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@ LPs in Standard Form

9 Minimization — maximization

© Linear equations to linear inequalities
e Lower and upper bounded variables
© Interval variable bounds

@ Free variable

@ Two Step Process to Standard Form
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LPs in Standard Form

We say that an LP is in standard form if its matrix representation has the form
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LPs in Standard Form

We say that an LP is in standard form if its matrix representation has the form

max Cc X

s.t. Ax < b
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LPs in Standard Form

We say that an LP is in standard form if its matrix representation has the form

max c¢'x It must be a maximization problem.

s.t. Ax < b
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LPs in Standard Form

We say that an LP is in standard form if its matrix representation has the form

max c¢'x It must be a maximization problem.

s.t. Ax < b Only inequalities of the correct direction.

0<x

5 Author: James Burke, University of Washington
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LPs in Standard Form

We say that an LP is in standard form if its matrix representation has the form

max c¢'x It must be a maximization problem.

s.t. Ax < b Only inequalities of the correct direction.

0<x All variables must be non-negative.

5 Author: James Burke, University of Washington
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Every LP can be Transformed to Standard Form
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Every LP can be Transformed to Standard Form

@ minimization — maximization
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Every LP can be Transformed to Standard Form

@ minimization — maximization

To transform a minimization problem to a maximization problem multiply the
objective function by —1.
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Every LP can be Transformed to Standard Form

@ minimization — maximization
To transform a minimization problem to a maximization problem multiply the
objective function by —1.

@ linear inequalities
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Every LP can be Transformed to Standard Form

@ minimization — maximization

To transform a minimization problem to a maximization problem multiply the
objective function by —1.

@ linear inequalities
If an LP has an inequality constraint of the form
aj1x1 + aipxe + - + ainXn > by,

it can be transformed to one in standard form by multiplying the inequality
through by —1 to get

—aj1X1 — jpXp — * -+ — AinXn < —bj.

7 Author: James Burke, University of Washington
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Every LP can be Transformed to Standard Form

@ linear equations
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Every LP can be Transformed to Standard Form

@ linear equations

The linear equation
ajXi + -+ aipxp = b;

can be written as two linear inequalities

ajixy + -+ ainxp < by
and

aj1x1 + -+ + ainXn > bi.

or equivalently
ajix1 + -+ ainXn < b

—ajx1 — " — AinXn < —b;

9 Author: James Burke, University of Washington
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Every LP can be Transformed to Standard Form

@ variables with lower bounds
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Every LP can be Transformed to Standard Form

@ variables with lower bounds
If a variable x; has lower bound /; which is not zero (/; < x;) or equivalently,
0 < x; — I;, one obtains a non-negative variable w; := x; — /; yielding the
substitution

xXi=w; + [;.

In this case, the bound /; < x; is equivalent to the bound 0 < wj;.
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Every LP can be Transformed to Standard Form

@ variables with lower bounds

If a variable x; has lower bound /; which is not zero (/; < x;) or equivalently,
0 < x; — I;, one obtains a non-negative variable w; := x; — /; yielding the
substitution

xXi=w; + [;.
In this case, the bound /; < x; is equivalent to the bound 0 < wj;.

@ variables with upper bounds
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Every LP can be Transformed to Standard Form

@ variables with lower bounds

If a variable x; has lower bound /; which is not zero (/; < x;) or equivalently,
0 < x; — I;, one obtains a non-negative variable w; := x; — /; yielding the
substitution

xXi=w; + [;.
In this case, the bound /; < x; is equivalent to the bound 0 < wj;.

@ variables with upper bounds

If a variable x; has an upper bound u; (x; < u;), or equivalently, 0 < u; — x;,
one obtains a non-negative variable w; := u; — x; yielding the substitution

Xj = uj — wj.

In this case, the bound x; < u; is equivalent to the bound 0 < w;.

11\ uthor: James Burke, University of Washington
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Every LP can be Transformed to Standard Form

@ variables with interval bounds
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Every LP can be Transformed to Standard Form

o variables with interval bounds
An interval bound of the form /; < x; < u; can be transformed into one
non-negativity constraint and one linear inequality constraint in standard
form by making the substitution

xXi=w; + I;.

13 puthor: James Burke, University of Washington
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Every LP can be Transformed to Standard Form

@ variables with interval bounds

An interval bound of the form /; < x; < u; can be transformed into one
non-negativity constraint and one linear inequality constraint in standard
form by making the substitution

xXi=w; + I;.
In this case, the bounds /; < x; < u; are equivalent to the constraints

0<w and wi < ui — ;.

13 puthor: James Burke, University of Washington
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Every LP can be Transformed to Standard Form

@ free variables
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Every LP can be Transformed to Standard Form

o free variables
Sometimes a variable is given without any bounds. Such variables are called
free variables. To obtain standard form every free variable must be replaced
by the difference of two non-negative variables. That is, if x; is free, then we

get
Xi = uj — Vi

with 0 < u; and 0 < v;.

15 puthor: James Burke, University of Washington
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Transformation to Standard Form

Put the following LP into standard form.

minimize 3x1 — X
subjectto —x; + 6x — x3 + x4 > -3
7X2 + xg = 5
x3 + x4 <02

_1§X27 X3§57 _2§X4§2
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Transformation to Standard Form

The hardest part of the translation to standard form, or at least the part most

susceptible to error, is the replacement of existing variables with non-negative
variables.
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Transformation to Standard Form

The hardest part of the translation to standard form, or at least the part most

susceptible to error, is the replacement of existing variables with non-negative
variables.

Reduce errors by doing the transformation in two steps.
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Transformation to Standard Form

The hardest part of the translation to standard form, or at least the part most
susceptible to error, is the replacement of existing variables with non-negative
variables.

Reduce errors by doing the transformation in two steps.

Step 1: Make all of the changes that do not involve a variable substitution.
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Transformation to Standard Form

The hardest part of the translation to standard form, or at least the part most
susceptible to error, is the replacement of existing variables with non-negative
variables.

Reduce errors by doing the transformation in two steps.
Step 1: Make all of the changes that do not involve a variable substitution.

Step 2: Make all of the variable substitutions.

18 \ ithor: James Burke, University of Washington
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Must be a maximization problem

minimize 3x1 — X
subjectto —x; + 6x — x3 + x4 > -3
7X2 + xg = 5
x3 + x4 <2

_1§X27 X335a _2§X4§2

Lecture 4: LP Standard Form < Math 407A: Linear Optimization



Must be a maximization problem

minimize 3xq
subject to —x;

_1§X27 X3SSa _2§X4§2

Minimization = maximization

_ X5
+ 62 — X3

7X2
X3

20 puthor: James Burke, University of Washington
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Must be a maximization problem

minimize 3xq
subject to —x;

_1§X27 X3357 _2§X4§2

Minimization = maximization

maximize — 3x; + xo.

_ X5
+ 62 — X3

7X2
X3

20 puthor: James Burke, University of Washington
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Inequalities must go the right way.
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Inequalities must go the right way.

—x1+6x — x3+ x4 > —3
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Inequalities must go the right way.

—x1+6x — x3+ x4 > —3

becomes
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Inequalities must go the right way.

—x1+6x — x3+ x4 > —3

becomes

X1—6X2+X3—X4§3.

22 puthor: James Burke, University of Washington
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Equalities are replaced by 2 inequalities.

X+ x4 =5
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Equalities are replaced by 2 inequalities.

X+ x4 =5

becomes
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Equalities are replaced by 2 inequalities.

X+ x4 =5

becomes

X+ x4 <5
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Equalities are replaced by 2 inequalities.

X+ x4 =5
becomes
T+ x4 <5
and
24

Author: James Burke, University of Washington
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Equalities are replaced by 2 inequalities.

X+ x4 =5
becomes
T+ x4 <5
and
—Txp—x4 < =5
24

Author: James Burke, University of Washington
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Grouping upper bounds with the linear inequalities.

The double bound —2 < x; < 2 indicates that we should group the upper bound
with the linear inequalities.
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Grouping upper bounds with the linear inequalities.

The double bound —2 < x; < 2 indicates that we should group the upper bound
with the linear inequalities.

X4§2

26 puthor: James Burke, University of Washington

Lecture 4: LP Standard Form 4’ Math 407A: Linear Optimization



Step 1: Transformation to Standard Form

Combining all of these changes gives the LP

maximize —-3x3 + X
subject to xx1 — b6 + x3 — x2 < 3
7X2 + Xxa < 5
— 7X2 — X4 < -5
x3 + x4 <02
X4 S 2

—1<x, x3<5, —2<x.
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Step 2: Variable Replacement

The variable x; is free, so we replace it by
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Step 2: Variable Replacement

The variable x; is free, so we replace it by

Xlzsz—Zl_ With0§zl+,0§zl_.

29 puthor: James Burke, University of Washington
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Step 2: Variable Replacement

The variable x; is free, so we replace it by

Xlzsz—Zl_ With0§zl+,0§zl_.

x> has a non-zero lower bound (—1 < x;) so we replace it by
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Step 2: Variable Replacement

The variable x; is free, so we replace it by

Xlzsz—Zl_ With0§zl+,0§zl_.

x> has a non-zero lower bound (—1 < x;) so we replace it by

Z=Xx+1 or xx=2z—1 with 0<=.

29 puthor: James Burke, University of Washington
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Step 2: Variable Replacement

The variable x; is free, so we replace it by

Xlzsz—Zl_ With0§zl+,0§zl_.

x> has a non-zero lower bound (—1 < x;) so we replace it by

Z=Xx+1 or xx=2z—1 with 0<=.

x3 is bounded above (x3 < 5), so we replace it by
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Step 2: Variable Replacement

The variable x; is free, so we replace it by

Xlzsz—Zl_ With0§zl+,0§zl_.

x> has a non-zero lower bound (—1 < x;) so we replace it by

Z=Xx+1 or xx=2z—1 with 0<=.

x3 is bounded above (x3 < 5), so we replace it by

zz3=5—x3 or x3=5—2z3 with 0<z.

29 puthor: James Burke, University of Washington
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Step 2: Variable Replacement

The variable x; is free, so we replace it by

Xlzsz—Zl_ With0§zl+,0§zl_.

x> has a non-zero lower bound (—1 < x;) so we replace it by

Z=Xx+1 or xx=2z—1 with 0<=.

x3 is bounded above (x3 < 5), so we replace it by

zz3=5—x3 or x3=5—2z3 with 0<z.

X4 is bounded below (—2 < x4), so we replace it by

29 puthor: James Burke, University of Washington
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Step 2: Variable Replacement

The variable x; is free, so we replace it by

Xlzsz—Zl_ With0§zl+,0§zl_.

x> has a non-zero lower bound (—1 < x;) so we replace it by

Z=Xx+1 or xx=2z—1 with 0<=.

x3 is bounded above (x3 < 5), so we replace it by

zz3=5—x3 or x3=5—2z3 with 0<z.

X4 is bounded below (—2 < x4), so we replace it by

Zp=X4+2 or xa=2z4—2 with 0<z.

29 puthor: James Burke, University of Washington
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Step 2: Transformation to Standard Form

Substituting x; =z~ — 2z, into

maximize —-3x3; + X
subject to x1 — 6x + x3 — x4 < 3
7X2 + Xq S 5
— 1x - x3 < =5
x3 + x3 < 2
X4 S 2

-1 §X27 X3 S57 _2§X4-

gives
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Step 2: Transformation to Standard Form

maximize -3z + 3z + x
subject to zZf - z; - b6 + x3 — xx < 3
X2 + x4 < 5
— Tx - x4 < =5
x3 + x4 < 2
X4 S 2

OSZ]‘.'»; OSZ]._7 _1§X27 X3§57 _2SX4~

Lecture 4: LP Standard Form < Math 407A: Linear Optimization



Step 2: Transformation to Standard Form

Substituting x, = z, — 1 into

maximize -3z + 3z + x
subject to z; — z; — 6 + x3 — xx < 3
x> + x; < 5
— 7X2 — X3 < -5
x3 + x4 <02
Xq S 2

OSZiF; OSZ]__7 _1§X27 X3§57 _2§X4'

gives
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Step 2: Transformation to Standard Form

maximize -3z 4+ 3z; + =z - 1
subject to zt - zy - 6z + x3 — x< 3—-6=-3
722 + Xxq S 547= 12
— 1 - x3y< —-5-7=-12
x3 + x4 < 2
X4 S 2

ngrv ngl_a _OSZ23 X3S5a _2SX4-
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Step 2: Transformation to Standard Form

maximize -3z + 3z + =z
subject to zf - z; — 6z + x3 — x < -3
1z + x3 < 12
— 1z - xpg < =12
x3 + x4 < 2
X4 S 2

ngfv ngl_a _OSZ23 X3S5a _ZSX4-
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Step 2: Transformation to Standard Form

Substituting x3 =5 — z3 into

maximize —3z" + 3z + o
subject to z; - z; — 6z + x3 — x < -3
12> + xy < 12
- 722 — X S —12
x3 + x4 < 2
Xq S 2

ngfa OSZ]__a _OSZ27 X3§57 _2§X4'

gives
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Step 2: Transformation to Standard Form

maximize —3z" + 3z; + =
subject to zt - z; — 6z — zz — x4 < -3-5=-8
722 + Xxa S 12
- 722 — X3 S —12
— 3 + Xxa S 2—-5=-3
X4 S 2

OSZ]tF7 OSZ]._7 _0§227 OSZ37 _2SX4~
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Step 2: Transformation to Standard Form

Substituting x4 = z4 — 2 into

maximize —3z" + 3z + =
subject to zy — z; — 6z — zz — xg < -8
12> + x3 < 12
- 7Z2 — X S —12
-z + x3 < =3
Xq S 2

OSZiF7 OSZ]__7 _O§Z27 O§Z37 _2§X4'

gives
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Step 2: Transformation to Standard Form

maximize -3z + 3z + 2z
subject to zt - z; — 6z — zz — zz< -8-2=-10
722 + oz S 124+2=14
— T2 — < -12-2=-14
— zn 4+ z< -3+2=-1
Z4 S 2+2=4

0<z 0<z, 0<2z,0<z, 0<z.

which is in standard form.
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Step 2: Transformation to Standard Form

After making these substitutions, we get the following LP in standard form:
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Step 2: Transformation to Standard Form

After making these substitutions, we get the following LP in standard form:

maximize -3z + 3z + =
subject to zt - z; — 6z — zz — z < -10
12> + zz < 14
- 722 —  Za S —14
- + z < -1
Zy S 4

+ p—
0< 21,21 ,22,23,24.

40 Author: James Burke, University of Washington

Lecture 4: LP Standard Form “ Math 407A: Linear Optimization



Transformation to Standard Form: Practice

Transform the following LP to an LP in standard form.

minimize x1 — 12x% + 2x3

subject to —5x; — x2 + 3x3 = —1b
2X1 + X2 — 20X3 > —-30
0< x , 1< x3 <4
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