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THE DIFFERENTIABILITY OF THE RIEMANN FUNCTION AT
CERTAIN RATIONAL MULTIPLES OF =.

By JosePH GERVER.

1. Introduction. Riemann is reported to have stated [1], [4], but
never proved, that the continuous function

2 sin (k*z)

f(x) =k§1 12

is differentiable nowhere. Kahane [3] renewed the interest in this classical
problem in connection with lacunary series, and refers to Weierstrass [4],
who had attempted to prove Riemann’s statement, did not succeed, and was
led to his series representing a continuous function nowhere differentiable.
To quote from Weierstrass: “ Erst Riemann hat, wie ich von einigen seiner
Zuhorer erfahren habe, mit Bestimmtheit ausgesprochen (i.J. 1861, oder
vielleicht schon fruher), dass jene Annahme unzaléssig sei, und z. B. bie der
durch die unendliche Reihe

® sin(n2x
$ sin(ro)
n-1 n

dargestellten Function sich nicht bewahrheite. Leider ist der Beweis hierfur
von Riemann nicht veroffenlicht worden, und scheint sich auch nicht in seinen
Papieren oder miindlich Uberlieferung erhalten zu haben. Dieses ist um so
mehr zu bedauern, als ich nicht einmal mit Sicherheit habe erfahren konnen,
wie Riemann seinen Zuhdrern gegenuber sich augedriickt hat.”

Riemann’s assertion was partially confirmed by Hardy [2], who proved
that the function has no finite derivative at any point &r, where £ is:

1) irrational;
%) rational of the form 24/(4B + 1) where 4, B are integers:
3) rational of the form (R4 41)/2(2B +1).

In this paper we will prove that Riemann’s assertion is false, by proving
the following theorem.
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34 JOSEPH GERVER.

TEEOREM 1. The derwative of

§ sin k2x
k=1 k2

exists and is equal to —1/2 at any point &x, where & is a rational number of
the form (24 +1)/(2B 4+ 1), i.e. a rational number whose numerator and
denominator are odd.

We will also extend Hardy’s results by proving the following theorem.

THEOREM 2. The dertvative of the Riemann function does not exvist at
any point &r, where & is a rational number of the form (24 4-1) /2N, where
N is an integer = 1.

In order to prove these theorems, we need two lemmas.
Lemma 1. Let u, v and A be any integers such that
0< <y é A,

and let v be any real number such that either —x/2 =+=—x/A, or
0=r==/2. Then

g: (sin[(/\k +p)?o+7]  sin[(Ak +V)2$U+T]>
=0 (Mo ) ® (M +-v)*

y—

X 'U‘)COST at 0.

has a right deriwvative of (

Leuma 2. Let u and A be any integers such that 0 < u=A, and let =
be any real number such that 0 =+ < 2xr. Let
S sinf (M + p)*z + 7]

e N (VNWAE

Then at x =0, we have:

0=7<7/2=> left derwative of f is + o0,

/2 < v =w=> right dertvative of f is —o0,
=7 < 37/ left derwative of f is —oo,
/2 <7 < 8w => right derwative of f is +-c0.

In general, the differentiation of the Riemann function at a point P/Q
where P, @ are integers, involves differentiating each subseries formed by
taking the summation over those values of % in the same congruence class
modulo Q. It is not difficult to prove that for any @, these subseries are
all of the form of the functions in Lemmas 1 or 2, if the coordinate system
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is shifted along the a-axis so that Pz/Q becomes 0. If no more than one
of these subseries is of the type in Lemma 2, then it is obviously possible
to find the derivative of the entire series by adding the derivatives of all the
subseries. If there is more than one subseries of the type in Lemma 2, this
is not generally possible, either because one ends up with both unknown right
and left derivatives, or because one must add derivatives of 40 and —oo.
In particular, this is true of rational multiples of x, of the form 24/ (4B 4 3)
and (24 4+1)/2V(2B 4 1) where N =2. Solutions for these points will
have to await a better approximation of the values of the Lemma 2 type
series near 0 than are provided by Lemma 2.

Note that Lemmas 1 and 2 simply state in somewhat more generalized
form, that the Riemann function has a derivative of —1/2 at = and + oo
at 0. Therefore, before proving Lemmas 1 and 2, we will briefly outline the
proofs of these simpler results, which in fact, formed the basis for the rest
of the paper historically.

Let f be the Riemann function, that is

& sin k*z

To prove the differentiability at «, fix n. We then show that

|fo) =227 < )

with a suitable constant ¢, for « sufficiently close to =. Indeed, take

lo—r| <57

onts’

and partition the series atthose integers k closest to

1 . kK ™
Z\/z(w_,r) md =
Then cne shows that the first part approaches 0, the second part approaches
(x—m)/2, and the tail end approaches 0.
On the other hand, to show that the derivative of f at 0 is +-o0, we fix
n, and then show that f(z) >nz for sufficiently small z. For this, let
|a:| <w/2cn?, where ¢ is a suitable constant. Partition the series after

n—+1 at
k(o T
‘\/2—w and *\/5.
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We then show that the first part is > na, the third is > 0, and the second
part is greater than the absolute value of the tail end.

2. Preliminary remarks on Lemma 1. It will be convenient, in proving
Lemma 1, to adjust each term of the series so that it passes through the
origin. This can be done by altering the series to read

§ (sin[()\k—k,u.)zx—kr] —sinr  sin[ (Ak +v)%2 4 7] —sin 1')

=0 (A 4 p)* (M +v)?
Since (TZ% (/\Zl_nl_r E are constants, this modification does not

affect the existence and value of the derivative.

Since for most of this proof we will be examining expressions of the

. . o
form sin[ (Ak _I_(;&Z _T_:_):] ST as functions of %, keeping # constant, we

i o
sin (?z 4+ 7) —sin ¢ as

will, for convenience, write expressions of the form o
7

NOY

We will prove the following form of Lemma 1:

For n > A, 0<x<)\—22-7%, we have:

IZ S (W + 1) — 8 (M 4-1) ] —a (=) cos ¢ | < 469z

First we divide the series into two parts, the sum over all k< b and

the sum over all & = b, where b is the least integer greater than 1—@%
Now we will prove that for all « such that 0 <z < X?n%’ we have

S8 O — S )] — 5 E o | < 12572

n
and

[%[swcju,&) — S (k4 )]| <3§—’”-, for n> A,

3. Values of k less than b. Basically, we will show that for all & less
than b, S (\k -+ p) —S()\k -+ v) is very close to

OISOk ) =S+ 1) +p)].
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b-1

This means that 3 [S(Ak 4 p) —S (A +4v)] is very close to
k=0

18k + ) —

which is" equal to (V_A’U' Y[S () —S(Ab +w)], since all the middle terms

cancel out. Since z < )\_227%:« ;13, S(p) is approximately cosr, and, since

1 1 nZA2x? Rz
VST <W < —ﬂ_—z—<—u<<$; S(Ab 4 p) KL=,

0 2 [S(Ak +p) —S(Ak+v)] is very close to :c( ’u') oS 7.

First consider %k < ¢, where ¢ is the least integer greater than)\l—n\/%v— .
as (1)

For all positive integers 4, g =cos(r+122). Consider two positive

integers ¢ and j such that ¢ <j=xc. Now ¢ <)\1—n«\/-%—|— 1 <%«\/%, since
z < %; Therefore (Ac)? < < ’, and %z < 2 < ; Therefore

== %% cos (v + %) < cos (7 + j%2)
and

0=r= —>cos(r+@x)>cos(-r+]2a:),

dS(%) __48(j)
dz

at z—0, T—”gfg :135(@‘) < 8(j) and 0__<__T§’§’:>S(i) > 8(j) for

2
for all # such that 0 <2 < ——. Since §(¢) =8(j) and

A'2 14°

all @ such that 0 < z < — Therefore, either ¢ < j=> S(¢) < 8(j) for all

Az 14°
=X or 1< j> S(@) > 8(j) for all 4,j=xc. Therefore

IE[S()\k-I-M)—S()\k-I—V)H <|8(w) —8(e+p)|
< |@meosT— 8 (e +p)| < |e[cosT—cos(r+ (Ac+ p)*2)] |

< (Actp)ar < 2—”‘—”— All k < ¢ can therefore be disregarded

in calculating the value of i [S(\E 4 p) —S(AE+v)].
k=0
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Now we will consider values of % from ¢ to b—1, but first we need the

following lemma:

Lemwma 3. For all integers © > 4,

| S(1) —R8(i+1) +8(1+2)] <11iw3-|—16w2—|—67f+%§.
Proof
sin[(¢4-1)°% 4+ 7] —sinr sin[(141)% f 7] —sin~
12 (i41)2

_ (Ri4+Dsin[(G+1)*s 4]  (Re4-1)sin~
o 2(i-F1)2 *(e1)2 "

S(i) —8(i+1) =sin(i2x—[—iz‘r)—sin r_sin'[(if|—41)2;+‘1-]—sinr
_ Ri4+)sin[(i4-1)%x+7] | (Ri+1)sinr

2GF1)? T EGE e
_sin(z47) sin[(i4 1) 7]  (Ri4-D)sin[(i41)% 4]
o 12 12 2(041)2
(21+ 1)sin~
For all x, say ¢=u,, sin(iz'x—l—-r)_sin[(i—|—1)2x+r] =—sr; where
Y 12 ‘ 1

. . . i
s§= Lz—_%lﬂ—xl= W, and 7, is the derivative of En(t:j—_'_f)

for some z between z, and z:+s. Let f(:v)=sm(1'2i++r) and g (z)

=_Sin[(i;:_1i§f+f]. For any @, r can be approximated as f/(z): f”(z)
= —i?sin(i% +7), max|f’(z)| =1, |r—f(2)|=s=2(+1),
Isin(i2x+f)__sin[(i—l—l)%—l—{l f(z)(Ri+1)z
. ,':2 + ,iz |

,’:2

<(2“+)2“’ < Ba® (for i> 4).
We have Inequality 1:
N g Qi Dsin[(i 1)+ 1]
[8(1) —8(i+41) 2(iF1)2
(2i-—}—1)sinr_|___'/”(x)(2i1;+1)-wh[‘<5z2

LR D)

_|_
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Similarly, Inequality 2:
(R148)sin[ (¢4 2) %z + ]
G+1)G+2)°
(214 8)sin~ g (z) (R4 3)z .
G SV E G ER iy ()

|8 (i4-1) — 8 (i+2) —

’2
Let h(z) — %L;_t’l.
Then

l cos(Pz 1) cos[(i+1)% 7] 4 W(z)(Ri+ 1)z l
,i2 /I:Z ,l:2

< ba?

and

| cos (1% + ) —cos[ (14 1) 2 + ]| < | P/ (2)| (R + 1)z + bi%a?
< (204 1)z 4 5ita?,
| (z) —g’(x)| < (R4 1)z 4 5ica2.
g @) Ri+3)e g @) Ri+De 2@z (Rit+1)% (2)
(i+1)° G (t+1)* #(i41)2
> —2g:2(:v):c
lg'(x) (Ri+3)z_ ¢g'(z) Ri+ 1)z | <22
(i+1)° @ =
L@@+ f() @it 1)
72 72

| < (%1;1)2’“"2 + 5(2% 1) a8,

Inequality 3:

, 9 , .
lg (9-7()%(—:;')‘23)93_]6(‘”) (2:2“'“1)93 I<—2,b_2'w+ B5a? 4 5(20 4 1)a®
(Ri+1)sinr  (Ri+3)sine _ [(R41) (142)*— (Ri4-3)i*]sinr
Pa+1)?  GFD(iT2) B+ D% +2)°
__[6¢*+ 1R+ 4]sinr
FE DNt 2)?
l(6i2+12i+4)sinr|<| (642 4 127 + 4)sin 7 10.
2D (i12)° B <5
Inequality 4:

| (Ri+1)sinr (Ri+3)sin~ 10
(R L R ) G Ll
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I(2i+3)sin[(i+2)2a:—|-r] (R4 1)sin[ (i +2) % 7] |

(i+1)2(i+4-2)* #(i+1)°
| =it ) @i B)ein(i42)% o] | 2+ %]
= FEFD G+ ) P
< 6s1n[(1,—|;42)2w—|—-r] | < @_E

| 2+ 1D)sin[ i+ 1)+ 7]  (Ri4-1)sin[(i42)* + 7] I
FICERE PG1)2

(@) (+3) R+ | (Ri43)*(Rf1)2* 4o 1027

< 2+ 1) LR TC I TN TR A

Inequality 5:
(it B)sinl (i) +e] @it Dsin[(i4 1w+,
G+ DG+ Pi+1)?
10062

S+ 2
Adding inequalities 1 and 2, and substituting inequalities 3, 4, and 5, we get:

| 8() —28(i+1) + 8(i+2)| <100 424 5o 4 5 (2i + 1)a?

+-1i70+f—4 +—1—0—w—<111,x3—|—16a:2—|— 4 16 @4,

which is Lemma 3.

COROLLARY 3a. For all k> 2,

|18 (Ve + ) — RS (A ) — S (B 4-1) + )] |

6x

< 4N (11Nke® + 160° + 5 + 557)-

Proof. By induction, for all j <2,
| S (MB) — 8 (A +1) — S (b + §) + S+ +1) |
6 16
< oA (11Nka® + 162% + A:;cz + 25"
Therefore, taking the average of a sequence of terms of the form

BN+ ) —S (Wb +j+1) 5 <2,
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| S () —8 (W 1) — < [S (W + 1) — S (A (b +1) + )] |

62
< 2)\(11)\70%8 + 1622 —|— W —|— W).

And for all 7 < 2),
| SO+ ) — S+ 1) — T[S ) — S (A (b +1) + )] |

6z
< 4M(11Nka® 4 1622 - 5 -+ A_470—4)’

from which Corollary 3a follows immediately.

Now let @ be the least integer > %»\/2—7; We will consider the values

of k from ¢ to ¢ —1 and from @ to b —1 separately.

Frst from ¢ to a—1:

eShSe—1 [ <k= A=

T 2
)\\/2 > 11ke® < 112° o llvrx \/2x

1 ™ 2 12n*a?
> An\/zm Azkz < 6n (—) T x

1 = nt 64n*z?
>XE\/2x x%4<16 = )=

Therefore c=k=0—1=>

| [8 (k4 ) — 8 (A& + SOV ) —S (k1) + )] |

11x2® |2z 120222 s
< 4nx( "’2"” \/Tf‘"‘ 1622 - ’:r”” + 64:2”” ) < 80n4rZe?,

and

|5 SO+ ) — B[SOk + 1) — Sk +1) +0)]) |

< (a—1)30n*A2? < 30n*\a? \/l = 15zn4Ax \/l
2 2z

<151rn*m( ") — 30w
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Next, the values of ¥ from o to b—1:

117a?

< s < =T
E= > 11Aakz o

_/\2

1 6z 12w2
SN B

1 T 16 64x2
7”>X\/§5‘ >N <

Therefore, e =k =0 —1=>

| IS (O ) — S (Wb + SOk +1) 4] |
<4A2(1;’;x +162t 4 22y 6"“”2) < 1202222

and

|3 (S 4) — SO )] — “=E SOk + ) — S QB+ 1) + )T} |

< (b—1)120p%2 = 20T

Combining both sums,

|3 (08 O ) — 8O 1) T — LIS (1) — Bk +1) + )]} |
30rz | 10z < 1%4ra

< nd +- 7 7
Therefore,
|3 1508 + ) — R[S0 + ) — S0 4 ] | < 2272,
And finally, since S(A¢ -+ p) —zcos is on the order of 7%, and S(AD 4 p)
< <o

1257z
n

IZ[S(Ak+M)-—S(A7ﬂ+v)]——( —~Fweost| <

4. Values of k greater than or equal to b. Since S(A\k-p)—8(\E+v)
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2 2 mx .
/\2702 0 2 and kzb )@kz TbN 5 if we are

to prove that i [S(Ak+ p) —S(Me+v)] is ‘much less than z, we must
o= ‘

ranges approximately from —--

show that there is a reasonably symmetric distribution of the values of
S8 (At 4 p) — S (Ak 4 v) within that range, so that the positive and negative
values nearly cancel each other out.

Now the value of S(A%k + p) — 8 (M +v) within the range from w;
to )\%2 depends on the phases of S(Ak 4 p) and S(Ak 4 v) at . The phase
difference between S(Me+ p) and S(Ak+v) tends to remain constant over
long sequences of consecutive integers &, but in general the phase of S (Ak 4 p)
will cover a broad range of values, evenly distributed between 0° and 360°,
unless the phase difference between S(Ak -+ p) and S(A(k 4 1) 4+ p) (which
also tends to remain constant over long sequences of %) is close to a fraction
of 360° with a small denominator, so that every few integers the phase of
S (/\k + &) repeats itself.

We will define a set K consisting of those values of % for which this
phase difference is sufficiently close to a fraction with a small denominator,
and then show that there are not enough elements of K to significantly affect

the value of 3 [S(Mk +u) —8(\k +1)].
k=b
We define K such that:

k€ K <> 3 integers 4, § such that .j < n?

2l
Lo Azwjl— A \/29:

First we will show that if Q is a subset of K, then

and

| 2 SOk +0) — S +0)] | < 22,

éb

We partition the set of integers = b into an infinite number of disjoint sub-
sets of the form S, such that

w(m 1) ‘

ot

k€ 8m <> <k=———

4)\'21:
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Now, & _ i
J1 J2 J1]2

75 => mz—@zjﬁéO > |4 7/1]2—7/2]1 |=1.
Therefore, if f1, 7. <P then 7& | @i[ > _;_4

27!‘1:1 _ 2‘7!‘/1/2
Ay APz,

l >

n‘*)@x
Therefore, for each m, there exists at most one 7 and j such that
n(n—3) _ ori_x(m+3)
nENET Mzj = nfAz

In other words, for each S,, there exists at most one ¢ and 4 such that

3k € Sy such that | k— | < s

/\2512] 211,4)\206

T

4n
/\2n147 Sniig 2 Y '\/ 5z \/ %2’ so there exists at most

on ¢ and j such that

Since 0 <z < ——

271'14 4n
3k € S such that | k— 7 \/ <

Therefore there exist at most i——n\/z—:& elements of K in each S,, which

fu—

implies that there exists no more than 8n

if @ is any subset of K.
k€8n=> | S(Me+p)| and | S(Me+v)| are both < ——

% elements of @ in each S,
nSA’ZxZ
2m2 ‘

)\2702 <

Therefore, | 3 [S()dc—l—p)—S(Ak—l—v)]]<(16n\/2x)( W) Since

all elements of /S’m are = b > m = ns. ‘ Therefore

)\2 ?
18n nB\22
S (Ve + u) — S (AR __\/
28Ok +w) =80+ < (G755 (aom 7197
18n\/ )( n*Acz )2,
Ra’ “w(m 1)
Since there are more than ——— — 1 elements of Sy, all of them < m(m+1) ,

niNZx N\
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() e ) < (18’%/%) (””*x/zw) '

ﬂ(m-i—]) T kesmkz LeSm 702
7’1«4)\.2 - ’n4)\.2

19n° |2z 1 19 1
o Nrde, 18 < v, X, B

Now we need a lemma, whose obvious proof we leave to the reader.

Levuma 4. For all integers N =2, E k2 <N

Combining all Sn, and applying Lemma 4,

51 19 20
|2 S0 Aw) — SOE+ ]| </\2n2“762<n2)\2(b—1) <
k>b

200
71'1’1«.

Now we produce a set  which is a subset of K and proceed to demon-
strate that

I SIS+ — S0 +1)] | < B2

We define @ as the set of all integers = b not belonging to one of an infinite
sequence of disjoint sets of the form R,, which together include all integers
= b which ave not elements of K, as well as some integers which are elements
of K. We define R, in the following manner: Let ¢, — the least integer = b
which is not an element of K. ILet j, —the least integer such that there
exists an integer 4 such that

. i _7r-
| jutu— Nz | = “\/'2_:‘0
Let #,., = the least integer = ¢, - 7, which is not an element of K. Let R,
be the sets consisting of the j, consecutive integers starting with ¢,.

Note that no #, is an element of K, and therefore, for all u, j,=n>
Notes furthermore that, for all u,

(5

—(4n\/2x) Mb\/2x
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Therefore, each R, must have at least n2 but no more than —\/— elements.

We will now prove that for each w,

| SIS0k ) —S O] | < e,

In the following discussion, ¢ and j will represent respectively any ¢, and j,.
Let f.(z) =8S[A(t42)] for any integer 2. There exists a unique real

number o such that 0 =a < and such that

2t2
Folz—a) =1.
Let p be any integer such that 0 =p < j. Then there exists a unique
P2 2
<, T g—) —
such that 0=4, < Az(t—l—p)z— i and such that fp(z—a—y,) =1.

— (r—a— N e o ) N NS A (e ub ) B o §
Let ﬂl’ (SU o lpp)(l (t+p+1)2) (x o 1/’13)((t_|_p_|_1)2 )-
Then fpn(z—a—yp—B,) =—1. Since t—]—p§t§b>wv;x,

B gy <™, and gy < 2

<a+¢p><§§’i§ﬁ$b <2ott) Bna
| fo—o Rt <2 202

e t+p+1)°

_ (Ri4-2p+1) (Rtp+2t+p*4-2p+1) 4(p+1)
R ESE P

Iﬁp_gtg e _|_4(p+1)w+(2pt—2l-1)x< (s £ 6(p+1)]e

@ [=
)mt2 2:1: 2/\nt2\/ ’ since 7. << _\/2 and p < \/%

Let 6, = 2 B:. Then f’p(z—a—0,) —1. Therefore, there exists an integer
2=0

N such that 6, =y, I _Bi_ Now

N(t+p)®



DIFFERENTIABILITY RIEMANN FUNCTION.

77rp »é_; T
2tz N o A2’
2xN 2pw
A? (t +p)?

2px
2 I < ma'X(l)[’PJ ) _l— 2)\,2n2t2

0z
|0ﬂ_%| <

so that there exists N such that |y, + | < s555

A2n2t2
L 2N
N (t+p)?

T 20 T
< maX(Xﬁf’ W\/ )t —2A2n2t2

< max( 2

Xnp(t+-p)’

)"2t2’ A2n2tp) _l— )\.27L2t2 <

since n%p <(t, and

|27rN - e N I_ | |
S G R U A (L
So there exists N such that

2zN | 2%p+ p? 4m
< /\antz *

RaN 2pz 157
ot =7 | < o

which implies

22y, Nipr 4
| L +N— T < n?

Now there exists ¢ such that

=2 =% \/ o
There exists 4 such that

[E—

i
— = pn2
lt—l_/\2a;] |_M </\n\/2 since j=n?

There exists ¢ such that

,vtpw_%<m\/@

ks

Therefore there exists ¢ such that
2 A 2 )

0= * g;//p <1, since 0=yp < — )@ t2 Therefore — 2p :

4%

Now,

6
N<1+7I,E
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We define ¢, and v, as follows:

Let ¢y =2pi— Ny and v, =y, if 0<%‘?——N<1

. ) R .—6 2L
Let ¢p=2pi— (N 4-1)j and wp=%__‘—)t2(t—l7r—p)zlf7< %—N<0.
Let o —2pi— (N —1)j and oy =4y + 35555 if

2pi 6
1§L—N<1+F.

~

Then fp(z—a—uw,) =1, 0§Q—< 1, and, since

~.

12 t)uop O ke
1— (t_l_p)z << nz) I ] ] ,nz'

Now ¢ must be prime relative to j, since j is the least integer such that

“t_)xzx \/2:1;

If j is odd, then 2¢ is prime relative to j. If j is even, then 4 is prime
relative to %

In the former case, as p takes on every value from 0 to j—1, g, takes on
every value from 0 to j—1. In the latter case, g, takes on every even value
from 0 to j—2® twice. In either case, each element p of the set of integers
from 0 to j—1 can be paired with another element, p* (except that one p
will remain unpaired if j is odd) such that

qu_‘%*_% =1 (or |%"_Qp—j§ |=1).
Then

and, since

| EX0s Gy | gng | BNty
J P2 7

are both < 12
7

P e A
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Now, let g,(z) =S[)‘(t+P) +:“']:
let hp(2) =8[A(¢+p) +v],

let @y(2) = (z—a—op) (1 —

N(t4p)? )
A(E+p) +ul?”

A2 (t 4 p)*
and let 7(z) = (r—a—wp) (1—m)'

Then ¢'p(z— o —wp—@,) =1 and #/p(z—a—wp—1,) =1. TUsing a line
of reasoning exactly parallel to the case of B3, we get

Rpx 2 (22
19— 2/\nt2 \/ ; and | rp— 2;: 2/\nt2 \/ ;
Therefore,
A0, A D PNy AP
l 2r 2 |and| P2 2 |
are both < 2x
Now
1o(e) b SRT__ SnD(Etp) P (et ap o 0y)
’ [?t(t-l-P)-I-,u]2 [\ (t+p) 4 ul?
and o, 4 ij < £’
sin r sin 262 (« 4 wp + @)
92 e e |
<3tz <' 3r %
t? 2Ant?
Now
I 222 (% + 0p + Dy) _tz)\z(““‘wp*‘i‘gp*) __1 23)
Pz PZ g n2 +
Therefore,
| sin A2 (e 4 wp 4 0p)  sin A2 (& - wps 4 Dpe) < 32
\2t2 222 nz/\ztz’
and
| 90 (@) + gpe sin 7 sin 7

S PY O pmy il by ey pry e

3= |2 3%

< a2\ =« + neN2E2’
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Finally,

2snar 9 |2z 2z 32r 33
I%@y+%“@*'vﬁ Xﬁ¢7‘ mﬂ# N < i

Similarly,

2 sin 33
|7y (@) 4Py (2) + "5 | < e
Therefore, | gp(2) — hp(2) 4 gps () —hyps (2) | < 2);;2 Summing over all

p < j, including the unpaired p:

667rj 6671'] n? 677rj
Wt Tl e T e < e

lkg.%[ﬁ'(hk—l-m —8(E 4] <

Since j <1,
68xj 68 1
< n2A2 keRu 76—2—.

67mrj
< NENEL? < WAL+ §)?

Summing over all R, and applying Lemma 4:

687 687 2 1
Ing[S(Akw)—S(AHv)]I<W 2 <W e
&=D
687 6971' 69x
< n*A*(b—1) < % S Tn
Finally,
20z 76x

n -

| S8+ ) — 8B +0)] | < D24 02
5. Proof of Lemma 2. For all integers & = 0, the function

[cosTsin(Me +- p) 2] 4-sin~

f) = GVERAE
has the same period and is tangent at zero to the function
_sin[(k+p)ia ]
7(2) (A +p)?

Therefore, 0 =+ === f(z) = ¢(z) for all z, and 7 =+ < 2> f(z) = g(v)
for all z. Clearly, then, in order to prove Lemma 2, it will be sufficient to

2 sin (M + p) 2z
prove that Eo BN IVESATE

First we need a lemma, which we will not prove here:

has a derivative of 4o at z=0.

LemmA 5. For all i, and all « s.t. O<:c<22,
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sin®r _ 2
%z > ™
We will also use Lemma 4 from Section 4.
We introduce the following two functions of @, defined for all = > 0+
=th —— == =
Let m —the least positive integer such that 5 (m _l_ ) 2. Let a=the
least integer such that Az 4 p> V2[A(m—1) +pu]. Now we will prove
that, given any positive integer n, there exists a positive integer M such that

e sin(Me -+ p) 2z

0 ul :
SESTMH T E Gk wr
2
We will examine the series Z S_{%(\%%_jl;z_ in four parts; the sum from 0
=

n, from n4-1 to m—1, from m to ¢—1, and from a to <. First, for
3 2
all integers %, lim sin(\k + p)* 1; 540. Therefore, given any positive

T eso (M p) e
integer n, 38 >0 s.t. for all k s.t. 0=k =n,

sin (A -+ p) 22

|w|<3$|W |<n_|.1
ne sin (M 4 p) 2z
P aFl < kg 070

This implies that |z|<8=> 2 w> nx. For such a §, let
im (M p)

M = the least positive integer such that

O+ <O ST T T
Now V&> 0, 2 < 2[)\(7%_”’1) . Then, from Lemma 5,
F=m—150<2< m
CE > > T G

0<x<m—_|_—)—2$m 1=ZM=>m—1>14n>m—1>n+1,

N ’El sin(\e+p)z  (m—1)—n_ m—2n
2(AM—I-#)2 w1 (AE+p)? (Am—+p)® = (MmA4p)®

<<
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Next,

V2> 0,k <a Mo+ p< V[A(m—1) + 4]

T T sin (Ak + p) 22
0> —/——7——— .
Wt A=) P "7 0P e 0
ot gin(Ne + p) 22
Therefore, Vz > 0, m<a:}%ﬂ——————(m_l_M)2 > 0.
Finally,
ik, sin(Ak -+ p) 22 = 1 )
Vo VE T GE R0 | = W
and, from Lemma 4,
0, sin(Ak + p) %2
ve> 0| Z ST
— < sin(Me 4 p) 2z 1
=2 1Mt | =L e <2 o
< 1 < 1 < 1
M(a—1) “A(Me+p—22) TA[VR(m—4p) — (V242)A]
Now, since m —1 > 14n, m > 15 and (\/2—|—2) <—— <’\m+“. There-
fore
1 1 6

AVE(m 1) — (VE+ 201 SA(VE—1) () ~ A+ )
Also,

m—2n S (Mm 4 p) —2(Mn 4 p) > 6
(Am +p)* A(Am + p)* A (Mm A p)”
Therefore,
0<a< ml gin (Me + p) 22 l & sin(Ae -+ p) 2

A2 bk 7B b P
which implies that
mlogin(Ak 4 p) 2z + i sin (A + p) 2z
e Mk p)? T ()
Adding the four parts of the series we get

= sin (N -+ p) 2
TPV ETEE D e (VAL

which implies that the right derivative at zero is equal to 4. But since

> 0.

<< > nx,
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the right and left derivatives must be equal at zero, the full derivative
is +oo.
6. Differentiable point of the Riemann function. We can derive the

following corollary from Lemma 1:

CoROLLARY la. Let p, v, and X be any integers s.t. 0 < pu <v=A and
let v be any real number. Then

§ sin[(Ak 4-p)?x 4-7] sin[(/\k—l—v)zx—i--r]]
k=0 (M + ) (A +-v)*

,U.

has o derwvative of (> Ycos T at zero.

Proof. For% =~ é% or =20, the corollary follows directly from

Lemma 1, since the left derivative of

[sin[()dc—}- p)x 7]  sin[ (b +v)*z + -r]]
o (M 4 ) ® (A +v)*

is equal to the right derivative of

% [sin[(/\k +u)z—7] sin[()dc—l—v)zw——-r]]
k=0 (Me +p)® (Me +v)?

and (% —A Eyeosr— (% _)LM Yeos(—r7). To extend this result to any real

Ms

=
i

value of =, simply multiply A, p, and v by an appropriate constant.

Now we can consider the differentiability of 2 smklzc
k=1

at points of the

7 2
form %71 First, what are the value and derivative of smkIZc T at % for
sin k22
kZ kZ 2
3 2
smklzc L are the same at -{1B—7r and ZZ—I;“, where Ak?=P;mod2B. Therefore
if, for two positive integers o and v, where p <v=2B, either P,=P,-} B
u

. sin(2Bk -+ p)2x | sin(2Bk +v) 2%z
or P,=P, -+ B, then 2( @Bk F n)? —+ @Bk 1)
Pﬂ An

tive of ( ’U')cos Tatﬁ_

The followmg procedure, then, can be used to determine the existence

and value of the derivative of 2 Smklf
i1

given k? Since has a cycle of length the value and derivative of

) has a deriva-

at certain points of the form —‘é—ﬂ :
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List the values of Py for all k£ from 1 to 2B. If all the Pj can be paired
off into (u,v) pairs s.t. P, + B=P,, then the derivative exists and is equal

to the sum of ( ” )cos —gﬁ over all (u,v) pairs. If all Py can be paired
3 2
off except for certain values of k, and the sum of mklzc ? taken over these

values of k is known to be non-differentiable, then 2 kI: 25
=i

tiable at A—g . Now we are ready to prove the two theorems stated in

is not differen-

Section 1.

smk T 4 + L)«

TreorEM 1. The derivative of 2 2Bt 1 is equal to

_Tl for all integers A, B.

Proof. Let p be any positive integer =2B 41 and let

(R4 +1)p>*=Pmod?2(2B+1).
Then,

(RA+1)(RB+1+p)*= (R4 +1) (4B* + 4B+ 4Bp + 2u +p* + 1)
— (44 1) [(4B* 4+ 2B) + (2B +1) + (4B + 2p) +p2]
— (24 4+1)[2B(2B+1) + 2 (B +1) + (2B +1) + 2]
= (24 +1) (2B + 1+ 42)mod 2 (2B +1)
— (24 41) (2B +1) + (24 4 1)p2
—24(B+1) + (2B+1) + (24 +1)2
= (24 4+ 1)p>+ (2B +1)mod 3 (2B 4+ 1)
=P+ (B+1)mod2(2B 4 1).
i smkzw

Therefore each u can be paired off with a v equal to p 2B 4+ 1 and 3
=1

: RA+ )=
2B+1 °

(RA+1)p= R4+ 1) (—p)?*=QRA+1D[2(RB +1) —p]*mod (B 4-1),

for each (p,v) pair, there is another (p,v) pair in which the values of P,
and P, are reversed, except for p=2B -+ 1, v=2(2B+1). Therefore,

is differentiable a Since

P . —_— P
each ki tched p—v s
2(2B—|—1) €08 (gp 1) & Matche by 32(23+1) cos (2B+1)except
for ,u—%B +1, v=2(2B +1), so the derivative of 2 Smk]: is equal to
o=}

1, (44 1)
2 T TeB41



DIFFERENTIABILITY RIEMANN FUNCTION. 55

0 o 2
THEOREM 2. X smkl,f 2 has no derivative at Q—Az—j\;l)—r
k=1

A, N with N=1.

for all integers

Proof. The case of N =1 has been proved by Hardy, and the case of
N =2 follows directly from Lemma 2.

Consider N =3. Let u be any odd integer = 2¥** and let (R4 4 1)p®
=P mod 2¥+!, Then,

(24 + 1) (N1 4 p)? = (R4 + 1) (252 + 2V 4 p2)

= (24 4+ 1) (V% + p?) mod 2N+
— 2N+ 14y - 2Ny + (R4 + 1) p2 =2V 4 P mod 2N+,

The even values of u need not be considered if the function is known to be

R4+ 1)

non-differentiable at points of the form N

Therefore, by induction,

© 3 2
> ggklzc_w is not differentiable at MT_};DE for all integers 4, N with

k=1

N=1. This concludes the proofs.

I wish to thank Prof. Serge Lang for his invaluable help in preparing
this paper.

CoruMBIA COLLEGE.
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