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@ The Two Phase Simples Algorithm

© The Fundamental Theorem of linear Programming

e Duality Theory Revisited

0 Complementary Slackness
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Two Phase Simplex Algorithm

Phase | Formulate and solve the auxiliary problem. Two outcomes are
possible:
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T wo Phase Simplex Algorithm

Phase | Formulate and solve the auxiliary problem. Two outcomes are
possible:
(i) The optimal value in the auxiliary problem is positive. In this
case the original problem is infeasible.
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T wo Phase Simplex Algorithm

Phase | Formulate and solve the auxiliary problem. Two outcomes are
possible:
(i) The optimal value in the auxiliary problem is positive. In this
case the original problem is infeasible.
(i) The optimal value is zero and an initial feasible tableau for the
original problem is obtained.
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The Two Phase Simplex Algorithm

Phase | Formulate and solve the auxiliary problem. Two outcomes are
possible:
(i) The optimal value in the auxiliary problem is positive. In this
case the original problem is infeasible.
(i) The optimal value is zero and an initial feasible tableau for the
original problem is obtained.
Phase Il If the original problem is feasible, apply the simplex algorithm to
the initial feasible tableau obtained from Phase | above. Again, two
outcomes are possible:

The Fundamental Theorem of Linear Programming Th Math 407: Linear Optimization



The Two Phase Simplex Algorithm

Phase | Formulate and solve the auxiliary problem. Two outcomes are
possible:

(i) The optimal value in the auxiliary problem is positive. In this
case the original problem is infeasible.

(i) The optimal value is zero and an initial feasible tableau for the
original problem is obtained.

Phase Il If the original problem is feasible, apply the simplex algorithm to
the initial feasible tableau obtained from Phase | above. Again, two
outcomes are possible:

(i) The LP is determined to be unbounded.
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The Two Phase Simplex Algorithm

Phase | Formulate and solve the auxiliary problem. Two outcomes are
possible:

(i) The optimal value in the auxiliary problem is positive. In this
case the original problem is infeasible.

(i) The optimal value is zero and an initial feasible tableau for the
original problem is obtained.

Phase Il If the original problem is feasible, apply the simplex algorithm to
the initial feasible tableau obtained from Phase | above. Again, two
outcomes are possible:

(i) The LP is determined to be unbounded.
(i) An optimal basic feasible solution is obtained.
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The Fundamental Theorem of linear Programming

Theorem:
Every LP has the following three properties:
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The Fundamental Theorem of linear Programming

Theorem:
Every LP has the following three properties:

(i) If it has no optimal solution, then it is either infeasible or unbounded.
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The Fundamental Theorem of linear Programming

Theorem:
Every LP has the following three properties:

(i) If it has no optimal solution, then it is either infeasible or unbounded.

(ii) If it has a feasible solution, then it has a basic feasible solution.
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The Fundamental Theorem of linear Programming

Theorem:
Every LP has the following three properties:
(i) If it has no optimal solution, then it is either infeasible or unbounded.

(ii) If it has a feasible solution, then it has a basic feasible solution.

(iii) If it is feasible and bounded, then it has an optimal basic feasible solution.
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Duality Theory

P maximize c'x D  minimize by

subjectto Ax < b, 0 <x subject to ATy >c, 0<y
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Duality Theory

P maximize c'x D  minimize by

subjectto Ax < b, 0 <x subject to ATy >c, 0<y

What is the dual to the dual?
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The Dual of the Dual

minimize bTy
subject to ATy > c,
0<y
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Dual of the Dual

minimize b’y Standard
subject to ATy > c, =
0<y form
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The Dual of the Dual

minimize b7y Standard ~ —maximize  (—b)Ty
subject to ATy > c, — subject to  (—AT)y < (—c),
0<y form 0<y.
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The Dual of the Dual

minimize b7y Standard ~ —maximize  (—b)Ty
subject to ATy > c, — subject to  (—AT)y < (—c),
0<y form 0<y.

minimize (—C)TX
subject to  (—AT)Tx > (—b),
0<x
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The Dual of the Dual

minimize b7y Standard ~ —maximize  (—b)Ty
subject to ATy >c, = subject to  (—AT)y < (—o),
0<y form 0<y.
minimize  (—c)Tx maximize ¢’ x
subject to  (—AT)Tx > (—b), = subject to  Ax < b,
0<x 0<x.
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The Dual of the Dual

minimize b7y Standard ~ —maximize  (—b)Ty
subject to ATy >c, = subject to  (— AT) <(-o),
0<y form 0<y.
minimize  (—c)Tx maximize ¢’ x
subject to  (—AT)Tx > (—b), = subject to  Ax < b,
0<x 0<x.

The dual of the dual is the primal.
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The Weak Duality Theorem

Theorem:
If x € R" is feasible for P and y € R™ is feasible for D, then

c"x< yTAX < bTy.

Thus, if P is unbounded, then D is necessarily infeasible, and if D is unbounded,
then P is necessarily infeasible. Moreover, if c"X = b'y with X feasible for P and
y feasible for D, then X must solve P and y must solve D.
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The Weak Duality Theorem

Theorem:
If x € R" is feasible for P and y € R™ is feasible for D, then

c"x< yTAX < bTy.

Thus, if P is unbounded, then D is necessarily infeasible, and if D is unbounded,
then P is necessarily infeasible. Moreover, if c"X = b'y with X feasible for P and
y feasible for D, then X must solve P and y must solve D.

We combine the Weak Duality Theorem with the Fundamental Theorem of Linear
Programming to obtain the Strong Duality Theorem.
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The Strong Duality Theorem

Theorem:
If either P or D has a finite optimal value, then so does the other, the optimal
values coincide, and optimal solutions to both P and D exist.
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Duality Theorem

Theorem:
If either P or D has a finite optimal value, then so does the other, the optimal
values coincide, and optimal solutions to both P and D exist.

Remark: In general a finite optimal value does not imply the existence of a
solution.
min f(x) = &~

The optimal value is zero, but no solution exists.
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Duality Theorem

Proof:
Since the dual of the dual is the primal, we may as well assume that the primal
has a finite optimal value.
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Duality Theorem

Proof:
Since the dual of the dual is the primal, we may as well assume that the primal

has a finite optimal value.

The Fundamental Theorem of Linear Programming says that an optimal basic
feasible solution exists.
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e Strong Duality Theorem

Proof:
Since the dual of the dual is the primal, we may as well assume that the primal

has a finite optimal value.

The Fundamental Theorem of Linear Programming says that an optimal basic
feasible solution exists.

The optimal tableau is

RA R | ro
CT_yTA _yT‘_yTb

where we have already seen that y solves D, and the optimal values coincide.
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e Strong Duality Theorem

Proof:
Since the dual of the dual is the primal, we may as well assume that the primal
has a finite optimal value.

The Fundamental Theorem of Linear Programming says that an optimal basic
feasible solution exists.

The optimal tableau is

RA R | ro
CT_yTA _yT‘_yTb

where we have already seen that y solves D, and the optimal values coincide.

This concludes the proof.
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Complementary Slackness

Theorem: [WDT]
If x € R" is feasible for P and y € R™ is feasible for D, then

cTx < yTAX < bTy.

Thus, if P is unbounded, then D is necessarily infeasible, and if D is unbounded,
then P is necessarily infeasible. Moreover, if c"X = by with X feasible for P and
y feasible for D, then X must solve P and y must solve D.
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Complementary Slackness

Theorem: [WDT]
If x € R" is feasible for P and y € R™ is feasible for D, then

cTx < yTAX < bTy.

Thus, if P is unbounded, then D is necessarily infeasible, and if D is unbounded,
then P is necessarily infeasible. Moreover, if c"X = by with X feasible for P and
y feasible for D, then X must solve P and y must solve D.

The SDT implies that x solves P and y solves D if and only if (x,y) is a P-D

feasible pair and

c'x=yTAx=b"y.
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Complementary Slackness

Theorem: [WDT]
If x € R" is feasible for P and y € R™ is feasible for D, then

cTx < yTAX < bTy.

Thus, if P is unbounded, then D is necessarily infeasible, and if D is unbounded,
then P is necessarily infeasible. Moreover, if c"X = by with X feasible for P and
y feasible for D, then X must solve P and y must solve D.

The SDT implies that x solves P and y solves D if and only if (x,y) is a P-D
feasible pair and

c'x=yTAx=b"y.

We now examine the consequence of this equivalence.
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Complementary Slackness

T

The equation ¢”x = y " Ax implies that

0=xT(ATy —c) =Y x> ayyi — q)- C))
1 i=1

j=
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Complementary Slackness

T

The equation ¢”x = y " Ax implies that

0=xT(ATy —c) =Y x> ayyi — q)- C))
1 i=1

j=

P-D feasibility gives

m
0<x and OSZa,-jy,-—cj forj=1,...,n.
i=1
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Complementary Slackness

T

The equation ¢”x = y " Ax implies that

0=xT(ATy —c) =Y x> ayyi — q)- C))
j=1 =1
P-D feasibility gives
m
0<x and OSZa,-jy,-—cj forj=1,...,n.
i=1

Hence, (&) can only hold if

m
XJ(Z ajyi—¢)=0 for j=1,...,n, or equivalently,
i=1

m
x;i =10 or Za,-jy,-:cj or both for j=1,...,n.
i=1
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Complementary Slackness

Similarly, the equation y” Ax = b” y implies that

. 0<vy
=29 =3 o= o) (06" 0 )
Jj=1 -
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Complementary Slackness

Similarly, the equation y” Ax = b” y implies that

. 0<vy
=29 =3 o= o) (06" 0 )
Jj=1 -

Therefore, y;(bj —> 7 ;a;x)=0 i=12,...,m.

The Fundamental Theorem of Linear Programming Th Math 407: Linear Optimization



Complementary Slackness

Similarly, the equation y” Ax = b” y implies that

. 0<vy
=29 =3 o= o) (06" 0 )
Jj=1 -

Therefore, y;(bj —> 7 ;a;x)=0 i=12,...,m.

Hence,

yi=0 or Za;jxj:b,- or bothfori=1,... . m
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Complementary Slackness

c'x=yTAx=bTy
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Complementary Slackness

c'x=yTAx=bTy

e x;=0 or Y7 ajyi=c¢ orbothforj=1,...,n.
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Complementary Slackness

c'x=yTAx=bTy

e x;=0 or Y7 ajyi=c¢ orbothforj=1,...,n.

ey, =0 or Z};la,-j)g:b,- or both for i=1,...,m.
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Complementary Slackness Theorem

Theorem:
The vector x € R" solves P and the vector y € R™ solves D if and only if x is
feasible for P and y is feasible for D and

m
(i) either 0 = x; or >~ ajyi = ¢j or both for j =1,...,n, and
i=1

n
(ii) either 0 =y; or 3 ajxj = bj or both for i =1,...,m.
j=1
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Corollary to the Complementary Slackness Theorem

Corollary:
The vector x € R" solves P if and only if x is feasible for P and there exists a
vector y € R™ feasible for D and such that

(i) if X" ajxj < b, then y; =0, fori=1,...,m and
j=1

m
(ii) if0 < x;j, then > ajy; =cj, forj=1,...,n.
i=1
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Testing Optimality via Complementary Slackness

Does 425
x = (x1, %2, X3, X4, x5) = (0, 33 5,0)
solve the LP
maximize 7x3; 4+ 6xx + bxz — 2x4 + 3xs
subjectto x3 + 3x + 53 — 2x4 + 2x5 < 4
dx; 4+ 2% — 2x3 + x4 + xs < 3
21 + 4 4+ 43 — 2x4 + bxs < b
31 + x» + 2x3 — x3 — 2x5 < 1

0 < x1,x2, X3, X4, X5.
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Testing Optimality via Complementary Slackness

Does 4925
x = (x1, %2, X3, X4, x5) = (0, 33 5,0)
solve the LP
maximize 7x; 4+ 6xx 4+ 5x3 — 2x4 + 3xs
subjectto x3 + 3x + 53 — 2x4 + 2x5 < 4 )%
4x; + 2% — 23 + x4 + x5 < 3
21 + 4 4+ 43 — 2x4 + bxs < 5 V3
31 + x» + 2x3 — x3 — 2x5 < 1 Va

0 < x1,x2, X3, X4, X5.
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Testing Optimality via Complementary Slackness

The point

Wi N
wl| o
o
~

4
X = (Xlax25X3aX4;X5) = (07 §a

must be feasible for the LP.
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Testing Optimality via Complementary Slackness

The point

Wi N
wl| o
o
~

4
X = (Xlax25X3aX4;X5) = (07 §a

must be feasible for the LP.
Plugging into the constraints we get

0 + 3(3) + 5(3) - 2(3) + 2A0) = 4
40 + 2(3) - 2(3) + () 0 = 3
2000 + 4(5) + 4(3) - 203 50) < 5
300 + (3) + 2(3) - (3 - 20 = 1
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Testing Optimality via Complementary Slackness

The point

Wi N
wl| o
o
~

4
X = (Xlax25X3aX4;X5) = (07 §a

must be feasible for the LP.
Plugging into the constraints we get

0 + 3(3) + 5(5) — 2(3) + 20 = 4
) + 2(3) - 2G) + () 0 = 3
2000 + 4(3) 4(3) - 2(3) 50) < 5
0) + () +20) - (B - 20 = 1

Can we use this information to construct a solution to the dual problem,
(}’17}’27}/37)/4)?
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Testing Optimality via Complementary Slackness

Recnall that
if Y ajjx; < b, theny; =0, fori=1,...,m.
j=1
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Testing Optimality via Complementary Slackness

Recall that

if S ayxj < b, theny; =0, fori =1,...,m.

We have just showed that
0 + 3(3) + 5(3) — 2(3 + 20 = 4
40) + 2(3) - 203 + (9 0 =3
200 + 45 + 4(3) - 203 + 50 < 3
30 +  (3) 2(3) - () - 20 =1
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Testing Optimality via Complementary Slackness

Recall that

if Y ajjx; < b, theny; =0, fori=1,...,m.

V\/Jr'e:llmve just showed that
0 + 3(3) + 5(3) - 2(3) + 20 = 4 n
40 + 2(3) - 2(3) + () 0 =3 y2
20) + 4(3) + 4() - 2(3) + 50) < 5 :
300 + (3) + 208 - (3 - 29 =1 ya
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Testing Optimality via Complementary Slackness

Recall that

if Y ajjx; < b, theny; =0, fori=1,...,m.

V\/Jr'e:llmve just showed that
0 + 3(3) + 5(3) - 2(3) + 20 = 4 n
40 + 2(3) - 2(3) + () 0 =3 y2
200 + 45 + 43) - 2(3) + 50) < 5 ¢y
300 + (3) + 208 - (3 - 29 =1 ya
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Testing Optimality via Complementary Slackness

Also recall that
m

if0 < xj, then ) ajy; =¢j, forj=1,...,n.
i=1
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Testing Optimality via Complementary Slackness

Also recall that .

if 0 < x;j, then Y ajyi=c¢j, forj=1,...,n.
i=1

Hence,
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Testing Optimality via Complementary Slackness

Also recall that .

if 0 < x;j, then Y ajyi=c¢j, forj=1,...,n.
i=1

Hence,

31 + 2y 4+ 4ys + w4 = 6 (since x, = § > 0)
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Testing Optimality via Complementary Slackness

Also recall that .

if 0 < x;j, then Y ajyi=c¢j, forj=1,...,n.
i=1

Hence,

3yi + 2y + 43 + oy = 6 (since xp =

Wl

> 0)

51 — 2y + 4y3 + 2 = 5 (since x3 =

wIN

> 0)
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Testing Optimality via Complementary Slackness

Also recall that
m

if0 <X, then ) ajyj = ¢, for j=1,...,n.
Hence, =
31 + 2y 4+ 4ys + w4 = 6 (since x, = § > 0)
51 — 2y + 4dys + 2y = 5 (since x3 = % > 0)
—2y1 + v — 2y3 — ypu = 2 (since xq = % > 0)
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Testing Optimality via Complementary Slackness

Combining these observations gives the system

3 2 4 1 " 6
5 -2 4 2 vw| | 5
2 1 -2 -1 v | T 2 |
0 0 1 0 Va 0

which any dual solution must satisfy.
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Testing Optimality via Complementary Slackness

Combining these observations gives the system

3 2 4 1 " 6
5 -2 4 2 vw| | 5
2 1 -2 -1 v | T 2 |
0 0 1 0 Va 0

which any dual solution must satisfy.
This is a square system that we can try to solve for y.
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Testing Optimality via Complementary Slackness

3 2 4 1 6
5 =2 4 2 5
-2 1 -2 —-1| =2
0 0 1 0 0
3 2 0 1 6 n—4n
5 -2 0 2 5 r — 4!’4
—2 1 0 —-1| -2 r+2n
0 0 1 0 0
1 3 0 0 4 n—+n
1 0 0 0 1 rn+2r
2 1 0 1 2
0 0 1 0 0
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Testing Optimality via Complementary Slackness

3 2 4 1 6 1 3 0 0 4 n + r3
5 2 4 9 5 1 0 O 0 1 rn+2n
P 2 1 0 -1]|-2
o 0 1 0| 0 6 01 0] 0
3 2 0 1] 6 n-—4n 030 01 3  n-n
100 o0 1
5 -2 0 2 5 r — 4!’4 0 1 0 1 0 5
2 1 0 -1]|-2 rs+2n - r3+ 2
001 0] 0
o 0 1 ol o
10 0 0] 1 r
1 3 0 0 4 rn—+r 01 0 0 1 1
1 0 0 o0 1 r 4 2r 3N
P 001 0] 0 noo
0 0 1 0 0 0 0 O 1 1 —r3 + 3n
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Testing Optimality via Complementary Slackness

n+n
r+2rs

|
|
RO OOoOrOoOOORNNLN
I
|

n—-r
n—4an B 2

r — 4!’4

r+2n rs +2r

n-—+r

In
rn+2r !

ra
1
—n+3n

w

N R RO Wo NN oW
|
— o WwWorRNNoRNN

H O OO NKHFEOKFENK

|
ONEHFH PpONMNOCOTOION OGO
OO O OOHOONKHRH
OO OOFrRrROWOHOW
O OOoORrOOOoOrOOoOOo
H O OO O OO O OO
H O R PR OOKF WONRF M

o
o
o

This gives the solution (y1,y2, y3,ys) = (1, 1, 0, 1).
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Testing Optimality via Complementary Slackness

n+n
r+2rs

|
|
RO OOoOrOoOOORNNLN
I
|

n—-r
n—4an B 2

r — 4!’4

r+2n rs +2r

n-—+r

In
rn+2r !

ra
1
—n+3n

w

N R RO Wo NN oW
|
— o WwWorRNNoRNN

H O OO NKHFEOKFENK

|
ONEHFH PpONMNOCOTOION OGO
OO O OOHOONKHRH
OO OOFrRrROWOHOW
O OOoORrOOOoOrOOoOOo
H O OO O OO O OO
H O R PR OOKF WONRF M

o
o
o

This gives the solution (y1,y2, y3,ys) = (1, 1, 0, 1).
Is this dual feasible?
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Testing Optimality via Complementary Slackness

y=0W1y,ys,ya)=(1, 1,0, 1)

minimize 41 + 3y + by3 +  ya
subject to i + 4y + 23 + 3ya > 7
3 + 2y + 4ys + y > 6
5 — 2y + 4ys + 2y > 5
—2y1 4+ y2 — 2p3 — ya > 2
2n + y2 + 5y5 — 2y > 3
0 < y1,y2,y3,ya
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Testing Optimality via Complementary Slackness

y=0W1y,ys,ya)=(1, 1,0, 1)

minimize 41 + 3y + by3 +  ya
subject to i + 4y + 23 + 3ya > 7
3 + 2y + 4ys + y > 6
5 — 2y + 4ys + 2y > 5
—2y1 4+ y2 — 2p3 — ya > 2
2n + y2 + 5y5 — 2y > 3

0< Y1,Y2, Y3, Y4.

Clearly, 0 < y and by construction the 2nd, 3rd, and 4th of the linear inequality
constraints are satisfied with equality.
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Testing Optimality via Complementary Slackness

y=0W1y,ys,ya)=(1, 1,0, 1)

minimize 41 + 3y + by3 +  ya
subject to i + 4y + 23 + 3ya > 7
3 + 2y + 4ys + y > 6
5 — 2y + 4ys + 2y > 5
—2y1 4+ y2 — 2p3 — ya > 2
2n + y2 + 5y5 — 2y > 3

0< Y1,Y2, Y3, Y4.

Clearly, 0 < y and by construction the 2nd, 3rd, and 4th of the linear inequality
constraints are satisfied with equality.
We need to check the first and inequalities.
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Testing Optimality via Complementary Slackness

y=0W1y,ys,ya)=(1, 1,0, 1)

minimize 41 + 3y + by3 +  ya
subject to i + 4y + 23 + 3ya > 7
3 + 2y + 4ys + y > 6
5 — 2y + 4ys + 2y > 5
—2y1 4+ y2 — 2p3 — ya > 2
2n + y2 + 5y5 — 2y > 3

0< Y1,Y2, Y3, Y4.

Clearly, 0 < y and by construction the 2nd, 3rd, and 4th of the linear inequality
constraints are satisfied with equality.

We need to check the first and inequalities.

First: 1+44+04+3=8>7
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Testing Optimality via Complementary Slackness

y=0W1y,ys,ya)=(1, 1,0, 1)

minimize 41 + 3y + by3 +  ya
subject to i + 4y + 23 + 3ya > 7
3 + 2y + 4ys + y > 6
5 — 2y + 4ys + 2y > 5
—2y1 4+ y2 — 2p3 — ya > 2
2n + y2 + 5y5 — 2y > 3

0< Y1,Y2, Y3, Y4.

Clearly, 0 < y and by construction the 2nd, 3rd, and 4th of the linear inequality
constraints are satisfied with equality.

We need to check the first and inequalities.

First: 1+44+04+3=8>7

Fifth: 24+140—2=1 % 3, the fifth dual inequality is violated.
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Testing Optimality via Complementary Slackness

y=0W1y,ys,ya)=(1, 1,0, 1)

minimize 41 + 3y + by3 +  ya
subject to i + 4y + 23 + 3ya > 7
3 + 2y + 4ys + y > 6
5 — 2y + 4ys + 2y > 5
—2y1 4+ y2 — 2p3 — ya > 2
2n + y2 + 5y5 — 2y > 3

0< Y1,Y2, Y3, Y4.

Clearly, 0 < y and by construction the 2nd, 3rd, and 4th of the linear inequality
constraints are satisfied with equality.

We need to check the first and inequalities.

First: 1+44+04+3=8>7

Fifth: 24+140—2=1 % 3, the fifth dual inequality is violated.

Hence, x = (0, %, %, %, 0) cannot be optimal!

The Fundamental Theorem of Linear Programming Th Math 407: Linear Optimization



Example: Testing Optimality via Complementary Slackness

Does the point x = (1,1, 1,0) solve the following LP?

maximize 4x;  +2x +2x3 +4xy

subjectto  x3 4+3x +2x3 + x4 < 7
X1 —|— X2 + X3 —|—2X4 S 3
2x1 +x3 +x < 3
X1  + xo 2%, < 2

0< x1,x, X3,X4
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