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A Canadian Drinking Game: Morra

Each player chooses either the loonie or the toonie and places the single coin in
their closed right hand with the choice hidden from their opponent. Each player
then guesses the play of the other. If only one guesses correctly, then the other
player pays to the correct guesser the sum of the coins in both their hands. If
both guess incorrectly or both correctly, then there is no payoff.

This is an example of a zero-sum game since in each case, what one player loses
the other player gains.
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Mathematical Model of Morra

We define a payoff matrix for this game.
Designate one of the players as the column player and the other the row player.
The payoff matrix consists of the payoff to the column player based on the
strategy employed by both players in a given round of play. The strategies for
either player are the same and they consist of a pair of decisions. The first is the
choice of coin to hide, and the second is the guess for the opponents hidden coin.
We denote these decisions by (i, j) with i = 1, 2 and j = 1, 2.

For example, the strategy (2, 1) is to hide the toonie in your fist and to guess your
opponent is hiding a loonie.
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Mathematical Model of Morra

The payoff matrix P to the column player is given by

(1, 1) (1, 2) (2, 1) (2, 2)
(1, 1) 0 −2 3 0
(1, 2) 2 0 0 −3
(2, 1) −3 0 0 4
(2, 2) 0 3 −4 0

.

For example, if the row player plays strategy (2, 2) while the column player uses
strategy (2, 1), then the column player must pay the row player $4.
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Pure and Mixed Strategies

The elements of P are the payoffs for the use of a pure strategy. But this game is
played over and over again. So it is advisable for the column player to use a
different pure strategy on each play.

How should these strategies be chosen?

One possibility is for the column player to decide on a long run frequency of play
for each strategy, or equivalently, to decide on a probability of play for each
strategy on each play. This is called a mixed strategy which can be represented as
a vector of probabilities in R4:

0 ≤ x and eTx = 1, (1)

where e always represents the vector of all ones of the appropriate dimension, in
this case e = (1, 1, 1, 1)T .
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Expected Return

Given a particular mixed strategy, one can easily compute the expected payoff to
the column player for each choice of pure strategy by the row player.

For example, if the row player chooses pure strategy (1, 1), then the expected
payoff to the column player is

0 · x1 − 2 · x2 + 3 · x3 + 0 · x4 =

4∑
j=1

P1jxj .
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Optimal Mixed Strategy: Column Player

Now given that the column player will use a mixed strategy, what mixed strategy
should be chosen? One choice is the strategy that maximizes the column player’s
minimum expected payoff over the range of the row player’s pure strategies. This
strategy can be found by solving the optimization problem

max
0≤x, eT x=1

min
i=1,2,3,4

4∑
j=1

Pijxi . (2)

Note that this problem is equivalent to the linear program

C maximize γ
subject to γe ≤ Px,

eTx = 1
0 ≤ x.
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Optimal Mixed Strategy: Row Player

On the flip side, the row player can also chose a mixed strategy of play,
0 ≤ y, eT y = 1. In this case, the expected payoff to the column player when the
column player uses the pure strategy (2, 1) is

3 · y1 + 0 · y2 + 0 · y3 − 4 · y4 =

4∑
i=1

Pi3yi .

How should the row player decide on their strategy? One approach is for the row
player to minimize the maximum expected payoff to the column player:

min
0≤y, eT y=1

max
j=1,2,3,4

4∑
i=1

Pijyi. (3)

This problem is equivalent to the linear program

R minimize η
subject to PT y ≤ ηe,

eT y = 1
0 ≤ y.
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The Duals for C and R

Both the column player’s problem C and the row player’s problem R are linear
programming problems. What are their duals?

We begin with the column player’s problem by putting it into our general standard
form so that we can immediately write down its dual LP. Rewriting we have

C maximize

(
1
0

)T (
γ
x

)

subject to
[
0 eT

]( γ
x

)
= 1 (τ)

[
e −P

]( γ
x

)
≤ 0 (y)

0 ≤ x .
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The Duals for C and R

The dual problem becomes

minimize

(
1
0

)T (
τ
y

)
subject to

[
0 eT

]( τ
y

)
= 1

[
e −PT

]( τ
y

)
≥ 0

0 ≤ y.

Rewriting this dual, we have the LP

minimize τ
subject to PT y ≤ τe

eT y = 1
0 ≤ y .

But this is just the row player’s problem R!
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Observations

The feasible regions for both the primal and dual problems are always nonempty
(why?) and bounded in the variables x and y, respectively (why?), and so the
optimal values of both are necessarily bounded (why?).

Hence, by the Strong Duality Theorem solutions to both the primal and dual
problems exist with the optimal values coinciding.
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Solution for Morra

γ̄ = 0, x̄ =


0

3/5
2/5
0

 and η̄ = 0, ȳ =


0

4/7
3/7
0

 ,

with

P =


0 −2 3 0
2 0 0 −3
−3 0 0 4
0 3 −4 0

 .
Observe that

Px̄ =


0
0
0

1/7

 and PT ȳ =


−1/7

0
0
0

 ,

so (γ̄, x̄) is primal feasible while (η̄, ȳ) is dual feasible and their optimal values
coincide at zero.
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Solution for Morra

What can be said about the strategies

γ̄ = 0, x̄ =


0

4/7
3/7
0

 and η̄ = 0, ȳ =


0

3/5
2/5
0

?
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Equilibria and Minimax Problems

Observation: Given

{a1, a2, . . . , aN} ⊂ R and λ = (λ1, λ2, . . . , λN )T ∈ RN

with 0 ≤ λ and eTλ = 1. Then

min{a1, a2, . . . , aN} ≤
N∑
i=1

λiai ≤ max{a1, a2, . . . , aN}.

That is, the expected value, or average, of the ai’s in any discrete probability
distribution always lies between the minimum and the maximum values of the
ai’s.

Consequently,
min{a1, a2, . . . , aN} = min

0≤y,eT y=1
yTa

and
max{a1, a2, . . . , aN} = max

0≤y,eT y=1
yTa.
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Equilibria and Minimax Problems

Theorem

Given any matrix P ∈ Rm×n, one has

max
0≤x,eT x=1

min
0≤y,eT y=1

yTPx = min
0≤y,eT y=1

max
0≤x,eT x=1

yTPx .
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Lagrangian Duality

A general minimax problem can be obtained from any function L : Rn×Rm 7→ R
and two sets X ⊂ Rn and Y ⊂ Rm and writing the two problems

max
x∈X

min
y∈Y

L(x, y) and min
y∈Y

max
x∈X

L(x, y).

In the case of matrix games, we have L(x, y) = yTPx.

Define the function p : Rn 7→ R ∪ {−∞} and d : Rm 7→ R ∪ {+∞} by

p(x) := min
y∈Y

L(x, y) and d(y) := max
x∈X

L(x, y) .

We call p the primal objective function and d the dual objective, and we call the
problem

P max
x∈X

p(x)

the Primal Problem and
D min

y∈Y
d(y)

the Dual Problem.
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Lagrangian Duality

Note that for every pair (x̄, ȳ) ∈ X × Y ,

p(x̄) = min
y∈Y

L(x̄, y) ≤ L(x̄, ȳ) ≤ max
x∈X

L(x, ȳ) = d(ȳ). (4)

The inequality (4) is called the Weak Duality Theorem for minimax problems of
this type.

Theorem (Weak Duality for Minimax)

Let L, p, and d, be as defined above. Then for every (x, y) ∈ X × Y ,

p(x) ≤ d(y). (5)

Moreover, if (x̄, ȳ) are such that p(x̄) = d(ȳ), then x̄ solves P and ȳ solves D.
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Lagrangian Duality

We call a point (x̄, ȳ) ∈ X × Y a saddle point for L, if

L(x, ȳ) ≤ L(x̄, ȳ) ≤ L(x̄, y) ∀ (x, y) ∈ X × Y. (6)

Theorem (Saddle Point Theorem)

Let L, p, and d, be as defined above.

(i) If (x̄, ȳ) is a saddle point for L, the x̄ solves P and ȳ solves D with the
optimal value in both P and D equal to the saddle point value L(x̄, ȳ).

(ii) If x̄ solves P and ȳ solves D with the optimal values coinciding, then (x̄, ȳ) is
a saddle point for L.
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Lagrangian Duality

Theorem (Saddle Point Theorem)

Let L, p, and d, be as defined above.

(i) If (x̄, ȳ) is a saddle point for L, the x̄ solves P and ȳ solves D with the
optimal value in both P and D equal to the saddle point value L(x̄, ȳ).

(ii) If x̄ solves P and ȳ solves D with the optimal values coinciding, then (x̄, ȳ) is
a saddle point for L.

Proof.

(i) Suppose (x̄, ȳ) is a saddle point for L. Let ε > 0 and choose (xε, yε) ∈ X × Y
so that

d(ȳ)− ε ≤ L(xε, ȳ) and L(x̄, yε) ≤ p(x̄) + ε.

By combining this with (6), we obtain

d(ȳ)− ε ≤ L(x̄, ȳ) ≤ p(x̄) + ε.

Since this holds for all ε > 0, we have d(ȳ) ≤ L(x̄, ȳ) ≤ p(x̄). But then, by the
Weak Duality Theorem, p(x̄) ≤ d(ȳ) ≤ L(x̄, ȳ) ≤ p(x̄) ≤ d(ȳ) which, again by the
Weak Duality Theorem, proves the result.
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Linear Programming Duality

Let A ∈ Rm×n, b ∈ Rm, and c ∈ Rn, and define

L(x, y) := cTx+ yT b− yTAx,

with X := Rn+ and Y = Rm+ . Then

p(x) = min
0≤y

L(x, y) = min
0≤y

cTx+ yT (b−Ax)

= cTx+ min
0≤y

yT (b−Ax)

= cTx+

{
0 , Ax ≤ b,
−∞ , else.

and

d(y) = max
0≤x

L(x, y) = max
0≤x

yT b+ (c−AT y)Tx

= yT b+ max
0≤x

(c−AT y)Tx

= yT b+

{
0 , AT y ≥ c,
+∞ , else.
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Linear Programming Duality

Therefore, the primal problem has the form

P max
0≤x

p(x) = max cTx

s.t. Ax ≤ b, 0 ≤ x,

while the dual problem takes the form

D min
0≤y

d(y) = min bT y

s.t. AT y ≥ c, 0 ≤ y.

In this case, the function L is called the Lagrangian, and this development is an
instance of Lagrangian duality. Observe that if x̄ solves P and ȳ solves D, then
the Saddle Point Theorem tells us that p(x̄) = L(x̄, ȳ) = d(ȳ), or equivalently,

cT x̄ = cT x̄+ bT ȳ − ȳTAx̄ = bT ȳ,

or equivalently,

ȳT (b−Ax̄) = 0 and x̄T (c−AT ȳ) = 0,

which is just the Complementary Slackness Theorem.
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Quadratic Programming Duality

Consider the convex quadratic program

P minimize 1
2x

TQx+ cTx
subject to Ax ≤ b, 0 ≤ x ,

where Q ∈ Rn×n is symmetric and positive definite.

The Lagrangian is given by

L(x, y, v) =
1

2
xTQx+ cTx+ yT (ATx− b)− vTx where 0 ≤ y, 0 ≤ v.

The dual objective function is

g(y, v) = min
x∈Rn

L(x, y, v) .

Linear Optimization Matrix Games and Lagrangian Duality 22 / 24



Quadratic Programming Duality

Consider the convex quadratic program

P minimize 1
2x

TQx+ cTx
subject to Ax ≤ b, 0 ≤ x ,

where Q ∈ Rn×n is symmetric and positive definite.
The Lagrangian is given by

L(x, y, v) =
1

2
xTQx+ cTx+ yT (ATx− b)− vTx where 0 ≤ y, 0 ≤ v.

The dual objective function is

g(y, v) = min
x∈Rn

L(x, y, v) .

Linear Optimization Matrix Games and Lagrangian Duality 22 / 24



Quadratic Programming Duality

We need a closed form expression for g.
We obtain this from the first-order optimality condition on

L(x, y, v) =
1

2
xTQx+ cTx+ yT (ATx− b)− vTx where 0 ≤ y, 0 ≤ v

which is
0 = ∇xL(x, y, v) = Qx+ c+AT y − v.

Since Q is invertible, we have

x = Q−1(v −AT y − c).

Plugging this expression for x into L(x, y, v) gives

g(y, v) =L(Q−1(v −AT y − c), y, v)

=
1

2
(v −AT y − c)TQ−1(v −AT y − c)

+cTQ−1(v −AT y − c) + yT (AQ−1(v −AT y − c)− b)− vTQ−1(v −AT y − c)

=
1

2
(v −AT y − c)TQ−1(v −AT y − c)− (v −AT y − c)TQ−1(v −AT y − c)− bT y

=−1

2
(v −AT y − c)TQ−1(v −AT y − c)− bT y .
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Quadratic Programming Duality

The dual problem is

maximize − 1
2 (v −AT y − c)TQ−1(v −AT y − c)− bT y

subject to 0 ≤ y, 0 ≤ v .

Moreover, (ȳ, v̄) solves the dual problem if an only if x̄ = Q−1(v̄ −AT ȳ − c)
solves the primal problem with the primal and dual optimal values coinciding.
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