlap ofB with itself coincides with the largest nontrivial
overlap of . .k with itself, which by definition is f(k) kz. This continues until
f(k) becomes zero. ff]

Since the number ofk-blocks is roughly )r, one might expect the number ofdistinct
’r(n) (t) to also have exponential growth. Surprisingly, this number turns out to be quite
small. For k 20 there are only 16 distinct correlations, and even for k 50 there are
only 2,240 [9, p. 29].

COROLLARY 3. If "y > log (-32), then

l{ fr<>(t)"B(Xr) }l O(kg)

Proof. By [9, Thm. 6.1 ],

l{ 4(t):Ol(X)}l O(kl).

Since every block in 3(Xr) contains a reduced subblock of length greater than k 2r
determining it, and the number of the polynomials cof0. (t/- T) is uniformly bounded,
the result follows. []

Another curious fact also follows.
COROLLARY 4. Suppose m, n >= 2. The number ofdistinct zetafunctions produced

by omitting the blocks oflength kfrom thefull m-shift coincides with that from the full
n-shift.

Proof. This follows from Corollary together with the result 9, Cor. 5.1 that the
set of correlations is independent of the size of the alphabet. [2]

Because of the possible cancellation of lower powers of t in (4.1), Theorem does
not immediately yield deg ’)(t). In particular, a good lower bound is not obvious.

THEOREM 2. IfB k(XT) is reduced with initial state and terminal statej, then

k-4r-<deg )(t)<=k+ r- 1.
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The upper bound is attained ifand only if
(4.2) (det T)o(0) + cof0 (-T) 4: 0,

and this occursfor all blocks in a full shift.
Proof. Using the notations from the proof of Theorem 1, we see that

deg xr(o)l wk(t) dim Wk k + r- 1,

and that T(B) is invertible on Wk if and only if the constant term in (4.1)

Xr(0)a(0) + cof (-T) (det T)cka(O)+cofo.(-T)O.
For full shifts, the proof of Corollary shows the constant term is nonzero for all blocks,
completing the proof of the upper bound statements.

For the lower bound, we will prove by induction on k that the highest power P of
dividing (4.1) is less than 5r. Since the degree is k + r- 1, the lower bound will follow.

For notational simplicity, put c0(t) cof0 tI T). A crucial fact that we use repeatedly
is that co(Xr) 4:0 for all i, j 16, p. 7].

If k -< 4r, then for every B 3(Xr) the degree of (4.1) is < 5r. Also, at Xv
this polynomial has value cof0 (I- T) 4:0 by 16, p. 7]. Hence if k < 4r, the highest
power P of dividing (4.1) has P < 5r.

Now fix k > 4r, and assume our inductive hypothesis for all blocks of length < k.
Let B 6 (Xr). Choose p >_- minimal so B overlaps itself in k p symbols. If B has
only trivial overlaps, define p to be k. This p is the fundamental period of B as defined
in [9 ]. We distinguish two cases, depending on the relationship ofp to r.

First suppose p > r. If p k the result is trivial since then 4o(t)= -l

deg cij(t) _-< r- 1, and c0(Xv) 4: 0, so P _-< r- 1. If p < k, let C PB. Then C has
initial state i, terminal state j, and 4(t) k- + Ckc(t) with deg Oc(t) k p 1.
Since deg xr(t) r, and p > r, the highest power of dividing (4.1) coincides with the
highest power dividing xr(t)ckc(t) + co(t), which is less than 5r by induction.

Next suppose p _-< r. We first treat the case p Xr(t). By the recursive descrip-
tion of 4(t) in [9, Thm. 5.1 ], it follows that

I_(k p )/P_I

(4.3) 4(t) mp + (t),
m=0

where deg (t) < 2p. We claim that for every K >- 1, in the product

(tpI+tp(I-l)+ +tP+ 1)xr(t)

every set of p consecutive powers of in [0, Kp + r] has at least one nonzero
coefficient. For if not, then letting It[ < and K oo shows that (tp )-IXT(t) G

7/[ ], contradicting p /Xr(t). Substituting (4.3) into (4.1) and applying our claim,
it follows that (4.1) has at least one nonzero coefficient of a power of in the range
max { r, 2p } + 1, max r, 2p } + p], showing that P _-< 3r in this case.

Finally, suppose p -< r and v lXr(t). By (4.3),

ck(t) tp+l( tpI-I ) +(t)tP_l

where K =/(k- p 1)/pJ, < p, and deg b(t) < 2p. Let Xv(t) (tp 1)2(t), so
2(Xr) 0. Then

xr(t)ck(t)+ co(t)= 2(t)tp(:+ )++ 2(t)[(tp- )p(t)- tP+] + co(t).
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If p(t) ((t)[(tp 1)(t) p+l] + co(t ), then p(Xr) co(Xr) 4: O, so p(t) is not
identically zero. Also, deg o(t) < r + 2p <- 3r. Since

(k-1 1) k p l>_3r,,p(K+ 1) + l>=p
P

the highest power P of t dividing (4.1) coincides with that dividing o(t), so P =< 3r in
this case. D

5. Entropy. How does entropy change when one long block is removed? Since
h(ar) log Xr, this amounts to determining the change in spectral radius. Standard
Perron-Frobenius theory [16, Thm. 1.1 (e)] shows )r > Xr(B). The following consid-
erations allow us to guess that the difference is exponentially small in BI. We can
consider T(B) to be the end result of U- tE as varies from 0 to 1. To find the change
in eigenvalue, it becomes important to know its rate ofchange, say at 0. Surprisingly,
this rate is a simple function of the left and fight eigenvectors.

LEMMA 6. Let A aij] be a real square matrix with simple eigenvalue X and
corresponding left eigenvector v and right eigenvector w. Then

-w
Proof. Since X is simple, it is known 12, Thm. II. 1.8 that X, v, and w are analytic

functions of ao. Take 0/00 ofAw Xw, use OA/Oao Ej, and multiply by v on the left
to obtain

Ow OX Ow
VAaij

+ vEijw Vaij
w+ )v

aij

Cancelling the terms involving vA Xv shows that l)iWj (vw)(OX/Oaij). Since is
simple, vw 4 O, concluding the proof.

Let the notation f(k) g(k) as k -- mean that there are a, b > 0 so that for
sufficiently large k we have ag(k) <f(k) < bg(k).

Now fix T, and let v > 0 and w > 0 be the left and fight eigenvectors for Xr. Put
c min { vi, wi } and d max { vi, wi }. Recalling the map b defined in (3.1), we have
that (v), (w) are left and fight eigenvectors for U Ttkl, and have entries between c
and d. Since these vectors have length about X, it follows (v)p(w) r. Hence by
Lemma 6, the derivative of v-tE at t 0 is within two positive constants ofXk. If we
were able to extend this estimate of the derivative to all 0 -< =< 1, we would be done.
However, the estimate runs into trouble as becomes positive since the eigenvectors also
vary with t.

Nevertheless, the linear algebra of 3 enables us to prove a sharp exponential estimate.
THEOREM 3. There are constants cr, dr > 0 so that if k is sufficiently large, for

every B 90k(Xr) we have

crXk < h(at) h(aT(B)) < drXrk.

Proof. In the following, the aj are suitable positive constants. Let us first consider
the case T [n] of the full n-shift. Then kr n and kr(B) satisfies (t n)chB(t) +

0. By [8, Lemma 3], I(z)l > a(1.7) for Izl ->- 1.7 and suitable a > 0. Thus if
zl 1.7 we have

I(z-n)cb(z)l >- (0.3)a(1.7)g>
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for k large enough. We use this to count roots by invoking the following result from
complex analysis.

ROUCH’S THEOREM. Let f(z) and g(z) be analytic on { zl <= R } and satisfy
If(z) g(z)l < f(z)l for Izl R. Thenf(z) andg(z) have the same number ofzeros
in{Izl <R}.

Using (5.1) and Rouchr’s Theorem, it follows that (z-n)cba(z) and
(z n)qb(z) + have the same number of roots in Izl >-- 1.7, namely 1. This shows
that h hT(o) >= 1.7. Hence

--< In-,l---- <--

Thus

)kk- 2 k"ff)B )k )kk- 3r_ Ck_ 2 3f. _Jl_ Co )k

-k for B,k(XT) as k-- .In-XT<a> .
We claim that actually In- x<a>l n -k, for which it suffices to show that

In ,r<a> --< an-k for suitable a > 0 since h hr<a> < n. Now

In ),1 =< a3X-k a3n-k log X/log n,

and since In h < a4X -k, it follows, using differentiability of log x at x n, that
-log ),/log n < + ash-k < + as( 1.7)-k. Hence

In- hi <a3n-knaSk(l’7)-k.

Putting

a2 a3 min { n aSk(l’7)-k} < c
l_k<

completes the proof for the full shift.
To extend these ideas to general T, we need a version of (5.1) that works for

smaller Izl.
LEMMA 7. Fix p > 1. Then

inf inf Is(z) -- as k- .
B.,k(XT) Izl-a

Proof. Recall from the proof of Theorem 2 that ifp is the fundamental period for
B, then

t(k p )/P3

)B( t) lk- mp 3f. I/( l),
m=0

where deg if(t) < 2p, and if(t) has coefficients that are 0 or 1. Fix M > 0. Ifp > k/10,
then for all zl --> we have

t9k/10/

[zlmM
m=0

provided k is large enough. Ifp _-< k 10, then for K =/(k- )/pJ we have

s(t) t + if(t),
tP-1
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where l < p and deg 7/(t) < 2p. Hence for all ]zl > O we have that

4)s(z)[ >lzl( z:p-1 )zI; -1
2p

Izl 9g/1- Izl k/ klzlk/5M
Izl k/l + 5

if k is sufficiently large. Vq

We now prove Theorem 3 for general T. We know that k kr(B) satisfies

(5.2) xr(t)4( t) + co(t) O,

where co(t cofo(tI-T) is one of a finite set of polynomials. Since xr(t)=
(t Xr)q(t), where q(Xr) :/: 0, we have

IXT--t[ ci(t)l
I(t)q(t)l

Let the roots ofxr(t) be ),1 r, k2, kr-Fix O with Xr> o > maxz=<j_r[ Xjl. Apply
Lemma 7 to conclude by Rouch6’s Theorem that for sufficiently large k (5.2) has exactly
one solution for It] > p, namely r(B). Hence

cij(XT<))I ---0 ask-.

Since q(z) 4:0 if Izl > p, we have Iq(X<.>)l as k -- . Furthermore, as re-
marked above, the Perron-Frobenius theory shows that cij(Xr) 4:0 for all i, j, so

k
Cij(kT(B))[ as k -- . Since I4(XT())] r(B), we obtain

-k

The conclusion that this forces

IXT- XT(B) ,, .k as k--

follows exactly as in the full shift case. [5]

We remark that these estimates may also be proved using generating functions, in
the spirit ofthe calculations in 8, 2 for the full shift. Let fn) be the number ofblocks
in 90n(Xr) from to j not containing B, and put Fi(z) ,n%o fnij) z-n, and set
F(z) [F/(z)]. Then developing matrix analogues of the polynomial relations in
[8, ], we can show that

F(z)=(I-z-(k-1)E)[zI T+cs(z)-1TE] -I

where E Eo. The largest root of the denominator is Xr(), and we can derive the
exponential estimate ofTheorem 3 from this. The details are more involved than for the
proof given here. This generating function technique could also be used when omitting
a finite number of blocks, as in [10, 2 ]. This yields a nonsingular system of matrix
equations whose solution would allow an estimate of the resulting spectral radius. How-
ever, the results are not nearly as explicit as for one block.

We also remark that much finer information about [T- kT(B)[ can be obtained
from the proof of Theorem 3. For example, if T [hi and B lk(X7) has only the
trivial overlap with itself, then
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Such estimates can be proved directly 8, Lemma 4 ], or with the Lagrange inversion
formula 17, Thm. 2 ].

6. Jordan forms. Let J(T) be the invertible part of the Jordan form J(T) for T,
and j0(T) be its nilpotent part. Williams 18 proved that J(T) is a topological invariant
of at. Although jo(T) is not an invariant, our analysis allows us to compute j0(Ttkl)
and, in many cases, j0 T(B).

Denote by J0(m) the elementary m m Jordan block for eigenvalue 0 as in (3.3),
and by Jo(m) (R)n the direct sum of n copies of Jo(m). We first show that in passing from
Tto Tt21, each Jordan nilpotent block of jo(T) increases by one dimension, and enough
one-dimensional nilpotent blocks are added to account for the rest of dim t2.

LEMMA 8. Suppose T has Jordan form J( T) jo( T), where

jo( T)= Jo( )(R),o Jo(2)(R)n, ()... ()jo(p)(R)np-,.

Then T has Jordan form J(T) (R) j0 T 2]), where

and

J(Tt21) Jo( )(R)n-i () J0(2)(R)no()... () Jo(P+ )(R)np_,

p

(6.1) n_= Z T-dimjX(T)- Z(l+l)n-.
i,j=l l=1

Proof. Since T is assumed irreducible, for each e 6’ we can choose (i) e o with
[2]r/((i)) i. Define g: [1] [2] by g(i= aiel 1]) Ei=I aie(i). Recalling the map

ff defined in (3.1), note that Tt2lo g ft. If {v, Vp} is a Jordan basis for J(T),
then {ff(v), ff(Vp)} is one for J(Tt21) by Lemma 1. Let V denote the span
of the k(Vm). Suppose w e tl generates one of the Jordan nilpotent blocks of size s in
jo(T). Then g(w) generates a Jordan nilpotent block of size s + in jo Tt21) since
g(w) Tt21 if(w). Thus by mapping each Jordan nilpotent generator in jo(T) to its
image under g, we obtain vectors in t2 with nilpotency >= 2 under Tt21 On the subspace
Wgenerated by powers of Tt21 on these vectors the matrix of Tt2 is

J0(2)(R)n(+ J0(3)(R)n (R) ( Jo(P+ (R)np-

For each e 6 let

0(i) { g" r/() i,4: (i)}.
The vectors {e21 ,t21

t;(i) O(i), O } are each annihilated by Tt and span the
remaining part of tl. It follows as in the proof of the Jordan form [10, 7.3] that
V W has a Tt21-invariant complement on which TTM is 0. Since dim t2 0 To,
the dimension n_ of this complement is given in (6.1), concluding the proof. []

Since Ttkl Tt- l)t21, Lemma 8 allows the inductive determination of j0(Ttl).
It is convenient to introduce the sequence { nq( T)" q e 7/} of integers defined as follows.
For q >_- 0 the nq(T) are determined by

jO(T)= () Jo q + 1)(R)nq( T)

q=0

so nu(T) 0 for sufficiently large q. For q < 0 we use the backward recursion

(6.2) nq(T)= Z (Tlql)ij-dim J(T)- ., (l+ 1)nt+q,
i,j=l l=1

where the infinite series is really finite since n+q 0 for large l.
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THEOREM 4. Ifnq( T) is defined as above, then

J(T[k])= () Jo(q+ 1)(R)nq+’-k(T).
q=0

Proof. If k this follows by definition, while Lemma 8 shows this to be true for
k 2. The general result follows by induction on k.

For a concrete example, consider the full 2-shift T 2 ]. The theorem implies that
for all k >_- 3 we have

j0(Ttgl) J0(1)(R)2k-3@ Jo(2)(R)2k-4() () Jo(k-2)(R)20@ Jo(k- ).

Mike Boyle (private communication) has pointed out to us that

(6.3) rk (Tt)p rk Tt + q)+

for l, p >_- 0 and k >- 1. The proof is analogous to that of Lemma 8. If S is any matrix,
then the number of Jordan nilpotent blocks of size m >= is rk (S / ) 2 rk (Sm) +
rk (S ). Hence (6.3) yields an alternative proof of Theorem 4.

We now show that under some circumstances we can determine the Jordan form
ofT(B).

THEOREM 5. Suppose T is invertible, that B (X) is reduced with initial state
and terminal state j, and that

(6.4) (det T)(O)+cofo.(-T)O.

This condition is met by all blocks in afull shift. Then T(B) is invertible on , J T(B)
isjust the Jordanform ofthe restriction ofT(B) to I/V, and jo( T(B) is obtainedfrom
j0(Ttgl) by deleting one copy ofJ(k ).

Igl E E,, and Vg andProof. Use the notations of 3, with U Tkl e e,,
I47 the subspaces described there. Since T is invertible, there is a v e Vg such that
vU- eU- . Since eU- 2 Vk, it follows that w e v generates a nilpotent Jordan
block under U of maximal size, and that W is the direct sum of the corresponding
subspace and V. The proof of the Jordan Theorem [10, 7.3] shows that there is a
Jordan basis for U with w as one of its generating basis vectors. Since E vanishes on the
direct complement of W, it follows that passing from U to U- E T(B) preserves
the direct complement Jordan structure. By (6.4), it follows as in Theorem 2 that U-
E is invertible on W. Thus in passing from U to U E, one Jordan nilpotent block of
size k combines with V to form the subspace Wg on which the invertible part of
U- E acts, while the remaining Jordan nilpotent blocks remain undisturbed.
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