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Preface

Manifolds crop up everywhere in mathematics. These generalizations of curves and
surfaces to arbitrarily many dimensions provide the mathematical context for un-
derstanding “space” in all of its manifestations. Today, the tools of manifold theory
are indispensable in most major subfields of pure mathematics, and are becoming
increasingly important in such diverse fields as genetics, robotics, econometrics,
statistics, computer graphics, biomedical imaging, and, of course, the undisputed
leader among consumers (and inspirers) of mathematics—theoretical physics. No
longer the province of differential geometers alone, smooth manifold technology is
now a basic skill that all mathematics students should acquire as early as possible.

Over the past century or two, mathematicians have developed a wondrous collec-
tion of conceptual machines that enable us to peer ever more deeply into the invisi-
ble world of geometry in higher dimensions. Once their operation is mastered, these
powerful machines enable us to think geometrically about the 6-dimensional solu-
tion set of a polynomial equation in four complex variables, or the 10-dimensional
manifold of 5 x 5 orthogonal matrices, as easily as we think about the familiar
2-dimensional sphere in R3. The price we pay for this power, however, is that the
machines are assembled from layer upon layer of abstract structure. Starting with the
familiar raw materials of Euclidean spaces, linear algebra, multivariable calculus,
and differential equations, one must progress through topological spaces, smooth at-
lases, tangent bundles, immersed and embedded submanifolds, vector fields, flows,
cotangent bundles, tensors, Riemannian metrics, differential forms, foliations, Lie
derivatives, Lie groups, Lie algebras, and more—just to get to the point where one
can even think about studying specialized applications of manifold theory such as
comparison theory, gauge theory, symplectic topology, or Ricci flow.

This book is designed as a first-year graduate text on manifold theory, for stu-
dents who already have a solid acquaintance with undergraduate linear algebra, real
analysis, and topology. I have tried to focus on the portions of manifold theory that
will be needed by most people who go on to use manifolds in mathematical or sci-
entific research. I introduce and use all of the standard tools of the subject, and
prove most of its fundamental theorems, while avoiding unnecessary generalization
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or specialization. I try to keep the approach as concrete as possible, with pictures
and intuitive discussions of how one should think geometrically about the abstract
concepts, but without shying away from the powerful tools that modern mathemat-
ics has to offer. To fit in all of the basics and still maintain a reasonably sane pace,
I have had to omit or barely touch on a number of important topics, such as complex
manifolds, infinite-dimensional manifolds, connections, geodesics, curvature, fiber
bundles, sheaves, characteristic classes, and Hodge theory. Think of them as dessert,
to be savored after completing this book as the main course.

To convey the book’s compass, it is easiest to describe where it starts and where
it ends. The starting line is drawn just after topology: I assume that the reader has
had a rigorous introduction to general topology, including the fundamental group
and covering spaces. One convenient source for this material is my Introduction to
Topological Manifolds [LeeTM], which I wrote partly with the aim of providing the
topological background needed for this book. There are other books that cover sim-
ilar material well; I am especially fond of the second edition of Munkres’s Topology
[MunOO]. The finish line is drawn just after a broad and solid background has been
established, but before getting into the more specialized aspects of any particular
subject. In particular, I introduce Riemannian metrics, but I do not go into connec-
tions, geodesics, or curvature. There are many Riemannian geometry books for the
interested student to take up next, including one that I wrote [LeeRM] with the goal
of moving expediently in a one-quarter course from basic smooth manifold theory
to nontrivial geometric theorems about curvature and topology. Similar material is
covered in the last two chapters of the recent book by Jeffrey Lee (no relation)
[LeeJeff09], and do Carmo [dC92] covers a bit more. For more ambitious readers,
I recommend the beautiful books by Petersen [Pet06], Sharpe [Sha97], and Chavel
[Cha06].

This subject is often called “differential geometry.” I have deliberately avoided
using that term to describe what this book is about, however, because the term ap-
plies more properly to the study of smooth manifolds endowed with some extra
structure—such as Lie groups, Riemannian manifolds, symplectic manifolds, vec-
tor bundles, foliations—and of their properties that are invariant under structure-
preserving maps. Although I do give all of these geometric structures their due (after
all, smooth manifold theory is pretty sterile without some geometric applications),
I felt that it was more honest not to suggest that the book is primarily about one or
all of these geometries. Instead, it is about developing the general tools for working
with smooth manifolds, so that the reader can go on to work in whatever field of
differential geometry or its cousins he or she feels drawn to.

There is no canonical linear path through this material. I have chosen an order-
ing of topics designed to establish a good technical foundation in the first half of
the book, so that I can discuss interesting applications in the second half. Once the
first twelve chapters have been completed, there is some flexibility in ordering the
remaining chapters. For example, Chapter 13 (Riemannian Metrics) can be post-
poned if desired, although some sections of Chapters 15 and 16 would have to be
postponed as well. On the other hand, Chapters 19-21 (Distributions and Foliations,
The Exponential Map, and Quotient Manifolds, respectively) could in principle be
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inserted any time after Chapter 14, and much of the material can be covered even
earlier if you are willing to skip over the references to differential forms. And the
final chapter (Symplectic Manifolds) would make sense any time after Chapter 17,
or even after Chapter 14 if you skip the references to de Rham cohomology.

As you might have guessed from the size of the book, and will quickly confirm
when you start reading it, my style tends toward more detailed explanations and
proofs than one typically finds in graduate textbooks. I realize this is not to every
instructor’s taste, but in my experience most students appreciate having the details
spelled out when they are first learning the subject. The detailed proofs in the book
provide students with useful models of rigor, and can free up class time for dis-
cussion of the meanings and motivations behind the definitions as well as the “big
ideas” underlying some of the more difficult proofs. There are plenty of opportuni-
ties in the exercises and problems for students to provide arguments of their own.

I should say something about my choices of conventions and notations. The old
joke that “differential geometry is the study of properties that are invariant under
change of notation” is funny primarily because it is alarmingly close to the truth.
Every geometer has his or her favorite system of notation, and while the systems are
all in some sense formally isomorphic, the transformations required to get from one
to another are often not at all obvious to students. Because one of my central goals
is to prepare students to read advanced texts and research articles in differential
geometry, I have tried to choose notations and conventions that are as close to the
mainstream as I can make them without sacrificing too much internal consistency.
(One difference between this edition and the previous one is that I have changed
a number of my notational conventions to make them more consistent with main-
stream mathematical usage.) When there are multiple conventions in common use
(such as for the wedge product or the Laplace operator), I explain what the alterna-
tives are and alert the student to be aware of which convention is in use by any given
writer. Striving for too much consistency in this subject can be a mistake, however,
and I have eschewed absolute consistency whenever I felt it would get in the way
of ease of understanding. I have also introduced some common shortcuts at an early
stage, such as the Einstein summation convention and the systematic confounding
of maps with their coordinate representations, both of which tend to drive students
crazy at first, but pay off enormously in efficiency later.

Prerequisites

This subject draws on most of the topics that are covered in a typical undergraduate
mathematics education. The appendices (which most readers should read, or at least
skim, first) contain a cursory summary of prerequisite material on topology, linear
algebra, calculus, and differential equations. Although students who have not seen
this material before will not learn it from reading the appendices, I hope readers will
appreciate having all of the background material collected in one place. Besides
giving me a convenient way to refer to results that I want to assume as known, it
also gives the reader a splendid opportunity to brush up on topics that were once
(hopefully) understood but may have faded.
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Exercises and Problems

This book has a rather large number of exercises and problems for the student to
work out. Embedded in the text of each chapter are questions labeled as “Exercises.”
These are (mostly) short opportunities to fill in gaps in the text. Some of them are
routine verifications that would be tedious to write out in full, but are not quite trivial
enough to warrant tossing off as obvious. I recommend that serious readers take the
time at least to stop and convince themselves that they fully understand what is
involved in doing each exercise, if not to write out a complete solution, because it
will make their reading of the text far more fruitful.

At the end of each chapter is a collection of (mostly) longer and harder questions
labeled as “Problems.” These are the ones from which I select written homework
assignments when I teach this material. Many of them will take hours for students to
work through. Only by doing a substantial number of these problems can one hope
to absorb this material deeply. I have tried insofar as possible to choose problems
that are enlightening in some way and have interesting consequences in their own
right. When the result of a problem is used in an essential way in the text, the page
where it is used is noted at the end of the problem statement.

I have deliberately not provided written solutions to any of the problems, either
in the back of the book or on the Internet. In my experience, if written solutions
to problems are available, even the most conscientious students find it very hard
to resist the temptation to look at the solutions as soon as they get stuck. But it is
exactly at that stage of being stuck that students learn most effectively, by struggling
to get unstuck and eventually finding a path through the thicket. Reading someone
else’s solution too early can give one a comforting, but ultimately misleading, sense
of understanding. If you really feel you have run out of ideas, talk with an instructor,
a fellow student, or one of the online mathematical discussion communities such as
math.stackexchange.com. Even if someone else gives you a suggestion that turns out
to be the key to getting unstuck, you will still learn much more from absorbing the
suggestion and working out the details on your own than you would from reading
someone else’s polished proof.

About the Second Edition

Those who are familiar with the first edition of this book will notice first that the
topics have been substantially rearranged. This is primarily because I decided it was
worthwhile to introduce the two most important analytic tools (the rank theorem and
the fundamental theorem on flows) much earlier, so that they can be used throughout
the book rather than being relegated to later chapters.

A few new topics have been added, notably Sard’s theorem, some transversality
theorems, a proof that infinitesimal Lie group actions generate global group actions,
a more thorough study of first-order partial differential equations, a brief treatment
of degree theory for smooth maps between compact manifolds, and an introduction
to contact structures. I have consolidated the introductory treatments of Lie groups,
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Riemannian metrics, and symplectic manifolds in chapters of their own, to make
it easier to concentrate on the special features of those subjects when they are first
introduced (although Lie groups and Riemannian metrics still appear repeatedly in
later chapters). In addition, manifolds with boundary are now treated much more
systematically throughout the book.

Apart from additions and rearrangement, there are thousands of small changes
and also some large ones. Parts of every chapter have been substantially rewritten
to improve clarity. Some proofs that seemed too labored in the original have been
streamlined, while others that seemed unclear have been expanded. I have modified
some of my notations, usually moving toward more consistency with common no-
tations in the literature. There is a new notation index just before the subject index.

There are also some typographical improvements in this edition. Most impor-
tantly, mathematical terms are now typeset in bold italics when they are officially
defined, to reflect the fact that definitions are just as important as theorems and
proofs but fit better into the flow of paragraphs rather than being called out with
special headings. The exercises in the text are now indicated more clearly with a
special symbol (»), and numbered consecutively with the theorems to make them
easier to find. The symbol [J, in addition to marking the ends of proofs, now also
marks the ends of statements of corollaries that follow so easily that they do not
need proofs; and I have introduced the symbol / to mark the ends of numbered ex-
amples. The entire book is now set in Times Roman, supplemented by the excellent
MathTime Professional II mathematics fonts from Personal TgX, Inc.
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