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Changes or additions made in the past twelve months are dated.

Page 29, statement of Lemma 2.11: The second sentence should be replaced by “If the open

subsets of X are exactly those sets that satisfy the basis criterion with respect to B, then B is a basis

for the topology of X.”

Page 29, paragraph before Exercise 2.15: Instead of “the topologies of Exercise 2.1,” it should
say “some of the topologies of Exercise 2.1.”

Page 30, last sentence of the proof of Lemma 2.12: Replace U by f−1(U) (three times).

Page 30, first paragraph in the “Manifolds” section: Delete the sentence “LetX be a topological
space.”

Page 38, Problem 2-16(b): Replace part (b) by “Show that for any space Y , a map f : X → Y is
continuous if and only if pn → p in X implies f(pn) → f(p) in Y .”

Page 38, Problem 2-18: This problem should be moved to Chapter 3, because IntM and ∂M are
to be interpreted as having the subspace topologies. Also, for this problem, you may use without proof
the fact that IntM and ∂M are disjoint.

Page 40, last line of Example 3.1: Replace “subspace topology on B” by “subspace topology on
C.”

Page 46, second display: Replace k by k/2 (twice) and l by l/2 (twice). [The tangent and cotangent
functions have period π/2, not π.]

Page 51, proof of Proposition 3.13, third line: f1(U1), . . . , fk(Uk) should be replaced by
f−1
1 (U1), . . . , f

−1
k (Uk).

Page 51, proof of Proposition 3.14, last sentence: Replace “the preceding lemma” by “the
preceding proposition.”

Page 52, first paragraph after Exercise 3.8: In the first sentence, replace the words “surjective
and continuous” by “surjective.” Also, add the following sentence at the end of the paragraph: “It is
immediate from the definition that every quotient map is continuous.”

Page 52, last paragraph: Change the word “quotient” to “surjective” in the first sentence of the
paragraph.

Page 53, line 1: Change the word “quotient” to “surjective” at the top of the page.

Page 53, Lemma 3.17: Add the following sentence at the end of the statement of the lemma: (More

precisely, if U ⊂ X is a saturated open or closed set, then π|U : U → π(U) is a quotient map.)

Page 82, line 3 from bottom: Delete “= U ∩ Z” from the sentence beginning “Since U ∩ Z . . . .”

Page 83, Example 4.30(a): In the first sentence, change “closed” to “open” and change Bε(x) to
Bε(x).



Page 85, statement of Corollary 4.34: “countable collection” should read “countable union.”

Page 99, Lemma 5.4: Replace part (d) by

(d) For any topological space Y , a map F : |K| → Y is continuous if and only if its restriction to |σ|
is continuous for each σ ∈ K.

Page 103, Proposition 5.11: In the statement of the proposition, change “simplicial complex” to
“1-dimensional simplicial complex.”

Page 106, line 3 from bottom: Replace “even” by “odd.”

Page 111, Figure 5.12: In S(SK), the points inside the small triangles should be at the intersections
of the three medians.

(1/9/25) Page 112, second full paragraph: Delete the sentence beginning with “Moreover.”

(1/9/25) Page 112, last paragraph, first sentence: After “elementary subdivisions” add “or their inverses.”

Page 114, Problem 5-2: Replace the statement of the problem by: “Let K be an abstract simplicial
complex. For each vertex v of K, let St v (the open star of v) be the union of the open simplices Int |σ|
as σ ranges over all simplices that have v as a vertex; and define a function tv : |K| → R by letting
tv(x) be the coefficient of v in the formal linear combination representing x.

(a) Show that each function tv is continuous.

(b) Show that St v is a neighborhood of v, and the collection of open stars of all the vertices is an
open cover of |K|.”

Page 114, Problem 5-3: Delete the phrase “and locally path connected.”

Page 120, Statement of Proposition 6.2(b): Replace x ∈ ∂B2 by (x, y) ∈ ∂B2.

Page 126, Proposition 6.6: Add the hypothesis that n ≥ 2.

Page 131, Part 1 of the definition of the geometric realization: After “sides of length 1,”
insert “equal angles,”.

Page 136, line 8 from bottom: Change the surface presentation in that line to 〈S1, S2, a, b, c |
W1c

−1b−1a−1, abcW2〉.

Page 139, proof of the classification theorem: Replace the first sentence of the proof with “Let
M be the compact surface determined by the given presentation.”

Page 140, line 14: Change “Step 3” to “Step 2.”

Page 149, Example 7.3: The first line should read “Define maps f, g : R → R
2 by . . . .”

Page 155, line 3: Change Φg(f) to Φg[f ].

Page 156, Figure 7.7: The labels I × I, F , and X should all be in math italics.

Page 156, Exercise 7.2: Change the first sentence to “Let X be a path connected topological space.”

Page 159, second line from bottom: “induced homeomorphism” should read “induced homomor-
phism.”

Page 160, Proposition 7.18: In the statement and proof of the proposition, change (ιA)∗ to (ιA)∗
three times (the asterisk should be a subscript).



Page 174, proof of Lemma 7.35: In the second-to-last line of the proof, change “Theorem 3.10” to
“Theorem 3.11.”

Page 176, Problem 7-5: Change “compact surface” to “connected compact surface.”

Page 188, proof of Theorem 8.7: Replace the third sentence of the proof by “If f : I → S
n is any

loop based at a point in U ∩V , by the Lebesgue number lemma there is an integer m such that on each
subinterval [k/m, (k + 1)/m], f takes its values either in U or in V . If f(k/m) = N for some k, then
the two subintervals [(k − 1)/m, k/m] and [k/m, (k + 1)/m] must be both be mapped into V . Thus,
letting 0 = a0 < · · · < al = 1 be the points of the form k/m for which f(ai) 6= N , we obtain a sequence
of curve segments f |[ai−1,ai] whose images lie either in U or in V , and for which f(ai) 6= N .” Also, in
the last line of the proof, replace “f is homotopic to a path” by “f is path homotopic to a loop.”

Page 189, proof of Proposition 8.9: In the last sentence of the proof, change the domain of H to
I × I, and change the definition of H to

H(s, t) = (H1(s, t), . . . , Hn(s, t)).

Page 191, Problem 8-7: In the third line of the problem, change ϕ(γ) to ϕ∗(γ).

Page 192, line 4: Change the definition of ϕ to ϕ(x) = (x− f(x))/|x− f(x)|.

Page 199, second-to-last paragraph: In the second sentence, after “a product of elements of S,”
insert “or their inverses.”

Page 208, Problem 9-4(b): Change the first phrase to “Show that Ker f1 ∗f2 is equal to the normal
closure of Im j1∗j2, . . . .” Add the following hint: “[Hint: Let N denote the normal closure of Im j1∗j2,
so it suffices to show that f1 ∗ f2 descends to an isomorphism from (G1 ∗G2)/N to H1 ∗H2. Construct
an inverse by showing that each composite map Gj →֒ G1 ∗G2 → (G1 ∗G2)/N passes to the quotient
yielding a map Hj → (G1 ∗G2)/N , and then invoking the characteristic property of the free product.]”

Page 213, proof of Proposition 10.5: In the second sentence of the proof, change {q} to {∗}.

Page 218, Figure 10.4: In the upper diagram, one of the arrows labeled ai should be reversed.

Page 227, line 8: Replace R ∗ S by R ∗ S.

Page 233, last line: Change the last sentence to “This brings us to the next-to-last major subject
in the book: . . . .”

Page 238, proof of Proposition 11.10, second line: Change “p maps . . . ” to “f maps . . . .”

Page 248, Example 11.26: Change Cπ(P
n) to Cπ(S

n).

Page 249, line 5: Change the formula to “p(ϕ(q̃)) = p(q̃) = q” (not p).

Page 253, Problem 11-9: Change “path connected” to “locally path connected.”

Page 265, Step 4: In the second line of Step 4, replace “as in Step 3” by “as in Step 2.”

Page 268, proof of Theorem 12.11: The first and last paragraphs of this proof can be simplified
considerably by using the result of Problem 3-15.

Page 272, first paragraph: The last sentence should read “It can be identified with a quotient of

the group of matrices of the form
( α β

β α

)
(identifying two matrices if they differ by a scalar multiple),

and so is a topological group acting continuously on B
2.”



Page 284, just below the first displayed equation: Replace everything on that page below the
first displayed equation with the following:

We have to show that p′ is a covering map. Let q1 ∈ X be arbitrary, and let U be a neighborhood of
q1 that is evenly covered by p. We will show that U is also evenly covered by p′. Given a component
Ũ of p−1(U), let U ′ = π(Ũ) ⊂ X ′; since π is an open map (Problem 3-15), U ′ is open in X ′. Suppose

U ′

1 = π(Ũ1) and U ′

2 = π(Ũ2) are any two such sets. If they have a point q′ in common, then q′ =

π(q̃1) = π(q̃2) for some q̃1 ∈ Ũ1 and q̃2 ∈ Ũ2. Since π identifies points of X̃ if and only if they are

in the same H̃-orbit, there is some ϕ ∈ H̃ such that q̃2 = ϕ(q̃1). Then ϕ maps Ũ1 homeomorphically

onto Ũ2, so π(Ũ2) = π ◦ ϕ(Ũ1) = π(Ũ1). This shows that any such sets U ′

1, U
′

2 are either disjoint or

equal. Since π is surjective, p′−1(U) is equal to the disjoint union of the sets π(Ũ) as Ũ ranges over
the components of p−1(U).

It remains only to show that for any such set U ′ = π(Ũ), p′ : U ′ → U is a homeomorphism. The
following diagram commutes:

Ũ

U ′

π✲

U.

p

❄ p′✛

(12.8)

Since p = p′ ◦ π is injective on Ũ , so is π; and π : Ũ → U ′ is surjective by definition. Because π is
an open map, it follows that π : Ũ → U ′ is a homeomorphism. Since p and π are homeomorphisms in
(12.8), so is p′.

Page 287, line 10: The sentence “Thus (i) corresponds to the rank 1 case” should read “Thus (ii)
corresponds to the rank 1 case.”

Page 289, Problem 12-5: Replace the statement of the problem by “Find a group Γ acting freely
and properly on the plane such that R2/Γ is homeomorphic to the Klein bottle.”

Page 290, Problem 12-9: Replace the second sentence by “For any element ẽ in the fiber over the
identity element of G, show that G̃ has a unique group structure such that ẽ is the identity, G̃ is a
topological group, and the covering map p : G̃ → G is a homomorphism with discrete kernel.”

Page 301, just above the third displayed equation: In the last sentence of the paragraph, replace
Gi,p : ∆p → ∆p × I by Gi,p : ∆p+1 → ∆p × I.

Page 316, first paragraph: Change the fourth sentence to: “For p > 0, if α : ∆p → R
n is an affine

p-simplex, set
sα = α(bp) ∗ s∂α

(where bp is the barycenter of ∆p), and extend linearly to affine chains.”

Page 319, statement of Lemma 13.21: Hn−1 should be Hn−1.

Page 320, first paragraph: In the last two lines, Hn−1 should be Hn−1 (twice).

Page 325, second to last displayed equation: Change Hp(K
′′) to H∆

p (K′′).

Page 330, paragraph after Exercise 13.4: Replace [Mun75] by [Mun84].

Page 332, line 1: The first word on the page should be “subgroups” instead of “spaces.”

Page 333, line 7: Change “coboundary” to “cocycle.”



Page 335, Problem 13-12: Add the hypothesis that U ∪ V = X.

Page 344, Exercise A.7(a): Since this exercise requires the axiom of choice, it should be moved
after exercise A.9.


