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Abstract

The Lasserre hierarchy is a systematic procedure to strengthen a relaxation for

an optimization problem by adding additional variables and SDP constraints. In

the last years this hierarchy moved into the focus of researchers in approximation

algorithms as the obtain relaxations have provably nice properties. In particular

on the t-th level, the relaxation can be solved in time nO(t ) and every constraint that

one could derive from looking just at t variables is automatically satisfied. Addition-

ally, it provides a vector embedding of events so that probabilities are expressable

as inner products.

The goal of these lecture notes is to give short but rigorous proofs of all key prop-

erties of the Lasserre hierarchy. In the second part we will demonstrate how the

Lasserre SDP can be applied to (mostly NP-hard) optimization problems such as

KNAPSACK, MATCHING, MAXCUT (in general and in dense graphs), 3-COLORING and

SETCOVER.
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1 Introduction

A large fraction of results in approximation algorithms is obtained by solving a linear

program, say max{cT x | Ax ≥ b} and then rounding the obtained fractional solution to

an integral one. For some problems, this already provides an approximate answer whose

quality matches known hardness results. For others however, the integrality gap may be

larger than the suspected hardness. In this case, one has the option to inspect the in-

tegrality gap construction and try to derive additional inequalities which are violated,

hoping that this decreases the overall gap. Another option is to think about the use of

semidefinite programs, see the example of MAXCUT [GW95]. It may even be the case that

the natural semidefinite program is not enough and even additional constraints for the

SDP are needed in order to make progress on existing approximation algorithms (SPARS-

EST CUT is an example [ARV04]).

Instead of following the heuristic approach of finding inequalities that may be help-

ful for an LP or SDP, there is a more systematic (and potentially more powerful) ap-

proach lying in the use of LP or SDP hierarchies. In particular there are procedures

by Balas, Ceria, Cornuéjols [BCC93]; Lovász, Schrijver [LS91] (with LP-strengthening LS

and an SDP-strengthening LS+); Sherali, Adams [SA90] or Lasserre [Las01a, Las01b]. On

the t-th level, they all use nO(t ) additional variables to strengthen an initial relaxation

K = {x ∈R
n | Ax ≥ b} (thus the term Lift-and-Project Methods) and they all can be solved

in time nO(t ). Moreover, for t = n they define the integral hull K I and for any set of |S| ≤ t

variables, a solution x can be written as convex combinations of vectors from K that are

integral on S. Despite these similarities, the Lasserre SDP relaxation is strictly stronger

than all the others. Thus for the sake of a simpler exposition, we will only consider the

Lasserre hierarchy in this lecture notes. We refer to the survey of Laurent [Lau03] for a

detailed comparison with other hierarchies.

Up to now, there have been few (positive) result on the use of hierarchies in approxi-

mation algorithms. One successful application of Chlamtáč [Chl07] uses the 3rd level of

the Lasserre relaxation to find O(n0.2072)-colorings for 3-colorable graphs. It lies in the

range of possibilities that O(logn) levels of Lasserre might be enough to obtain a color-

ing with O(logn) colors in 3-colorable graphs [ACC06]. In fact, for special graph classes,
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there has been recent progress by Arora and Ge [AG11]. Chlamtáč and Singh [CS08]

showed that O(1/γ2) rounds of a mixed hierarchy can be used to obtain an independent

set of size nΩ(1/γ2) in a 3-uniform hypergraph, whenever it has an independent set of size

γn. The Sherali-Adams hierarchy was used in [BCG09] to find degree lower-bounded

arborescences.

Guruswami and Sinop provide approximation algorithms for quadratic integer pro-

gramming problems whose performance guarantees depend on the eigenvalues of the

graph Laplacian [GS11]. Also the Lasserre-based approach of [BRS11] for UNIQUE GAMES

depends on the eigenvalues of the underling graph adjacency matrix. Though the O(
√

logn)-

apx of Arora, Rao and Vazirani [ARV04] for SPARSEST CUT does not explicitly use hierar-

chies, their triangle inequality is implied by O(1) rounds of Lasserre. For a more detailed

overview on the use of hierarchies in approximation algorithms, see the recent survey of

Chlamtáč and Tulsiani [CT11].

The goal of this lecture notes is two-fold.

• Part 1: We give a complete introduction of all basic properties of the Lasserre hier-

archy. Here our focus lies on short and simple proofs.

• Part 2: We provide several short, but interesting applications in approximation

algorithms.

2 Properties of the Lasserre hierarchy

In this section, we provide a definition of the Lasserre hierarchy and all properties that

are necessary for our purpose. In our notation, we follow to some extend the survey of

Laurent [Lau03]. We want to briefly remind the reader that a matrix M ∈ R
n×n is called

positive semidefinite if xT M x ≥ 0 for all vectors x ∈R
n . Moreover, if M is symmetric, then

the following conditions are equivalent:

a) M is positive semidefinite

b) Any principal submatrix U of M has det(U ) ≥ 0.

c) For all i ∈ [n], there is a vector vi such that Mi j = 〈vi , v j 〉.

For any vector y ∈ R
n , recall that the outer product y y T ∈ R

n×n is a rank-1 matrix that is

positive semidefinite as xT (y y T )x = 〈x , y〉2 ≥ 0.

2.1 Definition of Lasserre

Let K = {x ∈ R
n | Ax ≥ b} some linear relaxation of a binary optimization problem and

our goal is to add additional variables and constraints in order to make the relaxation

stronger. Our final (and unreachable) goal is to have x ∈ conv(K ∩ {0,1}n), in which case

we could consider x as a probability distribution over 0/1 vectors such that if we draw a

vector X ∈ K ∩ {0,1}n from that distribution, then Pr[Xi = 1] = xi . Observe that we can
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interpret the fractional values xi as marginal probabilities, but they do not say much

about the probability of joint events. For example from those marginals we just know

that we should have Pr[Xi = X j = 1] ∈ [max{xi + x j −1,0},min{xi , x j }] for i 6= j . So our

idea is to add additional variables that also give a value on joint probabilities.

Let y ∈ R
2[n]

be a 2n dimensional vector, indexed by subsets of variables. What we

ideally want is that yI = Pr[
∧

i∈I (Xi = 1)] (and in particular y{i } = xi and y; = 1), and

infact, it is possible to explicitly write down constraints that would imply this properties.

However, as y is 2n-dimensional and we aim at polynomial time algorithms, we will only

introduce constraints that involve entries yI for |I | ≤O(t ) and t is the number of rounds

or the level of our solution. This way we can still solve the system in time nO(t ).

Let P t ([n]) := {I ⊆ [n] | |I | ≤ t } be the set of all index sets of cardinality at most t .

Definition 1. Let K = {x ∈ R
n | Ax ≥ b}. We define the t-th level of the Lasserre hierarchy

LASt (K ) as the set of vectors y ∈R
2[n]

that satisfy

Mt (y) := (yI∪J )|I |,|J |≤t º 0; Mℓ
t (y) :=

( n∑

i=1

Aℓi yI∪J∪{i }−bℓyI∪J

)

|I |,|J |≤t
º 0 ∀ℓ ∈ [m]; y; = 1.

The matrix Mt (y) is called the moment matrix of y and the second type M t
ℓ

(y) is called

moment matrix of slacks. Furthermore, let LAS
proj
t (K ) := {(y{1}, . . . , y{n}) | y ∈ LASt (K )} be

the projection on the original variables.

We want to emphasize that the t-th level of Lasserre cares only for entries yI with

|I | ≤ 2t + 1 – all other entries are ignored (if the reader prefers a proper definition, he

might impose yI = 0 for |I | > 2t + 1. The set of positive semidefinite matrices forms a

non-polyhedral convex cone, thus also LASt (K ) is a convex set. The separation problem

for LASt (K ) boils down to computing a negative Eigenvector of the involved matrices,

which can be done in polynomial time. As a consequence, if m denotes the number of

linear constraints, one optimize over LASt (K ) in time nO(t ) ·mO(1) up to numerical errors

that can be neglected as we are talking about approximation algorithms anyway.

Intuitively speaking, the constraint Mt (y) º 0 takes care that the variables are consis-

tent (e.g. it guarantees that y{1,2} ∈ [y{1}+y{2}−1,min{y{1}, y{2}}]). Moreover, the psdness of

the ℓth slack matrices Mℓ
t (y) guarantees that y satisfies the ℓ-th linear constraint. More

generally, the Lasserre hierarchy can even be applied to non-convex semi-algebraic sets

– but for the sake of a simple presentation we stick to polytopes, again the interested

reader is referred to [Lau03]1.

2.2 Some basic properties

Let us begin with discussing some of the basic properties, especially that LASt (K ) is in-

deed a relaxation of K ∩Z
n . Moreover we have 0 ≤ yI ≤ 1 regardless to whether or not

1in fact, we do deviate in terms of the notation from [Lau03]. In particular, we consider y as a 2n dimen-

sional vector, while Laurent considers it as nO(t ) dimensional. Moreover, Laurent uses Mt+1(y) as moment

matrix on the t-th level.
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these constraints are included in Ax ≥ b. For a square matrix M , we abbreviate the de-

terminant by |M | = det(M).

Lemma 1. Let K = {x ∈R
n | Ax ≥ b} and y ∈ LASt (K ) for t ≥ 0. Then the following holds:

a) K ∩ {0,1}n ⊆ LAS
proj
t (K ).

b) 0 ≤ yI ≤ 1 for all |I | ≤ t

c) One has 0 ≤ y J ≤ yI ≤ 1 for all I ⊆ J with 0 ≤ |I | ≤ |J | ≤ t .

d) |yI∪J | ≤
p

yI · y J for |I |, |J | ≤ t .

e) LAS
proj
t (K ) ⊆ K

f ) LAS0(K ) ⊇ LAS1(K ) ⊇ . . . ⊇ LASn(K )

Proof. The properties can be proven as follows:

a) Let x ∈ K ∩ {0,1}n be a feasible integral solution. Then we can define yI :=
∏

i∈I xi .

We claim that indeed y ∈ LASt (K ) for any t ≥ 0. First of all, the moment matrix

Mt (y) is actually a submatrix of the positive semidefinite rank-1 matrix y yT since

for any entry (I , J ), we have

(Mt (y))I ,J = yI∪J =
∏

i∈I∪J

xi =
(∏

i∈I

xi

)

·
(∏

i∈J

xi

)

= yI · y J = (y yT )I ,J

using that x2
i
= xi for xi ∈ {0,1}. Now consider one of the constraints in Ax ≥ b and

say it is of the form ax ≥β. We claim that the corresponding slack moment matrix

is a submatrix of (ax−β)·y yT which is again a positive semidefinite rank-1 matrix.

Here we use crucially that the scalar ax −β is non-negative because x is a feasible

solution to K . To verify this we inspect the (I , J )-entry which is of the from

n∑

i=1

ai yI∪J∪i −βyI∪J = (ax −β) · yI · y J

where we again use that x2
i
= xi .

b) Let |I | ≤ t . The determinant of the principal submatrix of Mt (y) indexed by {;, I }

is

∣
∣
∣
∣

(
y; yI

yI yI

)∣
∣
∣
∣= yI (1− yI ) ≥ 0

; I

;
I

hence 0 ≤ yI ≤ 1.
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c) Similarly to b), we consider the determinant of the principal submatrix of Mt (y)

indexed by {I , J } and obtain

∣
∣
∣
∣

(
yI y J

y J y J

)∣
∣
∣
∣= y J (yI − y J ) ≥ 0

I J

I

J

using that I ∪ J = J . We know from b), that y J , yI ≥ 0, hence yI ≥ y J .

d) This case is actually useful because yI∪J does not need to appear on the diago-

nal. But still we can consider the determinant of the principal submatrix of Mt (y)

indexed by {I , J } and obtain

∣
∣
∣
∣

(
yI yI∪J

yI∪J y J

)∣
∣
∣
∣= yI y J − y2

I∪J ≥ 0

I J

I

J

which shows that |yI∪J | ≤
p

yI y J .

e) If we consider the slack moment matrix of a constraint ax ≥ β then the diagonal

entry indexed with (;,;) is of the form
∑n

i=1 ai y;∪{i }−βy; = aT (y1, . . . , yn)−β≥ 0,

thus (y1, . . . , yn) ∈ K .

f ) This is clear as the Mt (y) is a submatrix of Mt+1(y) and in particular all principal

submatrices of a PSD matrix are again PSD. The same holds true for the moment

slack matrices.

2.3 Writing y as a convex combination

If we have a vector x ∈ conv(K ∩{0,1}n), then it can be written as a convex combinaton of

integral vectors in K . This is not true anymore for any x ∈ K . But for a round-t Lasserre

solution y a weaker claim is true: for any subset S of t variables, y can be written as a

convex combination of fractional solutions that are integral at least on those variables in

S. It actually suffices to show this claim for one variable – the rest follows by induction.

More concrete it means that for a solution y ∈ LASt (K ) we can pick any variable i

where yi is not yet integral. Then it can be written as convex combination of vectors z(0)

and z(1) such that the i th variable in z(0) is 0 and in z(1) the entry is 1. A schematic (but

non-sense) visualization can be found below.

y

LASt
b

b

z(0)
{i }

= 0 z(0)

z(1) z(1)
{i }

= 1

LASt−1

0 1

y{i }

R
2n−1
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In particular we can give a precise formula for z(0) and z(1).

Lemma 2. For t ≥ 1, let y ∈ LASt (K ) and i ∈ [n] be a variable with 0 < yi < 1. If we define

z(1)
I

:=
yI∪{i }

yi
and z(0)

I
:=

yI − yI∪{i }

1− yi

then we have y = yi · z(1) + (1− yi ) · z(0) with z(0), z(1) ∈ LASt−1(K ) and z(0)
i

= 0, z(1)
i

= 1.

As this is a crucial statement, we want to give two proofs.

Proof 1. Clearly z(1)
i

= yi

yi
= 1, z(0)

i
= yi−yi

1−yi
= 0 and

yi · z(1)
I

+ (1− yi ) · z(0)
I

= yI∪{i } + (yI − yI∪{i }) = yI

thus it only remains to argue that z(0), z(1) ∈ LASt−1(K ).

For this sake, define index sets Let I−i := {I | |I | < t , i ∉ I } and I+i := {I ∪ {i } | |I | <
t , i ∉ I }. Let M−i and M+i be the principal submatrices of Mt (y) indexed by I−i and I+i ,

resp. In other words, M−i , M+i are square matrices of the same size and in particular

M−i , M+i º 0. We already noted that y is expressed as convex combination – but the

same is also true for the moment matrix. In fact, we can write:

Mt (y) =

I−i I+i

I−i

I+i

M−i M+i ∗

M+i M+i ∗

∗ ∗ ∗

= yi ·

Mt−1(z(1))⊆

1
yi

M+i
1
yi

M+i ∗

1
yi

M+i
1
yi

M+i ∗

∗ ∗ ∗

+(1− yi )·

Mt−1(z(0))⊆

1
1−yi

(M−i −M+i ) 0 ∗

0 0 ∗

∗ ∗ ∗

In other words, the new moment matrices Mt−1(z(1)) and Mt−1(z(0)) are submatrices of

the dashed matrices on the right hand side. As Mt−1(z(1)) is a submatrix of a scaled

and cloned copy of M+i , we know that Mt−1(z(1)) º 0. After scaling and removing ze-

ros, Mt−1(z(0)) becomes M−i −M+i . While it is clear, that both M−i and M+i are positive

semidefinite, this is less obvious for their difference. However, for each vector w we have

w T (M−i −M+i )w = (w,−w)T

(
M−i M+i

M+i M+i

)

(w,−w) ≥ 0

and hence Mi −M+i º 0.

Now consider the ℓth constraint for K and abbreviate it with ax ≥ β. Let Mℓ
−i

and

Mℓ
+i

be the principal submatrices of Mℓ
t (y) that are indexed by I−i and I+i , resp. Then

we get a picture that is identical to the one before, namely we can consider Mℓ
t (y) as

convex combination
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Mℓ
t (y) =

I−i I+i

I−i

I+i

Mℓ
−i

Mℓ
+i

∗

Mℓ
+i

Mℓ
+i

∗

∗ ∗ ∗

= yi ·

Mℓ
t−1(z(1))⊆

1
yi

Mℓ
+i

1
yi

Mℓ
+i ∗

1
yi

Mℓ
+i

1
yi

Mℓ
+i ∗

∗ ∗ ∗

+(1− yi )·

Mℓ
t−1(z(0))⊆

1
1−yi

(Mℓ
−i

−Mℓ
+i

) 0 ∗

0 0 ∗

∗ ∗ ∗

And by the same arguments as before, Mℓ
t−1(z(0)), Mℓ

t−1(z(1)) º 0.

Proof 2. Again it is clear that y = yi · z(1) + (1− yi ) · z(0) and that z(0) and z(1) are integral

on variable i . So it remains to show that z(0), z(1) ∈ LASt−1(K ) and in particular that the

moment (slack) matrices of those solutions are positive semidefinite.

Since Mt (y) º 0, we know that there are vectors v I with 〈v I , v J 〉 = yI∪J for |I |, |J | ≤
t . Then we can choose v (1)

I
:= 1p

yi
v I∪{i } and check that 〈v (1)

I
, v (1)

J
〉 = 1

yi
〈v I∪{i }, v J∪{i }〉 =

yI∪J∪{i }

yi
= z(1)

I∪J
for |I |, |J | < t , implying that Mt−1(z(1)) º 0. Moreover, we can choose v (0)

I
:=

1p
1−yi

(v I −v I∪{i }) and we obtain

〈v (0)
I

, v (0)
J
〉 =

1

1− yi
(v I v J −v I v J∪{i } −v j v I∪{i } +v I∪{i }v J∪{i }) =

1

1− yi
(yI∪J − yI∪J∪{i }) = z(0)

I∪J

and thus Mt−1(z(0)) º 0. Similarly consider the ℓth constraint and abbreviate it with ax ≥
β. Then Mℓ

t (y) º 0, which implies the existence of vectors ṽ I with 〈ṽ I , ṽ J 〉 =
∑n

j=1 a j yI∪J∪{ j }−
βyI∪J . We can define ṽ (1)

I
:= 1p

yi
v I∪{i } and

〈ṽ (1)
I

, v (1)
J
〉 =

1

yi
ṽ I∪{i }ṽ J∪{i } =

n∑

j=1

a j

yI∪J∪{i , j }

yi
−β

yI∪J∪{i }

yi
= Mℓ

t−1(z(1))I ,J

and hence Mℓ
t−1(z(1)) º 0. Analogously one can show that Mℓ

t−1(z(0)) º 0.

The previous lemma shows that y = conv{z ∈ LASt−1(K ) | zi ∈ {0,1}}. Iterating this we

obtain

Corollary 3. Let y ∈ LASt (K ) and let S ⊆ [n] be a set of |S| ≤ t variables. Then

y ∈ conv{z ∈ LASt−|S|(K ) | zi ∈ {0,1} ∀i ∈ S}.

In particular, this implies that the Lasserre SDP has converged to the integral hull

after at most n iterations, i.e. LAS
proj
n (K ) = conv(K ∩ {0,1}n).

Lemma 2 gave us an explicit formula how y can be written as convex combination

with a single variable i being integral. Of course, the same must hold when applying

this to a set of variables. In the following, z J0,J1 will be the vector y , conditioned on all

variables in J1 to be 1 and all variables in J0 to be 0.
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Lemma 4. Let y ∈ LASt (K ) and S ⊆ [n]. For J0, J1 ⊆ [n] abbreviate y
J0,J1

I
=

∑

H⊆J0
(−1)|H |yI∪J1∪H .

Then we can express y as convex combination

y =
∑

J0∪̇J1=S:y
J0,J1
; >0

y
J0,J1

; ·
(

y J0,J1

y
J0,J1

;

)

︸ ︷︷ ︸

=:z J0,J1

with z
J0,J1

i
=

{

1 i ∈ J1

0 i ∈ J0

(1)

Moreover z J0,J1 ∈ LASt−|S|(K ).

Proof. Suppose by induction the claim (1) is shown for S and we want to show it for

S ∪ {i }. By definition y
J0,J1

I∪{i }
=

∑

H⊆J0
(−1)|H |yI∪{i }∪J1∪H = y

J0,J1∪{i }
I

. Furthermore

y
J0,J1

I
−y

J0,J1

I∪{i }
=

∑

H⊆J0

(−1)H yI∪J1∪H−
∑

H⊆J0

(−1)H yI∪J1∪H∪{i } =
∑

H⊆J0∪{i }

(−1)|H |yI∪J1∪H = y
J0∪{i },J1

I
.

By the properties of Lemma 2 the claim follows.

One crucial observation is that for the convex combination in Lemma 4, the order in

which we condition on variables is irrelevant – we always end up with the same formula.

We wonder, we the formula in Lemma 4 is coming from. Suppose that y ∈ LASn(K ),

thus there is indeed a consistent random variable X ∈ K ∩ {0,1}n with Pr[
∧

i∈I (Xi = 1)] =
yI . Now consider indices J0, J1 ⊆ [n], then the inclusion-exclusion formula says that

Pr
[ ∨

i∈J0

(Xi = 1)
]

=
∑

;⊂H⊆J0

(−1)|H |+1 Pr
[ ∧

i∈H

(Xi = 1)
]

.

Negating this event yields

Pr
[ ∧

i∈J0

(Xi = 0)
]

= 1−Pr
[ ∨

i∈J0

(Xi = 1)
]

=
∑

H⊆J0

(−1)|H | Pr
[ ∧

i∈H

(Xi = 1)
]

. (2)

Observe that Equation (2) remains valid if all events are intersected with the same event
∧

i∈J1
(Xi = 1). In other words we arrive at the generalized inclusion exclusion formula

(sometimes called Möbius inversion)

Pr
[ ∧

i∈J1

(Xi = 1)∧
∧

i∈J0

(Xi = 0)
]

=
∑

H⊆J0

(−1)|H | Pr
[ ∧

i∈J1∪H

(Xi = 1)
]

=
∑

H⊆J0

(−1)|H |y J1∪H = y
J0,J1

;

(3)

We can use this to rewrite

z
J0,J1

I
=

y
J0,J1

I

y
J0,J1

;
=

Pr[
∧

i∈J1∪I (Xi = 1)∧
∧

i∈J0
(Xi = 0)]

Pr[
∧

i∈J1
(Xi = 1)∧

∧

i∈J0
(Xi = 0)]

= Pr
[∧

i∈I

(Xi = 1) |
∧

i∈J1

(Xi = 1)∧
∧

i∈J0

(Xi = 0)
]

If the reader prefers to see some applications right now, we have all tools together that

we need for Sections 3.1 and 3.2.
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2.4 Locally consistent probability distributions

If we have a solution x ∈ conv(K ∩ {0,1}n) then there is an obvious way to consider x as

a probability distribution over integral solutions in K . This interpretation carries over

nicely to t-round Lasserre solution, just that we cannot expect a globally feasible proba-

bility distribution, but at least one that is locally consistent when considering subsets of

at most t variables.

Lemma 5. Let y ∈ LASt (K ). Then for any subset S ⊆ [n] of size |S| ≤ t there is a distribu-

tion D(S) over {0,1}S such that

Pr
z∼D(S)

[∧

i∈I

(zi = 1)
]

= yI ∀I ⊆ S

Proof. We write y as convex combination of vectors y (z) that are integral on S follow-

ing Cor. 3. In fact, let y =
∑

z∈{0,1}S λz y (z) such that y (z)
i

= zi ∈ {0,1} for i ∈ S and y (z) ∈
LASt−|S|(K ).

This property make more sense, when talking about problems that are defined using

local constraints. Thus we want to make this concrete using the GRAPH 3-COLORING

problem. Let G = (V ,E ) be an undirected graph and suppose it is 3-colorable, i.e. the

nodes can be colored with red, green and blue such that adjacent node get assigned

different colors. Then the following relaxation looks for a such an assignment

{x ∈ [0,1]n | xi ,c +x j ,c ≤ 1 ∀c ∈ {R,G ,B} ∀(i , j ) ∈ E }

and the decision variables xi ,c tells whether node i gets assigned color c ∈ {R,G ,B}.

Lemma 6. Let y ∈ LAS3t (K ) be any solution for 3-coloring then there is family of distri-

butions {D(S)}S⊆V :|S|≤t such that for any S ⊆V with |S| ≤ t one has

a) each event χ∼D(S) is a valid 3-coloring χ : S → {R,G ,B} for the induced subgraph

G[S]

b) Prχ∼D(S)[χ(i1) = c1, . . . ,χ(ik ) = ck ] = y{(i1,c1),...,(ik ,ck )} ∀i1, . . . , ik ∈ S ∀c1, . . . ,ck ∈ {R,G ,B}

Proof. Fix a set S and write y as a convex combination of LAS0(K ) solutions that are

integral on variables xi ,c for (i ,c) ∈ S × {R,G ,B}. Let z ∈ LAS0(K ) be one of those vectors.

The vector z induces 3-coloring χ : S → {R,G ,B} with χ(i ) = c ⇔ zi ,c = 1. Now consider

an event defined by i1, . . . , ik ∈ S and c1, . . . ,ck ∈ {R,G ,B}.

In particular, (b) implies that different distributions D(S) and D(S′) are consistent

with each other, i.e. events that are defined for their intersection S ∩ S′ have the same

probability in D(S) and D(S′).

10



2.5 The vector representation

After discussing the local consistence of Lasserre solutions we want to discuss a very

powerful global property which is the vector representation. In particular, for each event
∧

i∈I (xi = 1) with |I | ≤ t there is a vector v I representing it in a consistent way. More

formally, the positive semidefiniteness of Mt (y) implies

Lemma 7 (Vector Representation Lemma). Let y ∈ LASt (K ). Then there is a family of

vectors (v I )|I |≤t such that 〈v I , v J 〉 = yI∪J for all |I |, |J | ≤ t . In particular ‖v I‖2
2 = yI and

‖v;‖2
2 = 1.

It helps to have a geometric picture in mind. Each vector v I lies on the sphere with

radius 1
2

and center 1
2

v;. This is easy to check as ‖v I− 1
2

v;‖2
2 = ‖v I‖2

2−2· 1
2

v I v;+ 1
4
‖v;‖2

2 =
1
4

.

0 v;
1
2

v;

vi

p
yi

yi

√

yi − y2
i

More generally for I ⊇ J , v I lies on the sphere of radius 1
2

p
y J and center 1

2
v J

2. More-

over, all angles between vectors are between 0◦ and 90◦. For example if we have two

events I , J with yI + y J = 1 that are disjoint (i.e. yI∪J = 0), then v I and v J will be an-

tipodal w.r.t. center 1
2

vempt y set . This vector representation is crucial in many rounding

algorithm as we will see in Section 3.4.

2.6 The Decomposition Theorem

In this chapter we want to discuss a very strong property of the Lasserre hierarchy that

is actually implied by the SDP constraints and which somewhat distinguishes Lasserre

from hierarchies that are solely based on linear programming.

We want to demonstrate the issue using a concrete instance of the KNAPSACK prob-

lem. Let’s say we have n items of unit weight and unit profit and a knapsack of capacity

1.9 as well. Obviously the best KNAPSACK solution has OPT = 1, but let us investigate

how the Lasserre hierarchy deals with the relaxation

K =
{

x ∈R
n
≥0 |

n∑

i=1

xi ≤ 1.9
}

,

2Again, because ‖vI − 1
2 v J ‖2

2 = ‖vI ‖2
2 −vI v J + 1

4‖v J ‖2
2 = 1

4 y J .

11



Let us consider a 2-round Lasserre solution y ∈ LAS2(K ). Choose a variable y with 0 <
yi < 1. We can consider the convex combination y = yi · y (1) + (1− yi )y (0) with y (1), y (0) ∈
LAS1(K ) and y (1)

i
= 1, y (0)

i
= 0. Since this is a convex combination, one of both solu-

tions y (1) or y (0) has to be at least as good as y in terms of the objective function. If

y (1) is the better solution, we are done as y (1) ∈ {0,1}n is already completely integral (if

not then there is a j 6= i with y (1)
j

> 0; then we can induce on j and obtain a solution

y (1,1) ∈ LAS0(K ) fully containing 2 items which is a contradiction). On the other hand,

if y (0) is the better solution then we have a problem since we have already used one of

our 2 precious rounds to make just one out of n variables integral. In fact, this is pre-

cisely what happens for the Sherali-Adams hierarchy which does have an integrality gap

of 1.9−O( 1
n

) for this case [KMN11].

Fortunately it turns out, we can use a smarter argument for Lasserre. We already

saw in the last section that there are vectors v I such that v I · v J = yI∪J . According to our

arguments above, y{i , j } = 0 for all i 6= j . In particular, this means that vi ·v j = y{i , j } = 0 or

in other words: the vectors representing different items are orthogonal. Now we can get

n∑

i=1

yi =
n∑

i=1

‖vi‖2
2

vi vi=vi v;=
n∑

i=1

〈v;,
vi

‖vi‖2
〉2

≤ ‖v;‖2
2 = 1

where we use Pythagoras Theorem in the inequality. This shows that we have no integral-

ity gap left in this case, i.e. LAS
proj
2 (K ) = conv(K ∩ {0,1}n).

The next question would be, what happens if we have a knapsack polytope K = {x |
∑n

i=1
xi ≤ k +0.9} for some k ∈N. Will the gap of a round t = k +1 Lasserre lifting be 0? In

fact, exactly this is the case. The crucial observation is that yI = 0 for all k < |I | ≤ t . For

x ∈R
n , let ones(x) := {i | xi = 1} be the number of ones.

Lemma 8. Let K = {x ∈ R
n | Ax ≥ b} be any relaxation and suppose that max{|ones(x)| |

x ∈ K } ≤ t , then LAS
proj
t+1 (K ) = conv(K ∩ {0,1}n).

Proof. Let y ∈ LASt+1(K ). First of all, we claim that for all |I | = t + 1, we have yI = 0.

Suppose for the sake of contradiction that yI > 0. Then we can induce on all variables in

I and obtain ỹ ∈ LAS0(K ) with ỹi = 1 for all i ∈ I , which contradicts the assumption that

no feasible fractional solution may contain more than t ones. Recall that we actually

defined y as a 2[n] dimensional vector. We define yI = 0 for all |I | > t . Note that this

is consistent with the off diagonal matrix entries in Mt+1(y) as |yI∪J | ≤
p

yI · y J = 0 if

t < |I ∪ J | ≤ 2t .

What happens if instead of Mt+1(y), we consider the bigger matrix Mn(y)?

Mn(y) =
(

Mt+1(y) 0

0 0

)

|I | ≤ t +1 |I | > t +1

|I | ≤ t +1

|I | > t +1

Obviously extending the matrix by zeros does not violate the positive semidefiniteness.

The only potential problem is that there might be entries (I , J ) and (I ′, J ′) with I ∪ J =

12



I ′∪ J ′ such that (I , J ) is in Mt (y), but (I ′, J ′) is not. But then |I∪ J | = |I ′∪ J ′| > t , thus yI∪J =
yI ′∪J ′ = 0 and the matrix is consistent. The same arguments also holds for Mℓ

t+1(y)3

Finally, we want to give the most general form of the above arguments which is the

Decomposition Theorem of Karlin, Mathieu and Nguyen [KMN11].

Theorem 9 (Decomposition Theorem). Let 0 ≤ k ≤ t , y ∈ LASt (K ), S ⊆ [n] so that k ≥
|ones(x)∩S| for all x ∈ K . Then

y ∈ conv{z | z ∈ LASt−k (K ); z{i } ∈ {0,1} ∀i ∈ S}

Proof. First, let us make a thought experiment and let us again use the formula from

Lemma 4. In other words, we again define y
J0,J1

I
=

∑

H⊆J0
(−1)|H |yI∪J1∪H . Then the equa-

tion

y =
∑

J0∪̇J1=S

y J0,J1

still holds true, no matter what values the yI ’s have. Moreover, if y
J0,J1

; 6= 0, then z
J0,J1

i
= 1

if i ∈ J1 and z
J0,J1

i
= 0 otherwise. What is not clear apriori whether Mt−k (y J0,J1 ) º 0 and

Mℓ
t−k

(y J0,J1 ) º 0 (in particular if yes, this implies that the used coefficient y
J0,J1

; are non-

negative).

So far, we were not much concerned about entries that did not appear in Mt (y). For

now let us define them to be yI := 0 for |I | > 2t . We know that yI = 0 for |I ∩S| = k +1.

But by monotonicy (Lemma 1. 1) we still have yI = 0 for all |I ∩S| ≥ k +1 with |I | ≤ t . We

should be a bit careful that there are also entries yI∪J in Mt (y) with |(I ∪ J )∩S| ≥ k+1 but

|I ∪ J | > t . However, Lemma 1 provides that |yI∪J | ≤
p

yI · y J = 0 (if we split I ∪ J so that

|I∩S| ≥ k+1). So we will be consistent if we define yI := 0 for all I ⊆ [n] with |I∩S| ≥ k+1.

We know that Mt (y) º 0, thus there are vectors v I such that 〈v I , v J 〉 = yI∪J for |I |, |J | ≤
t . In fact, by choosing v I := 0 for |I ∩S| > k, we know that 〈v I , v J 〉 = yI∪J is true for all

I , J ⊆ [n] with |J\S|, |I \S| ≤ t −k.

Now fix J0∪̇J1 = S and we want to show that Mt−k (y J0,J1 ) º 0. We define uI :=
∑

H⊆J0
(−1)|H |v I∪J1∪H .

Then

〈uI ,u J 〉 = 〈
∑

H⊆J0

(−1)|H |v I∪J1∪H ,
∑

H ′⊆J0

(−1)|H
′|v J∪J1∪H ′〉

(∗)=
∑

G⊆J0

(−1)|G|yI∪J1∪G

∑

H⊆G

∑

A⊆H

(−1)|A|

︸ ︷︷ ︸

=0 if H 6=;,1 ow.

=
∑

G⊆J0

(−1)|G|yI∪J∪J1∪G = y
J0,J1

I∪J

In step (∗), we multiply out the term and use that 〈v I∪J1∪H , v J∪J1∪H ′〉 = yI∪J1∪H∪H ′ as

|(I ∪ J1 ∪ H)\S| ≤ |I | ≤ t − k and |J ∪ J1 ∪ H ′)\S| ≤ |J | ≤ t − k. Moreover, we reindexed

G = H ∪ H ′ and A = H ∩ H ′ and use that (−1)|H |+|H ′| = (−1)|G| · (−1)|A|. It follows that

Mt−k (y J0,J1 ) º 0.

3Let us abbreviate sI :=
∑n
ℓ=1

Aℓi yI∪{i }−yI bℓ. Then for |I | = t+1, we have sI = 0. Again also off-diagonal

entries will be zero as |sI∪J | ≤
p

sI · sJ for |I |, |J | ≤ t +1.
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Next, we want to show that Mℓ
t−k

(y J0,J1 ) º 0. We abbreviate the ℓth constraint by ax ≥
β. Again we know that Mℓ

t (y) º 0, thus there are vectors v I with 〈v I , v J 〉 =
∑n

i=1 ai yI∪J∪{i }−
βyI∪J . We define uI :=

∑

H⊆J0
(−1)|H |v I∪J1∪H and calculate that

〈uI ,u J 〉 = 〈
∑

H⊆J0

(−1)|H |v I∪J1∪H ,
∑

H ′⊆J0

(−1)|H
′|v I∪J1∪H ′〉

=
∑

G⊆J0

(−1)|G|
( n∑

i=1

ai yI∪J∪G∪{i } −βyI∪J∪G

)

=
n∑

i=1

ai y
J0,J1

I∪J∪{i }
−βy

J0,J1

I∪J

and the claim is proven.

3 Applications

3.1 Scheduling on 2 machines with precedence constraints

As these are lecture notes for a scheduling workshop, we feel morally obliged to start

with a scheduling application. We consider a problem, which in the standard scheduling

notation is denoted by P2 | prec, p j = 1 | Cmax. In words: we are given a set of n jobs J

of unit processing time with precedence constraints on the jobs as well as m = 2 identical

machines. We will write i ≺ j if job i has to finish before job j can be started. The goal

is to schedule the jobs on the machines without preemption or migration so that the

makespan (i.e. the time that the last job is finished) is minimized.

For a general number of machines m and running times, Graham’s classical list schedul-

ing provides a 2− 1
m

approximation, while the problem is NP-hard for general m even

with identical running times p j = 1. For the case of two machines that we consider here,

it is known that a polynomial algorithm based on matching techniques finds the opti-

mum solution [JG72]. However, here we want to demonstrate a neat application of the

Lasserre hierarchy that is due to Svensson [Sve11].

So we consider T time slots of unit length and want to decide whether a makespan

of T is possible. We can restrict the jobs to start at integral time units only. It seems

natural to consider a straightforward time-indexed formulation with variables x j t saying

whether we want to process job j ∈ J in the interval [t −1, t ] for t ∈ {1, . . . ,T }. Let K (T ) be

the set of solutions to the following LP:

T∑

t=1

x j t = 1 ∀ j ∈ J

∑

j∈J

x j t ≤ 2 ∀t ∈ [T ]

∑

t ′≤t

xi t ′ ≥
∑

t ′≤t+1

x j t ′ ∀i ≺ j ∀t ∈ [T ]

x j t ≥ 0 ∀ j ∈ J ∀t ∈ [T ]

(4)

First, let us verify that this LP itself does not yet give a correct answer. In fact, the

simple instance depicted in Figure 1 already gives a gap of 4/3.
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Figure 1: Instance for P2 | prec, p j = 1 | Cmax with integrality gap in (a). (b) shows opti-

mum schedule with makespan 4. (c) shows a feasible fractional solution for T = 3 where

each of the jobs j ∈ {1,2,3} has x j 1 = 2
3

and x j 2 = 1
3

. This solution is feasible as such j is

scheduled in [0,1] to an extend of 2
3

and a dependent job j ′ ∈ {4,5,6} is scheduled in [0,2]

to at most 1
3

.

We claim that in contrast, if there is a Lasserre solution y ∈ LAS1(K (T )), then there

is also a feasible integral schedule σ : J → [T ]. The schedule is obtained by scheduling

the jobs in order of their fractional completion time, which for a job j is defined as C∗
j

:=
max{t | y∗

{( j ,t )}
> 0}. To keep the notation simple, let us sort the jobs so that C∗

1 ≤ C∗
2 ≤

. . . ≤C∗
n . Next, let σ be the list schedule according to the ordering 1, . . . ,n. In other words,

we go through the time slots, starting at the beginning and at each slot, we consider the

set of jobs that are unprocessed and have all their predecessors already finished, and

then pick the job with smallest index among those. We denote σ j as the slot in which we

process job j . For the 2nd slot at time t , it may happen that there is no such job available

as all remaining jobs depend on the job that is processed in slot 1 in parallel. Moreover, it

may happen that we process job j +1 before job j as job j was dependent on other jobs

that were not yet finished.

Let us first justify why the fractional completion time is a meaningful sorting crite-

rion. Consider dependent jobs i ≺ j . Then we claim that C∗
i
≤ C∗

j
−1. Suppose for the

sake of contradiction that C∗
i
≥C∗

j
. Then we can induce on xi ,C∗

i
= 1. In other words, we

can extract from y a Lasserre solution ỹ ∈ LAS0(K (T )) with ỹi ,C∗
i
= 1. But the way how the

inducing operation is defined, the support of ỹ is a subset of the support of y , that means

y j t = 0 ⇒ ỹ j t = 0. In particular ỹ j t = 0 for all t >C∗
j

. So ỹ schedules j fractionally in the

interval [0,C∗
j

] ⊆ [0,C∗
i

], so there must be a time t∗ ≤C∗
i

with ỹ j ,t∗ > 0. But in particular

the LP contains inequalities implying ỹi ,C∗
i
+ ỹ j ,t∗ ≤ 1. This is a contradiction as ỹ still

gives a feasible LP solution.

It remains to show the following lemma which then immediately implies that all jobs

are finished by time T .

Lemma 10. For any job j ∈ J we have σ j ≤C∗
j

.

Proof. Let us consider the job with the lowest index that doesn’t satisfy the claim. Say

15



this is job j1. Let j0 ∈ {1, . . . , j1 −1} be the last job that was scheduled without any other

job in {1, . . . , j1} in parallel4. In other words, the other slot at time σ j0
was either empty or

occupied with a job j > j1.

Let J0 := { j ∈ J | j ≤ j1 and σ j > σ j0
}. First of all, all jobs in J0 must be dependent on

j0, i.e. j0 ≺ j for j ∈ J0, as otherwise we would have processed them at time σ j0
(recall

that at that time we had a slot that was either empty or occupied by a lower priority job).

Moreover, by the choice of j0, the complete interval [σ j0
,σ j1

−1] of length k :=σ j1
−1−σ j0

is fully busy with 2k jobs from J0. But also the late job j1 belongs to J0, thus |J0| > 2k. By

assumption C∗
j
≤σ j1

−1 for all j ∈ J0.

time

0 1 σ j0
σ j1

slot 1 slot σ j0
slot σ j1

j0 j1

jobs J0

k

schedule σ

Next, we induce on x j0,C∗
j0
= 1, that means we obtain a Lasserre solution ỹ ∈ LAS0(K (T ))

with ỹ j0,C∗
j0
= 1. Now, having this variable being 1 forces the fractional solution to sched-

ule all the dependent jobs in J0 later than C∗
j0
≥ σ j0

(by minimality of j1). And again the

support of ỹ is a subset of the support of y . In other words, the fractional schedule ỹ pro-

cesses all > 2k jobs in J0 in the interval [σ j0
,σ j1

−1] that has only 2k slots. This violates

the 2nd LP constraint.

We want to remark that one could replace the 3rd constraint

∑

t ′≤t

xi t ′ ≥
∑

t ′≤t+1

x j t ′ ∀i ≺ j ∀t ∈ [T ] (5)

in K by the weaker one xi t ≤ xi ′t ′ for i ≺ i ′ and t ≥ t ′. If we call the weaker relaxation

K ′ ⊇ K , then it is not difficult to argue that each y ∈ LAS2(K ′) again satisfies (5). To see

this, fix a pair of dependent jobs i ≺ j . Then via the Decomposition Theorem, we can

write y as convex combination of solutions ỹ ∈ LAS0(K ) that are integral on all variables

U := {xi t , x j t | t ∈ [T ]}, as never more than two of those variables can be 1 in any fractional

solution. For each such solution ỹ that is integral on U , the constraint (5) is satisfied. As

(5) is a linear constraint, this must be the case as well for the convex combination y .

Whether the case of a constant number m ≥ 3 of machines is solvable in polynomial

time is wide open problem. Even a PTAS is not known, but it seems plausible that the

Lasserre hierarchy might provide one.

4One might argue that it is possible that each time unit in [0,σ j1
− 1] both slots might be occupied by

jobs 1, . . . , j1. This can be resolved by either introducing a simple extra case or arguing that one could add a

dummy job j∗ that every other job depends on, which then would be scheduled alone at time 1.
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Open problem: Is there a PTAS for m = 3 machines based on a f (ε)-round Lasserre solu-

tion for the LP in (4)?

3.2 Set Cover

One of the fundamental optimization problems is SET COVER, where the input consists

of a family of sets S = {S1, . . . ,Sm} and each set S ∈ S has cost cS . The goal is to cover

the ground set {1, . . . ,n} at minimum cost. For any constant ε > 0, it is NP-hard to find

a (1− ε) ln(n)-approximation [DS13] and on the other side, already a simple LP round-

ing approach gives a ln(n)+1 approximation [Chv79]. So it does not seem that there is

much room for any improvement. But more precisely, what the recent result of Dinur

and Steurer provides is that there is a nO(1/ε)-time reduction from SAT to a (1− ε) ln(n)

gap instance of SETCOVER. This hardness result does not rule out a subexponential time

algorithm, which gives a (1− ε) ln(n) approximation say in time 2O(nε). In fact, exactly

this is the case as we demonstrate here, following [CFG12].

The key trick is that SET COVER can be better approximated if all sets are small. Recall

that H(k) :=
∑k

i=1
1
k
≤ ln(k)+1 is the kth harmonic number. The following theorem is due

to Chvátal [Chv79]:

Theorem 11. Given any solution x to the linear system
∑

S:i∈S xS ≥ 1 ∀i ∈ [n] xS ≥ 0 ∀S ∈
S , the greedy algorithm provides a solution of cost at most H(k) ·

∑

S∈S cS xS where k :=
max{|Si | | xi > 0} is the size of the largest set used.

Now, suppose for the sake of simplicity that we know the value of OPT (which can

be done by slightly rounding the costs ci and guessing). Then we choose the convex

relaxation K as those fractional SET COVER solutions that cost at most OPT :

K :=
{

x ∈R
m |

∑

i : j∈Si

xi ≥ 1∀ j ∈ [n];
m∑

i=1

ci xi ≤OPT ; xi ≥ 0 ∀i ∈ [m]
}

Theorem 12. Fix a 0 < ε < 1. One can find a SET COVER solution of cost ((1− ε) ln(n)+
O(1)) ·OPT in time mO(nε).

Proof. We compute a solution y ∈ LASnε(K ) in time mO(nε). We pick the largest set Si

with yi > 0 and after reindexing we assume this is S1 and replace y with a solution y (1) ∈
LASnε−1(K ) by inducing on xi = 1. More generally, after k ∈ {0, . . . ,nε−1} steps, we have a

solution y (k) and have already induced on taking S1, . . . ,Sk . Next, we pick the set S with

0 < y (k)
S

< 1 that covers the most elements in [n]\(S1 ∪ . . .∪Sk ). We stop the procedure

after having induced on nε many variables5 and let y ′ := y (nε)

. It is clear that we have paid

at most OPT for the sets S1, . . . ,Snε so far. Let X ′ := X \(S1 ∪ . . .∪Snε) be the ground set of

not yet covered elements. Consider the set system S
′ := {S ∩X ′ | S ∈S : y ′

S > 0} induced

5If we cannot find a fractional variable anymore, then we have a feasible solution of cost OPT already.
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by X ′. We claim that the remaining sets have size |S| ≤ n1−ε for all S ∈ S
′. If some set S

would have more elements then in any single conditioning step, we must have covered

more than n1−ε many elements, which means that in total more than nε ·n1−ε = n would

have been covered, which is impossible.

Note that y ′ defines a feasible LP solution for S
′ of cost at most OPT . Thus covering

the remaining elements costs at most (ln(n1−ε)+1)OPT using Theorem 11. This shows

the claim.

3.3 Matching

In the following let G = (V ,E ) be an undirected graph. A matching is a set M ⊆ E of non-

incident edges. In other words, the set of all matchings is the set of all integral solutions

to

K =
{

x ∈R
E
≥0 |

∑

e∈δ(v)

xe ≤ 1 ∀v ∈V
}

In contrast to our other applications, a maximum matching can be found in polynomial

time. On the other hand, the straightforward relaxation K is not integral. It was shown by

[Edm65] that one can obtain conv(K ∩{0,1}) by adding the so-called Blossom-inequalities

saying that in any induced subgraph with 2k+1 nodes, a matching can only pick at most

k edges:
∑

e∈E∩(U×U )

xe ≤
|U |−1

2
∀U ⊆V : |U | odd

Note that separation over these exponentially many inequalities is doable in polynomial

time, but still highly non-trivial. So it is still interesting how the Lasserre SDP behaves on

them. In fact, the integrality gap for any cost function c : E → R is bounded by 1+ 1
2t

, or

in a more polyhedral form:

Lemma 13. One has LAS
proj
t (K ) ⊆ (1+ 1

2t
) ·conv(K ∩ {0,1}n).

Proof. Let y ∈ LASt (K ). It suffices to show that for any k ∈ N and |U | = 2k + 1 one has
∑

e∈E∩U×U ye ≤ (1+ 1
2t

) ·k. First of all, the degree constraints imply that
∑

e∈E∩(U×U ) ye ≤
k + 1

2
so there is nothing to show for large U ’s with k > t . So assume k ≤ t . Note that

for I ⊆ E (U ) with |I | > k, one has yI = 0. Thus we can write y as convex combination

of solutions z ∈ LAS0(K ) with ze ∈ {0,1} for all e ∈ E (U ). Note that we want to show that

a linear constraint (namely
∑

e∈E(U ) ye ≤ (1+ 1
2t

) ·k) is satisfied and for this it suffices to

prove that the same linear constraint holds for each of the vectors z used in that convex

combination. But {e ∈ E (U ) | ze = 1} is a matching, thus
∑

e∈E(U ) ze ≤ k holds and we are

done.

Note that without the decomposition theorem we still could have obtained a bound

of 1+O( 1p
t

).
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3.4 MaxCut

The problem that brought the breakthrough by Goemans and Williamson [GW95] for

SDP based approximation algorithms is the MAXCUT problem, so it is worth studying

how the Lasserre hierarchy behaves for it. Let G = (V ,E ) be an undirected graph with

positive weights c : E → R≥0, then the goal is to find a cut S ⊆ V maximizing the weight
∑

e∈δ(S) ce of edges crossing the cut. In other words, we are looking at integral solutions

solving the following optimization problem

max
{ ∑

e∈E

ce ze | max{xi −x j , x j −xi } ≤ zi j ≤ min{xi +x j ,2−xi −x j } ∀(i , j ) ∈ E
}

where xi is the decision variable telling whether i ∈ S and zi j tells whether the edge (i , j )

lies in the cut. It is not difficult to check that if all variables are integral, zi j = |xi −x j |. Let

K be the polytope of (x, z) satisfying the linear constraints.

Note that K itself is a quite useless relaxation. For any graph we can choose xi := 1
2

and zi j := 1 and would obtain a feasible fractional solution with value |E |. On the other

hand for a complete graph with unit weights, no integral solution is better than 1
2
|E |,

showing an integrality gap of 2. In fact, no linear program of polynomial size is known

that does better. So the magic lies in the SDP constraints.

Let y ∈ LAS3(K ) be a 3-round Lasserre lifting. As the original LP has two “sorts” of

variables, namely xi and ze , we will write xi and x{i , j } for the variables {xi } and {xi , x j } in

y (we will never need to consider joint variables that mix x and z variables). First let us

understand, how the variables are related.

Lemma 14. For any edge e = (i , j ) ∈ E we have zi j = xi +xi −2x{i , j }.

Proof. We can write y as convex combination of solutions ỹ ∈ LAS0(K ) that are integral

on {xi , x j , ze }. As ze = xi + x j −2x{i , j } is a linear constraint, it suffices to that it holds for

each ỹ , which is clearly the case (here we can use that x{i , j } = xi · x j ∈ {0,1} whenever

xi , x j ∈ {0,1}).

The seminal Goemans Williamson algorithm obtains an approximate maximum cut

by first solving a vector SDP then choosing a random hyper plane and declaring all nodes

whose vectors are on one side of the hyperplane as cut S. We know by Lemma 7 that there

are vectors vi such that 〈vi , v j 〉 = x{i , j } for all i , j ∈ V . So the obvious idea would be to

perform the hyperplane rounding with these vi ’s. But this is actually not a good idea.

Because the vectors have angles between 0o and 90o , they are all on “one side” from

the origin. It would be smarter to perform a vector transformation such that the angles

between vectors are in the range of 0o to 180o .

In fact, if we choose ui := 2vi − v; then the ui ’s are unit vectors. Moreover for an

edge e = (i , j ) with ze = 0 the “strong will” of the Lasserre solution is to have i and j on

different sides of the cut and indeed the vectors ui and u j are placed antipodal.
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Let us show these claims formally.

Lemma 15. The vectors ui := 2vi −v; form a solution to the Goemans-Williamson SDP

max
{ ∑

(i , j )∈E

ci j ·
1−ui u j

2
| ‖ui‖2 = 1 ∀i ∈V

}

and
1−ui u j

2
= zi j .

Proof. First of all, the ui ’s are indeed unit vectors as ‖ui‖2
2 = ‖2vi − v;‖2

2 = 4‖vi‖2
2 − 2 ·

2vi v;+‖v;‖2
2 = 1. We verify that

ui u j = (2vi −v;)(2v j −v;) = 4vi v j −v;vi −v;v j +‖v;‖2
2 = 1−2zi j

and rearranging yields the claim zi j =
1−ui u j

2
.

For the rounding, we will need a random vector. First, recall that a 1-dimensional

Gaussian with mean 0 and variance 1 is a continous random variable gi ∈R with density

function 1p
2π

e−x2/2. We can use this to define an m-dimensional Gaussian by choos-

ing independently 1-dimensional Gaussians g1, . . . , gm and put them together in a vector

g = (g1, . . . , gm). The nice property of Gausians is that they are rotationally symmetric.

This means, we could have picked any other orthonormal basis b1, . . . ,bm , then the dis-

tribution of g =
∑m

i=1 bi gi would not have changed. In particular, for any unit vector

v , the scalar product 〈g , v〉 is again distribution like a 1-dimensional Gaussian. In the

following let SDP =
∑

e∈E ce ze be the value of the Lasserre SDP.

Lemma 16. Take a random Gaussian g ∼ N m(0,1) and define S := {i ∈V | g ui ≥ 0}. Then

Pr[e ∈ δ(S)] ≥ 0.87 · ze . In particular E[
∑

e∈δ(S) ce ] ≥ 0.87 ·SDP .

Proof. Consider an edge (i , j ) ∈ E and the 2-dimensional plane containing ui and u j and

denote the angle between ui and u j by θ. The projection of g into this plane is just a 2-

dimensional random Gaussian inducing a hyperplane through the origin with normal

vector g . Alternatively we can imagine that this hyperplane is just a line spanned by a
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random unit vector a and (i , j ) ∈ δ(S) if and only if the random direction a separates ui

and u j .

u j

ui

a
θ

0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1.0

0.878 · ze

1
πacos(1−2ze )

ze

Pr[e ∈ δ(S)]

The probability for this is exactly θ
π . It remains to express the angle as θ = acos(ui u j ) =

acos(1−2zi j ), hence Pr[(i , j ) ∈ δ(S)] = 1
πacos(1−2zi j ). Then the expected integrality gap

is
Pr[(i , j ) ∈ δ(S)]

zi j
≥ min

0≤zi j≤1

1

π

acos(1−2zi j )

zi j
≈ 0.878

3.5 Global Correlation Rounding

In the following we want to show a PTAS for MAXCUT in dense graphs, based on the

Lasserre hierarchy. More precisely, in any undirected graph with at least εn2 edges, we

will find a cut of value at least (1 − ε) ·OPT . Such a result was first obtained using a

combinatorial algorithm chooses randomly a constant number of nodes and guesses

their partition in the optimum [AKK95, dlV96]. Also for hierarchies such a result is known

due to de la Vega and Kenyon-Mathieu [dlVKm07].

However, we want to use the opportunity to demonstrate the important technique of

Global Correlation Rounding to prove a PTAS. This technique was introduced by Barak,

Raghavendra and Steurer [BRS11] and independently by Guruswami and Sinop [GS11]

to solve constraint satisfaction problems like MAXCUT or UNIQUEGAMES via SDP hier-

archies. Here the performance depends crucially on the Eigenvalue spectrum of the un-

derlying constraint graph. In our exposition, we use parts of the analysis of [AG11].

For the moment, let K = {x ∈R
n | Ax ≥ b} an arbitrary polytope and y ∈ LASt (K ) with

t ≥ 3. Consider two variables i , j ∈ [n] and let (Xi , X j ) ∼ D{i , j }(y) be the corresponding

jointly distributed 0/1 random variables, see Lemma 56. The following fact is well known:

conditioning on X j (X j = 1 with probability y j and X j = 0 otherwise) will decrease the

variance of Xi (or leave it invariant) and the decrease is growing with the correlation of

Xi and X j .

This leads to the following approach for a rounding algorithm: first we induce on a

constant number of variables so that most pairs of variables i , j will later be uncorre-

6Recall that this means Pr[Xi = 1] = yi , Pr[X j = 1] = y j and Pr[Xi = X j = 1] = y{i , j }
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lated. Then a simple randomized rounding of an uncorrelated instance can provide a

solution which is almost as good as the SDP relaxation.

Let us make this more formal. We want to remind the reader that the variance of a

0/1 variable is Var[X j ] = E[X 2
j

]−E[X j ]2 = y j (1− y j ) and their covariance is Cov[Xi , X j ] =
E[Xi X j ]−E[Xi ] ·E[X j ] = yi j − yi y j . The law of total variance says that

E
X j

[Var[Xi | X j ]] = Var[Xi ]−VarX j
[E[Xi | X j ]]

We want to examine the quantity VarX j
[E[Xi | X j ]] a little closer. First of all E[Xi | X j =

1] = y{i , j }

y j
and E[Xi | X j = 0] = yi−y{i , j }

1−y j
and EX j

[E[Xi | X j ]] = E[Xi ] = yi , thus

VarX j
[E[Xi | X j ]] = y j ·

(
yi j

y j

)2

+ (1− y j ) ·
(

yi − yi j

1− y j

)2

︸ ︷︷ ︸

E[...2]

− y2
i

︸︷︷︸

=E[...]2

(6)

=
(yi y j − yi j )2

y j (1− y j )
=

Cov[Xi , X j ]2

Var[X j ]
≥ 4 ·Cov[Xi , X j ]2

(7)

This motivates two important definitions. Let R ⊆ [n] be a subset of relevant variables

for which we would like to have a low correlation. We define the variance of y w.r.t. R as

VR (y) :=
∑

i∈R yi (1− yi ). Moreover, we define the correlation of y w.r.t. variables R as

CR (y) =
∑

i∈R

∑

j∈R

(yi y j − y{i , j })
2

We obtain the following general theorem.

Theorem 17 (Global Correlation Theorem). Let K = {x ∈ R
n | Ax ≥ b} be any polytope,

y ∈ LASt (K ) with t ≥ 1
ε3 +2 and R ⊆ [n]. Then one can induce on at most 1

ε3 variables in

R to obtain y ′ ∈ LASt−1/ε3 (K ) such that CR (y ′) ≤ ε3

4
|R|2 and in particular Pri , j∈R [|yi y j −

y{i , j }| ≥ ε] ≤ ε.

Proof. We begin with studying the effect of a single random conditioning. Choose an

index j ∈ R uniform at random and choose a ∈ {0,1} so that Pr[a = 1] = y j . Let y ′ ∈
LASt−1(K ) be the solution y induced on y ′

j
= a. Then the variance of y ′ behaves as

E
j ,a

[VR (y ′)] = E
j ,a

[ ∑

i∈R

y ′
i (1−y ′

i )
] Eq (6)

≤
1

|R|
∑

j∈R

∑

i∈R

(

yi (1−yi )−4(yi y j−y{i , j })
2
)

=VR (y)−
4CR (y)

|R|

Of course, there exists at least one choice of j and a such that indeed VR (y ′) ≤ VR (y)−
4
|R|CR (y). We run the following procedure (starting with y ′ := y).

(1) REPEAT
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(2) IF CR (y ′) ≤ ε3

4
· |R|2 THEN return the current y ′

(3) Find that j ∈ R and a ∈ {0,1} maximizing the decrease in variance and induce

on it.

It remains to show that the procedure stops after at most 1
ε3 iterations. Initially VR (y) =

∑

i∈R yi (1− yi ) ≤ |R|
4

and in each iteration the term VR (y ′) decreases by ε3|R|. Thus we

stop after at most 1
ε3 many iterations.

Finally, if and the end more than ε|R|2 pairs i , j would have |yi y j − yi j | ≥ ε then

CR (y ′) ≥ ε|R|2 ·ε2 which is a contradiction.

We want to emphasize that so far we have not used anything problem specific.

3.5.1 Application to MaxCut in dense graphs

Now we are ready to demonstrate why uncorrelated solutions can be so useful. Let G =
(V ,E ) be a MAXCUT instance with |E | ≥ εn2 many unweighted edges. Let K (α) be the

convex set of solutions (x, z) satisfying

max{xi −x j , x j −xi } ≤ zi j ≤ min{xi +x j ,2−xi −x j } ∀(i , j ) ∈ E
∑

(i , j )∈E

zi j = α

where α ∈ [0, |E |] is the value of the objective function. Now the PTAS is easy to obtain:

Lemma 18. For ε> 0 let G = (V ,E ) be a MAXCUT instance with |E | ≥ εn2 and ỹ ∈ LAS(1/ε)4+3(K (α)).

Then there is a cut S ⊆V with |δ(S)| ≥ (1−O(ε)) ·α.

Proof. Using Theorem 17 we can extract an uncorrelated solution y ∈ LAS3(K ) from ỹ

such that CR (y) ≤ ε4n2 (we choose R as the set of x-variables). In particular, we have

Pri , j∈V [|xi x j − x{i , j }| ≥ ε] ≤ ε2. We call an edge (i , j ) ∈ E bad if either |xi x j − xi j | > ε2 or

xi j ≤ ε (or both). Other edges are called good. Note that the contribution of bad edges to

the SDP value is at most 2ε2n2 ≤ 4ε ·α (here we can assume that α≥ |E |
2

), thus it suffices

to consider good edges in our rounding scheme. We determine the cut S as follows:

for every node i ∈ V we flip an independent coin and put it into S with probability xi .

Consider a good edge (i , j ) and recall that its contribution to the SDP value is zi j = xi +
x j −2x{i , j } ≥ ε, see Section 3.4. The chance that this good edge is included in our cut is

Pr[(i , j ) ∈ δ(S)] = xi (1−x j )+(1−xi )x j = xi+x j−2xi x j

(i , j ) good
≥ xi +x j −2(xi j

︸ ︷︷ ︸

=zi j

+ ε2
︸︷︷︸

≤εzi j

) ≥ (1−2ε)·zi j

and the claim follows.

In Section 3.4, we somewhat got the impression that hyperplane rounding is “better”

for MAXCUT, as independent rounding. But this is not the case here anymore. If we have
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a completely uncorrelated edge (i , j ) ∈ E , i.e. xi j = xi · x j and for example xi = 0.1 and

x j = 0.9, then the contribution to the SDP objective function is zi j = 0.82, while a cut

S provided by the hyperplane rounding yields Pr[(i , j ) ∈ δ(S)] = 1
πacos(1−2zi j ) ≈ 0.72 ≈

0.88 · zi j .
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