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Sensitivity Analysis

We now study general questions involving the sensitivity of the solution to an LP under
changes to its input data.

As it turns out LP solutions can be extremely sensitive to such changes and this has very
important practical consequences for the use of LP technology in applications.

For this reason it is very important to have tools for assessing the sensitivity of a solution
to an LP. Without an understanding of this sensitivity, the solution to the LP may be
worse than useless. Indeed, it may be dangerous.

We begin our study of sensitivity analysis with a concrete toy example.

Lecture 13: Sensitivity Analysis Linear Programming 3 / 62



Sensitivity Analysis

We now study general questions involving the sensitivity of the solution to an LP under
changes to its input data.

As it turns out LP solutions can be extremely sensitive to such changes and this has very
important practical consequences for the use of LP technology in applications.

For this reason it is very important to have tools for assessing the sensitivity of a solution
to an LP. Without an understanding of this sensitivity, the solution to the LP may be
worse than useless. Indeed, it may be dangerous.

We begin our study of sensitivity analysis with a concrete toy example.

Lecture 13: Sensitivity Analysis Linear Programming 3 / 62



Sensitivity Analysis

We now study general questions involving the sensitivity of the solution to an LP under
changes to its input data.

As it turns out LP solutions can be extremely sensitive to such changes and this has very
important practical consequences for the use of LP technology in applications.

For this reason it is very important to have tools for assessing the sensitivity of a solution
to an LP. Without an understanding of this sensitivity, the solution to the LP may be
worse than useless. Indeed, it may be dangerous.

We begin our study of sensitivity analysis with a concrete toy example.

Lecture 13: Sensitivity Analysis Linear Programming 3 / 62



Sensitivity Analysis

We now study general questions involving the sensitivity of the solution to an LP under
changes to its input data.

As it turns out LP solutions can be extremely sensitive to such changes and this has very
important practical consequences for the use of LP technology in applications.

For this reason it is very important to have tools for assessing the sensitivity of a solution
to an LP. Without an understanding of this sensitivity, the solution to the LP may be
worse than useless. Indeed, it may be dangerous.

We begin our study of sensitivity analysis with a concrete toy example.

Lecture 13: Sensitivity Analysis Linear Programming 3 / 62



SILICON CHIP CORPORATION

A Silicon Valley firm specializes in making four types of silicon chips for personal computers.
Each chip must go through four stages of processing before completion. First the basic silicon
wafers are manufactured, second the wafers are laser etched with a micro circuit, next the circuit
is laminated onto the chip, and finally the chip is tested and packaged for shipping. The
production manager desires to maximize profits during the next month. During the next 30 days
she has enough raw material to produce 4000 silicon wafers. Moreover, she has 600 hours of
etching time, 900 hours of lamination time, and 700 hours of testing time. Taking into account
depreciated capital investment, maintenance costs, and the cost of labor, each raw silicon wafer
is worth $1, each hour of etching time costs $40, each hour of lamination time costs $60, and
each hour of inspection time costs $10.

The production manager has formulated her problem as a profit maximization
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SILICON CHIP CORPORATION

Initial Tableau:

x1 x2 x3 x4 x5 x6 x7 x8 b

raw wafers 100 100 100 100 1 0 0 0 4000
etching 10 10 20 20 0 1 0 0 600
lamination 20 20 30 20 0 0 1 0 900
testing 20 10 30 30 0 0 0 1 700

2000 3000 5000 4000 0 0 0 0 0

x1, x2, x3, x4 represent the number of 100 chip batches of the four types of chips.
The objective row coefficients correspond to dollars profit per 100 chip batch.
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SILICON CHIP CORPORATION

Optimal tableau:

x1 x2 x3 x4 x5 x6 x7 x8 b

0.5 1 0 0 .015 0 0 −.05 25
−5 0 0 0 −.05 1 0 −.5 50

0 0 1 0 −.02 0 .1 0 10
0.5 0 0 1 .015 0 −.1 .05 5

−1500 0 0 0 −5 0 −100 −50 −145, 000

The optimal production schedule is

(x1, x2, x3, x4) = (0, 25, 10, 5),

and the optimal value is $145, 000.
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Break-even Prices and Reduced Costs

x1 x2 x3 x4 x5 x6 x7 x8 b

0.5 1 0 0 .015 0 0 −.05 25
−5 0 0 0 −.05 1 0 −.5 50

0 0 1 0 −.02 0 .1 0 10
0.5 0 0 1 .015 0 −.1 .05 5

−1500 0 0 0 −5 0 −100 −50 −145, 000

In this solution type 1 chip is not efficient to produce.

At what sale price is it efficient to produce type 1 chip?

That is, what is the sale price p below which type 1 chip does not appear in the optimal
production mix, and above which it does appear in the optimal mix?

This is called the breakeven sale price of type 1 chip.
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Break-even Prices and Reduced Costs

First compute the current sale price of type 1 chip.

Currently, each 100 type 1 chip batch has a profit of $2000.
Production costs for each 100 unit batch of type 1 chip is given by

chip cost + etching cost + lamination cost + inspection cost,

chip cost = no. chips× cost per chip = 100× 1 = 100

etching cost = no. hours× cost per hour = 10× 40 = 400

lamination cost = no. hours× cost per hour = 20× 60 = 1200

inspection cost = no. hours× cost per hour = 20× 10 = 200 .

The cost per batch of 100 type 1 chips is $1900.
The current sale price of each batch of 100 type 1 chips is $2000 + $1900 = $3900, or
equivalently, $39 per chip.
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Break-even Prices and Reduced Costs

We do not produce type 1 chip in our optimal production mix, so the breakeven sale price
must be greater than $39 per chip.

Let θ denote the increase in sale price of type 1 chip needed for it to enter the optimal
production mix.
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Break-even Prices and Reduced Costs

With this change to the sale price of type 1 chip the initial tableau for the LP becomes

x1 x2 x3 x4 x5 x6 x7 x8 b

raw wafers 100 100 100 100 1 0 0 0 4000
etching 10 10 20 20 0 1 0 0 600
lamination 20 20 30 20 0 0 1 0 900
testing 20 10 30 30 0 0 0 1 700

2000 + θ 3000 5000 4000 0 0 0 0 0

.

Suppose we repeat on this tableau all of the pivots that led to the previously optimal
tableau.
What will the new tableau look like? That is, how does θ appear in this new tableau?
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Break-even Prices and Reduced Costs

We answer this question by recalling the basic principle of simplex pivoting.

Simplex pivoting is simply left multiplication of an augmented matrix by a sequence of
Gaussian elimination matrices.

The initial tableau is the augmented matrix[
A I b
cT 0 0

]
.

Pivoting to an optimal tableau corresponds to left multiplication by a matrix of the form

G =

[
R 0
−yT 1

]
.

The nonsingular matrix R is called the record matrix.
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Break-even Prices and Reduced Costs

The optimal tableau has the form[
R 0
−yT 1

] [
A I b
cT 0 0

]
=

[
RA R Rb

(c − AT y)T −yT −bT y

]
,

where 0 ≤ y , AT y ≥ c, and the optimal value is bT y .
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Break-even Prices and Reduced Costs

Changing the value of one (or more) of the objective coefficients c corresponds to
replacing c by a vector of the form c + ∆c.

The corresponding new initial tableau is[
A I b

(c + ∆c)T 0 0

]
.
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Break-even Prices and Reduced Costs

Performing the same simplex pivots on this tableau as before simply corresponds to left
multiplication by the matrix G .

[
R 0

−yT 1

] [
A I b

(c + ∆c)T 0 0

]
=

[
RA R Rb

(c + ∆c − AT y)T −yT −bT y

]
=

[
RA R Rb

∆cT + (c − AT y)T −yT −bT y

]
.

That is, we just add ∆c to the objective row in the old optimal tableau.
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Break-even Prices and Reduced Costs

T =

[
RA R Rb

∆cT + (c − AT y)T −yT −bT y

]
Note that T may no longer be a simplex tableau since by adding ∆c to (c − AT y) we
may have introduced a non-zero entry into the objective row associated with a basic
column. These non-zero entries must be pivoted to zero to recover a tableau.
On the other hand, if T is a tableau, then T remains optimal if and only if

∆c + (c − AT y) ≤ 0

or equivalently,
∆c ≤ −(c − AT y) .

These inequalities place restrictions on how large the entries of ∆c can be before one
must pivot to obtain the new optimal tableau.
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Break-even Prices and Reduced Costs

Now apply these observations to the Silicon Chip Corp. problem to determine the
break-even sale price of type 1 chip.

x1 x2 x3 x4 x5 x6 x7 x8 b

raw wafers 100 100 100 100 1 0 0 0 4000
etching 10 10 20 20 0 1 0 0 600
lamination 20 20 30 20 0 0 1 0 900
testing 20 10 30 30 0 0 0 1 700

2000 + θ 3000 5000 4000 0 0 0 0 0

.

c =


2000
3000
5000
4000

 , ∆c =


θ
0
0
0

 = θe1, c + ∆c =


2000 + θ

3000
5000
4000

 = c + θe1
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Break-even Prices and Reduced Costs

[
RA R Rb

(c − AT y)T −yT −bT y

]
=

x1 x2 x3 x4 x5 x6 x7 x8 b

0.5 1 0 0 .015 0 0 −.05 25
−5 0 0 0 −.05 1 0 −.5 50

0 0 1 0 −.02 0 .1 0 10
0.5 0 0 1 .015 0 −.1 .05 5

−1500 0 0 0 −5 0 −100 −50 −145, 000

∆c + (c − AT y) = θe1 + (c − AT y) =


θ
0
0
0

−


1500
0
0
0

 =


θ − 1500

0
0
0


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Break-even Prices and Reduced Costs

∆c + (c − AT y) =


θ − 1500

0
0
0

 ,

x1 x2 x3 x4 x5 x6 x7 x8 b

0.5 1 0 0 .015 0 0 −.05 25
−5 0 0 0 −.05 1 0 −.5 50

0 0 1 0 −.02 0 .1 0 10
0.5 0 0 1 .015 0 −.1 .05 5

θ − 1500 0 0 0 −5 0 −100 −50 −145, 000

Thus, to preserve optimality, we need θ ≤ 1500.
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Break-even Prices and Reduced Costs

That is, as soon as θ increases beyond 1500, type 1 chip enters the optimal production mix, and
for θ = 1500 we obtain multiple optimal solutions where type 1 chip may be in the optimal
production mix if we so choose.

The number 1500 appearing in the optimal objective row is called the reduced cost for type 1
chip.

In general, the negative of the objective row coefficient for decision variables in the optimal
tableau are the reduced costs of these variables.
The reduced cost of a decision variable is the needed increase in its objective row coefficient in
order for it to be included in the optimal solution.
For non-basic variables the break-even sale price can be read off from the reduced costs in the
optimal tableau.

break-even price = current price + reduced cost = $39 + $15 = $54 .
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Break-even Prices and Reduced Costs

Now consider a more intuitive and simpler explanation of break-even sale prices.

One way to determine these prices, is to determine by how much our profit is reduced if
we produce one batch of these chips.

Recall that the objective row coefficients in the optimal tableau correspond to the
following expression for the objective variable z :

z = 145000− 1500x1 − 5x5 − 100x7 − 50x8.

Hence, if we make one batch of type 1 chip, we reduce our optimal value by $1500.
Thus, to recoup this loss we must charge $1500 more for these chips yielding a
break-even sale price of $39 + $15 = $54 per chip.
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Range Analysis for Objective Coefficients

Range analysis is a tool for understanding the effects of both objective coefficient
variations as well as resource availability variations.

We now examine objective coefficient variations.
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Range Analysis for Objective Coefficients

Recall that to compute a breakeven price one needs to determine the change in the
associated objective coefficient that make it efficient to introduce this activity into the
optimal production mix, or equivalently, to determine the smallest change in the objective
coefficient of this currently non-basic decision variable that requires one to bring it into
the basis in order to maintain optimality.

A related question is what is the range of variation of a given objective coefficient that
preserves the current basis as optimal?

The answer to this question is an interval, possibly unbounded, on the real line within
which a given objective coefficient can vary but these variations do not effect the
currently optimal basis.
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SILICON CHIP CORPORATION

Initial Tableau x1 x2 x3 x4 x5 x6 x7 x8 b

raw wafers 100 100 100 100 1 0 0 0 4000
etching 10 10 20 20 0 1 0 0 600
lamination 20 20 30 20 0 0 1 0 900
testing 20 10 30 30 0 0 0 1 700

2000 3000 5000 4000 0 0 0 0 0

Opt. Tableau x1 x2 x3 x4 x5 x6 x7 x8 b

0.5 1 0 0 .015 0 0 −.05 25
−5 0 0 0 −.05 1 0 −.5 50

0 0 1 0 −.02 0 .1 0 10
0.5 0 0 1 .015 0 −.1 .05 5

−1500 0 0 0 −5 0 −100 −50 −145, 000
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Range Analysis for Objective Coefficients

Silicon Chip Corp optimal tableau.

x1 x2 x3 x4 x5 x6 x7 x8 b
0.5 1 0 0 .015 0 0 −.05 25
−5 0 0 0 −.05 1 0 −.5 50
0 0 1 0 −.02 0 .1 0 10

0.5 0 0 1 .015 0 −.1 .05 5
−1500 0 0 0 −5 0 −100 −50 −145, 000

In the Silicon Chip Corp problem the decision variable x3 associated with type 3 chips is
in the optimal basis.

For what range of variations in c3 = 5000 does the current optimal basis {x2, x3, x4, x6}
remain optimal?
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Range Analysis for Objective Coefficients

To answer this question we perturb the objective coef. of type 3 chip and write
c3 = 5000 + θ.

The resulting change to the optimal tableau is

x1 x2 x3 x4 x5 x6 x7 x8 b
0.5 1 0 0 .015 0 0 −.05 25
−5 0 0 0 −.05 1 0 −.5 50
0 0 1 0 −.02 0 .1 0 10

0.5 0 0 1 .015 0 −.1 .05 5
−1500 0 θ 0 −5 0 −100 −50 −145, 000

This is no-longer a simplex tableau. To recover a tableau we must pivot on the x3 column.
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x1 x2 x3 x4 x5 x6 x7 x8 b
0.5 1 0 0 .015 0 0 −.05 25
−5 0 0 0 −.05 1 0 −.5 50
0 0 1 0 −.02 0 .1 0 10

0.5 0 0 1 .015 0 −.1 .05 5
−1500 0 θ 0 −5 0 −100 −50 −145, 000

To recover a proper simplex tableau we must eliminate θ from the objective row entry
under x3.

Multiply the 3rd row by −θ and add it to the objective row to eliminate θ.
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x1 x2 x3 x4 x5 x6 x7 x8 b
0.5 1 0 0 .015 0 0 −.05 25
−5 0 0 0 −.05 1 0 −.5 50
0 0 1 0 −.02 0 .1 0 10

0.5 0 0 1 .015 0 −.1 .05 5
−1500 0 0 0 −5 + 0.02θ 0 −100 − 0.1 θ −50 −145, 000 − 10θ

.

To remain optimal the objective row must remain non-positive.

−5 + 0.02θ ≤ 0, or equivalently, θ ≤ 250
−100− 0.1θ ≤ 0, or equivalently, −1000 ≤ θ .

which implies
4000 ≤ c3 ≤ 5250.

since originally c3 = 5000.
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What is the range of the objective coefficient for type 4 chips that preserves the current
basis as optimal?

x1 x2 x3 x4 x5 x6 x7 x8 b
0.5 1 0 0 .015 0 0 −.05 25
−5 0 0 0 −.05 1 0 −.5 50
0 0 1 0 −.02 0 .1 0 10

0.5 0 0 1 .015 0 −.1 .05 5
−1500 0 0 0 −5 0 −100 −50 −145, 000
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x1 x2 x3 x4 x5 x6 x7 x8 b
0.5 1 0 0 .015 0 0 −.05 25
−5 0 0 0 −.05 1 0 −.5 50
0 0 1 0 −.02 0 .1 0 10

0.5 0 0 1 .015 0 −.1 .05 5
−1500 0 0 θ −5 0 −100 −50 −145, 000

0.5 1 0 0 .015 0 0 −.05 25
− 5 0 0 0 −.05 1 0 −.5 50
0 0 1 0 −.02 0 .1 0 10

0.5 0 0 1 .015 0 −.1 .05 5
− 1500 − 0.5θ 0 0 0 −5 − 0.015θ 0 −100 + 0.1θ −50 − 0.05θ −145, 000 − 5θ

To preserve dual feasibility we must have

−1500 − 0.5θ ≤ 0, or equivalently, −3000 ≤ θ
−5 − 0.015θ ≤ 0, or equivalently, −333.3̄ ≤ θ
−100 + 0.1θ ≤ 0, or equivalently, θ ≤ 1000
−50 − 0.05θ ≤ 0, or equivalently, −1000 ≤ θ

.

Thus,

−333.3̄ ≤ θ ≤ 1000,
and the range for c4 is

3666.6̄ ≤ c4 ≤ 5000
since originally c4 = 4000.
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What is the range for the objective coefficient for x2?

x1 x2 x3 x4 x5 x6 x7 x8 b
0.5 1 0 0 .015 0 0 −.05 25
−5 0 0 0 −.05 1 0 −.5 50
0 0 1 0 −.02 0 .1 0 10

0.5 0 0 1 .015 0 −.1 .05 5
−1500 0 0 0 −5 0 −100 −50 −145, 000

−333.3̄ ≤ θ ≤ 1000

and
1666.6̄ ≤ c2 ≤ 3000
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What is the range for the objective coefficient for x2?

x1 x2 x3 x4 x5 x6 x7 x8 b
0.5 1 0 0 .015 0 0 −.05 25
−5 0 0 0 −.05 1 0 −.5 50
0 0 1 0 −.02 0 .1 0 10

0.5 0 0 1 .015 0 −.1 .05 5
−1500 0 0 0 −5 0 −100 −50 −145, 000

−333.3̄ ≤ θ ≤ 1000

and
1666.6̄ ≤ c2 ≤ 3000
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Resource Variations, Marginal Values, and Range Analysis

We now consider questions concerning the effect of resource variations on the optimal
solution.

We begin with standard questions for the Silicon Chip Corp.

Suppose we wish to purchase more silicon wafers this month. Before doing so, we need
to answer three obvious questions.

How many should we purchase?

What is the most that we should pay for them?

After the purchase, what is the new optimal production schedule?
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The technique we develop for answering these questions is similar to the technique used
to determine objective coefficient ranges.

We begin by introducing a variable θ for the number of silicon wafers that will be
purchased, and then determine how this variable appears in the tableau after using the
same simplex pivots encoded in the matrix G given above.

x1 x2 x3 x4 x5 x6 x7 x8 b

raw wafers 100 100 100 100 1 0 0 0 4000 + θ
etching 10 10 20 20 0 1 0 0 600
lamination 20 20 30 20 0 0 1 0 900
testing 20 10 30 30 0 0 0 1 700

2000 3000 5000 4000 0 0 0 0 0

.
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General RHS Perturbations

To effect the same simplex pivots we multiply the perturbed initial tableau by the
elimination matrx G .

[
R 0
−yT 1

] [
A I b + ∆b
cT 0 0

]

=

[
RA R Rb + R∆b

(c − AT y)T −yT −yTb − yT∆b

]
.

The new tableau is dual feasible.
This tableau is optimal if it is primal feasible.
That is, the new tableau is optimal as long as

0 ≤ Rb + R∆b ⇔ −Rb ≤ R∆b .
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General RHS Perturbations

 RA R Rb

(c − AT y)T −yT −yTb

 =

x1 x2 x3 x4 x5 x6 x7 x8 b
0.5 1 0 0 .015 0 0 −.05 25
−5 0 0 0 −.05 1 0 −.5 50
0 0 1 0 −.02 0 .1 0 10

0.5 0 0 1 .015 0 −.1 .05 5
−1500 0 0 0 −5 0 −100 −50 −145, 000

R =


.015 0 0 −.05
−.05 1 0 −.5
−.02 0 .1 0
.015 0 −.1 .05

 y =


5
0

100
50

 Rb =


25
50
10
5


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General RHS Perturbations

How do variations the raw wafer resource effect the optimal tableau?

x1 x2 x3 x4 x5 x6 x7 x8 b

raw wafers 100 100 100 100 1 0 0 0 4000 + θ
etching 10 10 20 20 0 1 0 0 600
lamination 20 20 30 20 0 0 1 0 900
testing 20 10 30 30 0 0 0 1 700

2000 3000 5000 4000 0 0 0 0 0

.

b + ∆b = b + θe1 =


4000
600
900
700

 + θ


1
0
0
0


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General RHS Perturbations

 RA R Rb + R∆b

(c − AT y)T −yT −yTb − yT∆b

 =

x1 x2 x3 x4 x5 x6 x7 x8 b
0.5 1 0 0 .015 0 0 −.05 25
−5 0 0 0 −.05 1 0 −.5 50
0 0 1 0 −.02 0 .1 0 10 +R∆b

0.5 0 0 1 .015 0 −.1 .05 5

−1500 0 0 0 −5 0 −100 −50 −145, 000 −yT∆b

0 ≤ Rb + R∆b = Rb + θRe1 =


25
50
10
5

+ θ


0.015
−0.05
−0.02
0.015

 =


25 + θ 0.015
50− θ 0.05
10− θ 0.02
5 + θ 0.015


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General RHS Perturbations

To preserve primal feasibility we need −Rb ≤ θR∆b, i.e.

−


25
50
10
5

 ≤ θ


0.015
−0.05
−0.02
0.015

 ,

or equivalently,
−25 ≤ .015θ implies θ ≥ −5000/3
−50 ≤ −.05θ implies θ ≤ 1000
−10 ≤ −.02θ implies θ ≤ 500
−5 ≤ .015θ implies θ ≥ −1000/3

This reduces to the simple inequality

−1000

3
≤ θ ≤ 500.

The interval 3666.6̄ ≤ b1 ≤ 4500 is called the range of the raw chip resource in the
optimal solution.
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General RHS Perturbations

If − 1000
3
≤ θ ≤ 500, then the optimal solution is given by

x2

x6

x3

x4

 = Rb + R∆b =


25 + .015θ
50− .05θ
10− .02θ
5 + .015θ


with optimal value

yTb + yT∆b = 145000 + 5θ.
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General RHS Perturbations

Now examine the profit expression

yTb + yT∆b = 145000 + 5θ.

Note that the profit increases by $5 for every new silicon wafer that we get (up to 500
wafers).
That is, if we pay less than $5 over current costs for new wafers, then our profit
increases.
The dual value 5 is called the shadow price, or marginal value, for the raw silicon wafer
resource.
The marginal value is the per unit increased value of this resource due to the production
process.
Since we currently pay $1 per wafer. If another vendor sells them at $2.50 per wafer,
then we should buy them since our unit increase in profit with this purchase price is
$5− $1.5 = $3.5 since $2.5 is $1.5 greater than the $1 we now pay.
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Thus we should purchase 500 raw wafers at a purchase price of no more than
$5 + $1 = $6 dollars per wafer.

The new optimal production schedule is
x1

x2

x3

x4

 =


0

25 + .015θ
10− .02θ
5 + .015θ


θ=500

=


0

32.5
0

12.5

 .

Should we purchase more than 500 chips?

Lecture 13: Sensitivity Analysis Linear Programming 40 / 62



Thus we should purchase 500 raw wafers at a purchase price of no more than
$5 + $1 = $6 dollars per wafer.
The new optimal production schedule is

x1

x2

x3

x4

 =


0

25 + .015θ
10− .02θ
5 + .015θ


θ=500

=


0

32.5
0

12.5

 .

Should we purchase more than 500 chips?

Lecture 13: Sensitivity Analysis Linear Programming 40 / 62



Thus we should purchase 500 raw wafers at a purchase price of no more than
$5 + $1 = $6 dollars per wafer.
The new optimal production schedule is

x1

x2

x3

x4

 =


0

25 + .015θ
10− .02θ
5 + .015θ


θ=500

=


0

32.5
0

12.5

 .

Should we purchase more than 500 chips?

Lecture 13: Sensitivity Analysis Linear Programming 40 / 62



x1 x2 x3 x4 x5 x6 x7 x8 b
0.5 1 0 0 .015 0 0 −.05 25 + .015θ
−5 0 0 0 −.05 1 0 −.5 50− .05θ

0 0 1 0 −.02 0 .1 0 10− .02θ

←

0.5 0 0 1 .015 0 −.1 .05 5 + .015θ
−1500 0 0 0 −5 0 −100 −50 −145, 000− 5θ

0.5 1 .75 0 0 0 .075 −.05 32.5
−5 0 −2.5 0 0 1 −.25 −.5 25

0 0 −50 0 1 0 −5 0 −500 + θ
0.5 0 .75 1 0 0 −.025 .05 12.5

−1500 0 −250 0 0 0 −125 −50 −147500

Do not purchase more than 500 since the wafer resource becomes slack.
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RHS Range Analysis: Etching Time

Let us now do a range analysis on the etching time resource b2.

x1 x2 x3 x4 x5 x6 x7 x8 b

raw wafers 100 100 100 100 1 0 0 0 4000
etching 10 10 20 20 0 1 0 0 600

+ θ

lamination 20 20 30 20 0 0 1 0 900
testing 20 10 30 30 0 0 0 1 700

2000 3000 5000 4000 0 0 0 0 0

.

b + ∆b = b + θe2 =


4000
600
900
700

 + θ


0
1
0
0


The new rhs in the opt. tableau is Rb + θRe2 since ∆b = θe2.
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RHS Range Analysis: Etching Time

0 ≤

Rb + R∆b =


25

50 + θ
10
5



To preserve primal feasibility we only require

0 ≤ 50 + θ,

or equivalently,
−50 ≤ θ.

Therefore, the range for b2 is
[550, +∞) .
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RHS Range Analysis: Etching Time

What is the shadow price for etching, and what does it mean?

x1 x2 x3 x4 x5 x6 x7 x8 b
0.5 1 0 0 .015 0 0 −.05 25
−5 0 0 0 −.05 1 0 −.5 50

0 0 1 0 −.02 0 .1 0 10
0.5 0 0 1 .015 0 −.1 .05 5

−1500 0 0 0 −5 0 −100 −50 −145, 000

The shadow price, or marginal value, is 0 since we have surplus etching time in the
optimal solution.
Additional hours of etching time do not change current profit levels.
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RHS Range Analysis: Lamination Time

What is the range for lamination time, and what is its marginal value?

x1 x2 x3 x4 x5 x6 x7 x8 b
0.5 1 0 0 .015 0 0 −.05 25
−5 0 0 0 −.05 1 0 −.5 50

0 0 1 0 −.02 0 .1 0 10
0.5 0 0 1 .015 0 −.1 .05 5

−1500 0 0 0 −5 0 −100 −50 −145, 000
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x1 x2 x3 x4 x5 x6 x7 x8 b
0.5 1 0 0 .015 0 0 −.05 25
−5 0 0 0 −.05 1 0 −.5 50

0 0 1 0 −.02 0 .1 0 10
0.5 0 0 1 .015 0 −.1 .05 5

−1500 0 0 0 −5 0 −100 −50 −145, 000

0 ≤ Rb + R∆b =


25
50

10 + 0.1θ
5− 0.1θ



0 ≤ 10 + 0.1θ, or equivalently, −100 ≤ θ
0 ≤ 5− 0.1θ, or equivalently, θ ≤ 50

.

Therefore,
800 ≤ b3 ≤ 950 .
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RHS Range Analysis: Lamination Time

x1 x2 x3 x4 x5 x6 x7 x8 b
0.5 1 0 0 .015 0 0 −.05 25
−5 0 0 0 −.05 1 0 −.5 50

0 0 1 0 −.02 0 .1 0 10
0.5 0 0 1 .015 0 −.1 .05 5

−1500 0 0 0 −5 0 −100 −50 −145, 000

The shadow price, or marginal value, for lamination time is $100.

Each additional hour of lamination time improves profitability by $100.

If we are able to obtain 50 additional hours of lamination time this month, how much
would we be willing to pay for it beyond what we currently pay?

$5,000
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Pricing Out New Products

We now consider the problem of adding a new product to our product line.

Consider a new chip that requires ten hours each of etching, lamination, and testing time
per 100 chip batch.

Suppose it can be sold for $ 33.10 per chip.

(a) Is it efficient to produce?

(b) If it is efficient to produce, what is the new optimal production schedule?
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Pricing Out New Products

We analyze this problem in the same way that we analyzed the two previous problems.

First, determine how this new chip changes the initial tableau.

Second, determine how the change to the initial tableau propagates through to the
optimal tableau.

This propagation is determined by multiplying the new initial tableau through by the
pivot matrix G .
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Pricing Out New Products

The initial tableau is altered by the addition of a new column:[
anew A I b
cnew cT 0 0

]
.

Multiplying on the left by the matrix G gives[
R 0

−yT 1

] [
anew A I b
cnew cT 0 0

]
=[

Ranew RA R Rb
cnew − aTnewy (c − AT y)T −yT −yTb

]
.

The expression (cnew − aTnewy) determines whether this new tableau is optimal or not.
If 0 < (cnew − aTnewy), then the new tableau is not optimal. In this case the new product
is efficient to produce.
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Pricing Out New Products

The act of forming the expression (cnew − aTnewy) is called pricing out the new product.

If (cnew − aTnewy) < 0, then the new product does not price out, and we do not produce
it since in this case the new tableau is optimal with the new product non-basic.

If(cnew − aTnewy) > 0, then we say that the new product does price out and it should be
introduced into the optimal production mix.

The value aTnewy represents the increase in value of the resources consumed by one unit of
this activity due to the current production schedule. If this value exceeds the profitability
of this activity, then it is not efficient to introduce this activity into the production mix.

The new optimal production mix is found by applying the standard primal simplex
algorithm to the tableau since this tableau is primal feasible but not dual feasible.
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Pricing Out New Products

Returning to the Silicon Chip Corp. problem, the new chip under consideration has

anew =


100
10
10
10

 .

We need to compute cnew.

The stated sale price or revenue for each 100 chip batch of the new chip is $3310, so

cnew = 3310−


1

40
60
10


T 

100
10
10
10

 = 3310− 1200 = 2110.

We need to subtract from this number the cost of producing each 100 chip batch.
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Pricing Out New Products

We have that each raw silicon wafer is worth $1, each hour of etching time costs $40,
each hour of lamination time costs $60, and each hour of inspection time costs $10.

Therefore, the cost of producing each 100 chip batch of these new chips is

100× 1 (cost of the raw wafers)
+ 10× 40 (cost of etching time)
+ 10× 60 (cost of lamination time)
+ 10× 10 (cost of testing time)

—–
1200 (total cost)

.

Hence the profit on each 100 chip batch of these new chips is $3310− $1200 = $2110, or
$21.10 per chip, and so

cnew = 2110.
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Pricing Out New Products

Pricing out the new chip gives

cnew − aTnewy = 2110−


100
10
10
10


T 

5
0

100
50

 = 2110− 2000 = 110 .

The new chip prices out positive, and so it will be efficient to produce.

The new column in the tableau associated with this chip is

(
Ranew

cnew − aTnewy

)
=


1
0
−1
1

110

 .
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Pricing Out New Products

xnew x1 x2 x3 x4 x5 x6 x7 x8 b
1 0.5 1 0 0 .015 0 0 −.05 25
0 −5 0 0 0 −.05 1 0 −.5 50

−1 0 0 1 0 −.02 0 .1 0 10
1 0.5 0 0 1 .015 0 −.1 .05 5

110 −1500 0 0 0 −5 0 −100 −50 −145, 000

0 0 1 0 −1 0 0 .1 −.1 20
0 −5 0 0 0 −.05 1 0 −.5 50
0 .5 0 1 1 −.005 0 0 .05 15
1 0.5 0 0 1 .015 0 −.1 .05 5
0 −1555 0 0 −110 −6.65 0 −88.9 −55.5 −145550

The new optimal solution is (xnew, x1, x2, x3, x4) = (5, 0, 20, 15, 0) .

The new shadow prices are (y1, y2, y3, y4) = (6.65, 0, 89.9, 55.5) .
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Pricing Out New Products

Consider a different new chip.

This chip requires 15 hours each of etching and testing, and 30 hours of lamination time
per 100 chip batch.

What is the breakeven sale price of this new chip?

x1 x2 x3 x4 x5 x6 x7 x8 b
0.5 1 0 0 .015 0 0 −.05 25
−5 0 0 0 −.05 1 0 −.5 50

0 0 1 0 −.02 0 .1 0 10
0.5 0 0 1 .015 0 −.1 .05 5

−1500 0 0 0 −5 0 −100 −50 −145, 000
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Pricing Out New Products

Costs of production are

costs =


1

40
60
10


T 

100
15
30
15

 = $2650

Marginal costs are

marginal costs = yTanew =


5
0

100
50


T 

100
15
30
15

 = $4250

Breakeven sale price = $2650 + $4250 = $6900. Or equivalently, $69 per chip.
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Pricing Out New Products

It is decided that we can sell the new chip for $70 each.

We now wish to simultaneously determine if either or both of the new chips are efficient
to produce.

How do we determine this and how do we determine the new optimal production mix?

[
R 0

−yT 1

] [
anew1 anew2 A I b
cnew1 cnew2 cT 0 0

]
=

[
Ranew1 Ranew2 RA R Rb

cnew1 − aTnew1y cnew2 − aTnew2y (c − AT y)T −yT −yTb

]

Then pivot to optimality.
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The Fundamental Theorem on Sensitivity Analysis

Let A ∈ Rm×n, b ∈ Rm, and c ∈ Rn.

P maximize cT x
subject to Ax ≤ b, 0 ≤ x .

We associate to P the optimal value function V : Rm → R ∪ {±∞} defined by

V (u) = maximize cT x
subject to Ax ≤ b + u, 0 ≤ x

for all u ∈ Rm.

Let
F(u) = {x ∈ Rn |Ax ≤ b + u, 0 ≤ x }

denote the feasible region for the LP associated with value V (u).

If F(u) = ∅ for some u ∈ Rm, we define V (u) = −∞.
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The Fundamental Theorem on Sensitivity Analysis

Theorem: If P is primal nondegenerate, i.e. the optimal value is finite and no basic
variable in any optimal tableau takes the value zero, then the dual solution y∗ is unique
and there is an ε > 0 such that

V (u) = bT y∗ + uT y∗ whenever |ui | ≤ ε, i = 1, . . . ,m .

Thus, in particular, the optimal value function V is differentiable at u = 0 with
∇V (0) = y∗.
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The Fundamental Theorem on Sensitivity Analysis: Proof

[
R 0
−yT 1

] [
A I b
cT 0 0

]
=

[
RA R Rb

(c − AT y∗)T −(y∗)T −bT y∗

]

[
R 0
−yT 1

][
A I b + u
cT 0 0

]
=

[
RA R Rb + Ru

(c − AT y∗)T −(y∗)T −bT y∗ − uT y∗

]
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The Fundamental Theorem on Sensitivity Analysis: Proof

[
RA R Rb + Ru

(c − AT y∗)T −(y∗)T −bT y∗ − uT y∗

]

Non-degeneracy implies that Rb > 0 so there is an ε > 0 such that

Rb > ε1 .

By continuity, there is a δ > 0 such that

|(Ru)i | ≤ ε whenever |ui | ≤ δ ∀ i = 1, 2, . . . , n.

Hence Rb + Ru > 0 whenever |ui | ≤ δ ∀ i = 1, 2, . . . , n.
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