Corrections to

Introduction to Topological Manifolds (First edition)

BY JOHN M. LEE JANUARY 9, 2025

Changes or additions made in the past twelve months are dated.

Page 29, statement of Lemma 2.11: The second sentence should be replaced by "If the open subsets of X are exactly those sets that satisfy the basis criterion with respect to \mathcal{B} , then \mathcal{B} is a basis for the topology of X."

Page 29, paragraph before Exercise 2.15: Instead of "the topologies of Exercise 2.1," it should say "some of the topologies of Exercise 2.1."

Page 30, last sentence of the proof of Lemma 2.12: Replace U by $f^{-1}(U)$ (three times).

Page 30, first paragraph in the "Manifolds" section: Delete the sentence "Let X be a topological space."

Page 38, Problem 2-16(b): Replace part (b) by "Show that for any space Y, a map $f: X \to Y$ is continuous if and only if $p_n \to p$ in X implies $f(p_n) \to f(p)$ in Y."

Page 38, Problem 2-18: This problem should be moved to Chapter 3, because Int M and ∂M are to be interpreted as having the subspace topologies. Also, for this problem, you may use without proof the fact that Int M and ∂M are disjoint.

Page 40, last line of Example 3.1: Replace "subspace topology on B" by "subspace topology on C"

Page 46, second display: Replace k by k/2 (twice) and l by l/2 (twice). [The tangent and cotangent functions have period $\pi/2$, not π .]

Page 51, proof of Proposition 3.13, third line: $f_1(U_1), \ldots, f_k(U_k)$ should be replaced by $f_1^{-1}(U_1), \ldots, f_k^{-1}(U_k)$.

Page 51, proof of Proposition 3.14, last sentence: Replace "the preceding lemma" by "the preceding proposition."

Page 52, first paragraph after Exercise 3.8: In the first sentence, replace the words "surjective and continuous" by "surjective." Also, add the following sentence at the end of the paragraph: "It is immediate from the definition that every quotient map is continuous."

Page 52, last paragraph: Change the word "quotient" to "surjective" in the first sentence of the paragraph.

Page 53, line 1: Change the word "quotient" to "surjective" at the top of the page.

Page 53, Lemma 3.17: Add the following sentence at the end of the statement of the lemma: (More precisely, if $U \subset X$ is a saturated open or closed set, then $\pi|_U : U \to \pi(U)$ is a quotient map.)

Page 82, line 3 from bottom: Delete "= $\overline{U} \cap Z$ " from the sentence beginning "Since $\overline{U} \cap Z$ "

Page 83, Example 4.30(a): In the first sentence, change "closed" to "open" and change $\overline{B}_{\varepsilon}(x)$ to $B_{\varepsilon}(x)$.

Page 85, statement of Corollary 4.34: "countable collection" should read "countable union."

Page 99, Lemma 5.4: Replace part (d) by

(d) For any topological space Y, a map $F: |\mathcal{K}| \to Y$ is continuous if and only if its restriction to $|\sigma|$ is continuous for each $\sigma \in \mathcal{K}$.

Page 103, Proposition 5.11: In the statement of the proposition, change "simplicial complex" to "1-dimensional simplicial complex."

Page 106, line 3 from bottom: Replace "even" by "odd."

Page 111, Figure 5.12: In S(SK), the points inside the small triangles should be at the intersections of the three medians.

(1/9/25) Page 112, second full paragraph: Delete the sentence beginning with "Moreover."

(1/9/25) Page 112, last paragraph, first sentence: After "elementary subdivisions" add "or their inverses."

Page 114, Problem 5-2: Replace the statement of the problem by: "Let \mathcal{K} be an abstract simplicial complex. For each vertex v of \mathcal{K} , let St v (the *open star* of v) be the union of the open simplices Int $|\sigma|$ as σ ranges over all simplices that have v as a vertex; and define a function $t_v: |\mathcal{K}| \to \mathbb{R}$ by letting $t_v(x)$ be the coefficient of v in the formal linear combination representing x.

(a) Show that each function t_v is continuous.

(b) Show that St v is a neighborhood of v, and the collection of open stars of all the vertices is an open cover of $|\mathcal{K}|$."

Page 114, Problem 5-3: Delete the phrase "and locally path connected."

Page 120, Statement of Proposition 6.2(b): Replace $x \in \partial \mathbb{B}^2$ by $(x, y) \in \partial \mathbb{B}^2$.

Page 126, Proposition 6.6: Add the hypothesis that $n \geq 2$.

Page 131, Part 1 of the definition of the geometric realization: After "sides of length 1," insert "equal angles,".

Page 136, line 8 from bottom: Change the surface presentation in that line to $\langle S_1, S_2, a, b, c \mid W_1 c^{-1} b^{-1} a^{-1}, abc W_2 \rangle$.

Page 139, proof of the classification theorem: Replace the first sentence of the proof with "Let M be the compact surface determined by the given presentation."

Page 140, line 14: Change "Step 3" to "Step 2."

Page 149, Example 7.3: The first line should read "Define maps $f, g: \mathbb{R} \to \mathbb{R}^2$ by"

Page 155, line 3: Change $\Phi_a(f)$ to $\Phi_a[f]$.

Page 156, Figure 7.7: The labels $I \times I$, F, and X should all be in math italics.

Page 156, Exercise 7.2: Change the first sentence to "Let X be a path connected topological space."

Page 159, second line from bottom: "induced homeomorphism" should read "induced homomorphism."

Page 160, Proposition 7.18: In the statement and proof of the proposition, change $(\iota_A)*$ to $(\iota_A)*$ three times (the asterisk should be a subscript).

Page 174, proof of Lemma 7.35: In the second-to-last line of the proof, change "Theorem 3.10" to "Theorem 3.11."

Page 176, Problem 7-5: Change "compact surface" to "connected compact surface."

Page 188, proof of Theorem 8.7: Replace the third sentence of the proof by "If $f: I \to \mathbb{S}^n$ is any loop based at a point in $U \cap V$, by the Lebesgue number lemma there is an integer m such that on each subinterval [k/m, (k+1)/m], f takes its values either in U or in V. If f(k/m) = N for some k, then the two subintervals [(k-1)/m, k/m] and [k/m, (k+1)/m] must be both be mapped into V. Thus, letting $0 = a_0 < \cdots < a_l = 1$ be the points of the form k/m for which $f(a_i) \neq N$, we obtain a sequence of curve segments $f|_{[a_{l-1},a_i]}$ whose images lie either in U or in V, and for which $f(a_i) \neq N$." Also, in the last line of the proof, replace "f is homotopic to a path" by "f is path homotopic to a loop."

Page 189, proof of Proposition 8.9: In the last sentence of the proof, change the domain of H to $I \times I$, and change the definition of H to

$$H(s,t) = (H_1(s,t), \dots, H_n(s,t)).$$

Page 191, Problem 8-7: In the third line of the problem, change $\varphi(\gamma)$ to $\varphi_*(\gamma)$.

Page 192, line 4: Change the definition of φ to $\varphi(x) = (x - f(x))/|x - f(x)|$.

Page 199, second-to-last paragraph: In the second sentence, after "a product of elements of S," insert "or their inverses."

Page 208, Problem 9-4(b): Change the first phrase to "Show that Ker $f_1 * f_2$ is equal to the normal closure of Im $j_1 * j_2, \ldots$ " Add the following hint: "[Hint: Let N denote the normal closure of Im $j_1 * j_2$, so it suffices to show that $f_1 * f_2$ descends to an isomorphism from $(G_1 * G_2)/N$ to $H_1 * H_2$. Construct an inverse by showing that each composite map $G_j \hookrightarrow G_1 * G_2 \to (G_1 * G_2)/N$ passes to the quotient yielding a map $H_j \to (G_1 * G_2)/N$, and then invoking the characteristic property of the free product.]"

Page 213, proof of Proposition 10.5: In the second sentence of the proof, change $\{q\}$ to $\{*\}$.

Page 218, Figure 10.4: In the upper diagram, one of the arrows labeled a_i should be reversed.

Page 227, line 8: Replace $\overline{R} * \overline{S}$ by $\overline{R * S}$.

Page 233, last line: Change the last sentence to "This brings us to the next-to-last major subject in the book:"

Page 238, proof of Proposition 11.10, second line: Change "p maps ..." to "f maps"

Page 248, Example 11.26: Change $\mathcal{C}_{\pi}(\mathbb{P}^n)$ to $\mathcal{C}_{\pi}(\mathbb{S}^n)$.

Page 249, line 5: Change the formula to " $p(\varphi(\widetilde{q})) = p(\widetilde{q}) = q$ " (not p).

Page 253, Problem 11-9: Change "path connected" to "locally path connected."

Page 265, Step 4: In the second line of Step 4, replace "as in Step 3" by "as in Step 2."

Page 268, proof of Theorem 12.11: The first and last paragraphs of this proof can be simplified considerably by using the result of Problem 3-15.

Page 272, first paragraph: The last sentence should read "It can be identified with a quotient of the group of matrices of the form $\left(\frac{\alpha}{\beta}\frac{\beta}{\alpha}\right)$ (identifying two matrices if they differ by a scalar multiple), and so is a topological group acting continuously on \mathbb{B}^2 ."

Page 284, just below the first displayed equation: Replace everything on that page below the first displayed equation with the following:

We have to show that p' is a covering map. Let $q_1 \in X$ be arbitrary, and let U be a neighborhood of q_1 that is evenly covered by p. We will show that U is also evenly covered by p'. Given a component \widetilde{U} of $p^{-1}(U)$, let $U' = \pi(\widetilde{U}) \subset X'$; since π is an open map (Problem 3-15), U' is open in X'. Suppose $U'_1 = \pi(\widetilde{U}_1)$ and $U'_2 = \pi(\widetilde{U}_2)$ are any two such sets. If they have a point q' in common, then $q' = \pi(\widetilde{q}_1) = \pi(\widetilde{q}_2)$ for some $\widetilde{q}_1 \in \widetilde{U}_1$ and $\widetilde{q}_2 \in \widetilde{U}_2$. Since π identifies points of \widetilde{X} if and only if they are in the same \widetilde{H} -orbit, there is some $\varphi \in \widetilde{H}$ such that $\widetilde{q}_2 = \varphi(\widetilde{q}_1)$. Then φ maps \widetilde{U}_1 homeomorphically onto \widetilde{U}_2 , so $\pi(\widetilde{U}_2) = \pi \circ \varphi(\widetilde{U}_1) = \pi(\widetilde{U}_1)$. This shows that any such sets U'_1, U'_2 are either disjoint or equal. Since π is surjective, $p'^{-1}(U)$ is equal to the disjoint union of the sets $\pi(\widetilde{U})$ as \widetilde{U} ranges over the components of $p^{-1}(U)$.

It remains only to show that for any such set $U' = \pi(\widetilde{U}), p' \colon U' \to U$ is a homeomorphism. The following diagram commutes:

$$\begin{array}{c|c}
\widetilde{U} \\
p \\
U'
\end{array}$$

$$\begin{array}{c}
T \\
p'
\end{array}$$

$$\begin{array}{c}
T \\
T
\end{array}$$

$$T
\end{array}$$

$$\begin{array}{c}
T
\end{array}$$

$$T
\end{array}$$

$$T
\end{array}$$

$$T$$

Since $p = p' \circ \pi$ is injective on \widetilde{U} , so is π ; and $\pi \colon \widetilde{U} \to U'$ is surjective by definition. Because π is an open map, it follows that $\pi \colon \widetilde{U} \to U'$ is a homeomorphism. Since p and π are homeomorphisms in (12.8), so is p'.

Page 287, line 10: The sentence "Thus (i) corresponds to the rank 1 case" should read "Thus (ii) corresponds to the rank 1 case."

Page 289, Problem 12-5: Replace the statement of the problem by "Find a group Γ acting freely and properly on the plane such that \mathbb{R}^2/Γ is homeomorphic to the Klein bottle."

Page 290, Problem 12-9: Replace the second sentence by "For any element \tilde{e} in the fiber over the identity element of G, show that \tilde{G} has a unique group structure such that \tilde{e} is the identity, \tilde{G} is a topological group, and the covering map $p \colon \tilde{G} \to G$ is a homomorphism with discrete kernel."

Page 301, just above the third displayed equation: In the last sentence of the paragraph, replace $G_{i,p} \colon \Delta_p \to \Delta_p \times I$ by $G_{i,p} \colon \Delta_{p+1} \to \Delta_p \times I$.

Page 316, first paragraph: Change the fourth sentence to: "For p > 0, if $\alpha : \Delta_p \to \mathbb{R}^n$ is an affine p-simplex, set

$$s\alpha = \alpha(b_p) * s\partial\alpha$$

(where b_p is the barycenter of Δ_p), and extend linearly to affine chains."

Page 319, statement of Lemma 13.21: H^{n-1} should be H_{n-1} .

Page 320, first paragraph: In the last two lines, H^{n-1} should be H_{n-1} (twice).

Page 325, second to last displayed equation: Change $H_p(\mathcal{K}'')$ to $H_p^{\Delta}(\mathcal{K}'')$.

Page 330, paragraph after Exercise 13.4: Replace [Mun75] by [Mun84].

Page 332, line 1: The first word on the page should be "subgroups" instead of "spaces."

Page 333, line 7: Change "coboundary" to "cocycle."

Page 335, Problem 13-12: Add the hypothesis that $U \cup V = X$.

Page 344, Exercise A.7(a): Since this exercise requires the axiom of choice, it should be moved after exercise A.9.