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Summary

We compute the joint entropy of d commuting automorphisms of a compact
metrizable group. Let R, = Z[uf!, ..., uf'] be the ring of Laurent polynomials
in d commuting variables, and M be an R;,-module. Then the dual group X ,, of M
is compact, and multiplication on M by each of the d variables corresponds to an
action a,, of Z? by automorphisms of X ,,. Every action of Z¢ by automorphisms of
a compact abelian group arises this way. If fe R;, our main formula shows that the
topological entropy of ag , s is given by

1

1
o, ¢j5) = logM(f) = [ [oglf(e™™, ., &) dty ... dt,
0

where M( f) is the Mahler measure of f. This reduces to the classical result for toral
automorphisms via Jensen’s formula. While the entropy of a single automorphism
of a compact group is always the logarithm of an algebraic integer, this no longer
seems to hold for joint entropy of commuting automorphisms since values such as
7(3)/4n* occur. If p is a non-principal prime ideal, we show h(o ,) = 0. Using an
analogue of the Yuzvinskii-Thomas addition formula, we compute h(a,,) for
arbitrary R;-modules M, and then the joint entropy for an action of Z on a (not
necessarily abelian) compact group.

Using a result of Boyd, we characterize those a, which have completely
positive entropy in terms of the prime ideals associated to M, and show this
condition implies that «,, is mixing of all orders. We also establish an analogue of
Berg’s theorem, proving that if «,, has finite entropy then Haar measure is the
unique measure of maximal entropy if and only if o, has completely positive
entropy. Finally, we show that for expansive actions the growth rate of the number
of periodic points equals the topological entropy.

* The authors gratefully acknowledge support from NSF Grant DMS-8706284, the IBM
Thomas J. Watson Research Center, the Milliman Endowment, and SERC Award B85318868
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§1. Introduction

The main purpose of this paper is to compute the joint topological entropy of d
commuting automorphisms of a compact metrizable group. For a single auto-
morphism this computation was carried out in a series of papers in the 1960’s (cf.
[LW, §17]), culminating in Yuzvinskii’s general result [Yz2].

Recently, Kitchens and Schmidt [KS1] have established a general framework
for the study of commuting automorphisms of compact groups. To describe this,
suppose « is an action of Z¢ by automorphisms of a compact abelian group X. Let
R,=Z[uf',..., uf'] be the ring of Laurent polynomials in d commuting
variables. In §2 we show how a induces an R,-module structure on the dual group
M of X. Conversely. if M is an R;-module, then there is a natural induced Z%-action
ay, on its compact dual X ,,. The interplay of the dynamical properties of «,, on the
one hand, and the algebraic properties of M on the other, gives this point of view its
particular interest.

Suppose f'=f(u,,..., u)eR,, and let { = {f> be the principal ideal gener-
ated by f. Our main formula computes the topological entropy of the Z“-action
corresponding to the R,-module R,/f. We show in Theorem 3.1 that

1

1
tgp) = TogM(f) = T [log /(@™ ™) dt ...diy. (1)

Here M(f) is the Mahler measure of f, introduced by Mahler [Mhl1], [Mh2] in
connection with inequalities for coefficients of polynomials in several variables.
Smyth [Sm2] has computed the integral in (1-1) for some polynomials. For
example,

1

hatk, et s ) = 505 2 <> 3 = 03230659472,

T n

where <g—> is the Legendre symbol, and

73
ER G1utoswy) = %} ~0.2131391994 ,

where { is the Riemann zeta function.

The formula (1-1) reduces via Jensen’s formula to Yuzvinskii’s result when
d=1.

We devote §3 to showing (1-1). The proof that h(ag ;) = log M(f) uses a lower
estimate for entropy involving l-dimensional integrals that Lawton [Lw] has
shown converge to log M( f). For the opposite inequality another kind of estimate
is used, yielding an upper bound for h(og ;) that is a Riemann sum approximation
to the integral in (1-1). Since the integrand may not be continuous, a proof that
these Riemann sums converge to the integral is required. This is supplied in Lemma
3.5, where we show using perturbation arguments that the limit defining the Bowen
entropy for a linear map is uniform on compact sets of linear maps.

For a non-principal prime ideal p in R,;, we prove in Theorem 4.2 that
h(ag,,) = 0. In Appendix B we supply a proof of the “addition formula,” which
shows that if N is a submodule of M, then h(ay) = h(ay) + h(oty,y). If M is a
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noetherian R;-module, then by Lemma 4.3 there are submodules
0=MycM,c ...cM,_,cM =M (1-2)

with M;/M;_, = R,/p;, where p; is a prime ideal. By the addition formula we then
have

how) = Y h(aryy) |
ji=1

where each summand has been computed. We continue §4 with the calculation in
Theorem 4.5 of h(x) for a Z%-action « on a (not necessarily abelian) compact group.
Whether the set of values h(x) for such actions is countable, or all of [0, oc], is
shown in Theorem 4.6 to be equivalent to a problem of Lehmer about algebraic
integers that has been open for fifty years.

A polynomial in R, is called generalized cyclotomic if it can be written in the
form @(uy'u3y? . .. uz), where the n;e Z and ®(u) is a cyclotomic polynomial in one
variable. A theorem of Boyd [Byl] implies that h(ag ;) = 0 if and only if fis a
monomial times a product of generalized cyclotomic polynomials. This and other
examples and remarks are collected in §5.

Our characterization of zero entropy is used in Theorem 6.5 to obtain a
complete description of the Pinsker g-subalgebra for «,,. In particular, «,, has
completely positive entropy if and only if every prime ideal associated to M is
principal but not generated by a generalized cyclotomic polynomial. In this case, a
result of Kaminski [Km] shows that «,, is mixing of all orders, providing a partial
answer to a question raised by one of us [Scl, Problem 3.9]. We next give a more
careful analysis of the properties of o, that can be deduced from the prime ideals p;
occurring in a given filtration (1-2) of M. In particular, we show in Propostion 6.10
that the minimal prime ideals associated to M must occur, and with the same
multiplicity, in every filtration. Consequently, we obtain in Theorem 6.13 a
computable sufficient condition for a,, to have completely positive entropy. Our
analysis also yields an analogue of Berg’s theorem on the unique ergodicity of
group automorphisms [Bg]. We prove in Theorem 6.14 that if h(x,,) < oo, then
Haar measure on X, is the unique measure of maximal entropy if and only if a,,
has completely positive entropy.

In certain situations the growth rate of the number of periodic points gives the
topological entropy. Although examples show that this fails to hold in general, we
show in Theorem 7.1 that it holds for all expansive actions. The proof uses the
characterization of expansiveness of a,, in terms of the varieties of the prime ideals
associated to M given in [Sc2, Thm. 3.9].

We are grateful to David Boyd and Robert Warfield for many useful conversations.

§2. Notations and conventions

We describe here some of the notations and machinery used throughout this paper.
The symbols Z, R, and C denote the integers, reals, and complex numbers,
respectively. Let T denote the additive circle group R/Z,and S = {ze C:|z| = 1} be
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its multiplicative counterpart. For clarity, d-tuples will be denoted by boldface
letters. If u=(u;,...,uyy)and r=(r,, ..., ry), we put uf = uj'u? ... uy. Fora
scalar u, let u* denote (u"', . .., u").

A rectanglein Z%isa set of the form Q = [[4=, {b;, .. .. b; + |; — 1}. Its girth s
defined to be g(Q) = min; ¢ ;<4 [}

All groups that we consider will be metrizable. A Z%action o on a group X is a
homomorphism « of Z¢ to be the group of continuous (algebraic) automorphisms
of X. The image of ne Z¢ under a will be denoted by a®. If a is a Z%action and A:
7% - 7% is a homomorphism, define the action o by ()" = o™

Let o be a Z-action on a compact abelian group X, and let M be the discrete
dual group of X. Since X is metrizable and compact, it follows that M is countable
and discrete. If e; denotes the jth standard basis vector of Z¢, then the auto-
morphisms a¢ correspond under duality to commuting automorphisms f; of M. If
R, denotes the ring Z[uf!, ..., u}f'], then M becomes an R,-module under the
action u;-m = f;(m) for me M. Conversely, if M is a countable R;-module, then
multiplication by each of the u; gives d commuting automorphisms of M. These
transform to a Z%-action a,, on the compact metrizable dual group X,, of M.

For a Z%action o on a compact group X, let h(a) denote its topological entropy.
Since we have not found a satisfactory treatment in the literature, we outline in
Appendix A the steps needed to extend the theory of entropy to d > 1. This
includes showing that five ways to obtain h(a) agree. In particular, h(a) is the
entropy of o as a measure-preserving action of Z¢ on the Lebesgue space (X, uy),
where py is normalized Haar measure. The general theory of measure-preserving
Z%actions has been developed by Conze [C], to which we refer the reader for
details and notation. We shall use Rohlin’s theory of measurable partitions of a
Lebesgue space. An excellent account of this theory is contained in Parry’s
book [P].

If fe R,, then the Mahler measure of f is defined as

M(/) = exp[ [ log If(s)lds} :
§d
where ds is Haar measure on S% This quantity can be regarded as the geometric

mean of fover the torus S$. If f # 0, then 1 < M(f) < oo . It will be convenient here
to make the convention that M(0) = oc.

§3. Entropy and Mahler measure

Let fe R;, and | = {f) denote the principal ideal generated by f. Then R,/f is an
R;module. In this section we compute the entropy of the induced Z%-action ag ;.
Recall our convention that M(0) = oo.

Theorem 3.1. If fe R, and | = { [, then
h(ag ) = log M(f), (3-1)
where M(f') is the Mahler measure of f.
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Proof. First assume that d = 1. We will show that (3-1) transforms via Jensen’s
formula to the classical entropy formula for toral and solenoidal automorphisms.
We may assume without loss that f(u) = c,,u™ + ... + ¢;u + ¢y, where ¢;e Z and
¢mCo * 0. Kitchens and Schmidt [KS1] showed that ag / is isomorphic to the
automorphism of an m-dimensional solenoid determined by the companion matrix
of f. The entropy of such automorphisms has been computed by Yuzvinskii [Yz2]
(see also [LW] for a short proof from a different viewpoint). Let f(u) factor over C
as ¢, | [7= 1 (u — 4;). Define log*x = max {0, log x} for x = 0. Yuzvinskii’s result is
that

h(og, /) = loglc,| + 3 log* (4] . (3-2)
i=1

Jensen’s formula [A, Thm. 5.3.1] implies
log* || = | log|e*™ — Aldt . (3-3)
T
An elementary proof of this is given in [Yn]. Hence

l'_"l (ezm'z _ A.)

i=1

dt

h(og, /i) = logle,| + | log
T

= [ loglf(e*™)|dt = logM(f) .
T

We now turn to the case d = 2. We will first obtain the lower bound
h(xg ;) Z log M(f) by use of the separated set definition of entropy (cf. Appendix
A). approximation of Xy ;; from inside by I-dimensional solenoids, a 1-dimen-
sional approximation to M(f) due to Boyd [Byl] and Lawton [Lw], and thed = 1
case already proved. We then establish the upper bound h(ag /) < log M(f) by use
of the volume definition of entropy and a Riemann sum approximation to the
integral defining M(f).

Let us first introduce an explicit metric p on TZ'. For s, te T, put |s — | =
dist(s + Z, t + Z). For x, ye TZ' put

p(x.y) =Y 27 Wx(j) — y(j)l .
jez!
where |j| =1(ji, - .., jo)l = max{|jl,..., |jsl}. The following lemma relates
coordinatewise distances to this metric.

Lemma 3.2. If ¢ > O, there is a 6 = d,(¢) and an integer b = by(e) > 0 such that if
p(x, y) > 9, then there is a je Z with |j| < b and |x(j) — y(j)| > e.

Proof. Let) jez¢2 "~ il = K < o0.Choose by(¢)so that ¥ i > » 2~V < & and put
d4(6) = (K + 1e. If |x(j) — y(j)| < ¢ for all [j| < by(e), then

p,)Se+ Y 27U (K + 1)e=d,(e). O
[il < bate)
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We will use this result as follows. If ¢ > 0, then Lemma 3.2 shows that there exists
b > 0and 6 > Osuch that, for every rectangle Q with sides of length [}, and for every
(Q, d)-separated set F = TZ*(cf. Appendix A), there exists a smaller rectangle Q' in
Q with sides of length [; — 2b such that F is (Q'. ¢)-separated in the maximum
distance over the coordinates of Q'. Thus, in computing h,(x) , we can use the
maximum distance.

Suppose that f€ R, has the form f(u) = chuj. For re Z“ define a polynomial of
one variable f e R, by

=
—
=
Il
)
—_
=
-
-
I

fur, oo uyy =) curd (3-4)
jez!

The values of f, on S! form a I1-dimensional slice through the values of fon S%. As

these slices become more uniformly distributed, one would expect M( f;) to approx-

imate M(f). Boyd [By1] gave a precise formulation of this idea, and verified it for

some special cases. Lawton [Lw] supplied an ingenious general proof for it. Put

giry=min{lm:m=%0,m-r =0} . (3-5)
Proposition 3.3 [Lawton]. For every fe R, we have

lim M(f)=M(f). O
g(r)— x
To explain the reason for this, let y, be Haar measure on the 1-dimensional
subgroup of T obtained by projecting the line in R through r. Then

M(f) = eXpl: ) lOgI_/'(ez’“")ldur(t)} :
]’d

Now u, converges weakly to Haar measure on T¢ as q(r)—» co. Hence if
f(e2it) £ 0 for te TY, it is immediate that M(f) = M(f). Possible zeros of f (e2uit)
introduce logarithmic singularities in the integrand. Lawton handles this problem
by obtaining an estimate on the measure of the set where | f(e2rit)| is small that
depends only on the number of non-zero coefficients, and by employing the fact
that f, has the same number of non-zero coefficients if ¢(r) is sufficiently large.

We call re 7 primitive if the greatest common divisor of its entries is 1.

Fix a primitive re Z%, and define y,; TZ - TZ by (Y, x)(j) = x(r-j) for xe TZ.
Since r is primitive, it follows that y, is injective. To simplify notation, let (X, «)
= (Xg,sf» %r,7) and ()Z,Lo‘z,) = (XR,/j,» %r, /i) Where f, is the ideal generated by f; in
R,. We claim that ¢ (X,) < X. For if xe X, and r-n = n, then

Y W Dm+j= 3y G¥n+rj=0
jez! jez!
by (3-4).
For n21 let r,=(1,n,n% ..., n®"!). Note that r, is primitive, and that
q(r,) = n—- oo with n (cf. (3-5) and [Byl, p. 118]). Let

Qum=10,1,...,n—1}"1"x{0,1,...,m—1}.
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Then the map ji—r,j gives a bijection of Q, ,, to {0,1,...,]Q, .| — 1}. Let b, (¢)

be determined by Lemma 3.2, and set @, ,, = = {b,(¢), NQpml — 1 — by (e)}. Fix

) > 0. Let J,(¢) be determined by Lemma 3.2, so thdt (‘) () > 0 as ¢ > 0. By the

definition of hep(% ) (cf. Appendix A), there exists an ¢ > 0 such that, for all

suf’ﬁcwntly large n, there exists an mg (e, 0, n) 2 n such that if m > m, there exists
Q,, 0, (€))-separated set F Xr such that

IF] > exp [1Qy,ml(hep(@,) — 0)] .

Suppose that X and y are distinct points in F, and let x = y, (%), ¥ = ¥, (7). Then
there is an zeQ,, m With p(a} X, &} ) > 0, (¢), where &; denotes the ith power of &,
By Lemma 3.2, there exists aj with 0 < j < |Q, ,,| such that |x(j) — j)| > e There
is a unique ke Q, ,, with r,-k = j, so [x(k) — y(k)| > &, and p(akx, « ky) > e. Hence
Y (F) = Xisa(Q,, &) separated set for a with the same cardinality as F. Thus, for
m = mgy(e, n, 0),

LI
|Q" "li |Qll "l|

Now the girth ¢(Q, ,,) = oo as n— oo, and |Q,,',,,[/|Q,,,,,,| — 1 as n—> o0. Also,
h(a, ) = log M(f,) = log M(f) by the first part of the proof and Proposition 3.3. By
taking the lim sup as n tends to infinity we see that

s(e, a) = logM(f) — 0

(h(%,) — 0) .

for every 8 > 0. Hence h(x) = log M(f), completing the proof of the lower bound.

We now turn to the proof of the upper bound h(x) < log M(f) We first
transform f into a form more convenient for our analysis. If /' Zc ul and
AeGL(d, Z) let f4( Z cjudi. Then ag 4y is conjugate to af i where as in §2
the action a? is deﬁned by (:x”)"— a4n, Now h(a?) = h(), and an easy calculation
using the fact that 4 preserves Haar measure on T¢ shows that M(f4) = M(f).
Furthermore, both the action and its entropy are unaffected by multiplying f by a
monomial.

Thus by applying an appropriate A € GL(d, Z) and multiplying by a monomial,
we can arrange that f has the form

Sy, oo uy) = qul + f g, ug_Dul "t foluys g y)
(3-6)
where g # 0 is integral, f,e Z[u,, ..., u,_,], and f, £ 0. If f'is in this form and
f=7 ¢, then there is a p > 0 such that
{Jez2: ;0 =({0,...,p—1}"""x{0,...,D— 1})u{Des} . (3-7).

A major difficulty with higher dimensional Markov shifts is the so-called
extension problem, namely whether a collection x; of values for j in a subset of 74
can be extended to an allowed point in the Markov shift. In full generality this
problem is undecidable, and even in this algebraic setting it is not trivial (for
a discussion of this, see [KS2]). One use of the transformation of f to the form
(3-6) is that a special case of the extension problem can be readily solved.
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Lemma 3.4. Suppose that f€ R, has the form (3-6), and let S denote 7°~* x {0, . ..,
D — 1}. Then the homomorphism XRd/f—-ﬂTS given by coordinate restriction is
surjective.

Proof. 1f x(j)e T is arbitrary for je S, we must show that x can be extended to a
point of Xg . If 00 =(uy, ..., uy_y), write (@) = ;e 2 ¢,(i)ui. By (3-6), any

extension of x to Z¢~ ' x {D} must satisfy, for ie ™",
D-1
gxi, D)= — ¥ Y cmx(i +m, k). (3-8)
k=0 mezi-!
Hence such an extension is possible, and for every ie Z? ! there are g choices for
x(i, D). Repeating this procedure extends x to Z¢~' x {0, 1, ... }. To extend x to

74! x { — 1} we must find values x(i, — 1), i€eZ?" ', so that

ot m —~=— Y Y cmuxi+mk—1)—gxi,D—1).
mezi ! k=1 mezi-!
(39

Since R, is an integral domain and f; % 0. the homomorphism Iid;l - Iid, , dual
to multiplication by f, on R, is surjective, so the extension exists. Repeated
application of this argument extends x to a point in Xg ;. U

Let Y, denote the set of points in X ; which have period n in each of the first
d — 1 coordinates. Then Y, is a closed ag -invariant subgroup. The following
remarks will show that there is a constant a > 0 independent of n such that, for
every m > 0, the projection of Y, onto the coordinates

{0,...,n—am— 1} x{0,...,m—1}

coincides with the projection of X / onto these coordinates. This justifies our
replacement of Xp ; by Y,, and ag,; by an automorphism A of the finite-
dimensional torus Y, induced by the shift in the last coordinate.

Let n be a positive integer, which should be considered very large compared

to p. Put Q, =(Z/m2)" ', Qup=0,x{0...., D—1}, and put T, =T,
T, p = T2 If we identify Q,, , with
0,...,n— 111" x{0,..., D-1}cz7¢,

then Lemma 3.4 shows that the homomorphism ¢: Xg ;— T, given by
@(x) = xlg, , is surjective. Thus if v =v,  is normalized Haar measure on T, .,
then ¢*(u) = v.

We shall assume from now on that fe R, has the form (3-6), and that p is given
by (3-7). To simplify notation, we shall also assume that ¢ = 1 in (3-6). The changes
needed for |g| > 1 are indicated at the end of the proof.

There is a homomorphism A4: T, , —» T, , given by

Yk + 1) fo<k<D-2,

o b
(Ay) (. k) N Zl ¥ cmyi+m,j) ifk=D—1.

......
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The relationship between A and « is that the orbit of a point ye T, , under A and
extension of y to X g /; given by Lemma 3.4 must agree on the interior of a rectangle
in the following sense. Let

Opm=10,....n—1—pm}*= ' x{0,...,m—1},

and suppose (i, k) € Q,,'m. If yeT, p,and x is any point in X g /; with ¢(x) = y, then
x(i, k) = (A*y) (i mod n, 0). This observation is the basis of our proof for the upper
bound.

Now fix an &, > 0. Using the proof of Lemma 3.2, let ¢ = (2% + 1)"'¢,, and
b = by(e). If

Qum=1b....on—1—pm—b}"1x{b....m—1-b},
then

{xeXpp: X)) <&jeQum} = () a7iB(e) =Dg (0. ¢,) -
i€0nnm
For yeT, p, put |yle, = max{|y(j)l: jeQ), p}. By our observation from the
previous paragraph, we have

(p—]{ye—ﬂ—n.ﬂ: ”Ajy”oo < 8’0 §j < m} < {XEXRd/f: lx(j)| < Cvjeért.m} .

1
Thus to obtain an upper bound for — l—Q_—l log u(Dg, («, £1)), it suffices to obtain

one for

1
10 m]

Fix a sequence m(n) — oo so that m(n)/logn — co and m(n)/n -0 as n - co.
Then g(Q_n‘m(,,)) — o0, and \Q—,,_,,,(,,)I/IQ(,,,',,,(,,,I — 1, so in (3-10) we can replace Q, .
with Q/n,m(n)-

We shall estimate the measure in (3-10) as follows. If C, = C2, then 4 induces a
linear map on C2. We will decompose C? into an orthogonal direct sum of D-
dimensional A-invariant subspaces indexed by Q,. By adding up the volume
decrease from the intersection in (3-10) over these subspaces we obtain a Riemann
sum approximation to log M(f), from which the upper bound will follow.

Use the same symbol A for the linear map A: C? — C? induced by the
homomorphism 4 of T, . Let |||, be the sup norm on C?, and let v, be Haar
measure on C” normalized so the unit cube has measure 1. Then

logv{yeT, p: lAyll,<e0=j<m}. (3-10)

viyeT, p: 47yl <& 0<j<m}=({zeCl: |Az]|, <& 0=<j<m})?,
(3-11)

where the square root is necessary since passing to complex vector spaces squares
volumes.

For 1 <j<d let P; act on C, by (P;z)(i)=z(i + ¢, modn), and put
P=(P,,..., P,_,) Then the matrix of 4 with respect to the standard basis on
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CPis
0 I 0 0
0 0 1 0
a=| ; S
0 0 0 1
=L®) —AP) =LP) e —fy(P)

Fix a primitive nth root of unity » = ¢*™/". For ke Q,, define a vector v, € C, by

u(j) = wi'k//1Q,|for je Q,,. The set {v,: ke Q,, | forms an orthonormal basis for
C,. Also, P;(v},) = " vy, so the vy are simultancous eigenvectors for the P;.

Let W, = (Cuy)?, equipped with the euclidean metric. Then CP is the ortho-
gonal direct sum of the Wy.. Furthermore, each W) is an A-invariant D-dimensional
complex subspace of CP, and the matrix of 4 with respect to the standard basis on

Wk is

0 1 0 0
0 0 1 0
Ay = Aly, = : : : : ,
0 0 0 1
— folwk)  — fi(wk) = fi(wk) - —fy(wk)

where wk = (0*', ..., w* ) for keQ,,.

For ke Q,, let vy be Haar measure on Wy, normalized so the unit cube has
measure 1. Since the vy are orthonormal, the normalizations agree so that v is the
product of the v,. It is here that orthogonality of the W) plays an essential role.
Denote the unit ball in Wy by By, and put B, = @y By. Let B, (¢) be the ¢-ball in CP
for |||l . Since each coordinate of v, has modulus n~“~'"/2 and there are n? ™!
vectors, it follows that B, (¢) 2 en” "V B,. Hence

m(n) — 1

{zeCli || Az, <e,0Zj<min = () A7B,(2)
i=0

m(n) — 1 .
Sen”“TY P A’By ),
0

keQ, \ J=

so by (3-11),

1 .
- logv{yeT, p: 4yl <& 0=<j<mn);]
lQn.m(n)'
I ll < d-1) @ <'"(”'—1 j
< — —logvelen " Ak”Bk>>
|Qn.m(n)| 2 keQm j=0
loge™ +(d — 1)D|Q,,|logn 1 1 <'"4")‘1 . )
— + — ——logv Ay’ By
2m(m| Q] 210, sz min 080 [, B
logn> 1
=0 + Do (Ak) (3-12)
<m(n) 310,112, "



Mahler measure and entropy for commuting automorphisms of compact groups 603

where the summands of the last line are defined by the summands in the previous
line.

The last line of (3-12) contains a Riemann sum approximation. In order to prove
this converges to the integral defining log M( /), we require the following uniformity
result about the entropy of linear maps on C”. In what follows, if 7€ C?* 2, then
h(T) denotes the Bowen entropy of T'(cf. [Bw] or [W, Ch. 7, 8]). The unit cube in C?
is the usual fundamental domain for the lattice (Z + iZ)P.

Lemma 3.5. Let B be the unit ball in CP for the euclidean norm, and u be Haar
measure on CP normalized so the unit cube has measure 1. For Te C? P put

I m-—1 .
b, (T) = llogu< N T‘JB>,

= — ; ja
D .
WT) =} log"|4l* =2 [loglys(e*™)ldt ,
k=1 T

where T has eigenvalues A, counted with multiplicity and characteristic polynomial
zr- Then

(1) h(T) and each b,,(T) are continuous in T.

(i) b,(T)— WT) uniformly on compact subsets of C

DxD

Proof. (i) Fix TeC?*? and m = 1. To prove continuity of b,, at T, let ¢ > 0.
Choose 6 < 1 so0 (2D/m)log 0~! < ¢. There is a neighborhood % of T such that, if
Te, then | TV — TV < 1 — 0 for 0 < j < m. Hence

m~—1 m-—1 m—1 _
0< N T'jB> = () T7/UB <= (\ T/B.
i=0 j=0 j
Since contracting a set by a factor of 0 multiplies its measure by
taking — (1/m)log p(+), that
2Dlog 0!

8+bMTﬁ>4—7;——+JmUU§bAT)(fe%L

0%, we obtain, by

The assumption ||77 — Ti| <1—0 is symmetric in 7 and T, implying
¢+ b, (T) = b,,(T) for Te as well, completing the proof of continuity of b,, at T.

Now b,,(T) = W(T) for every TeC?*? [W, Thm. 8.14], so continuity of h
follows from that of the b,, and part (ii).

(ii) To prove that b, (T)— h(T) uniformly on compact subsets of C?*?, it
suffices to show that, for fixed Tand ¢ > 0, there is an my and a neighborhood # of
T such that, for every Te4 and every m = m,, we have Ib,,,(f) — h(f)l <e.
We do this by applying spectral theory to T to show that the estimates from
[W, Thm. 8.14] can be made uniform.

Let the eigenvalues of T without multiplicity be {{,: —r < k < s}, indexed so
Gkl £ 1for —r £k <0and|(,| > 1for1 = k < s. Denote the multiplicity of {, by
N,. Let y > 0, whose value will be determined by several conditions and estimates.
The first condition is that the circles C, around {, of radius y be disjoint. Put

Bo= B(T) = 5 [ @~ 1) dC (3-13)
i G,
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According to [Kt, §1.5.3], E, is the projection onto the generalized eigenspace V), of
T for {, along the sum of the other generalized eigenspaces. Hence dim¢ V), = N,.
Let || - || be the euclidean norm on C”. Adapt this norm on each V, to the dynamics
of T by putting, for ye V,,

17"y
(ICkl + V’k '

Il = 3,

The spectral radius formula shows that this series converges geometrically. If T,
denotes T],,, then we also have that || T,yll, < (|| + )| yllx for O + ye V,. For
subsets K and L of C?, we say K € L if the closure of K is contained in L. Let B, be
the unit ball in V, in the norm |- ||,. Then

(16l + )7 'By e T, ' B,

Put B, = @i - _, By, which is a bounded neighborhood of 0. Hence there is a
f > 1sothat §~' B B, € 0B. _
We now describe the effect on this situation of perturbing T slightly to T. Let

E (T fck {I — T)~'d¢. Since the inverse of a matrix is a rational function of

its entrles Ek(T) is analytic in T for T near T. In particular, there are exactly
N, eigenvalues of T within C,. Let Vk be the range of Ek(T) Since E (T I') is close to
E(T), by [Kt, §1.4.6] there exists Uk(T)eGL(D C) such that

E(T) = U(T) ' E(T)U(T),

UT)=1I,and U(T T)is analytic for Tclose to T. Carry over the |- ||, norm on V),
to Vk smg U/(T 7). Let Bk denote the unit ball in Vk under this norm, and put
B = @k Bk Let Tk TV By continuity we have that (|(,| + )" ' B, € Tk B,
and 6"'B e B € 0B.

Let ¢ > 0. We will first show that b, (T) > h(T) — ¢ for large enough m and T
close enough to T. Clearly

m-1 _ 0 - N ~ -
T”B*c< D BJ@(@ Tk"""“Bk>.
j k k=1

Hence,

Z log|det 7,/ ,
(3-14)

1 m-1 o~ 1
——logu< N T B >> ——logu(B )+

the determinant being squared since we are working over complex rather than real
vector spaces. For k > 1 every ecigenvalue of 7, lies inside C,, and therefore
has modulus > 1 provided that y is small enough. Since there are at most D
other eigenvalues of T, each having modulus < 1 + y, we obtain that

Y log|det T2 = h(T) — 2D log(1 + 7). (3-15)

k=1
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Since "' B ¢ E* it follows that
m—1 m-—1
0! ﬂ T iBc ﬂ

j=0

7B, .
As in part (i) we get, by using (3-14) and (3-15), that

2Dlog 0 1 m-1 . .
T b 2 ——logu( N T’JB*)
m 0

> (1 - i)h(f) — llogu(oB) —2Dlog(1 + 7).
m m

Thus, for sufficiently small y, it will follow that b,,( T)> h(T) — ¢ for all sufficiently
large m and all T sufficiently close to 7'

We complete the proof of the lemma by obtaining the opposite inequality
b, (T I) < h(T) + e By the above, (|| + y)~ ’Bk C Tk ka Hence

m—1 _ 0 ~ s ~
,OO r'’'B,> <k@ (147" l)Bk>®< @ (18] + )’)_(m_“Bk> :

Thus

I

m—1 - s
( ﬂ T-B >Zu(3*)(1 + ) 2P0 T (1G] + y) 7 2Mm = (3-16)
k=1
Since B, c 6B, an argument as above shows that
1 mil~ o~ 2Dlog¥ ~
__]og/,t< N T‘JB*> > 28T L (T (3-17)
m j=0 m

Applying — (1/m)log u(-) to (3-16) and using (3-17) shows that
2D log9 m—
m

bl T) - L3 2N, dog((G] + ) — o loga(B,)

m —
+

1
—— 2D log(l +7)

Z 2N, dog (1l + ) — —1og(9 ' B) + 2D log(l + ).
k =1
Since T has exactly N, eigenvalues within y of {,, all of modulus >1, and the
remaining eigenvalues have modulus <1 + y, the sum Yi- 12N, log(Il] + p) is
arbitrarily close to h( T) provided y is small enough. Hence for y small enough, we
will have b, (T T') < h(T) + ¢ for all sufficiently large m and all T sufficiently close
to 7. O
Forse S ! let

0 1 0 0

0 0 1 0
A =| : SO

0 0 0 - 1

—fols) —fis) —Lls) o —fo-u(9)
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the companion marix of its characteristic polynomial f (s, u). Then 4, = A(wy), and
the sum in the last line of (3-12) is a Riemann sum approximating the integral.

% [ h(A(e2rit))dt = [ [ log|f(enit, e2™)|dsdt = logM(f) . (3-18)
Tl'd’l ]rd’l ]]'

To complete the proof of the theorem, let 6 > 0. Since {A(e2mit): te T~ '} is
compact in C®* P, Lemma 3.5 and (3-18) imply that, for sufficiently large n,

1 1

bm n (A ) bmn A(e’rlk/n)
2|Q/n| kezQ/" o , 2|Q/n| I\QZQ ( )
1
<3 [ h(A(emit))dt + 3 = logM(f) + 9 . (3-19)
Td-!

Using (A-4) and (3-11), it follows that

o | Qi mew| logn oL s

80, w15 0) S 0, o] <0<m(n)> + logM(f) + O) . (3-20)
Since m(n)/n — 0 we have that |Q, .|/ 0. mm| — 1, and since (logn)/m(n) — 0, for
large enough n the right hand side of (3-20) is less than logM(f) + 25. Now
g(Q_,,.,,,(,,,) — o0 as n— o0, and Proposition A.2 implies that s(4¢,, a) < logM(f)
+ 20. By letting ¢, —» 0 and then 0 - 0 we conclude that h(«) < logM(f). This
completes the proof of the upper bound.

Finally, we indicate the modifications necessary for the case where |g| > 1. The
estimate (3-19) for the linear map g~ ' A gives an upper bound of logM(q ™! f) + 4.
The |g| possible choices in (3-8) contribute an additional term of log|g| to the
volume decrease, just as in Yuzvinskii’s calculation of entropy for solenoids [ Yz2].
Since logM(g~'f) =logM(f) — log|g|, we again obtain an upper bound of
logM(f) for h(x). O

§4. Entropy for general 7 actions

In this section we compute the entropy of an arbitrary Z%-action « on a compact
metrizable group X. We first show in Theorem 4.2 that if p is a prime ideal in
R, that is not principal, then h(ag ) =0, while if p = (f) is principal, then
h(ag,;p) = logM(f) by Theorem 3.1. If X is abelian, and (X, ) has the descending
chain condition, then X has dual group M that is a noetherian R;-module. We
show in Lemma 4.3 that M contains a finite chain of submodules with successive
quotients each isomorphic to R, modulo a prime ideal, so h(a) can be computed
using the addition formula and Theorem 4.2. A general abelian X is an inverse limit
of groups with the descending chain condition, hence h(«) is the limit of entropies of
actions whose value has already been computed. A general compact group is built
from a totally disconnected part, a product of algebraically simple connected Lie
groups, and an abelian part. In Theorem 4.5 we describe how these pieces fit
together, show how to compute the entropy of each, and obtain h(x) as the sum of
these entropies.
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Which real numbers can arise as h(a)? By Theorem 3.1 all the numbers log M( f')
for fe R, occur, and our analysis will show that if (X, «) has the descending chain
condition, then h(x) has this form. For general actions the problem is equivalent to
another posed by Lehmer over fifty years ago, and still not solved. We show in
Theorem 4.6 that the set of entropies of Z%-actions is either the countable set of
logarithms of the Mahler measure of elements in R, or all of [0, oo ], depending on
the answer to Lehmer’s problem. This generalizes Theorem 9.3 in [Ln3], where it is
also shown that TZ either has no ergodic automorphisms of finite entropy, or has
ergodic automorphisms of every finite positive entropy, again depending on the
answer to Lehmer’s problem (we have added the necessary “ergodic” assumption
to this statement, which was inadvertently omitted from the last sentence in
[Ln3, Thm. 9.3]).

We begin with a lemma needed a handle non-principal prime ideals.

Lemma 4.1. Suppose p £ 0 is a non-principal prime ideal in R,. For every f = 0 in p
there is a g £ 0 in p with no factor in common with f.

Proof. Suppose 0 + fep, and let f,, . . ., /. be the distinct irreducible factors of f.

Put p; = { f;>. which is prime since R, is a unique factorization domain. Suppose

every 0 # gep has a factor in common withf. Thenp <« p, uU... Up,,so by [AM,

Prop. I.11], p < p; for some j. Since any principal prime ideal is minimal, this

implies that p = p;, i.e. that p is principal. This contradiction proves the lemma. [J
Recall our convention that M(0) = co.

Theorem 4.2. Suppose p is a prime ideal in R,. Then

logM(f) ifp=<f>.

hag o) = 41
1R, ) {0 if p is not principal . *-1)

Proof. 1f p = {f ), the result follows from Theorem 3.1.

Suppose that p is not principal. By Lemma 4.1, there are f, g & 0 in p with
no common factor. Let {=<{f> g=<g), a=f+g={fg)>, R=R,. Let
¢: R/f > R/i be multiplication by ¢. Since f and g have no common factor, ¢ is
injective. The image of ¢ is

ag(R/N) =gfig=g/ing=({+ag)/i=afi.

Hence we obtain the exact sequence

0-R/i5R/i—>Rla>0.

Since h(xg;) = logM(f) < oo, the addition formula yields that h(xg/) = 0. Now
a < p, and the projection R/a — R/p has dual the inclusion X, < Xg, which
respects the actions. Hence h(xg),) = 0. I

For an action on a compact abelian group obeying the descending chain
condition, the above results are sufficient to compute entropy.

Lemma 4.3. Suppose M is a noetherian R module. Then there is a chain of R,
modules
0=MycM,c...cM,_cM, =M
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such that M;/M;_, = Ry/p;(1 £j < r), where each p; is a prime ideal. Hence

h(aM) = ’Zl h(aRd/pi) 5
j=

where each summand is computed according to (4-1).

Proof. The existence of the chain {M;} is proved in [Lg, VI, Cor. 4.8]. Use the
addition formula repeatedly to obtain the formula for h(a,). O

Note that (X ,,, a,,) satisfies the descending chain condition since M is noether-
ian, and our proof shows that h(a,) = log M(g), where g is the product of the
generators of the principal prime ideals occurring in the p; (by convention, g = 1 if
none of the p; is principal).

Theorem 4.4. Suppose that M is an arbitrary countable R ;-module. Then there is an
increasing chain {M ;} of noetherian submodules with union M. Thus h(o) = lim;_,
h(ay,), where each h(ay ) is computed by Lemma 4.3.

Proof. The existence of the M is routine. Since X, = X ,/M},and M7 \ {1}, the
partitions into cosets of Mj converge to the partition into points, so
h(oy,) = (). O

Theorem 4.5. Let o be a Z%-action on a compact metrizable group X. If X° is the
connected component of the identity and Z is the center of X°, then

h(o) = h(otg xo) + h(otyoz) + (o) 4-2)

The first summand is either the logarithm of an integer or o, the second is 0 or oo,
and the third is computed by Theorem 4.4.

Proof. First observe that X° and Z are both a-invariant, so (4-2) follows from the
addition formula.

Put Y = X/X°, a totally disconnected compact metrizable group. There is a
sequence Y, of compact open normal subgroups of Y that decrease to {1}. For a
closed normal subgroup H of Y, let £(H ) denote the measurable partition of Y into
left cosets of H. Yuzvinskii [Yz1, §2.1] has shown that &(( )2, H,) = \/%= &H,,),
and that if H < K, then H,({(H)|E(K)) = log|K/H]|.

Let P = {jeZ:j < 0}, where < is lexicographic order, and put P, = P U {0}.
For a measurable partition ¢ put ¢, = \/J- epaié. By [C, Thm. 22],

hu(a’ &) = Hu(é?gléP)~ Thus
C( ) o Y,,>>
jeP

which is the logarithm of an integer or oo. Since h(ay) = lim,,_, ,, h,(a, &(Y,)), the
same holds for h(ay).

Next consider C = X°/Z, which is connected. By [Yzl1,§4.1], X°/Z, is center-
less, and is a direct product [ [;.; L; of algebraically simple connected Lie groups.

hy(o, &(Y,)) = H,(S(Y,)p,[E(Y,)p) = Hu<é< M o Yn>

jeP,

= log

() «iY,/ oa'Y,,l,

jeP jeP,
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Furthermore, if ne Z* and i€, then o:(L;) = L; for some je I, and this defines an
action of Z% on 1. Since entropy adds over direct products, we may assume as in the
proof of the addition formula that Z¢ acts transitively on I. Fix iyel, and let
L =L, If there is an ne Z\ {0} with a®(L) = L, then o is a direct product of
automorphisms of simple Lie groups, and therefore has entropy 0 [Yzl1, §4.2]. If
d = 1, this shows that h(a) = 0, while if d > 1, then h(x) = 0 since some element of
the action has finite entropy [C, Thm. 2.3]. If Z¢ acts freely on I, then « is
isomorphic to the shift on LZ‘, and since L is infinite we have h(ac) = oco.

Finally, since Z is abelian, Z = X, for some countable R,-module M, so h(a,) is
computed via Theorem 4.4. O

The proof of the previous theorem shows that if (X, «) satisfies the descending
chain condition, then h(x) = logM(f) for some fe R,. Whether any other real
numbers occur as entropies is closely related to the following problem.

Lehmer’s problem. Is 1 a cluster point of {M(f):fe Z[u]}?

By Proposition 3.3, this is equivalent to determining whether 1 is a cluster point
of {M(f):fe R,}. This question was posed by Lehmer [Lh] over fifty years ago in
connection with a method to factor large integers, and remains unsolved. The
smallest known value >1 for a Mahler measure is that of a tenth degree
polynomial discovered by Lehmer himself, whose measure is about 1.176280821.
The problem has been the subject of a number of investigations. Boyd’s survey
[By2] gives an excellent account of this and related problems, and supplies
supporting evidence for his fascinating conjecture that ( )i, {M(f):feR,} is a
closed subset of R, which would immediately give a negative answer to Lehmer’s
problem.

Theorem 4.6. The set of possible entropies of Z%-actions on compact groups is
[0, oo ] if the answer to Lehmer’s problem is “yes”, or is the countable set {log M(f):
feR,} if the answer is “no”.

Proof. 1f log M(f) can be arbitrarily small, then by taking countable products any
positive real number can be obtained as the entropy of a Z%-action. If not, then in
the approximation in Theorem 4.4 of (X, «) by quotients obeying the descending
chain condition, each stage contributes either 0 or log M( /) for some fe R, to the
entropy. If h(x) < oo, then there can be only finitely many positive contributions,
and h(«) has the form log M(g) for some ge R,. O

§5. Examples and remarks

This section contains examples of the foregoing results as well as some miscellan-
eous remarks about them.

Example 5.1. Let f(u,v) = 1 + u+veR,, and = f). Then Xg ; can be de-
scribed as the set of all xe TZ* such that x; ; + x;,, ; + x;j+, = 0 for all i, je Z.
This condition shows that every horizontal line of coordinates determines the next
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line above it by a simple additive rule, reminiscent of the evolution of a cellular
automation, except here the alphabet is T instead of a finite set. Smyth [Sm2] has
explicitly computed M(f) with the result that

h(ag, /i) = logM(f) = \/ <>1 3\[ L(2, y5) = .3230659472 ,

4n ,,:1

where <§> is the Legendre symbol, y3(n) is the non-trivial character on Z,5, and

L(2,7) =), z(n)/n* is the Dirichlet L-series.

This polynomial was a principal motivating example for this paper. Here ag i is
mixing [KS1, Thm. 11.2(4)], has a dense set of periodic points [KS1, Thm. 7.2], but
is not expansive since the variety of f contains the point (e2™/3, ¢*"/3) in S? [Sc2,
Thm. 3.8]. We show in the next section that ag ; has completely positive entropy,
and thus is mixing of all orders. We conjecture (cf. Conjecture 6.8) that ag, ; is
measure-theoretically isomorphic to a Bernoulli Z%action.

Example 5.2. Let p = (2, 1 + u + v), a maximal, non-principal prime ideal in R,
Then X, is isomorphic to the set ofxel/Z with x; ; + x;4,,;+ x; j+, = Ofor all
i, je Z. This action was studied by Ledrappier [Ld] who showed that it is mixing
but not 2-fold mixing. Since p is prime but not principal, we have h(ag_;,) = 0 by
Theorem 3.1. This can also be seen directly by a familiar argument from cellular
automata theory.

Example 5.3. Smyth [Sm2] has computed the measures of several polynomials in
terms of the Dirichlet L-series of the odd character y, of Z,,. A sampler of his

calculations is given in Table 1. In that table p = (I + ﬁ)/2 and ys(2) = i.

Table 1. Values of entropy for some principal ideals

feR, hiag ;)
u+rv 0 _
3/3
u+v 1 fiL(2 )
4rn
7C(3)
ut+v+wtl
2n?
u+vtk log|k| |kl =2
2
(u+v)?2+2 5 Iog2 +— L(2 %a)
2 \/5
(u+0)2+3 log3 + - L(2,%3)
3 n
2 53/4
Ww+o)u+o+1)—1 5logp + . Re{(p** + ip™3?)L(2, 1s)}
n
u? — v+ uv+ 3u— v+ 1 2logp
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Example 5.4. Results of Boyd and Smyth provide a complete characterization of
those of fe R, with h(ag ;) = 0. An extended cyclotomic polynomial ge R, is one of
the form g(u) = uk@(um), where @(u) is a cyclotomic polynomial in one variable,
and k, me Z¢. Using deep results of Schinzel, Boyd [By1] proved that M(f) = 1 if
and only if fis + 1 times a product of extended cyclotomic polynomials. Smyth
[Sm1] found a simpler and more geometric proof.

Remark 5.5. 1f f(u) = Zjcgo cjui, let Z(f) = {je Z*: ¢; % 0}. A face F of Z(f) is the
intersection of X'( /) with a supporting hyperplane of its convex hull. Each face F of
Z(f) determines a polynomial f(u) = } j  ¢;ul. Smyth [Sm1, Thm. 2] proved that
M(f) = M(f¢) for every face F of 2( f), which he used in his inductive approach to
proving the result described in Example 5.4. Boyd [By2, §6] has exploited this to
show, for example, that if d = 2 and the convex hull of X(f) has an odd number of
sides, then M(f) = M(1 + u + v) = 1.381356444.

Smyth’s inequality can be proven dynamically as follows. We may suppose
that feR, has the form (3-6), and that F = X(f)n(R‘"! x {0}). Then
Jr =fo€Ry_. If x;is defined for je H = Z~' x {0, 1,. ..}, and is the restriction
of a point in X ; then the possible extensions to je Z*~' x { — 1} are governed
by (3-9). Every such extension can be modified by the addition of an arbitrary
element from Xy, .5, 1.€. by an extension of a point whose jth coordinate is 0
for all je H. From this it follows that h(ag ;) = (g, ,;¢se)» and hence that

M(f) 2 M(fo) = M(f)
Example 5.6. Let A be an n x n matrix over R = R, and consider the R-module
R"/AR". A generalization of our main formula (3-1) is that

h(otgn) 4gn) = log M(det 4) . (5-1)

In order to prove (5-1), first suppose that det A = 0. Then R"/AR" contains an
R-torsion-free element x, so that ag., 4z has a factor oy, of infinite entropy. Hence
h(otgn; 4gn) = 0 = log M(0).

Thus we assume for the remainder of the proof that all matrices have non-zero
determinant. We next show that if (5-1) holds for 4 and for B, then it holds for AB.
Consider the exact sequence

0 - AR"/A(BR") —» R"/A(BR") - R"/AK" -0 .
Since det A # 0, the map A is injective on R", so that
AR"/A(BR") =~ R"/BR" .
Use of the addition formula then shows that
hatgn aprr) = 0t arer) + (oo, prer)
= log M(det A) + log M(det B) = log M(det AB), (5-2)

establishing (5-1) for AB.
Computation of the echelon form for A4, considered as a matrix over the field of
fractions of R, shows that there is a non-zero fe R such that fA4 is a product of
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elementary matrices over R, each having the form

— 1 -

| 1 =

Now (5-1) easily holds for each of the elementary matrices by (3-1), and hence for
their product fA. Thus

h(ogn s 4rn) = log M(det( fA)) = nlogM(f) + logM(det A) .
Putting B = fI in (5-2) and using (3-1) shows that
hatge page) = h(tgo o) + Ao aer)
= nlogM(f) + h(ogn; 4r») -
Since M(f) < oo, these show that h(agn, 4g:) = logM(det A). [

Example 5.7. Suppose f(u)e Z[u] and g(v)e Z[v] are both monic with constant
term + 1. Puta = {f(u), g(v)). Then X ,, = T", where m = (deg f)-(deg g). Then
aR,;o acts by commuting toral automorphisms. For appropriate choices of fand g
(e.g flu)=u* —u—1 and g(v) = v* — 2v — 1), every element ag 4, for n+ 0 of
this action is Bernoulli. However h(ag ,4) = 0 since some element of the action has
finite entropy [C, Thm. 2.3].

Remark 5.8. If feR,, and e = 1, then fe R, ., as well. However, M( f) is independ-
ent of e, since the extra variables integrate to 1. To see this dynamically, let
o = O, iras- Then dg, . g,. s is isomorphic to an action & of Z x Z¢ on X%’
defined by

(@mm)x(k) = (amx) (k + n) .

Since the Z¢ part of this action is just a group shift, it is easy to see from, say, the
volume definition of entropy that h(a) = h(x).

Remark 5.9. Ttis perhaps interesting to note that M( /) is actually the “L°” norm of
fon S From [Rd, Ex. 3.5(d)] we have

M(f) = lim || frse) -
pNO

§6. Completely positive entropy and Berg’s theorem
yp g

Let M be an R;-module, and a,, be the corresponding Z%-action on X ,,. In this
section we identify the Pinsker o-subalgebra of a«,, and show that «, has
completely positive entropy if and only if all the prime ideals associated to M are
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principal and non-cyclotomic. We investigate in more detail the quotients that
arise in the various prime filtrations of M, and in particular show that the minimal
prime ideals associated to M must occur, and with the same multiplicity, in every
prime filtration of M. An example, however, shows that the quotients in a prime
filtration, by themselves, are not sufficient to decide whether «,, has completely
positive entropy. One application is to prove the analogue of a theorem of Berg,
which states that if «,, has finite entropy, then it has completely positive entropy if
and only if Haar measure is the unique measure of maximal entropy.

If « is a measure-preserving Z%-action on (X, u), then the Pinsker partition n(x)
is the supremum of all finite measurable partitions £ with h,(¢, o) = 0. The action «
is said to have completely positive entropy if n(a) is the trivial partition. This is
equivalent to requiring h, (¢, a) > O for all non-trivial finite measurable partitions.

Throughout this section we shorten R, to R. If M is an R-module, we will
determine (e, ) and give a criterion for a,, to have completely positive entropy.

A point x€ X, is said to be o,,-periodic if x has finite orbit under a,,.

Proposition 6.1. If M is a noetherian R-module, then the set of o,-periodic points is
dense in X ;.

Proof. Since M is noetherian, a,, satisfies the descending chain condition on closed
subgroups. A fundamental result [KS1, Thm. 7.2] of Kitchens and Schmidt is that
this implies the density of a,,-periodic points. [J

If H is a closed subgroup of X, let £(H) denote the measurable partition of X into
cosets of H.

Proposition 6.2. Suppose X is a compact metrizable abelian group, and o is a 7°-
action on X whose periodic points are dense. Then there is a closed a-invariant
subgroup H of X such that the Pinsker partition n(a) is the coset partition {(H).

Proof. Our argument generalizes Rohlin’s for toral automorphisms [Rh, §4.1].
Let A be a finite-index subgroup of Z%, and choose an integral matrix A with
A(Z%) = A. Then x € X has a-stabilizer A if and only if x is fixed by the action o?
defined by (a?)i = «4i. In this case, translation by x commutes with «*, so w(a*) is
invariant under this translation. Now n(a®) = n(a), so n(«) is invariant under a
dense set of translations, hence all translations. This implies by [Rh, §3.2] or [Lnl1]
that there is a closed subgroup H of X such that n(a) = &(H). Since n(a) is a-
invariant, so is H. (O

Call an ideal in R cyclotomic if it is the principal ideal generated by an extended
cyclotomic polynomial as defined in Example 5.4.

Definition 6.3. A prime ideal in R is null if it is either non-principal or cyclotomic. A
prime ideal is positive if it is principal and not cyclotomic (this includes the 0 ideal).
The set of null ideals is denoted by 4" and that of positive ideals by 2.

The terminology is suggested by Example 5.4, which shows that h(ag/,) > 0 if
and only if p is positive.
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Definition 6.4. A prime ideal p in R is associated ro the R-module M if there is and
element m e M whose annihilator is p. The set of prime ideals associated to M is
denoted by asc(M).

Theorem 6.5. Let M be a countable R-module. There is a unique submodule N of M
such that the Pinsker partition n(a,,) is the coset partition E(N*). Every prime ideal
associated to N is null. Hence x,, has entropy O if and only if all prime ideals
associated to M are null, and «,, has completely positive entropy if and only if all
prime ideals associated to M are positive.

Proof. Consider the collection € of submodules N, of M with h(ay,) = 0, partially
ordered by inclusion. Then €' is not empty since it contains the O submodule. If
{N;}isachainin%,and N, U,N then h(ay ) = lim; h(ay,) = 0, showing that
N, € % is an upper bound for the chain. By Zorn s lemma % has a maximal element
N.Let N’ € 6. The addition map N x N"—> N + N’ dualizes to show that ay, v is
a subsystem of ay, 5. Hence

h(aysn) S h(oay.n) = Moy X oy ) = hlay) + h(ay) =0

so N + N’ € €. Maximality of N shows therefore that N' = N, proving uniqueness
of N.

By Proposition 6.2, there is a submodule P of M such that n(a,) = E(P*).
Then h(ap) = h(a, Xy /Pt) =0, so Pc N. Conversely, E(N*) < m(ay,) since
h(ay) = h(a XM/Nl 0, so N < P. This proves m(a,) = E(N*).

If peasc(N), there is an ne N with ann(n) = p. Then Rn = R/p, so

h(aR/’p) = h(“Rn) § h(fo) = 0 B

proving p € A"

If h(oy) = 0, then m(ay,) = &({1}), so N =M and asc(M) = asc(N) c A" If
asc(M) < A7, then every submodule of the form Rm (me M) is in €. Since € is
closed under module addition, it follows that N = M, so h(ay) =

Suppose a,, has completely positive entropy, and let p e asc(M ). Choose me M
with p = ann(m). Then h(ag),) = h(ag,) > 0 since ag,, is a non-trivial factor of a,.
Hence p e 2, proving asc(M) = #. Conversely, suppose asc(M) < 2, and let N be
the submodule of M given above. If N # {0}, then there is a
peasc(N) < asc(M) = £, while by the above asc(N) = .4, which is disjoint from
2. This contradiction forces N = {0}, so n(ay,) = E(N*) is trivial, proving a,, has
completely positive entropy. OJ

Corollary 6.6. Suppose that X is a compact abelian group, that o is a Z*-action on X,
and that Y is an a-invariant closed subgroup of X. If both oy and ax,y have completely
positive entropy, then so does a.

Proof. There are R-modules N = M so that X = X,,and Y = Xy = X,,/N*. The
hypotheses show that asc(N) < 2 and asc (M/N) =« #. By [Mt, Lemma 7.F],

asc(M) c asc(N)uasc(M/N)c £,

so a,, has completely positive entropy by Theorem 6.5. [J
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Completely positive entropy implies very strong mixing conditions. A measure
preserving Z“-action « on (X, u) is called mixing of order r if, for every collection of
measurable sets By, B, ..., B, in X, we have

u(BynokiByn...okB,)—> u(By)u(By) ... u(B,)

as max{|k; — kj[:i % j} > o0.

Corollary 6.7. Let M be a countable R-module. If all the prime ideals associated to M
are positive, then oy, is mixing of all orders.

Proof. This is immediate from Theorem 6.5 and the result of Kaminski [ Km,
Thm. 2] that completely positive entropy implies mixing of all orders. [

Note in particular that if pe 2, Then M = R/p satisfies the hypotheses, so ag,
is mixing of all orders, proving a claim made in Example 5.1. For further results on
the mixing properties implied by complete positivity of entropy, the reader is
referred to Kaminski’s paper.

When d = 1, ergodicity implies completely positive entropy, which in turn
implies the automorphism is measurably isomorphic to a Bernoulli shift [Ln3].
Since Bernoulli Z¢-actions must have completely positive entropy, the appropriate
conjecture for general d is the following.

Conjecture 6.8. If o, has completely positive entropy, then it is measurably iso-
morphic to a Bernoulli Z°-action.

We now turn to a more detailed study of the filtrations used in Lemma 4.3 to
compute h(a,,) for a noetherian R-module M.
A prime filtration { M} of M is a chain of R-submodules

0=MycM,c...cM,_,cM, =M, 6-1)
where M;/M;_, =~ R/p; with p; a prime ideal of R(1 <j <r). A prime ideal p

J
occurs in the filtration (6-1) if p = p; for some j, and occurs with multiplicity r if
exactly r of the p; equal p. If M is noetherian, then M is a torsion R-module if and
only if every prime ideal occurring in a filtration is non-zero. In this case the

annihilating ideal a = {fe R:f*M = 0} of M is non-zero.

Proposition 6.9. Let M be a noetherian R-module, and p be a prime ideal minimal
over the annihilator of M. Then p occurs in every prime filtration of M, and with the
same multiplicity in each.

Proof. If p is minimal over a = ann(M), then peasc(M) [Mt, Thm. 7.D]. If { M}
is a prime filtration of M with M;/M;_, = R/p;, then asc(M) = {p;} [ Mt, Prop.
7.67], showing p occurs at least once in every prime filtration of M.

Invariance of multiplicity is based on showing that any pair of prime filtrations
of M have a common refinement, and that the multiplicity of a minimal prime over
a is preserved under refinement.

Suppose we have two prime filtrations of M. By the Schreier refinement
theorem for modules [ Lg, 1V, §4, Thm. 4], these filtrations have refinements with
the same number of terms such that the quotients are isomorphic in pairs. An
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application of Lemma 4.3 to each pair of isomorphic quotients shows we can
further refine these filtrations to be prime.

Let M;_, = M, be part of a prime filtration of M, with M;/M;_, = R/q.
Suppose this inclusion is refined to

M,_,=NycN;,c ... cN,_,=M,;. (6-2)

Then N,/N, = a,/q for an ideal q, in R. If N,/N,_, = R/q, with g, prime, then
q, = ann(N,/N,_,). We claim q =q,, while q¢q, for 2=<k < p. Since R/q
is an integral domain, and a,/q % 0, the annihilator of a,/q, considered as an
R/q-module, is 0. This shows that q, =gq. Also, for 2<k <p we have
Qi = ann(N, /N, _,) = a,_, Rq.

Suppose p is a minimal prime over a. If M;/M,_, = R/p, then for any
refinement (6-2), only the first quotient N,/N, is isomorphic to R/p, while the
others are isomorphic to R/q; with q;p. If M;/M,_, = R/q with q = p, then
minimality of p shows that no quotient in (6-2) is isomorphic to R/p. Hence the
multiplicity of p is invariant under refinement. [

Proposition 6.10. Suppose M is a noetherian R-module. Then every minimal associ-
ated prime ideal of M occurs, and with the same multiplicity, in every prime filtration
of M. In particular, if M is torsion, then this applies to every principal prime ideal
associated to M.

Proof. The minimal associated prime ideals of M are exactly the minimal primes
over ann(M) [ Mt, p. 51], and so Proposition 6.9 implies the first statement.

If M is torsion, then ann(M) * 0, hence a principal prime ideal over ann(M) is
automatically minimal, and Proposition 6.9 again applies. [J
Remark 6.11. Suppose M is noetherian, and that { M, }, {M’} are prime filtrations
of M with quotients isomorphic to R/p; and R/p}, respectively. Theorem 4.3 gives
two ways to compute entropy, namely

h(ay) = Z h(agy,) = Z h(ogyy:) -

The previous proposition shows these are equal for trivial reasons. If M is torsion,
then positive terms in each sum correspond to principal prime ideals by Theorem
4.2, so by Proposition 6.10 the positive terms in the second sum are the same as
those in the first after a possible rearrangement. If M is not torsion, then 0 is a
minimal associated prime ideal, and thus at least one term in each sum is co. [J
It is possible to tell from the quotients of a prime filtration of M whether a,, has
completely positive entropy? Unfortunately, the answer is “no,” even when M is
torsion. We are grateful to Paul Smith for help with the following example.

Example 6.12. Letd =2, R = R,, f(u)e Z[u] be irreducible and non-cyclotomic,
g(v) = v — 1, and define ideals in R by

pl :<f(ll)>, p2:<f(u),g(v)>’ al :<]‘(u)’g(v)2>7

bl :<_f(u)2’g(v)>’ b2=<f(u)2,f(u)g(u)>.
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Let M = R/p, and M’ = R/b,. Consider the filtrations

Oca/pyepy/picR/p =M,
0c=b,/b,=p,/b,cR/b,=M".

It is elementary to check that the first quotients a,/p, and b, /b, in each filtration
are isomorphic to R/p,, while all other quotients are isomorphic to R/p,. Since p,
and p, are prime ideals, these are prime filtrations with term-wise isomorphic
quotients. However, asc( M) = {p,} = 2 while asc(M’) = {p,, p,} & 2, so by
Theorem 6.5 a,, has completely positive entropy while a,,. does not. [J

The following does give some relationship between a,, having completely
positive entropy and the quotients of a fixed prime filtration of M.

Theorem 6.13. Suppose M is a torsion noetherian R-module. If o, has completely
positive entropy, and {M;} is a prime filtration of M, then the prime ideals minimal
with respect to occurring in { M;} must all be positive. Conversely, if { M} is a prime
filtration of M in which only positive prime ideals occur, then oy, has completely
positive entropy.

Proof. Suppose first that M has completely positive entropy. Let { M} be a prime
filtration of M, with M,;/M;_, = R/p;. Since O¢asc(M) c Z..all the associated
prime ideals of M are minimal, hence occur in { M;}. Now the minimal associated
prime ideals of M are exactly the minimal prime ideals over ann(M), and every p;
lies over ann(M). Thus the set of minimal elements in { p;} is just asc(M), and these
are all positive.

If {M;} is a prime filtration with M;/M;_, = R/p; and p;e 2 for all j, then
asc(M) c {p;} © 2, so ay, has completely positive entropy. [

We now turn to the question of unique ergodicity for a,,. In [ Bg], Berg showed
that an ergodic automorphism of a compact group with finite entropy is uniquely
ergodic, with Haar measure being the unique measure of maximal entropy. His
proof uses Yuzvinskii’s result that for group automorphisms ergodicity implies
completely positive entropy, and then uses the latter condition. The appropriate
version of Berg’s theorem for general d is as follows.

Theorem 6.14. Suppose that M is an R-module and h(ay) < oo . Then Haar measure
on X, is the unique measure of maximal entropy if and only if ay, has completely
positive entropy.

Proof. First suppose a«,, has completely positive entropy. Using the theory of
measure-preserving Z%-action developed by Conze [C], most of Berg’s proof for
unique ergodicity generalizes directly. The one exception is Lemma 2.3 of [ Bg],
whose proof depends on the total order of Z. We will give a different proof that is
valid for all d.

If ¢ is a measurable partition of a Lebesgue space X, and « is a measure-
preserving Z%-action on (X, ), put &, = \/; eai¢ and &; = \/; _y2i&, where <
is lexicographic order on Z¢.
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Lemma 6.15. Suppose & and n are measurable partitions of X with finite entropy, and
that o is a measure-preserving Z%-action on (X, p). If

h(& v na)=h(&a)+ h,(n,a), (6-3)

and o has completely positive entropy on &,, then the partitions &, and n, are
independent.

Proof. Pinsker’s formula [C, Eq. (19)] shows that (6-3) holds if and only if
H(nln, )= H(nln, v &,). This proves that if (6-3) holds, then for any { < ¢ we
have h({ v n,a) = h({, a) + h(n, a).

For k=1 let o denote the Z%action defined by (a*)i=aki. Put
0:.=1{0,1,...,k— 1} Then

h(&g, V Mg o) = k*h(E v n, o) = kh(&, o) + k?h(n, a)
= h(¢&p,, o*) + h(ng,, a*) .

Since ¢ < &, , our previous remark shows that
h(& v (ng,). 2) = h(&, o) + h(ng,, a*) .

Hence H(E[Ex) = H(E[Ex(Mg, )ax). Since /\,f":lg'al < n(a), which is trivial by as-
sumption, we have

H(&In) 2 H(S[Ea v n) = H(E[Cw) = H(E)

as k — oo. Thus & L #. Now (6-3) implies via Pinsker’s formula that

h(éQk V Ny a) = h(éka o) + h(’IQk» o)

for every k, so our argument applies to show that &, L 7y, for k = 1. This proves
that £, 1 n,. O

Having estabilished Lemma 6.15, the rest of the case when «,, has completely
positive entropy is carried out exactly as in [Bg].

Finally, suppose a,, does not have completely positive entropy. By Theorem 6.5
there is a non-zero submodule N = M with h(ay) = 0. Now X,y is a subgroup of
X . and ayy is a subsystem of «,,. The addition formula shows that «,,,y has the
same entropy as ay,. Thus Haar measure on Xy is another a,-invariant measure
of maximal entropy, so a,, is not uniquely ergodic. [J

§7. Periodic points

In this section we investigate the growth rate of the number of periodic points for a
Z%-action, and prove that for expansive Z%actions this growth rate coincides with
the topological entropy.

If o is a Z%-action on a compact group X, and A is a finite-index subgroup, or
lattice, in Z4, then we put

P,(o) = {xeX:anx = xfor all ne A},

the subgroup of A-periodic points. Put ||A] = dist(0, A\{0}), and denote the
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index of 4 in Z“ by |Z"/Al. We will be concerned with the growth rates

p~(a) = liminf ———log|P,(a)|, p*(x)=lim sup ——

1
log|P (o)l
|,A,,m]Z“/A| Nall~w |Z%/A]

For arbitrary Z%actions, little can be said about the relationship between p* ()
and h(a). For example, if « is the identity action on an infinite group, then
p¥(a) = oo, while h(a) = 0. An example of the reverse inequality occurs for d = 1,
X = @, and o dual to multiplication by 3/2. Then |[P,(a)] = 1 forall A[LW,§3],
so that p*(a) = 0, while h(«) = log 3 by Theorem 3.1. Moreover, the equality of
p~ (o) and p*(x) can involve delicate questions about the diophantine character of
the logarithms of algebraic numbers (cf. [ Ln4, §4]).

A Z%action o on X is called expansive if there is a neighborhood U of the
identity Oy of X such that (), z«anU = {0y }. Expansive actions have finite entropy
since they possess finite generators. If X is abelian, and « is an expansive Zd-actjon
of X, then « has the descending chain condition [ KS1, Thm. 5.2] so that X is
noetherian, the subgroup P,(a) is finite for every lattice 4 = Z¢ (this follows
directly from expansiveness, or see [ Sc2, Cor. 3.8]), and the periodic points for «
are dense in X [KSI1, Cor. 7.4].

If a is an ideal in R,, denote its complex variety by

Wa)={z=1(zy,...,2,)eC%g(z) =0 for every gea} .
For fe R,;, we put V(f) = V({f)). Call a prime ideal p expansive if
Vip)nS4= g .

If M is an R ;-module, then «,, is expansive if and only if M is noetherian and every
prime ideal associated to M is expansive [ Sc2, Thm. 3.9]. In particular, suppose
that f'e R, has irreducible factorization f = g%' x ... x g*. Since asc(R,/{f>) =
{{g,,....<g,>} and V(f) = ()=, V(yg;), it follows that ag,,,, is expansive if
and only if V(f)nS?= &.

By use of the separated set definition of entropy (cf. Appendix A), it easily
follows that for expansive actions o« we have that

p (2) S p*(a) S h(a). (7-1)
The lack of equality in the above examples does not occur for expansive actions.

Theorem 7.1. Suppose that M is an Rjmodule, and that the Z%-action o, is
expansive on X ;. Then

P (ap) = pT(ap) = h(oy) (7-2)
so that

1
lim log|P ()| = h(«x
o izaga7 o8 Pala)l = hloa)

We shall prove Theorem 7.1 by first establishing some preliminary algebraic
results, then handling the case when M is a primary module, and finally using the
primary decomposition theorem to show (7-2) for a general module.
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If A c Z¢is a lattice, let
b,=<Cu"—1l:neA) < R,.

If {n,,....,n,}is an integral basis for A, then b , is also the ideal generated by the
finite set {u% — 1:1 <j < d}.

Lemma 7.2. Suppose that M is an R -module, and that A is a lattice in Z°. Then the
dual group of P,(ay) is isomorphic to M/b,M. Hence

[P4(op)| = [M/byM| .
Proof. Duality shows that

ker(af, — I)* = (u"— )M .
Hence

1
P,(op)t :[ () ker(af, — 1)} =Y (uw"—1)M =b,M,
neA neA
so that A
P, () = M/P(oy)* = M/b,M . O

Lemma 7.3. Suppose that f€ Ry, and that f vanishes on V(b,). Then feb,.

Proof. Pick a complete set K = Z¢ of coset representatives for Z¢/A. Note that
V(b,) is a finite multiplicative subgroup of S$¢. Each monomial ui, restricted to
V(b,), gives a group character of V(b,), and an elementary argument shows that
we may identify the character group of V(b ,) with

{W o, i€K} = V(b,) .

Let Z[ V(b,) ] be the integral group ring of ¥'(b )", and consider the restriction
map Y:R; —» Z[ V(b,) ] given by

W(Z Cjuj> = Z Cj(ujll/(b‘,)) .

Clearly b, < kery.

Suppose that fe R, and that f vanishes on V(b ,). If f¢b ,, then f = g (mod b ),
where g = ZieK c].ui # 0. But then 0= y(f)=y(g) would give a non-trivial
relation for the characters of V(b ), contradicting the linear independence of group
characters. This shows that feb,. O

The next result establishes a special case of Theorem 7.1.

Proposition 7.4. Suppose that p is an expansive prime ideal in R,. Then

P (arp) = P (aryp) = h(og ) - (7-3)

Proof. If p is not principal, then Theorem 4.2 shows that h(ag /) = 0, and hence by
(7-1) all three quantities are 0.

If p = {f) for some irreducible fe R,, then f % 0 since we are assuming that p
is expansive. For notational simplicity we shall consider only lattices of the form
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A, = nZ’, but similar arguments apply for general A. Let P, = P, ,and b, = b,
By Lemma 7.2,

[P, (otr o)l = [Ra/<{P, 0,01 = [Ry/< LB, 0]

Let Q,, denote (Z/nZ)*. Then R,/b, = Z%~. Multiplication by u; on R,/b, thus
corresponds to a linear map A; of C%». Let w = ¢*™". As in the proof of Theorem
3.1, the vectors v, € C%n defined by v (j) = wi'kfor je Q,,. form an orthogonal basis
for C9/" and are simultaneous eigenvectors for the A4; with eigenvalues given by
Aj(vy) = 0*vy. Thus the map ¢, on R,/b, given by multiplication by f corres-

ponds to the linear map f(A4,, ..., A;) on C2», whose eigenvalue for the eigen-
vector vy is f(w*', .. ., w*) = f(wk). Tt follows that
[P )l = IRy /S b, D1 = [( Rd/bn /f(Ry/b,)]
= |det(e,)| = ﬂ |f(w
Hence £
Zd/lnzd o8I Py, )| = g 2 ol (e™)] (7-4)

Since og s expansive, it follows from disjointness of V(f) and S? that log| f(s)| is
continuous for se S¢. The right side of (7-4) is a Riemann sum approximation to

[ 1oglf(s)lds = log M(f) = h(erg ;) -
Sd

proving that the three quantities in (7-3) are equal. [J
The next result shows that “commensurable” modules have the same entropy
and growth rate of periodic points.

Lemma 7.5. Let p be an expansive prime ideal in Ry, and ae Ry\ p. If K and L are
noetherian p-primary R,-modules with alL < K = L, then p*(ag) = p*(x,) and
h(og) = h(oy).

Proof. Let M and N be p-primary R;-modules with aN < M < N. Then
|Palay)| = [N/b4N| = [N/(M +byN)|[- (M + b,N)/b,N]|
= |(N/M)/b(N/M)|-IM/(M~b,N)| (7-5)
= | PaConm) [P 4l

the last inequality following fromb,M < M nb,N. Since {p,a) < ﬂqeasc(N/M) q,
none of the prime ideals associated to N/M is principal. By Theorem 6.5, we obtain
that h(ays) = 0. It follows from (7-1) and (7-5) that p*(ay) < p*(a,). By the
addition formula, we have that h(ay) = h(oty;p) + h(op) = h(ay).

Now assume that M = aN. The map N - M /b M given by multiplication by a
followed by the quotient map is surjective, and its kernel contains b,N. Hence
IM/b,M| < |N/p,NJ|, and (7-5) then gives

lim (log|N/b,N| — log|M/b ,M|) =0
.Mnmqu'/m a glM/b,

Since multiplication by a is injective on N, we have that p*(ay) = p* (an)-
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Applications of this, first with M = K and N = L, and then with M = aL and
N = K, give that h(ag) = h(a,) and

Pi(all) = Pi(“x) < Pt(“uL) = Pi(o‘l,) . 0O

Lemma 7.6. Let p be an expansive prime ideal in R;, and M be a p-primary
noetherian Rmodule. Then p~(oty) = p*(aipg) = h(otp).

Proof. For noetherian R;-modules K = L, we have that ann(L) < ann(L/K), and
that the radical of ann(L) equals ﬂqeascm q= nasc(L). It follows that
nasc(L) < nasc(L/K), and hence that every prime ideal associated to L/K
contains a prime ideal associated to L. From this fact we may inductively choose a
prime filtration

0=MycM,c--cM,_ ,cM, =M

with M;/M;_, ~ R/p;so that p;=pfor I <j<s,andp;Zpfors+ 1 <j<r,
where s> 1. For each j with s+ 1<j<r, choose g;ep;\p, and let
g=¢gss1 .. g, Then g¢p, and gM c M, c M. Lemma 7.5 shows that h(a,,)
= h(ay), and that p* (2, ) = p* (). This allows us to assume that s = r, and that
pj=pforl <j=r.

If p is not principal, then Theorem 4.2 and the addition formula show that
h(ay) =0, and we are done by (7-1). So we suppose that p =< f), where
V(f)n'S? = & by expansiveness of p.

We claim that b,np =Db,p. For suppose that heb,np. Then h=fg
for some geR, since p=<{f). Now V(b,) < V(h)=V(f)u V(g), while
V(f)nS*= & and V(b,) = S*. Thus V(b,) = V(g), so g vanishes on V(b ,), and
hence geb, by Lemma 7.3. Thus h = f-geb ,p, as claimed.

We next show that M;nb,M =b,M; for 1 <j<r. If not, there is an
xe(M;nb,M)\b,M;. Choose k > j minimal so that xeb,M,. Then there are
Xp,.o. . X, €Mpand fi, ... f,eb,withx =Y"_ fix,and {x,,...,x,} ¢ M,_,
by minimality of k. Choose ze M, so that the map fi—fz + M,_, induces
an isomorphism of R,/p with M,/M,_,. Then there are g;eR, with
X;—¢giz=y,eM,_, for 1 £i<n Since {x,, ..., x,} & M,_,, it follows that
(gl’ RN} gn}' ¢ P, while

n

Z Jigiz = ';1'/;()({ —yeM,_,

i=1

since x = ) !_ fix;e M; = M, _,. Hence

Y figieb,np =b,p,
i=1

so there are hy, ..., h,eb,and k,, ..., k,ep such that Y.7_, fig; =7 hk,.
Thus

X = 1-21 hy(k,z) + _ZlffyiebAMkﬂ )

contradicting minimality of k. We conclude that M;nb,M =b,M;for 1 <j<r.
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It now follows from (7-5) that

[Py(oay)| = [M/b, M| = [(M,/M,_)/by(M,/M,_)|"|M,_,/b,M,_,]|

== l_ll |PA(O‘M’,/M, J)| = |PA(°‘R‘,/‘,)|r .
j=

Since h(ay,) = Z;:] h(op,im,-,) = rh(ockd/p), the result now follows from Pro-
position 7.4. I

Proof of Theorem 7.1. Since a,, is expansive, M is noetherian. Let asc(M) =
{py,....p,}, so that each p; is expansive [Sc2, Thm. 3.9]. By the primary
decomposition theorem, there are submodules M, ..., M, of M such that M/M;
is pj-primary, and ()j_, M; = {0}. It follows that the diagonal map

0:M—>P(M/M)) =L
=1

is injective. The dual map X, = ﬂ;’z y Xamym, = Xy is therefore surjective. Denote

its kernel by Y. The addition formula shows that

y h(apgpg,) = h(og,) = hloy) + hiay) ,
ji=1

where ay denotes the restriction of o to Y.

We claim that h(xy) = 0. We first observe that if an R,-module N is the sum (not
necessarily direct) of a finite collection {N,} of submodules, and if h(ay,) = 0 for
each k, then h(ay) = 0. For the addition map @), N, —» >, N, = N is surjective, so
that oy is a subsystem of | [, ay,. Since h(] [, ox,) = D xh(2y,) = 0, we obtain that
h(zy) = 0, as required. Now the dualof Yis L/0(M) = [®@(M/M;)]/0(M), so that
our observation allows us to confine our attention to a single summand. If p; is not
principal, then any prime annihilator of an element in (0, ..., a+ M;, ..., 0)

+ 0(M) contains p;, hence is not principal. If p; is principal, then such an
annihilator contains p; + [ ], + P and is again not principal since p; is a minimal
non-zero prime and the p, are distinct and non-zero. Thus the primes associated to
eachsummand (0,...,a + M;,...,0) + 0(M) are all non-principal, and Theorem
4.2 combined with our observation show that h(ay) = 0. It follows from (7-1) that
p~(ay) = p*(ay) = h(ay) = 0, and hence from (7-5) that p*(a;) = p*(2),) and that
h(oy) = h(xp)-

Now Lemma 7.6 shows that p~ (apgar,) = p* (2aym,) = B2y n,)- Since the limit

1
lim ——— log|P,(« )|
Pl [Z97A] B A,
exists for each j, both p~ and p* add over the direct products, so that
p (x)=p" ({x@(M/Mj)) = ; P (‘“M/M,)

= Zp+(aM/Mj) + P+(0<@{M/M/_,) = p+(0‘L) .
J
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Combining these, and noting that o, is expansive since each a,y,y,, is, we obtain that

h(ay) = h(ag) = Z h(O‘M/M,») =p (o)
J

=p*(ay) < hlag) = hloy)
concluding the proof. [J

Appendix A. Entropies for actions

Let « be a Z%-action on the compact metrizable group X. It is useful to have a variety of ways to
compute the entropy of a. Here we show that five common methods coincide, and also prove a
technical replacement for subadditivity needed in the proof of Theorem 3.1. We use the notation
and development in [W], merely skelchmg the chdnges requnred for our situation.

Recall from §2 that if Q = HJ \ {h;,. ... b;+1;— 1} is a rectangle in Z“, the its girth g(Q) is
min, ;<4 /;. Let p be a translation-invariant metrlc on X, and denote normalized Haar measure
on X by u.

If % is an open cover of X, let N(#) be the number of elements in the smallest subcover of .
Then log N(-) is subadditive in the sense that log N(# v ¥') < log N(%) + log N(¥"). Put

l .
Bepver(@) = sup  lim — logN( Vs ,,,> ’

K4 !I(Q)"‘G‘l | jeQ

where the limit exists by subadditivity of log N(-) using a standard Felner argument.
A set Ec X is called (Q, ¢)-spanning for a if for every xe X there is a yeE such that
plaix, aly) < e for all je Q. Let ry(e, a) be the smallest cardinality of a (Q, £)-spanning set, and put

1
r(e, a) = limsup — logry(e, @),  hpa(2) = lim r(e, a) . (A-1)
9(Q)—n £=0

Dually, F < X is(Q, ¢)-separated for  if for distinct x, y € F there is a je Q such that p(azjx, Ady)> e
Let sy(e, @) be the largest cardinality of a (Q, ¢)-separated set, and put

1
s(e, o) = im sup — log sy (&, @),

hgp(@) = lims(e, @) . (A-2)
g(Q)—~ « ‘Q| £=0
Let B(e) be the e-ball around the identity of X, and put Dy(e, 2) = ();.oa I B(e). Define

1
hyoi(2) = lim lim sup — — log u(Dy (€, %)) .
=0 g(Q)*x |

Finally, let h,(2) be the measure-theoretic entropy of a with respect to Haar measure, as developed
in [C].

Theorem A.l. Let a be a Z¢-action by automorphisms of a compact metrizable group. Then the five
entropies above coincide. We denote their common value by h(x).

Proof. Let 4, be the open cover of all e-balls in X. The argument of [W, Corollary 7.7.1] shows

N( \ a if//u) Srole, a) S sple, ) < N< \ 2 *i'//,ﬂ) . (A-3)
i€Q jeQ

Since diam(#,) =26 -0 as e¢—0, it follows that h . (2)=h,,. (%)= hup(az) That
() £ heyyer(2) follows from the variational principle for Z-actions [E][Ms]. If ¢ is a finite
measurable partition of X into sets of diameter < ¢, then as in [W, Thm. 8.11],

— log u(Dyg(s, 2)) <H<\/a ':>.

ieQ
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hence h,, (@) < h, (). I E is a (Q, ¢)-separated set of cardinality sy(¢, «), then the sets {xD,(&/2, «):
xe E} are disjoint, so

Sol&, o) = 1/u(Dyle, o)) (A-4)

It follows that h, (2) < h,,(«), completing the proof. O

The reason for using lim sup’s instead of limits to define h,,,(«) and h,(«) is that logry(c, a)
and logsy(e, «) need not be subadditive over disjoint rectangles. The following result, needed in
the proof for the upper bound part of Theorem 3.1, is a partial replacement for subadditivity.

Proposition A.2. Suppose that for some rectangle Q, we have

1
——logsy,(e,0) £ B.
1Qol

Then r(4e, 2) < s(4e, ) < B.

Proof. For a large rectangle Q, there is a A = Z* such that the sets {Q, + k:k e A} are disjoint,
their union @, > Q,and |Q,|/]Q| = 1 asg(Q) = oo . Thus |Q|/|A| = |Q,] as g(Q) = oc . By (A-3),

SQ(4C,EI)§SQ|(48,11)§N< \/ ocj%h>§ n N< \/ 11'9//21;)

ieQ, ke jeQ,+k

141
= [N< \ 01"%;)] < ro e, ) < s, (8, @)l

€0,
Hence

1 A 1
‘,_ logsy(de, @) < u log sg, (&, %) = ——log sy, (e,9) < B

Q| 101 [Qol
as g(Q) —» oo, which yields the result. O

Appendix B. The addition formula

If o is a Z“-action on the compact group X, and Y is an a-invariant normal subgroup of X, let ay
denote the restriction of « to Y, and ay,y be the induced action on X/Y. The addition formula for
subgroups states

h(a) = h(“xn) + h(ay) . (B-1)

Since « can be regarded as a skew product with base action ay,, and an affine fiber action whose
automorphism part is xy, (B-1) will follow from a more general addition formula for skew
products with affine fiber actions. When d = 1, the addition formula for subgroups was proven by
Yuzvinskii [ Yz1]. His arguments were adapted by Thomas [ T1] for skew products. These papers
contain the ideas needed to handle the case d > 1 as well, and essentially everything in this section
is due to those authors.

In order to describe the addition formula for skew products, suppose that f§ is a measure-
preserving action of Z¢ on a Lebesgue space (€2, .#, v), and that « is a Z%-action by automorphisms
of a compact metrizable group Y equipped with the Borel g-algebra and Haar measure u. We use
multiplicative notation for Y. A cocycle o for f and « is a measurable map o:2Z¢ x Q — Y such
that

o(m + n, w) = a™(a(n, w))-a(m, fMw) (B-2)

for all m, ne Z¢ and we Q. This cocycle equation provides the consistency to define the skew
product action f x,x on (2 x Y, v x u) by

(B x,0w,y) = (o, (a"y) o(n, w)) .

When ¢ = 1,, we obtain the direct product action f§ x a.
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Theorem B.1. (The addition formula). If f is a measure-preserving Z*-action on (Q,v), « is an
algebraic Z-action on a compact group Y with Haar measure p, and 6:7* x Q — Y is a cocycle for p
and «, then

by (B x,0) = h(B)+ h,(a). (B-3)

Corollary B.2. If « is a Z%action on a compact group X, and Y is a closed, normal, a-invariant
subgroup of X, then

h(x) = h(ayy) + h(ay) .

Proof of the Corollary. Use a Borel cross-section to the natural quotient map X — X/Y to
construct a cocycle a:Z% x (X /Y)— Y such that a is measurable isomorphic to ay,y x,xy. Apply
the addition formula. O

Our proof of (B-3) recapitulates that of Yuzvinskii for d = I, augmented by some improve-
ments due to Thomas. We use the language and results of Rohlin’s theory of measurable
partitions. An excellent account of this is contained in Parry’s book [ P], which the reader should
consult for any unexplained notation or terminology.

If & is a mesurable partition of Y and ye Y, let &+ y denote the right translate of the elements of
& by y. Let {&,,} be a sequence of finite measurable partitions of Y increasing to the partition of Y
into points. For a rectangle Q in Z¢ and we Q, define

&=\ a ig,, & ,=V( i) e —jw.
ieQ ieQ
Standard entropy calculations show that

1
hyw (B x 2)=h(B)+ lim limsup— | H,(EQ)dv(w) ,

m= o g(Q)= l 0

1

By u(B Xo2) = h(f) + lim limsup — | H (&2 ) dv(w) .
m—=w g(Q)—x 0
The addition formula holds trivially if h,(f)= oo, so we will assume from now on that
h,(f) < oo. It therefore suffices to show that the fiber contributions on the right sides are equal,
i.e. that translations on the fibers driven by the cocycle do not affect entropy. Yuzvinskii’s idea is
to show that there are certain basic groups for which “rigid” partitions exist so that this holds, and
then build up a general compact group from basic groups using processes that preserve the
addition formula.

Definition B.3 (Yuzvinskii). A compact group Y with Haar measure y is rigid if there is a sequence
{&.} of finite measurable partitions of Y and a constant K so that

H,(Eul&m )+ H(E yIE0) £ K
Jor everym =1 and yeY.

Say that “the addition formula holds for «” if for every base action f and every cocycle ¢ we
have (B-3). Say “the addition formula holds for Y™ if it holds for every Z¢ action on Y. The
importance of rigidity is the following key result.

Lemma B.4. The addition formula holds for all rigid groups.

Proof. Let Y be rigid, and {¢,,}, K be as in Def B.3. The same calculation as in [ Yzl, Thm. 7.4]
shows that

|H,(E2) — Hy(E2 M < Y [HuEnllp da( — j, 0) + H, (&, oo —j, w)],)]
jeQ
<2K|Q], (B-4)

where K does not depend on «. Let «* denote the Z%-action given by (2*)" = o*". Replace in the
above a by o, B by f* and ¢ by a suitable cocycle g, so that (B x,a)* = p* x,, o* Then dividing
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(B-4) by |Q|, taking limsup,,~,, and then lim,,_,,, we obtain that
K9y (B X 2) =y B % ,20] S 2K .

Since k is arbitrary, the result follows. O
The next lemma gives a rich supply of rigid groups.

vXpu

Lemma B.S. Totally disconnected compact groups, compact Lie groups, and solenoids are rigid.

Proof. Rigidity for totally disconnected compact groups and solenoids is shown in Theorems 7.2
and 7.3 of [ Yzl ]. There is a minor error in the proof for the solenoid case, reproduced in [T1,
Thm. 2.6]. The increasing sequence {n,} of partitions constructed need not converge to the
partition mto pomts For example, using the notations from the proof of Thm. 7.3 in [Yz1], let A
= Z[I/Z] , F,=(27"2), p,:A—> A/F, =T, k=2""" at stage n, m(n)=2""!, and n,
=p, g,,,(,,,) where{ divides T into m equal intervals. For n = 1 and every C e ,,, we have p,(C)
= A/F,,s0\/,= | n, * &, contrary to the claim. The proof can be easily fixed by choosing k twice
as large as needed at each stage, which forces diam(n,) — 0.

Thomas [T1, Thm. 2.5] proved that compact Lie groups are rigid. O

The next three lemmas provide machinery to build up general compact groups from rigid
ones. They can be summarized by saying that the addition formula is preserved under extensions,
inverse limits, and direct products.

Lemma B.6. Suppose a is a Z%-action on X, and that Y is a closed, normal, a-invariant subgroup of
X. If the addition formula holds for ay,y and for ay, then it holds for x.

Proof. Same as ford = 1in [TI1, §1.4]. O

Lemma B.7. Suppose « is a Z-action on X, and that X = Y, > Y, o Y2 ... are a-invariant

closed subgroups with Y., normal in Y, for i 2 0, and such that (7 = {l1}. If the addition
formula holds for each ay,y,, then it holds for a.

Proof. Same as ford = 1in [T1,§1.5]. O

n=0 "

Lemma B.8. Suppose I is a finite or countable set, and that for every i€ I there is a Z°-action a; on X ;
Jor which the addition formula holds. Then it also holds for the direct product action [];.; % on

nfel Xi'
Proof. For I ﬁm'te this follows by induction from Lemma B.6. For I = {1,2, ...} apply Lemma
B.7 with ¥, = X; and the finite product case. O :

i=n+1

Proof of the addition formula. We will build up a general Z-action from those obeying the
addition formula using extensions, inverse limits, and skew products, processes which preserve the
formula.

Suppose that « is a Z%action on the compact group Y. Let Y° denote the connected
component of the identity. Then Y? is closed, normal, and a-invariant. Since Y/Y° is totally
disconnected, hence rigid by Lemma B.5, the Lemmas B.4 and B.6 allow us to restrict ourselves to
the case where Y is connected.

Next suppose that Y is connected and centerless. By [ Yz, §4.1], Y is a direct product [ [, ¥;
where each Y; is an algebraically simple Lie group. Furthermore, if neZ¢ and iel, then
a"(Y;) = Y; for some jel. Thus 7% acts on I. Decomposing I into corresponding equivalence
classes dnd using Lemmd B.8, we can assume this action is transitive on I. Fix ijel, and put
A={neZ*2"(Y,)=Y,}. If A={0}, then o is isomorphic to a group shift on Y¥;, and a
measurable isomorphism of # x ,a with f x « can be constructed exactly as in [ T1, Thm. 3.2]. If
A # {0}. then by a change of basis we can assume that A is generated by r e, . . ., r.e for some
1<c=d

Let 0.€ Z¢ and 0,_.€ Z% ¢ be the zero elements, and put

Y=]]{"(Y)0<n<re + +re}.

Then ¥ is invariant under o for every je Z° x {0,_,}, and the subgroups {a*(7):ke {0} x 297}
are independent. By Lemma B.5, Y is rigid, so there are {£,,} and K as in Definition B.3. Let
Q = Q. x Q,_.beaproduct of rectangles and use the same notation as in the proof of Lemma B.4.
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Independence and a rigidity argument imply that

|H(E8) — HAEZ LIS 3 [H(E8 ) — H(ER:00)
keQ,..
= 1Q4-c|"2K|Q.| = 2K|Q| .

The proof for the centerless case is now completed as in Lemma B.4.

If Y is connected, and Z is its center, then Y/Z is connected and centerless [ Yz1, §1. 1.3]. By
the above, we have reduced the problem to the case where Y is abelian.

Let M = Y be the dual group, which as in §2 is an R,-module. If M, is the torsion submodule
of M, then M/M , is torsion-free, and it suffices by Lemma B.6 to consider the torsion and torsion-
free cases separately. If M is torsion-free, then every finitely generated submodule F is free, so the
addition formula holds for Y/F* by an explicit isomorphism [T1, Thm. 3.2]. Since M is a
countable increasing union of finitely generated submodules, the torsion-free case is completed by
an appeal to Lemma B.7. Finally, suppose that M is a torsion module, and let F be a finitely
generated submodule. Then Y/F* is a solenoid, so the addition formula holds here. Since M is the
countable increasing union of finitely generated submodules, another appeal to Lemma B.7
completes the proof. O
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