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Chapter 1

Background

This chapter sets the notation and reviews the background material that
will be used throughout the rest of the book. The reader can safely skim
this chapter during the first pass and refer back to it when necessary. The
discussion is purposefully kept brief. The comments section at the end of
the chapter lists references where a more detailed treatment may be found.

Roadmap. Sections 1.1-1.3 review basic constructs of linear algebra, in-
cluding inner products, norms, linear maps and their adjoints, as well as
eigenvalue and singular value decompositions. Section 1.4 establishes nota-
tion for basic set operations, such as sums and images/preimages of sets.
Section 1.5 focuses on topological preliminaries; the main results are the
Bolzano-Weierstrass theorem and a variant of the extreme value theorem.
The final Sections 1.6-1.8 formally define first and second-order derivatives
of multivariate functions, establish estimates on the error in Taylor approx-
imations, and deduce derivative-based conditions for local optimality. The
material in Sections 1.6-1.8 is often covered superficially in undergraduate
courses, and therefore we provide an entirely self-contained treatment.

1.1 Inner products and linear maps

Throughout, we fix an Euclidean space E, meaning that E is a finite-
dimensional real vector space endowed with an inner product 〈·, ·〉. Recall
that an inner-product on E is an assignment 〈·, ·〉 : E × E → R satisfying
the following three properties for all x, y, z ∈ E and scalars a, b ∈ R:

(Symmetry) 〈x, y〉 = 〈y, x〉

1
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(Bilinearity) 〈ax+ by, z〉 = a〈x, z〉+ b〈y, z〉

(Positive definiteness) 〈x, x〉 ≥ 0 and equality 〈x, x〉 = 0 holds if and
only if x = 0.

The most familiar example is the Euclidean space of n-dimensional col-
umn vectors Rn, which we always equip with the dot-product

〈x, y〉 :=
n∑
i=1

xiyi.

One can equivalently write 〈x, y〉 = xT y. We will denote the coordinate
vectors of Rn by ei and for any vector x ∈ Rn, the symbol xi will denote
the i’th coordinate of x. A basic result of linear algebra shows that all
Euclidean spaces E can be identified with Rn for some integer n, once an
orthonormal basis is chosen. Though such a basis-specific interpretation
can be useful, it is often distracting, with the indices hiding the underlying
geometry. Consequently, it is often best to think coordinate-free.

The space of real m×n-matrices Rm×n furnishes another example of an
Euclidean space, which we always equip with the trace product

〈X,Y 〉 := trXTY.

Some arithmetic shows the equality 〈X,Y 〉 =
∑

i,j XijYij . Thus the trace

product on Rm×n coincides with the usual dot-product on the matrices
stretched out into long vectors. An important Euclidean subspace of Rn×n

is the space of real symmetric n×n-matrices Sn, along with the trace product
〈X,Y 〉 := trXY .

For any linear mapping A : E→ Y, there exists a unique linear mapping
A∗ : Y → E, called the adjoint, satisfying

〈Ax, y〉 = 〈x,A∗y〉 for all points x ∈ E, y ∈ Y.

In the most familiar case of E = Rn and Y = Rm, any linear map A can
be identified with a matrix A ∈ Rm×n, while the adjoint A∗ may then be
identified with the transpose AT .

Exercise 1.1. Given a collection of real m × n matrices A1, A2, . . . , Al,
define the linear mapping A : Rm×n → Rl by setting

A(X) := (〈A1, X〉, 〈A2, X〉, . . . , 〈Al, X〉).

Show that the adjoint is the mapping A∗y = y1A1 + y2A2 + . . .+ ylAl.
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Linear mappings A : E → E, between a Euclidean space E and itself,
are called linear operators, and are said to be self-adjoint if equality A = A∗
holds. Self-adjoint operators on Rn are precisely those operators that are
representable as symmetric matrices. A self-adjoint operator A is positive
semi-definite, denoted A � 0, whenever

〈Ax, x〉 ≥ 0 for all x ∈ E.

Similarly, a self-adjoint operator A is positive definite, denoted A � 0, when-
ever

〈Ax, x〉 > 0 for all 0 6= x ∈ E.

For any two linear operators A and B, we will use the notation A− B � 0
to mean A � B. The notation A− B � 0 is defined similarly.

1.2 Norms

A norm on a vector space V is a function ‖·‖ : V → R for which the following
three properties hold for all point x, y ∈ V and scalars a ∈ R:

(Absolute homogeneity) ‖ax‖ = |a| · ‖x‖

(Triangle inequality) ‖x+ y‖ ≤ ‖x‖+ ‖y‖

(Positivity) Equality ‖x‖ = 0 holds if and only if x = 0.

The inner product in the Euclidean space E always induces a norm ‖x‖ =√
〈x, x〉. Unless specified otherwise, the symbol ‖x‖ for x ∈ E will always

denote this induced norm. For example, the dot product on Rn induces the
usual 2-norm ‖x‖2 :=

√
x2

1 + . . .+ x2
n, while the trace product on Rm×n

induces the Frobenius norm ‖X‖F :=
√

tr (XTX). The Cauchy–Schwarz
inequality guarantees that the induced norm satisfies the estimate:

|〈x, y〉| ≤ ‖x‖ · ‖y‖ for all x, y ∈ E. (1.1)

Other important examples of norms are the lp-norms on Rn:

‖x‖p =

{
(|x1|p + . . .+ |xn|p)1/p for 1 ≤ p <∞
max{|x1|, . . . , |xn|} for p =∞ .

The most notable of these are the l1, l2, and l∞ norms; see Figure 1.1.
For an arbitrary norm ‖ · ‖ on E, the dual norm ‖ · ‖∗ on E is defined by

‖v‖∗ := max{〈v, x〉 : ‖x‖ ≤ 1}.
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(a) p = 1 (b) p = 1.5 (c) p = 2 (d) p = 5 (e) p =∞

Figure 1.1: Unit balls of `p-norms.

Thus ‖v‖∗ is the maximal value that the linear function x 7→ 〈v, x〉 takes
over the closed unit ball of the norm ‖ · ‖. For example, the lp and lq norms
on Rn are dual to each other whenever p−1 + q−1 = 1 and p, q ∈ [1,∞]. In
particular, the `2-norm on Rn is self-dual; the same goes for the Frobenius
norm on Rm×n (why?). More generally, it follows directly from (1.1) that
the norm induced by the inner product in E is always self-dual. For an
arbitrary norm ‖ · ‖ on E, the generalized Cauchy-Schwarz inequality holds:

|〈x, y〉| ≤ ‖x‖ · ‖y‖∗ for all x, y ∈ E.

All norms on E are “equivalent” in the sense that any two are within a
constant factor of each other. More precisely, for any two norms ρ1(·) and
ρ2(·), there exist constants α, β > 0 satisfying

αρ1(x) ≤ ρ2(x) ≤ βρ1(x) for all x ∈ E.

Case in point, for any vector x ∈ Rn, the relations hold:

‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2

‖x‖∞ ≤ ‖x‖2 ≤
√
n‖x‖∞

‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞.

For our purposes, the term “equivalent” is a misnomer: the proportionality
constants α, β strongly depend on the (often enormous) dimension of the
vector space E. Hence measuring quantities in different norms can yield
strikingly different conclusions.

1.3 Eigenvalue and singular value decompositions
of matrices

The symbol Sn will denote the set of n× n real symmetric matrices

Sn := {X ∈ Rn×n : XT = X},
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while O(n) will denote the set of n× n real orthogonal matrices:

O(n) := {X ∈ Rn×n : XTX = XXT = I}.

A number λ ∈ R is an eigenvalue of a symmetric matrix A ∈ Sn×n if there
exists a vector 0 6= v ∈ Rn satisfying Av = λv. Any such vector v is called
an eigenvector corresponding to λ. Thus the eigenvalues of A are precisely
the roots of the characteristic polynomial

λ 7→ det(A− λI).

A central result of linear algebra shows that all n roots of this polynomial
are real, when A is symmetric. We may therefore fix an ordering and denote
the eigenvalues of A by

λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A).

Any symmetric matrix A ∈ Sn admits an eigenvalue decomposition,
meaning a factorization of the form

A = UΛUT , (1.2)

where U ∈ O(n) is orthogonal and Λ ∈ Sn is a diagonal matrix. The diag-
onal elements of Λ are precisely the eigenvalues of A and the columns of U
are corresponding eigenvectors. A simple consequence of the decomposition
(1.2) is the Rayleigh-Ritz theorem, which guarantees the relation:

λn(A) ≤ 〈Au, u〉
〈u, u〉

≤ λ1(A) for all u ∈ Rn \ {0}.

Thus the two conditions, A � 0 and λn(A) ≥ 0 are equivalent; similarly,
A � 0 if and only λn(A) > 0. An important consequence of the eigenvalue
decomposition (1.2) is that a matrix A ∈ Sn is positive semidefinite if and
only if there exists a matrix B ∈ Sn satisfying A = BB (why?). The matrix
B is called the square root of A, and is denoted by B = A1/2.

More generally, any rectangular matrix A ∈ Rm×n admits a singular
value decomposition, meaning a factorization of the form

A = UΣV T ,

where U ∈ O(m) and V ∈ O(n) are orthogonal matrices and Σ ∈ Rm×n is a
diagonal matrix with nonnegative diagonal entries. The diagonal elements
of Σ are uniquely defined and are called the singular values of A. Supposing
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without loss of generality m ≤ n, the singular values of A are precisely the
square roots of the eigenvalues of AAT , and we denote them by

σ1(A) ≥ σ2(A) ≥ . . . ≥ σm(A) ≥ 0.

In particular, the maximal singular-value σ1(A) coincides with the operator
norm of A, defined as

‖A‖op := sup
x:‖x‖≤1

‖Ax‖.

See Figure 1.2 for an illustration.

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Figure 1.2: The shaded ellipse is the image of the unit disk by a nonsingular
matrix A ∈ R2×2. The radii of the circumscribed and inscribed circles are
σ1(A) and σ2(A), respectively.

Exercise 1.2. Given a positive definite matrix A ∈ Sn, show that the
assignment 〈v, w〉A := 〈Av,w〉 is an inner product on Rn, with the induced
norm ‖v‖A =

√
〈Av, v〉. Show that the dual norm with respect to the

original inner product 〈·, ·〉 is ‖v‖∗A = ‖v‖A−1 =
√
〈A−1v, v〉.

[Hint: Use the fact that any positive definite matrix A admits a square
root.]

1.4 Set operations

In this section, we review notation for sums, generated cones, and im-
ages/preimages of sets. For any two sets A,B ⊂ E and λ ∈ R, define
the set operations:

λA := {λa : a ∈ A} and A+B := {a+ b : a ∈ A, b ∈ B}.
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Thus the points in λA are simply the points in A scaled by λ. One can
visualize the sum A+B by writing it more suggestively as

A+B =
⋃
a∈A

(a+B).

Thus A+B is formed from the union of the shifted sets a+B over all points
a ∈ A. In particular, forming the sum of a set A ⊂ E and a unit ball B in
E has the affect of “fattening” A. The symbol A − B is defined similarly.
The cone generated by a set A ⊂ E will be denoted by

R+A := {λx : x ∈ A, λ ≥ 0}.

See Figure 1.3 for an illustration of the generated cone and sum operation.

A

R+A

(a) Generated cone.

+ =A B A +B

(b) Disk plus square.

Figure 1.3: Sum and cone operations.

For any map F : E→ Y and sets A ⊂ E and B ⊂ Y, define the two sets

FA = {F(x) : x ∈ A} and F−1B = {x : Fx ∈ B}.

The set FA is called the image of A under F , while F−1B is called the
preimage of B under F . Notice that the sum A+B can also be written as
the linear image of the product setQ := A×B under the map F(x, y) = x+y.

1.5 Point-set topology and existence of minimizers

The symbol Br(x) will denote an open ball of radius r around a point x,
namely Br(x) := {y ∈ E : ‖y − x‖ < r}. We will denote the open unit
ball by B. The closure of a set Q ⊂ E, denoted clQ, consists of all points
x such that the ball Bε(x) intersects Q for all ε > 0; the interior of Q,
written as intQ, is the set of all points x such that Q contains some open
ball around x. We say that Q is an open set if it coincides with its interior
and a closed set if it coincides with its closure. Any set Q in E that is closed
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and bounded is called a compact set. We will often use the following result
without explicitly quoting it.

Theorem 1.3 (Bolzano-Weierstrass). Any sequence in a compact set Q ⊂ E
admits a subsequence converging to a point in Q.

It will often be convenient to allow functions to take infinite values.
Consequently, define the extended real line R := R ∪ {±∞}. The limit
inferior and limit superior of any sequence {ri} ⊂ R are defined by

liminf
i→∞

ri = lim
i→∞

{
inf
j≥i

rj

}
and limsup

i→∞
ri = lim

i→∞

{
sup
j≥i

rj

}
.

For any function f : E→ R and a point x ∈ E, we set

liminf
y→x

f(y) = lim
r>0

{
inf

y∈Br(x)\{x}
f(y)

}
The symbol limsupy→x f(y) is defined similarly, with sup replacing inf.

A basic question one can ask when minimizing a function f : E → R
is whether a minimizer even exists. For example, the infimal value of the
function f(x) = ex is zero and yet this value is not attained at any point.
A standard way to ensure that a function has minimizers, which we now
discuss, is by assuming (1) compactness and (2) a mild continuity property.

Definition 1.4 (Lower-semicontinuous). A function f : E → R is lower-
semicontinuous at x ∈ E if the inequality liminfy→x f(y) ≥ f(x) holds. If
f is lower-semicontinuous at every point x ∈ E, then we call f closed.

Intuitively, lower-semicontinuity of f at x asserts that the function values
cannot suddenly jump down as one moves slightly away from x. For example,
the step function

f(x) =

{
−1 if x < 0

1 if x ≥ 0

is not lower-semicontinuous at x = 0 since limi→∞ f(−i−1) = −1 < f(0). If
instead we redefine f(0) = −1, then the function becomes lower-semicontinuous;
see Figure 1.4.

The following exercise shows that f is lower-semicontinuous at every
point in E if and only if its epigraph—the set above the graph—is a closed
set, thereby explaining why Definition 1.4 calls such functions closed. The
geometry of the epigraph will play a central role in the later chapters.
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f

(a) Closed.

f

(b) Not closed.

Figure 1.4: Closed functions.

Exercise 1.5. b Show that a function f : E → R is closed if and only if
the set, {(x, r) ∈ E×R : f(x) ≤ r}, is closed.

The following exercise shows that the infimal value of a closed function
on a compact set is always attained.

Exercise 1.6 (Existence of minimizers on compact sets). b Consider a
closed function f : E → R and a nonempty compact set Q ⊂ E. Then the
infimum value infx∈Q f(x) is attained at some point in Q.

[Hint: Apply the Bolzano-Weierstrass Theorem to the sequence xi ∈ Q
satisfying f(xi)→ infQ f and invoke lower-semicontinuity.]

An important downside of the above exercise is it only guarantees exis-
tence of minimizers over compact sets. In light of the exponential example
mentioned previously, if we wish to guarantee existence of minimizers over
E, then we must focus on a favorable class of functions.

Definition 1.7 (Coercive). A function f : E → R is coercive if for any
sequence xi with ‖xi‖ → ∞, it must be that f(xi)→ +∞.

Equivalently, a function f is coercive precisely when the sublevel sets
{x : f(x) ≤ r} are bounded for every r ∈ R (check this!). For example, the
function f(x) = ex

2
is coercive while the exponential f(x) = ex is not.

Exercise 1.8 (Existence of unconstrained minimizers). b Any coercive
closed function f : E→ R has a minimizer.

[Hint: Choose r ∈ R such that the sublevel set L = {x : f(x) ≤ r} is
nonempty and apply Exercise 1.6.]
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1.6 Differentiability

For the rest of the section, let E and Y be two Euclidean spaces, and U
an open subset of E. A mapping F : Q → Y, defined on a subset Q ⊂ E,
is continuous at a point x ∈ Q if for any sequence xi in Q converging to
x, the values F (xi) converge to F (x). We say that F is continuous if it is
continuous at every x ∈ Q. We say that F is L-Lipschitz continuous if

‖F (y)− F (x)‖ ≤ L‖y − x‖ for all x, y ∈ Q.

If F if L-Lipschitz continuous with L ∈ [0, 1), then we call F a contraction.
If instead, F is 1-Lipschitz continuous, we say that F is nonexpansive.

A function f : U → R is differentiable at a point x in U if there exists a
vector, denoted by ∇f(x) ∈ E, satisfying

lim
h→0

f(x+ h)− f(x)− 〈∇f(x), h〉
‖h‖

= 0. (1.3)

In words, the estimate (1.3) means that as h tends to zero, the error f(x+
h)− f(x)−〈∇f(x), h〉 tends to zero faster than any linear function. Rather
than carrying fractions around, which can be cumbersome, it is convenient
to introduce the following notation. The symbol o(r) will always stand for a
term satisfying 0 = limr↓0 o(r)/r. Then the equation (1.3) simply amounts
to the expression

f(x+ h) = f(x) + 〈∇f(x), h〉+ o(‖h‖).

The term o(‖h‖) is informally called a first-order error because it decays to
zero faster than any linear function, as h tends to zero. The vector ∇f(x)
is called the gradient of f at x. In the most familiar setting E = Rn, the
gradient is simply the vector of partial derivatives

∇f(x) =


∂f(x)
∂x1
∂f(x)
∂x2
...

∂f(x)
∂xn

 .

If the gradient mapping x 7→ ∇f(x) is well-defined and continuous on U ,
we say that f is C1-smooth. If the gradient satisfies the stronger Lipschitz
property

‖∇f(y)−∇f(x)‖ ≤ β‖y − x‖ holds for all x, y ∈ U,
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then we say that f is β-smooth.
More generally, a mapping F : U → Y is differentiable at x ∈ U if there

exists a linear mapping from E to Y, denoted by ∇F (x), satisfying

F (x+ h) = F (x) +∇F (x)h+ o(‖h‖).

The linear mapping∇F (x) is called the Jacobian of F at x. If the assignment
x 7→ ∇F (x) is continuous, we say that F is C1-smooth. In the most familiar
setting E = Rn and Y = Rm, we can write F in terms of coordinate
functions F (x) = (F1(x), . . . , Fm(x)), and then the Jacobian is simply

∇F (x) =


∇F1(x)T

∇F2(x)T

...
∇Fm(x)T

 =


∂F1(x)
∂x1

∂F1(x)
∂x2

. . . ∂F1(x)
∂xn

∂F2(x)
∂x1

∂F2(x)
∂x2

. . . ∂F2(x)
∂xn

...
...

. . .
...

∂Fm(x)
∂x1

∂Fm(x)
∂x2

. . . ∂Fm(x)
∂xn

 .

Finally, we introduce second-order derivatives. A C1-smooth function
f : U → R is twice differentiable at a point x ∈ U if the gradient map
∇f : U → E is differentiable at x. Then the Jacobian of the gradient
∇(∇f)(x) is denoted by ∇2f(x) and is called the Hessian of f at x. Unrav-
eling notation, the Hessian ∇2f(x) is characterized by the condition

∇f(x+ h) = ∇f(x) +∇2f(x)h+ o(‖h‖).

If the map x 7→ ∇2f(x) is continuous, we say that f is C2-smooth. If f is
indeed C2-smooth, then a basic result of calculus shows that ∇2f(x) is a
self-adjoint operator.

In the standard setting E = Rn, the Hessian is the matrix of second-
order partial derivatives

∇2f(x) =


∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

. . . ∂2f1(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2

2
. . . ∂2f(x)

∂x2∂xn
...

...
. . .

...
∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

. . . ∂2f(x)
∂x2
n

 .

This matrix is symmetric, as long as it varies continuously with x in U .

Exercise 1.9. b Define the function

f(x) = 1
2〈Ax, x〉+ 〈v, x〉+ c

where A : E→ E is a linear operator, v lies in E, and c is a real number.
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1. Show that if A is replaced by the self-adjoint operator (A + A∗)/2, the
function values f(x) remain unchanged.

2. Assuming A is self-adjoint, derive the equations:

∇f(x) = Ax+ v and ∇2f(x) = A.

3. Assuming A is self-adjoint, show that f is coercive if and only if A is
positive definite.

Exercise 1.10. Define the function f(x) = 1
2‖F (x)‖2, where F : E→ Y is

a C1-smooth mapping. Prove the identity ∇f(x) = ∇F (x)∗F (x).

Exercise 1.11. b Consider a function f : E → R and a linear mapping
A : Y → E and define the composition h(x) = f(Ax).

1. Show that if f is differentiable at Ax, then

∇h(x) = A∗∇f(Ax).

2. Show that if f is twice differentiable at Ax, then

∇2h(x) = A∗∇2f(Ax)A.

Exercise 1.12. b Define the two sets

Rn
++ := {x ∈ Rn : xi > 0 for all i = 1, . . . , n},

Sn++ := {X ∈ Sn : X � 0}.

Consider the two functions f : Rn
++ → R and F : Sn++ → R given by

f(x) = −
n∑
i=1

log xi and F (X) = − log det(X),

respectively. Note, from basic properties of the determinant, the equality
F (X) = f(λ(X)), where we set λ(X) := (λ1(X), . . . , λn(X)).

1. Find the derivatives ∇f(x) and ∇2f(x) for x ∈ Rn
++.

2. Using the property tr (AB) = tr (BA), prove ∇F (X) = −X−1 and
∇2F (X)[V ] = X−1V X−1 for any X � 0.

[Hint: To compute ∇F (X), justify

F (X+tV )−F (X)+t〈X−1, V 〉 = − log det(I+tX−1/2V X−1/2)+t·tr (X−1/2V X−1/2).
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By rewriting the expression in terms of eigenvalues of X−1/2V X−1/2,
deduce that the right-hand-side is o(t). To compute the Hessian, observe

(X + V )−1 = X−1/2
(
I +X−1/2V X−1/2

)−1
X−1/2,

and then use the expansion

(I +A)−1 = I −A+A2 −A3 + . . . = I −A+O(‖A‖2op),

whenever ‖A‖op < 1. ]

3. Show
〈∇2F (X)[V ], V 〉 = ‖X−

1
2V X−

1
2 ‖2F

for any X � 0 and V ∈ Sn. Deduce that the operator ∇2F (X) : Sn → Sn

is positive definite.

1.7 Accuracy in approximation

Recall that a set U in E is convex if for any two points x, y ∈ U and real
λ ∈ [0, 1], the point λx + (1 − λ)y lies in U . In other words, a set U is
convex if and only if the line segment joining any two point x, y ∈ U lies
entirely in U . Throughout the rest of the section, we let U be an open,
convex subset of E. Consider a function f : U → R and a point x ∈ U .
Multivariate calculus identifies the following two functions as the “best”
linear and quadratic approximations of f near x, respectively:

lx(y) := f(x) + 〈∇f(x), y − x〉,
Qx(y) := f(x) + 〈∇f(x), y − x〉+ 1

2〈∇
2f(x)(y − x), y − x〉.

The goal of this section is to quantify how closely lx(y) and Qx(y) approxi-
mate f(y) under various smoothness assumptions on f . All results will fol-
low quickly by restricting multivariate functions to line segments and then
applying the fundamental theorem of calculus. To this end, the following
observation plays a basic role.

Exercise 1.13. b Consider a function f : U → R and two points x, y ∈ U .
Define the univariate function ϕ : [0, 1]→ R given by ϕ(t) = f(x+ t(y−x))
and let xt := x+ t(y − x) for any t.

1. Show that if f is C1-smooth, then equality

ϕ′(t) = 〈∇f(xt), y − x〉 holds for any t ∈ (0, 1).
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2. Show that if f is C2-smooth, then equality

ϕ′′(t) = 〈∇2f(xt)(y − x), y − x〉 holds for any t ∈ (0, 1).

The following theorem precisely quantifies the gap between f(y) and its
linear and quadratic models, lx(y) and Qx(y).

Theorem 1.14 (Accuracy in approximation). Consider a C1-smooth func-
tion f : U → R and two points x, y ∈ U . Then we have

f(y) = lx(y) +

∫ 1

0
〈∇f(x+ t(y − x))−∇f(x), y − x〉 dt. (1.4)

If f is C2-smooth, then the equation holds:

f(y) = Qx(y) +

∫ 1

0

∫ t

0
〈(∇2f(x+ s(y − x))−∇2f(x))(y − x), y − x〉 ds dt.

Proof. Define the univariate function ϕ(t) := f(x + t(y − x)). The funda-
mental theorem of calculus yields the relation

ϕ(1)− ϕ(0) =

∫ 1

0
ϕ′(t) dt = ϕ′(0) +

∫ 1

0
ϕ′(t)− ϕ′(0) dt.

Using Exercise 1.13 directly yields (1.4). Suppose now that f is C2-smooth.
Applying the fundamental theorem of calculus twice yields

ϕ(1)− ϕ(0) =

∫ 1

0
ϕ′(t) dt =

∫ 1

0
(ϕ′(0) +

∫ t

0
ϕ′′(s) ds) dt

= ϕ′(0) +
1

2
ϕ′′(0) +

∫ 1

0

∫ t

0
ϕ′′(s)− ϕ′′(0) ds dt.

Appealing to Excercise 1.13, the result follows.

Theorem 1.14 has a number of important consequences, two of which we
derive now. The first consequence of Theorem 1.14 that we will often use
is summarized in Corollary 1.15. The result shows that when the gradient
mapping ∇f is β-Lipschitz continuous, one can replace the error term o(‖y−
x‖) in the definition of the gradient by a quadratic β

2 ‖y − x‖2, with the
estimation being accurate uniformly over all x and y.

Corollary 1.15 (Accuracy in approximation under Lipschitz conditions).
Suppose that f : U → R is a β-smooth function. Then for any points x, y ∈
U the inequality ∣∣∣f(y)− lx(y)

∣∣∣ ≤ β

2
‖y − x‖2 holds. (1.5)
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Proof. Taking absolute values in (1.4) yields

|f(y)− lx(y)| ≤
∫ 1

0
|〈∇f(x+ t(y − x))−∇f(x), y − x〉| dt

≤
∫ 1

0
‖∇f(x+ t(y − x))−∇f(x)‖ · ‖y − x‖ dt (1.6)

≤ β‖y − x‖2 ·
(∫ 1

0
t dt

)
=
β

2
‖y − x‖2, (1.7)

where (1.6) follows from the Cauchy–Schwarz inequality and (1.7) uses Lip-
schitz continuity of ∇f .

Exercise 1.16. Consider a function f : U → R that is C2-smooth. Show
that f is β-smooth if and only if the inequality ‖∇2f(x)‖op ≤ β holds.

The estimate (1.5) has a nice geometric interpretation. Observe that the
inequality amounts to the two-sided bound

lx(y)− β

2
‖y − x‖2 ≤ f(y) ≤ lx(y) +

β

2
‖y − x‖2.

Thus if f is β-smooth, then each point x yields two simple quadratics with
amplitude β that upper-bound and lower-bound f , respectively, and agree
with f at x. See Figure 1.5 for an illustration.

-3 -2 -1 1 2 3

-30

-20

-10

10

20

30
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Figure 1.5: The black curve depicts the graph of a β-smooth function f ; the
blue and red curves depict graphs of the quadratics lx(·) + β

2 ‖ · −x‖
2 and

lx(·)− β
2 ‖ · −x‖

2, respectively.

The second consequence of Theorem 1.14 that we will need is summa-
rized in Corollary 1.17. The result shows that when f is C2-smooth, the
quadratic Qx(·) is accurate up to a second-order error. Notice that this
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is not immediate from the definition of the Hessian. Indeed, the Hessian
∇2f(x) a priori has no direct connection to the function values themselves,
since it is defined as the Jacobian of the gradient map.

Corollary 1.17 (Second-order expansion). Suppose that f : U → R is C2-
smooth. Then for any point x ∈ U , the estimate holds:

lim
y→x

f(y)−Qx(y)

‖y − x‖2
= 0. (1.8)

Proof. Fix two point x, y ∈ U and define xs := x + s(y − x) for s ∈ [0, 1].
Using Theorem 1.14 and the Cauchy–Schwarz inequality, we compute

|f(y)−Qx(y)| ≤
∫ 1

0

∫ t

0
|〈(∇2f(xs)−∇2f(x))(y − x), y − x〉| ds dt

≤
∫ 1

0

∫ t

0
‖∇2f(xs)−∇2f(x))(y − x)‖ · ‖y − x‖ ds dt

≤
∫ 1

0

∫ t

0
‖∇2f(xs)−∇2f(x))‖op · ‖y − x‖2 ds dt

≤ ‖y − x‖2 · max
z∈[x,y]

‖∇2f(z)−∇2f(x)‖op.

Since∇2f is continuous, the function z 7→ ‖∇f(z)−∇f(x)‖ is uniformly con-
tinuous on any closed ball around x. Therefore, the term maxz∈[x,y] ‖∇2f(z)−
∇2f(x)‖op tends to zero as y tends to x.

1.8 Optimality conditions for smooth optimization

We end the chapter with derivative-based necessary conditions and sufficient
conditions for a point to be a local minimizer of a smooth function. A
point x is called a local minimizer of a function f : E → R if there exists
a neighborhood Q of x such that f(x) ≤ f(y) for all y ∈ Q. Observe that
naively checking if x is a local minimizer of f from the very definition requires
evaluation of f at every point near x, an impossible task. We now derive
a verifiable necessary condition for local optimality based on the gradient.
Throughout the section, we let U be an open set in E.

Theorem 1.18. (First-order necessary conditions) Suppose that x is a local
minimizer of a function f : U → R. If f is differentiable at x, then equality
∇f(x) = 0 holds.
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Proof. Set v := −∇f(x). Then for all small t > 0, the definition of differen-
tiability implies

0 ≤ f(x+ tv)− f(x)

t
= −‖∇f(x)‖2 +

o(t)

t
.

Letting t tend to zero yields ∇f(x) = 0, as claimed.

To obtain verifiable sufficient conditions for optimality, higher order
derivatives are required.

Theorem 1.19. (Second-order conditions)
Consider a C2-smooth function f : U → R and fix a point x ∈ U . Then the
following are true.

1. (Necessary conditions) If x ∈ U is a local minimizer of f , then

∇f(x) = 0 and ∇2f(x) � 0.

2. (Sufficient conditions) If the relations

∇f(x) = 0 and ∇2f(x) � 0

hold, then x is a local minimizer of f . More precisely, it holds:

liminf
y→x

f(y)− f(x)
1
2‖y − x‖2

≥ λn(∇2f(x)).

Proof. Suppose first that x is a local minimizer of f . Then Theorem 1.18
guarantees ∇f(x) = 0. Consider an arbitrary vector v ∈ E. Then for all
small t > 0, we deduce from a second-order expansion (1.8) the estimate

0 ≤ f(x+ tv)− f(x)
1
2 t

2
= 〈∇2f(x)v, v〉+

o(t2)

t2
.

Letting t tend to zero yields 〈∇2f(x)v, v〉 ≥ 0 for all v ∈ E, as claimed.
Suppose ∇f(x) = 0 and ∇2f(x) � 0. Let ε > 0 be such that Bε(x) ⊂ U .

Then for points y sufficiently close to x, the second-order expansion (1.8)
yields the estimate

f(y)− f(x)
1
2‖y − x‖2

=

〈
∇2f(x)

(
y − x
‖y − x‖

)
,
y − x
‖y − x‖

〉
+
o(‖y − x‖2)

‖y − x‖2

≥ λn(∇2f(x)) +
o(‖y − x‖2)

‖y − x‖2
.

Letting y tend to x, the result follows.



18 CHAPTER 1. BACKGROUND

The reader may be misled into believing that the role of the necessary
conditions and the sufficient conditions for optimality (Theorem 1.19) is
merely to determine whether a point x is a local minimizer of a smooth
function f . Such a viewpoint is far too limited.

Necessary conditions serve as the basis for algorithm design. If neces-
sary conditions for optimality fail at a point, then there must be some point
nearby with a strictly smaller objective value. A method for discovering
such a point is a first step for designing algorithms. Sufficient conditions
play an entirely different role. In later chapters, we will later see that suf-
ficient conditions for optimality at a point x guarantee that the function
f is strongly convex on a neighborhood of x. Strong convexity, in turn, is
essential for establishing rapid convergence of numerical methods.

1.9 Rates of convergence

A theoretically sound comparison of numerical methods relies on precise
rates of progress in the iterates. For example, we will predominantly be
interested in how fast the function gap f(xk) − inf f or the distance to a
minimizer ‖xk − x∗‖ tend to zero as a function of the counter k. In this
section, we review three types of convergence rates that we will encounter.

Fix a sequence of real numbers ak > 0 with ak → 0.

Sublinear rate. We will say that ak converges sublinearly if there exist
constants c, q > 0 satisfying

ak ≤
c

kq
for all k.

Larger q and smaller c indicates faster rates of convergence. In particular,
given a target precision ε > 0, the inequality ak ≤ ε holds for every k ≥
( cε)

1/q. The importance of the value of c should not be discounted; the
convergence guarantee depends strongly on this value.

Linear rate. The sequence ak is said to converge linearly if there exist
constants c > 0 and q ∈ (0, 1] satisfying

ak ≤ c · (1− q)k for all k.

In this case, we call 1−q the linear rate of convergence. Fix a target accuracy
ε > 0, and let us see how large k needs to be to ensure ak ≤ ε. To this end,
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taking logs we get

c · (1− q)k ≤ ε ⇐⇒ k ≥ −1

ln (1− q)
ln
(c
ε

)
.

Taking into account the inequality ln(1 − q) ≤ −q, we deduce that the
inequality ak ≤ ε holds for every k ≥ 1

q ln( cε). The dependence on q is
strong, while the dependence on c is very weak, since the latter appears
inside a log.

Quadratic rate. The sequence ak is said to converge quadratically if there
is a constant c satisfying

ak+1 ≤ c · a2
k for all k.

Observe then unrolling the recurrence yields

ak+1 ≤
1

c
(ca0)2k+1

.

The only role of the constant c is to ensure the starting moment of conver-
gence. In particular, if ca0 < 1, then the inequality ak ≤ ε holds for all
k ≥ log2 ln( 1

cε)− log2(− ln(ca0)). The dependence on c is negligible.

Comments

All results in this chapter can be found in standard textbooks in linear
algebra and real analysis. For more details on the material in Sections 1.1-
1.3, the reader may refer to the relevant sections Boyd-Vandenberghe [10],
Halmos [16], and Strang [37]. The details of Section 1.5 can be found in
Rudin [34]. The content of Sections 1.6-1.8 can be found in most advanced
calculus textbooks, such as Apostol [1] and Folland [15].
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Chapter 2

Convex geometry

This chapter introduces the basic geometric and topological properties of
convex sets. The material presented here will, in turn, serve as the foun-
dation for convex analysis developed in Chapter 3. The main goal for the
reader should be to not only learn the formal theorems but to also develop
intuition about convexity.

Roadmap. The chapter begins with Section 2.1 which recalls the def-
inition of convex sets, introduces a few basic examples, and shows that
convexity is preserved under various operations on sets, such as sums, inter-
sections, and images/preimages by linear maps. Section 2.2 introduces the
convex hull operation that associates to any set the smallest convex set that
contains it. Section 2.3 discusses topological properties of convex sets. The
key theorem proved in the section is that any nonempty convex set always
has nonempty interior relative to the smallest affine space that contains it.
Section 2.4 for the first time discusses the idea of hyperplane separation and
duality. The main result is that any nonempty, closed, convex set admits
a “dual description” as the intersection of all halfspaces containing it. An
important construction motivated by such dual descriptions is the polar of
a convex cone, discussed in Section 2.5. The final Section 2.6 introduces the
cones of tangent and outward normal directions, which will play a central
role in Chapter 3.

21
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2.1 Operations preserving convexity

We begin with some convenient notation. For any two points x and y in E,
define the closed line segment

[x, y] := {λx+ (1− λ)y : 0 ≤ λ ≤ 1}.

The open line segment (x, y) and the half-closed segments [x, y) and (x, y]
are defined analogously. We have already encountered convex sets briefly in
Section 1.7. Since convex set are the central objects of the current chapter,
let us recall their defining property here.

Definition 2.1 (Convex sets). A set Q ⊆ E is said to be convex if for any
two points x, y ∈ Q, the entire line segment [x, y] is contained in Q.

x

y

[x, y]

(a) Convex

x y

[x, y]

(b) Not convex.

Figure 2.1: Convexity.

Let us look at a few basic examples. First, it is immediate from the
definition that linear subspaces are convex. More generally, a set L ⊂ E is
called affine if it is a translate of a linear subspace. In other words L is affine
if it has the form L = v + S for some vector v ∈ E and a linear subspace
S ⊂ E. Since convexity is clearly preserved under translation, affine sets
are convex. More interestingly, sets of the form Q = {x : 〈a, x〉 ≤ b}, for
some a ∈ E and b ∈ R, are convex. Such sets are called half-spaces. A
quick computation also shows that unit balls of arbitrary norms are convex
sets; see Figure 1.1 for an illustration. The reader should verify that the
nonnegative orthant

Rn
+ = {x ∈ Rn : x ≥ 0}

and the cone of positive semi-definite matrices

Sn+ = {x ∈ Sn : X � 0}

are convex. Here, the symbol “≥” should be understood coordinatewise.
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We thus have built a small (so far) library of convex sets. Verifying
convexity from the definition is tedious and can often be avoided. The sim-
plest way to argue that a set is convex is to recognize it as having been
constructed from known convex sets (in our library) by a sequence of set
operations that preserve convexity. In this section, we describe a few such
convexity-preserving set operations. Refer to Section 1.4 for the sum, scal-
ing, and image/preimage notation.

Exercise 2.2 (Preservation of convexity). b Prove the following state-
ments.

1. (Scaling) For any convex set A ⊂ E, the set R+A is convex.

2. (Set addition) For any two convex sets Q1, Q2 ⊂ E, the sum Q1 + Q2 is
convex. See Figure 2.2a for an example.

3. (Intersection) The intersection
⋂
i∈I Qi of convex sets Qi ⊂ E, indexed

by an arbitrary set I, is convex. See Figure 2.2b for an example.

4. (Linear image/preimage) For any convex sets Q ⊂ E and L ⊂ Y and a
linear map A : E→ Y, the image AQ and the preimage A−1L are convex
sets.

+ =A B A +B

(a) Disk plus square. (b) Intersection of disks

Figure 2.2: Convexity preserving operations.

Let us look now at two notable examples of sets built from convexity
preserving operations. A polyhedron is any set of the form

Q = {x ∈ Rn : Ax ≥ c},

for some A ∈ Rm×n and c ∈ Rm. Equivalently, we may write Q as an
intersection of finitely many halfspaces or as the preimage A−1(c + Rn

+).
Appealing to Exercise (2.2), we deduce that polyhedra are convex. Linear
programming refers to the problem of minimizing a linear function over a
polyhedron.

More generally, a spectrahedron is any set of the form

Q = {x ∈ Rn : x1A1 + x2A2 + . . .+ xnAn � C},
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for some matrices Ai ∈ Sm and C ∈ Sn. Equivalently, we may write Q as the
preimage A−1(C + Sn+) for the linear map A(x) =

∑n
i=1 xiAi. Appealing

to Exercise (2.2), we deduce that spectrahedra are convex. Semidefinite
programming refers to the problem of minimizing a linear function over a
spectrahedron.

There are many more spectrahedra than polyhedra. For example, a quick
computation shows that a cylinder can be written as the spectrahedron (do
it!): (x, y, z) ∈ R3 :


1 + x y 0 0
y 1− x 0 0
0 0 1 + z 0
0 0 0 1− z

 � 0

 .

See Figure 2.3a for an illustration. A more interesting example, depicted in
Figure 2.3b is the elliptope:(x, y, z) ∈ R3 :

1 x y
x 1 z
y z 1

 � 0


The high dimensional version of this set appears in statistics as the set of
correlation matrices and in combinatorial optimization when forming convex
relaxations of NP-hard problems.

(a) Cylinder. (b) The elliptope

Figure 2.3: Spectrahedra.

It will be important for the sets that we encounter to not only be convex
but to also be closed. Not all set operations in Exercise 2.2 preserve closed
sets. Whereas intersections and linear preimages of closed sets are closed,
sums and linear images of closed sets need not be closed in general. The
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following exercise presents two closed convex sets in R3 whose sum is not
closed. Similarly, the image of a closed set under a linear map may also fail
to be closed (why?). Though this pathology may seem like a technicality,
it can have pronounced negative consequences; e.g. strong duality failing
in convex optimization. Therefore, care must be taken when dealing with
closure issues.

Exercise 2.3. Do the following exercises.

1. Show that if a closed set Q ⊂ E is bounded and does not contain the
origin, then R+Q is closed.

2. Show that if Q1, Q2 ⊂ E are closed sets and Q1 is bounded, then the set
Q1 +Q2 is closed.

3. Give an example of a closed set Q ∈ R2 such that R+Q is not closed.

4. Define the two closed sets

Q1 = {(x, y, r) ∈ R3 :
√
x2 + y2 ≤ r} and Q2 = {(0, λ, λ) : λ ∈ R}.

Show that the sum Q1 +Q2 is not a closed set.

We end the section with the following useful lemma that further high-
lights the interplay between convexity and set addition.

Lemma 2.4. Consider a convex set Q ⊂ E and let λ1, λ2 ≥ 0 be arbitrary.
Then the equation holds:

λ1Q+ λ2Q = (λ1 + λ2)Q.

Proof. We may suppose λ1 + λ2 6= 0, since otherwise the result is trivial.
The inclusion ⊃ clearly holds, independently of convexity. To see the con-
verse, fix two points x, y ∈ Q. Convexity guarantees λ1

λ2+λ2
x+ λ2

λ2+λ2
y ∈ Q.

Multiplying through by λ1 + λ2 completes the proof.

2.2 Convex hull

The notion of a linear combination of vectors plays a central role in linear al-
gebra. Convex combinations of points play a similarly central role in convex
geometry. To simplify notation, define the unit simplex

∆n :=

{
λ ∈ Rn :

n∑
i=1

λi = 1, λ ≥ 0

}
.
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Definition 2.5 (Convex combination). A point x ∈ E is a convex combina-
tion of points x1, . . . , xk ∈ E if it can be written as x =

∑k
i=1 λixi for some

λ ∈ ∆k.

A useful way to think about a representation of x as a convex combina-
tion x =

∑k
i=1 λixi is to regard x as a weighted average of x1, . . . , xk with

λ1, . . . , λk as the corresponding weights. Observe that convexity of a set
Q ⊂ E guarantees that convex combinations of any two points of Q lie in Q;
indeed, this property defines convexity. The following exercise shows that
convexity of Q entails a seemingly stronger property: convex combinations
of any finite number of points of Q lie in Q.

Exercise 2.6. b Consider a convex set Q ⊂ E and let k ∈ N be arbitrary.
Show that any convex combination of points x1, . . . , xk ∈ Q lies in Q.

[Hint: Rewrite
∑k

i=1 λixi = (1−λk)
∑k−1

i=1
λi

1−λkxi+λkxk and reason induc-
tively.]

For any nonconvex set Q, one can imagine forming the “minimal” convex
set that contains Q. The resulting convex set is called the convex hull of Q.

Definition 2.7 (Convex hull). The convex hull of a set Q ⊆ E, denoted
conv(Q), is the intersection of all convex sets containing Q.

Notice that by Exercise 2.2, the convex hull conv(Q) is a convex set.
One can visualize the convex hull of a set Q ⊂ R2 by encircling Q with a
rubber band and letting it contract. The outline of the rubber band marks
the boundary of the convex hull. See Figure 2.4 for an illustration.

(a) Convex hull of three disks (b) conv{(±1,±1,±1),±2e1,±2e2,±2e3)}.

Figure 2.4: Convex hull.
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The definition of the convex hull of Q is external: it involves sets that
are larger than Q. The following exercise provides an equivalent internal
description of conv(Q) as the set of all convex combinations of points in Q.

Exercise 2.8. b For any set Q ⊂ E, prove the equality:

conv(Q) =

{
k∑
i=1

λixi : k ∈ N, x1, . . . , xk ∈ Q, λ ∈ ∆k

}
. (2.1)

The description (2.1) does not rule out that one might have to take k
arbitrarily large in order to obtain the entire convex hull conv(Q). On the
contrary, the following theorem shows that it suffices to take k ≤ n + 1,
where n is the dimension of E.

Theorem 2.9 (Carathéodory). Consider a set Q ⊂ E, where E is an n-
dimensional Euclidean space. Then each point x ∈ conv(Q) can be written
as a convex combination of at most n+ 1 points in Q.

Proof. Since x belongs to conv(Q), we may write x =
∑k

i=1 λixi for some
integer k, points x1, . . . , xk ∈ Q, and weights λ ∈ ∆k. We may assume
k ≥ n+ 2, since otherwise there is nothing to prove. We claim that we may
rewrite x as a convex combination of at most k − 1 points.

We begin the argument by noticing that the vectors

x2 − x1, . . . , xk − x1

are linearly dependent, since there are at least n + 1 of them. Therefore,
there exist numbers µi for i = 2, . . . , k not all zero and satisfying 0 =∑k

i=2 µi(xi − x1) =
∑k

i=2 µixi − (
∑k

i=2 µi)x1. Defining µ1 := −
∑k

i=2 µi, we

deduce
∑k

i=1 µixi = 0 and
∑k

i=1 µi = 0. Then for any α ∈ R, we compute

x =

k∑
i=1

λixi − α
k∑
i=1

µixi =

k∑
i=1

(λi − αµi)xi

and
k∑
i=1

(λi − αµi) = 1.

We will now choose α so that all the coefficients λi − αµi are nonnegative
and at least one of them is zero. To this end, observe that since the vector µ
is not zero, it has at least one positive coordinate. Therefore, we may choose
an index i∗ ∈ argmini{λi/µi : µi > 0} and set α = λi∗

µi∗
. Thus x is a convex

combination of k− 1 points, as the coefficient λi∗ −αµi∗ is zero. Continuing
this process, we will obtain a description of x as a convex combination of
k ≤ n+ 1 points.
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2.3 Affine hull and relative interior

Convex sets can easily have empty interior. For example, the unit simplex
∆n has empty interior in its ambient space Rn. The main result of this
section shows that any nonempty convex set Q has nonempty interior “rel-
ative” to the smallest affine space that contains it. The main use of the
relative interior in later sections will be to show that convex functions are
very well-behaved within the relative interior of their domains.

Recall that a set is called affine if it has the form L = v + S for some
vector v ∈ E and a linear subspace S ⊂ E. In particular, affine sets that
contain the origin are linear subspaces (why?).

Definition 2.10 (Affine hull). The affine hull of a set Q ⊂ E, denoted by
aff Q, is the intersection of all affine sets that contain Q.

It is straightforward to check that aff Q is itself an affine set, and is
by definition the smallest affine set that contains Q. See Figure 2.5 for
an illustration. For example, the affine hull of the unit simplex ∆n is the
hyperplane {(x, y, z) : x+y+z = 1}. The reader should convince themselves
that if Q contains the origin, then aff Q coincides with the linear span of Q.

Figure 2.5: The convex set conv{(e1, e2, e3, ((1,−1, 1))} and its affine hull.

Viewing aff Q as the ambient space of Q, it is appealing to focus on the
interior of Q relative to this smaller ambient space.

Definition 2.11 (Relative interior and boundary). The relative interior of
a set Q ⊂ E, denoted riQ, is the interior of Q relative to aff (Q). That is,
we set

riQ := {x ∈ Q : ∃ε > 0 s.t. Bε(x) ∩ aff Q ⊆ Q}.

The relative boundary of Q is defined by rbQ := (clQ) \ (riQ).

The following is the main result of the section.
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Theorem 2.12 (Relative interior is nonempty). For any nonempty convex
set Q ⊂ E, the relative interior riQ is nonempty.

Proof. Without loss of generality, we may translate Q to contain the origin.
Then aff Q contains the origin and is therefore a linear subspace. Let d be
the dimension of aff Q as a linear subspace. Observe that Q must contain
some d linearly independent vectors x1, . . . , xd, since otherwise aff Q would
have a smaller dimension than d. Define the linear map A : Rd → aff Q
by A(λ1, . . . , λd) =

∑d
i=1 λixi. Since the range of A contains x1, . . . , xd, the

map A is surjective. Hence A is a linear isomorphism. Consequently A maps
the open set

Ω :=

{
λ ∈ Rd :

d∑
i=1

λi < 1 and λi > 0 for all i

}
to an open subset A(Ω) of aff Q. Note for any λ ∈ Ω, we can write Aλ =∑d

i=1 λixi + (1 −
∑d

i=1 λi) · 0. Hence, convexity of Q implies A(Ω) ⊂ Q,
thereby proving riQ 6= ∅.

Exercise 2.13. b Show that for any convex set Q ⊂ E, the two sets, clQ
and riQ, are convex and have the same affine hull as Q itself.

One important consequence of (2.12) is that any closed convex set coin-
cides with the closure of its relative interior. This result, proved in Corol-
lary 2.15, will follow quickly from the following lemma.

Theorem 2.14 (Accessibility). Consider a convex set Q and two points
x ∈ riQ and y ∈ clQ. Then the line segment [x, y) is contained in riQ.

Proof. Without loss of generality, we may suppose that the affine hull of Q
is all of E. Fixing λ ∈ (0, 1), we aim to show that the ball (1−λ)x+λy+ εB
is contained in Q for some sufficiently small ε > 0. Since y lies in clQ, the
inclusion y ∈ Q+ εB holds for all ε > 0. We therefore deduce

(1− λ)x+ λy + εB ⊂ (1− λ)x+ λ(Q+ εB) + εB

= (1− λ)
(
x+ 1+λ

(1−λ)εB
)

+ λQ, (2.2)

where (2.2) follows from Lemma 2.4. Since x lies in the interior of Q, the
inclusion x + 1+λ

1−λεB ⊂ Q holds for all sufficiently small ε > 0. Combining
(2.2) with Lemma 2.4, we conclude

(1− λ)x+ λy + εB ⊂ (1− λ)Q+ λQ = Q,

as we had to show.
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Corollary 2.15. For any nonempty convex set Q in E, equalities holds:

cl (riQ) = clQ and ri (clQ)) = riQ.

Proof. We begin by verifying the first equation. The inclusion riQ ⊆ Q
immediately implies cl (riQ) ⊆ clQ. Conversely, fix a point y ∈ clQ. Since
riQ is nonempty by Theorem 2.12, we may also choose a point x ∈ riQ.
Theorem 2.14 then guarantees y ∈ cl [x, y) ⊆ cl (riQ). Since the point
y ∈ clQ is arbitrary, we have established the equality cl (riQ) = clQ.

Next, we verify the second equation. Without loss of generality, we may
suppose that Q contains the origin and therefore that aff (Q) is a linear
subspace. The inclusion ⊃ is clear. Fix any point z ∈ ri (clQ) and choose
an arbitrary point x ∈ riQ. We may assume x 6= z, since otherwise the
inclusion z ∈ riQ would hold trivially. Observe from Exercise 2.13 the
equality aff Q = aff (clQ). Fix a constant µ > 0 and define the point

y := z + µ(z − x).

Since aff Q is a linear subspace, the inclusion y ∈ aff Q holds. Therefore the
definition of the relative interior guarantees y ∈ clQ for all sufficiently small
µ > 0. Rearranging the equation, we deduce

z =
1

1 + µ
y +

µ

1 + µ
x ∈ (y, x).

Thus by Theorem 2.14, the inclusion z ∈ riQ holds.

2.4 Separation theorem

One of the most fruitful ways to study properties of sets is to instead focus on
the functions that act on them. This is the principle of duality. This section
introduces duality within the context of convex geometry. The main result is
the principle of strict separation: any point y lying outside a closed, convex
set Q can be separated from Q by a hyperplane. An important consequence
is the dual description of convex sets. Tautologically a convex set Q is simply
a collection of points. On the other hand, we will see that Q coincides with
the intersection of all half-spaces containing it.

We begin with the following basic definitions. Along with any set Q ⊂ E
we define the distance function

distQ(y) := inf
x∈Q
‖x− y‖,
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and the projection

projQ(y) := {x ∈ Q : distQ(y) = ‖x− y‖}.

Thus projQ(y) consists of all the nearest points of Q to y; see Figure 2.6 for
an illustration.

Q

y

z1 z2

zi ∈ projQ(y)

‖zi − y‖ = distQ(y)

Figure 2.6: Nearest-point projection

Exercise 2.16. b Show that for any nonempty set Q ⊆ E, the function
distQ : E→ R is 1-Lipschitz.

If Q is closed, then the nearest-point set projQ(y) is nonempty for any
y ∈ E. To see this, fix a point y ∈ E and define the function

ϕ(x) =

{
‖x− y‖ if x ∈ Q
+∞ if x /∈ Q

.

The set of minimizers of ϕ coincides with projQ(y). Since ϕ is closed and
coercive, Theorem 1.8 guarantees that ϕ has at least one minimizer, and
therefore projQ(y) is nonempty.

The following theorem shows that when Q is closed and convex, the
set projQ(y) is not only nonempty, but is also a singleton. Moreover, the
nearest-point z ∈ Q to y is characterized by the fact that the vector y − z
makes an obtuse angle with the vector x− z for any x ∈ Q. See Figure 2.7
for an illustration.

Theorem 2.17 (Properties of the projection). For any nonempty, closed,
convex set Q ⊂ E, the set projQ(y) is a singleton. Moreover, the closest
point z ∈ Q to y is characterized by the property:

〈y − z, x− z〉 ≤ 0 for all x ∈ Q. (2.3)
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Q

z

y
x

Figure 2.7: Nearest-point projection for convex sets

Proof. Fix a point y /∈ Q. The claim that any point z satisfying (2.3) lies in
projQ(y) is an easy exercise (verify it!). We therefore prove the converse. To
this end, fix a point z ∈ projQ(y) and an arbitrary x ∈ Q. For each t ∈ [0, 1],

define the point xt := z+t(x−z) and define the function ϕ(t) := 1
2‖y−xt‖

2.
Convexity implies xt ∈ Q for all t ∈ [0, 1] and therefore

ϕ(t) ≥ 1
2dist2

Q(y) = ϕ(0).

Taking the derivative of ϕ, we therefore deduce

0 ≤ lim
t↘0

ϕ(t)− ϕ(0)

t
= ϕ′(0) = −〈y − z, x− z〉,

as claimed. Thus, a points z lies in projQ(y) if and only if (2.3) holds.

To see that projQ(y) is a singleton, consider any two points z, z′ ∈
projQ(y). Then, the estimate (2.3) for z and z′ (with x = z′ and x = z,
respectively) becomes

〈y − z, z′ − z〉 ≤ 0 and 〈y − z′, z − z′〉 ≤ 0.

Adding the two inequalities yields 0 ≥ 〈z − z′, z − z′〉 = ‖z − z′‖2, and
therefore z = z′ as we had to show.

Exercise 2.18. b Show that for any nonempty, closed, convex set Q ⊂ E,
the map x 7→ projQ(x) is 1-Lipschitz.

Theorem 2.17 allows to quickly prove the following fundamental property
of convex sets. Given any closed convex set Q and a point y /∈ Q, there exists
a hyperplane that separates y from Q. See Figure 2.8 for an illustration.
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y
Q

{x : 〈a, x〉 = b}

Figure 2.8: Basic separation

Theorem 2.19 (Strict separation). Consider a nonempty, closed, convex
set Q ⊂ E and a point y /∈ Q. Then there exists a nonzero vector a ∈ E and
a number b ∈ R satisfying

〈a, x〉 ≤ b < 〈a, y〉 for all x ∈ Q.

Proof. Fix a point y /∈ Q and define the nonzero vector a := y − projQ(y).
Then for any x ∈ Q, the condition (2.3) yields

〈a, x〉 ≤ 〈a,projQ(y)〉 = 〈a, y〉 − ‖a‖2 < 〈a, y〉,

as claimed.

Exercise 2.20 (Supporting halfspaces). Consider a convex set Q ⊂ E. A
halfspace H ⊂ E is said to support Q at a point x ∈ clQ if the inclusions,
x ∈ bdH and Q ⊂ H, hold. Show that a convex set Q admits a supporting
halfspace at a point x ∈ clQ if and only if x lies on the boundary of Q.
[Hint: Apply Theorem 2.19 with y /∈ Q tending to x.]

In particular, we can now establish the following “dual description” of
convex sets, alluded to in the beginning of the section; see Figure 2.9.

Theorem 2.21. Given a nonempty set Q ⊂ E, define the set of halfspaces

FQ := {(a, b) ∈ E×R : 〈a, x〉 ≤ b for all x ∈ Q} .

Then equality holds:

cl conv(Q) =
⋂

(a,b)∈FQ

{x ∈ E : 〈a, x〉 ≤ b} . (2.4)
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Q

Figure 2.9: Closed convex envelope.

Proof. Let S be the set on the right side of (2.4). Since S is an intersection
of half-spaces, it is closed and convex. Taking into account the inclusion
Q ⊂ S, we deduce cl conv(Q) ⊂ S. To see the reverse inclusion, we argue by
contradiction. Suppose that there exists a point y ∈ S \ cl conv(Q). Then
Theorem 2.19 yields a ∈ E and b ∈ R such that the halfspace H = {x :
〈a, x〉 ≤ b} satisfies cl conv(Q) ⊂ H and y /∈ H. In particular, the inclusion
(a, b) ∈ FQ holds and therefore S ⊂ H. We thus arrive at a contradiction
to the inclusions y ∈ S ⊂ H. The proof is complete.

2.5 Cones and polarity

A particularly appealing class of sets consists of those that are invariant
under scaling by nonnegative numbers.

Definition 2.22 (Cones). A set K ⊆ E is called a cone if the inclusion
λK ⊂ K holds for any λ ≥ 0.

For example, the nonnegative orthant Rn
+ and the set of positive semidef-

inite matrices Sn+ are closed convex cones.

Exercise 2.23. b Show that a set K ⊂ E is a convex cone if and only if the
point λx+ µy lies in K for any two points x, y ∈ K and numbers λ, µ ≥ 0.

Exercise 2.24. Prove for any convex cone K ⊂ E the equality

aff (K) = K −K.

Duality ideas, explored in Theorem 2.21 simplify significantly for cones.
Namely, consider a cone K and a halfspace

H = {x : 〈a, x〉 ≤ b}
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that contains it. Since K contains the origin, b is nonnegative. Moreover,
taking into account positive homogeneity of K, the halfspace

H = {x : 〈a, x〉 ≤ 0}, (2.5)

provides a tighter approximation K ⊂ H ⊂ H. The set of all halfspaces of
the form (2.5) that contain K comprise the polar cone.

Definition 2.25 (Polar cone). The polar cone of a cone K ⊂ E is the set

K◦ := {v ∈ E : 〈v, x〉 ≤ 0 for all x ∈ K}.

Thus K◦ consists of all vectors v that make an obtuse angle with every
vector x ∈ K. Observe that K◦ is always closed and convex since it is
defined as the intersection of infinitely many half-spaces. See Figure 2.10
for an illustration.

K

K◦

Figure 2.10: Polar cone

Exercise 2.26. Verify the following:

1. The polar cone of a linear subspace L ⊂ E is the orthogonal complement
L◦ = L⊥.

2. (Rn
+)◦ = Rn

− and (Sn+)◦ = Sn−

The following exercise shows a fundamental property of the polarity
operation. Applying the polar operation twice to a cone K yields its closed
convex hull. The proof is immediate from Theorem 2.21.

Exercise 2.27 (Double-polar theorem). b Prove for any nonempty cone
K ⊂ E the equality:

(K◦)◦ = cl conv(K).

Classically, the orthogonal complement to a sum of linear subspaces is
the intersection of their orthogonal complements. In much the same way,
the polarity operation satisfies “calculus rules”.
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Theorem 2.28 (Polarity calculus). For any linear mapping A : E→ Y and
a nonempty cone K ⊂ Y, equality holds:

(AK)◦ = (A∗)−1K◦. (2.6)

In particular, for any two nonempty cones K1,K2 ⊂ E, the sum rule holds:

(K1 +K2)◦ = K◦1 ∩K◦2 (2.7)

Proof. The definition of polarity yields the equivalences

y ∈ (AK)◦ ⇐⇒ 〈Ax, y〉 ≤ 0 for all x ∈ K
⇐⇒ 〈x,A∗y〉 ≤ 0 for all x ∈ K
⇐⇒ A∗y ∈ K◦

⇐⇒ y ∈ (A∗)−1K◦.

This establishes (2.6). The sum rule (2.7) follows from applying (2.6) to the
expression A(K1 ×K2) with the mapping A(x, y) := x+ y.

There is a convenient extension of polarity to general sets (not cones)
that contain the origin. The idea is to “homogenize” the set and then apply
the polarity operation for cones. Consider a set Q ⊂ E that contains the
origin and let K be the cone generated by Q× {1} ⊂ E×R, that is

K = {(λx, λ) ∈ E×R : x ∈ Q,λ ≥ 0}.

Since Q contains the origin, the polar cone K◦ is contained in E × R−.
Consequently, it is natural to define the polar set as

Q◦ := {x ∈ E : (x,−1) ∈ K◦}.

The reader should refer to Figure 2.11 for an illustration.
Unraveling the definitions, the following algebraic description of the polar

appears.

Exercise 2.29. b Show that for any set Q ⊂ E containing the origin,
equality holds:

Q◦ = {v ∈ E : 〈v, x〉 ≤ 1 for all x ∈ Q}.

Thus, Q◦ can be identified with the intersection of the set FQ from
Theorem 2.21 with the slice E × {1}. The following exercise is a direct
analogue of Exercise 2.27
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(a) Q = {x : ‖x‖1 ≤ 1} (b) Homogenization (c) Q◦ = {x : ‖x‖∞ ≤ 1}

Figure 2.11: Figure 2.11a depicts Q, the unit ball of the `1-norm. Fig-
ure 2.11b depicts the homogenization of Q, namely K = {(x, y, r) : r ≥
|x| + |y|} and the polar cone K◦ = {(x, y, r) : r ≤ −max{|x|, |y|}}, along
with the parallel hyperplanes R2 × {±1}. Figure 2.11c depicts Q◦, which
can be identified with the intersection of K◦ with the hyperplane R2×{−1}.

Exercise 2.30 (Double polar). For any set Q ⊂ E containing the origin,
we have

(Q◦)◦ = cl conv(Q).

Polarity of unit norm balls is in correspondence with duality of norms.

Exercise 2.31 (Polarity and dual norms). Let ρ(·) be an arbitrary norm
on E and define its unit ball

Bρ = {x ∈ E : ρ(x) ≤ 1}.

Show that the polar of Bρ is the unit ball of the dual norm:

B◦ρ = Bρ∗ .

2.6 Tangents and normals

A principle technique in mathematical analysis is to reason about sets and
functions using their first-order approximations. Both theory and algorithms
rely on such approximations. This section revisits this idea by constructing
first-order approximations of sets.

Consider a set Q ⊂ E and a point x̄ ∈ Q. Intuitively, we should think of a
first-order approximation to Q at x̄ as the set of all limits of rays R+(xi− x̄)
over all possible sequences xi ∈ Q tending to x̄. With this intuition in mind,
we introduce the following definition.
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Definition 2.32 (Tangent cone). The tangent cone to a set Q ⊂ E at a
point x̄ ∈ Q is the set

TQ(x̄) :=

{
lim
i→∞

τ−1
i (xi − x̄) : xi → x̄ in Q, τi ↘ 0

}
.

In the definition, the sequence τi > 0 simply rescales the approach direc-
tions xi − x̄. See Figure 2.12 for an illustation. The reader should convince
themselves that TQ(x̄) is a closed cone, which need not be convex in general.
Whenever Q is convex, the definition simplifies drastically.

Exercise 2.33. b Show for any convex set Q ⊂ E and a point x̄ ∈ Q the
equality:

TQ(x̄) = cl R+(Q− x̄).

[Hint: The inclusion ⊂ is clear and does not use convexity. The reverse
inclusion follows from the definition of convexity and the fact that TQ(x̄) is
closed.]

Thus for a convex set, the tangent cone TQ(x̄) is computed by shifting Q
so that x̄ becomes the origin and then taking the closure of all nonnegative
scalings of the shifted set; see Figure 2.13.

Tangency concerns directions pointing “into the set”. Alternatively, we
can also think dually of outward normal vectors to a set Q at x̄ ∈ Q.
Geometrically, it is intuitive to call a vector v an (outward) normal to Q at
x̄ if Q is fully contained in the half-space {x ∈ E : 〈v, x − x̄〉 ≤ 0} up to a
first-order error.

Definition 2.34 (Normal cone). The normal cone to a set Q ⊂ E at a point
x̄ ∈ Q is the set

NQ(x̄) := {v ∈ E : 〈v, x− x̄〉 ≤ o(‖x− x̄‖) as x→ x̄ in Q}.

Thus a vector v lies in NQ(x̄) if

limsup
x−→
Q
x̄

〈v, x− x̄〉
‖x− x̄‖

≤ 0,

where the notation x −→
Q

x̄ means that x tends to x̄ in Q. See Figure 2.12

for an illustration.
The following result shows that the normal cone NQ(x̄) is always the

polar of the tangent cone TQ(x̄). In particular, NQ(x̄) is always a closed
convex cone, even if Q is not convex. Consequently, taking into account the
double polar formula (Exercise 2.27), equality TQ(x̄) = (NQ(x̄))◦ holds if
and only if TQ(x̄) is convex.
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Q

x̄

NQ(x̄)

TQ(x̄)

Figure 2.12: Illustration of the tangent and normal cones for nonconvex sets.

Lemma 2.35. b For any set Q ⊂ E and a point x̄ ∈ Q, the polarity
relationship holds:

NQ(x̄) = (TQ(x̄))◦.

Proof. We show the inclusion ⊂ first. Fix vectors v ∈ NQ(x̄) and w ∈ TQ(x̄);
we aim to show 〈v, w〉 ≤ 0. By definition of the tangent cone, there exist
sequences xi → x̄ in Q and τi ↘ 0 satisfying τ−1

i (xi − x̄) → w. We may
suppose w 6= 0 (why?) and therefore xi 6= x̄ for all large i. The definition of
the normal cones then yields

〈v, w〉 = lim
i→∞

〈v, xi − x̄〉
τi

= lim
i→∞

〈v, xi − x̄〉
‖xi − x̄‖

· lim
i→∞

∥∥∥∥xi − x̄τi

∥∥∥∥ ≤ 0.

Since w ∈ TQ(x̄) was arbitrary, we deduce v ∈ (TQ(x̄))◦.

To see the reverse inclusion ⊃, fix a vector v ∈ (TQ(x̄))◦. Thus the
inequality 〈v, w〉 ≤ 0 holds for all w ∈ TQ(x̄). Consider now a sequence
xi → x̄ in Q, such that xi 6= x̄ for all large i. Defining τi = ‖xi − x̄‖, we
deduce

limsup
i→∞

〈v, xi − x̄〉
‖xi − x̄‖

= limsup
i→∞

〈v, τ−1
i (xi − x̄)〉. (2.8)

Passing to subsequence, we may assume that the real numbers 〈v, τ−1
i (xi −

x̄)〉 converge. Since the vectors τ−1
i (xi−x̄) all have unit norm, we may again

pass to a subsequence to ensure that τ−1
i (xi − x̄) converge to some vector

w. Since w clearly lies in TQ(x̄) while v lies in (TQ(x̄))◦, we deduce that the
right-hand side of (2.8) is nonpositive. Therefore the inclusion v ∈ NQ(x̄)
holds as claimed.

When Q is convex, the definition of the normal cone simplifies.
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Exercise 2.36. b Show for any convex set Q ⊂ E and a point x̄ ∈ Q the
equality

NQ(x̄) = {v ∈ E : 〈v, x− x̄〉 ≤ 0 for all x ∈ Q}.

[Hint: Appeal to Lemma 2.35.]

Q x̄ NQ(x̄)

TQ(x̄)

Figure 2.13: Illustration of the tangent and normal cones for a convex set.

Thus the o(‖x−x̄‖) error in the definition of the normal cone is irrelevant
for convex set. That is, every vector v ∈ NQ(x̄) truly makes an obtuse
angle with any direction x − x̄ for x ∈ Q. Equivalently, every vector v ∈
NQ(x̄) corresponds to a halfspace {x : 〈v, x〉 ≤ 〈v, x̄〉} containing Q. See
Figure 2.13.

Some thought shows that normal cones and nearest-point projections are
intimately related. The following exercise explores this connection and will
be used extensively in the sequel; see the companion Figure 3.3.

Exercise 2.37. b Prove that the following properties are equivalent for
any nonempty, closed, convex set Q, a point x̄ ∈ Q, and a vector v ∈ E.

1. v ∈ NQ(x̄),

2. x̄ ∈ argmaxx∈Q〈v, x〉.
3. projQ(x̄+ λv) = x̄ for all λ ≥ 0,

4. projQ(x̄+ λ̄v) = x̄ for some λ̄ > 0.

Exercise 2.38. Show for any convex cone K and a point x ∈ K, the equality

NK(x) = K◦ ∩ x⊥.
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Q

x̄

Q

x̄

v

〈v, x− x̄〉 ≤ 0 ∀x ∈ Q

(a) v ∈ NQ(x̄)

Q

x̄ ∈ projQ(x̄ + λv)

x̄ + λv

(b) projQ(x̄+ λv) = x̄

Q

x̄

Q

x̄

v

〈v, x〉 = c

〈v, x̄〉 = max
x∈Q

〈v, x〉

〈v, x〉 = 〈v, x̄〉

(c) x̄ ∈ argmaxx∈Q〈v, x〉

Figure 2.14: The figures depict the equivalences in Exercise 2.37.

Exercise 2.39. b Show for any convex set Q and a point x ∈ Q, the
equivalence

x ∈ intQ ⇐⇒ NQ(x) = {0}.

What is the relationship between normal vectors v ∈ NQ(x) and supporting
halfspaces, defined in Exercise 2.20?

Comments

The results in Section 2.1-2.5 can be found in standard texts on convex ge-
ometry and analysis, such as Barvinok [2], Borwein-Lewis [8], Hiriart-Urruty
and Lemaréchal [17], and Rockafellar [31]. The material in Section 2.6 blends
the convex analytic viewpoint on tangency/normality with the more modern
variation analytic perspective [33].
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Chapter 3

Convex analysis

This chapter investigates analytic properties of convex functions. The ma-
terial will form the backbone for the theory and algorithms presented in
the rest of the book. The core principle of convex analysis is that analytic
properties of a convex function are in direct correspondence with convex
geometric properties of its epigraph—the set above the graph. This per-
spective is emphasized throughout the chapter, and should be kept in mind
while reading.

Roadmap. The chapter begins by laying out basic notation and examples
in Section 3.1, along with derivative-based characterizations of convexity for
smooth funtions. Section 3.2 shows that convexity is preserved by a vari-
ety of functional operations. The main results in the section relate func-
tional operations (sums, linear images/preimages) to geometric operations
of epigraphs. Section 3.3 investigates the closed convex envelope of noncon-
vex functions. Section 3.4 takes the principle of duality in convex geometry
much further by associating to a convex function its Fenchel conjugate. Sec-
tion 3.5 introduces subderivatives and subgradients of a function, and shows
that they are closely related to tangent and normal cones to epigraphs. Sec-
tion 3.7 introduces strongly convex functions, the Moreau envelope, and the
proximal map. A highlight theorem of the section is that a proper, closed,
convex function is strongly convex if and only if its Fenchel conjugate is
smooth, thereby formalizing the duality between the two notions. The final
Section 3.6 illuminates the relationship between subgradients and Lipschitz
continuity of a convex function. The main result of the section shows that a
convex function is locally Lipschitz continuous at every point in the interior
of its domain.

43
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3.1 Basic definitions and examples

We will consider functions f mapping E to the extended-real-line R = R ∪
{±∞}. To be completely precise, some care must be taken when working
with ±∞. In particular, we set 0 · ±∞ = 0 and will be careful to avoid
expressions (+∞) + (−∞) throughout. A function f : E → R is called
proper if it never takes the value −∞ and is finite at some point.

Given a function f : E→ R, the effective domain and epigraph of f are

dom f := {x ∈ E : f(x) < +∞},
epi f := {(x, r) ∈ E×R : f(x) ≤ r},

respectively. Thus dom f consists of all points x at which f is finite or
evaluates to −∞. The epigraph epi f is simply the set above the graph of
the function on its domain. See Figure 3.1 for an illustration.

epi f

dom f

Figure 3.1: Epigraph and effective domain of the function that evaluates to
max{−x, 1

2x
2} on [−1, 1] and to +∞ elsewhere.

As we will see, much of convex analysis is guided by convex geometric
properties of epigraphs.

Definition 3.1 (Convex functions). A function f : E→ R is convex if epi f
is a convex set in E×R.

Equivalently, a proper function f : E → R is convex if and only if the
secant inequality

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

holds for all x, y ∈ E and λ ∈ (0, 1). See Figure 3.2 for an illustration.
In particular, for each r ∈ R the sublevel set {x : f(x) ≤ r} of a convex
function is a convex set (verify this!).

We will often need to ensure that a function is proper. Though this
seems like a technical annoyance, there are important settings where this
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epi f

x yλx + (1 − λ)y

λf(x) + (1 − λ)f(y)

f(x)

f(y)

Figure 3.2: Secant inequality.

property is not for free. For example, the function f(x) = infy g(x, y) may
be identically equal to −∞ even if g is a proper function. The following
exercise provides a convenient sufficient condition for a convex function to
be proper.

Exercise 3.2. b Let f : E → R be a convex function. Show that if there
exists a point x ∈ ri (dom f) with f(x) finite, then f must be proper.

Exercise 3.3 (Jensen’s Inequality). b Let f : E→ R be a proper convex
function. Show that the inequality f(

∑k
i=1 λixi) ≤

∑k
i=1 λif(xi) holds for

any integer k ∈ N, points x1, . . . , xk ∈ E, and weights λ ∈ ∆k.

Exercise 3.4. b Let fi : E → R be convex functions indexed by an ar-
bitrary set I. Show that the the pointwise supremum function f(x) :=
supi∈I fi(x) is convex.

[Hint: Express epi f in terms of epi fi.]

There are a number of convex functions that naturally arise from convex
sets. One example, which we have already seen, is the distance function.
We now define three other useful functions associated to a set. Given a set
Q ⊂ E, define its indicator function

δQ(x) =

{
0, x ∈ Q
+∞, x /∈ Q

,

its support function

δ?Q(v) = sup
x∈Q
〈v, x〉,

and its gauge function

γQ(x) = inf{λ ≥ 0: x ∈ λQ}.
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The primary use of the indicator function δQ is to formally convert a
constrained optimization problem into an unconstrained one. Namely, any
optimization problem of the form minx∈Q f(x) is equivalent to minx∈E f(x)+
δQ(x). The support function δ?Q(v) evaluates the maximum that the linear
function 〈v, ·〉 takes over Q. The reader might notice that we have en-
countered this function in Exercise 2.37. Indeed, the exercise showed the
equivalence

v ∈ NQ(x) ⇐⇒ 〈v, x〉 = δ?Q(v),

provided Q is a closed convex set. The notation δ?Q(v) may seem strange at
first, since it is not clear what the support function δ?Q(v) has to do with
the indicator function δQ(x). The notation will make sense shortly, in light
of Fenchel conjugacy (Section 3.4). Finally the gauge γQ(·) can be thought
of as a generalization of a norm. In particular, the gauge of the closed unit
ball of any norm is the norm itself. Norms are special among all gauges in
that the set Q that generates them is centrally symmetric, meaning Q = −Q
(why?). The reader is referred to Figure 3.3 for an illustration of support
functions and gauges.

Q

2Q

3Q

0

x

γQ(x) = 2

Q

x̄

Q

x̄

v

〈v, x〉 = c

〈v, x̄〉 = δ?Q(v)

v

Figure 3.3: The figures depict the gauge γQ and the support functions δ?Q
of a set Q.

Exercise 3.5. b Consider a set Q ⊂ E,

1. Show that δ?Q is a closed, convex function.

2. Show that if Q is convex, then δQ and distQ are convex

3. Show that if Q is convex, then γQ is convex.

Notice that support functions and gauges are positively homogeneous in
the following sense.
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Definition 3.6. A function f : E → R is positively homogeneous if its epi-
graph is a cone. Convex positively homogeneous functions are called sublin-
ear.

The following exercise provides a useful characterization of proper sub-
linear functions that is analogous to Exercise 2.23.

Exercise 3.7. Let f : E→ R be a proper function. Show that f is sublinear
if and only if the inequality, f(λx+µy) ≤ λf(x)+µf(y), holds for all x, y ∈ E
and λ, µ ≥ 0.

As noted previously, support functions and gauges of convex sets are sub-
linear. The forthcoming Exercise 3.21 shows essentially a converse: closed
sublinear functions are support functions.

We end the section by showing that verifying convexity for a smooth
function is often straightforward because it can be characterized entirely in
terms of derivatives. In particular, the easiest way to verify that a smooth
function is convex is to show that its Hessian is positive semi-definite every-
where. This observation opens the door to a number of interesting examples.

Theorem 3.8 (Differential characterizations of convexity). The following
are equivalent for a C1-smooth function f : U → R defined on a convex open
set U ⊂ E.

(a) (convexity) f is convex.

(b) (gradient inequality) f(y) ≥ f(x) + 〈∇f(x), y− x〉 for all x, y ∈ U.

(c) (monotonicity) 〈∇f(y)−∇f(x), y − x〉 ≥ 0 for all x, y ∈ U .

If f is C2-smooth, then the following property can be added to the list:

(d) The relation ∇2f(x) � 0 holds for all x ∈ U .

Proof. Assume (a) holds, and fix two points x and y. For any t ∈ (0, 1),
convexity implies

f(x+ t(y − x)) = f(ty + (1− t)x) ≤ tf(y) + (1− t)f(x),

while the definition of the derivative yields

f(x+ t(y − x)) = f(x) + t〈∇f(x), y − x〉+ o(t).

Combining the two expressions, canceling f(x) from both sides, and dividing
by t yields the relation

f(y)− f(x) ≥ 〈∇f(x), y − x〉+ o(t)/t.
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Letting t tend to zero yields property (b).

Suppose now that (b) holds. Then for any x, y ∈ U , appealing to the
gradient inequality, we deduce

f(y) ≥ f(x) + 〈∇f(x), y − x〉 and f(x) ≥ f(y) + 〈∇f(y), x− y〉.

Adding the two inequalities yields (c).

Finally, suppose (c) holds. Define the function ϕ(t) := f(x + t(y − x))
and set xt := x + t(y − x). Then monotonicity shows that for any real
numbers t, s ∈ [0, 1] with t > s the inequality holds:

ϕ′(t)− ϕ′(s) = 〈∇f(xt), y − x〉 − 〈∇f(xs), y − x〉

=
1

t− s
〈∇f(xt)−∇f(xs), xt − xs〉 ≥ 0.

Thus the derivative ϕ′ is nondecreasing, and hence for any x, y ∈ U , we have

f(y) = ϕ(1) = ϕ(0) +

∫ 1

0
ϕ′(r) dr ≥ ϕ(0) + ϕ′(0) = f(x) + 〈∇f(x), y − x〉.

Some thought now shows that f admits the representation (check!)

f(y) = sup
x∈U
{f(x) + 〈∇f(x), y − x〉}

for any y ∈ U . Since a pointwise supremum of an arbitrary collection of
convex functions is convex (Excercise 3.4), we deduce that f is convex,
establishing (a).

Suppose now that f is C2-smooth. Then for any fixed x ∈ U and h ∈ E,
and all small t > 0, property (b) and the second-order expansion (1.8) implies

f(x)+t〈∇f(x), h〉 ≤ f(x+th) = f(x)+t〈∇f(x), h〉+ t2

2
〈∇2f(x)h, h〉+o(t2).

Canceling out like terms, dividing by t2, and letting t tend to zero we deduce
〈∇2f(x)h, h〉 ≥ 0 for all h ∈ E. Hence (d) holds. Conversely, suppose (d)
holds. Then Theorem 1.14 immediately implies for all x, y ∈ E the inequality

f(y)−f(x)−〈∇f(x), y−x〉 =

∫ 1

0

∫ t

0
〈∇2f(x+s(y−x))(y−x), y−x〉 ds dt ≥ 0.

Hence (b) holds, and the proof is complete.
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Thus convexity for a C1-smooth function f is equivalent to the property
that the affine function `(y) = f(x)+〈∇f(x), y−x〉 is a global underestima-
tor of f for all x. Recall that without convexity, `(·) is an underestimator
of f only up to a first-order error. Convexity is also equivalent to a mono-
tonicity property of the gradient. In particular, convexity of a C1-smooth
univariate function f is equivalent to the derivative function f ′(·) being non-
decreasing. Finally, if f is C2-smooth, then convexity is equivalent to the
Hessian∇2f(x) being positive semidefinite for all x. This property is usually
the easiest to verify in examples.

Exercise 3.9. Show that negative logarithm and the negative log-determinant
functions in Exercise 1.12 are convex.

Exercise 3.10. Consider a quadratic function f(x) = 1
2〈Ax, x〉+ 〈c, x〉+ b

for some self-adjoint linear operator A : E → E, a point c ∈ E, and b ∈ R.
Show that f is convex if and only if A is positive semidefinite.

Exercise 3.11. Show that the following univariate functions are convex:

1. (Boltzmann-Shannon entropy)

f(x) =


x log x if x > 0

0 if x = 0

+∞ if x < 0

2. (Fermi-Dirac entropy)

f(x) =


x log(x) + (1− x) log(1− x) if x ∈ (0, 1)

0 if x ∈ {−1, 1}
+∞ otherwise

3. (Hellinger)

f(x) =

{
−
√

1− x2 if x ∈ [−1, 1]

+∞ otherwise

4. (Exponential) f(x) = ex

5. (Log-exp) f(x) = log(1 + ex)
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Recall from Section 1.7 that a function f : E → R is β-smooth if it is
differentiable and its gradient map x 7→ ∇f(x) is β-Lipschitz continuous.
Exercise 1.15 showed that any β-smooth function f satisfies the estimate:

− β

2
‖y − x‖2 ≤ f(y)− f(x)− 〈∇f(x), y − x〉 ≤ β

2
‖y − x‖2, (3.1)

for all x, y ∈ E. This estimate will play a key role when designing algorithms.
When f is convex, the left-hand-side of (3.1) can be replaced by zero. The
following exercise shows that the resulting two-sided estimate characterizes
smoothness and convexity.

Exercise 3.12. Consider a C1-smooth function f : Rn → R. Prove that
each condition below holding for all points x, y ∈ Rn is equivalent to f being
β-smooth and convex.

1. 0 ≤ f(y)− f(x)− 〈∇f(x), y − x〉 ≤ β
2 ‖x− y‖

2

2. f(x) + 〈∇f(x), y − x〉+ 1
2β‖∇f(x)−∇f(y)‖2 ≤ f(y)

3. 1
β‖∇f(x)−∇f(y)‖2 ≤ 〈∇f(x)−∇f(y), x− y〉

4. 0 ≤ 〈∇f(x)−∇f(y), x− y〉 ≤ β‖x− y‖2

[Hint: Suppose first that f is convex and β-smooth. Then 1 is immediate.
Suppose now 1 holds and define the function φ(y) = f(y)− 〈∇f(x), y − x〉.
Show using 1 that

φ(x) = minφ ≤ φ
(
y − 1

β
∇φ(y)

)
≤ φ(y)− 1

2β
‖∇φ(y)‖2.

Deduce the property 2. To deduce 3 from 2, add two copies of 2 with x and
y reversed. Next applying Cauchy-Schwartz to 3 immediately implies that
f is β-smooth and convex. Finally, show that 1 implies 4 by adding two
copies of 1 with x and y reversed. Conversely, rewriting 4 deduce that the
gradient of the function φ(x) = −f(x) + β

2 ‖x‖
2 is monotone and therefore

that φ is convex. Rewriting the gradient inequality for φ arrive at 1. ]

3.2 Convex functions from epigraphical operations

We thus have built a small (so far) library of convex functions. Verifying
convexity from the definition is tedious, as the reader has likely noticed,
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and can often be avoided. The simplest way to argue that a function is con-
vex is to recognize it as having been constructed from known convex func-
tions (in our library) by a sequence of operations that preserve convexity.
Strikingly, the typical operations one performs on functions, such as sums
and compositions with linear maps, can be interpreted as set-operations on
epigraphs. This viewpoint is very fruitful, since it couples convex analy-
sis of functions to convex geometry of epigraphs. Table 3.1 records a few
such functional operations and the corresponding operations on the level of
epigraphs. Henceforth, for any linear map A : E → Y, we define the linear
map A× I mapping E×R to Y ×R by setting (A× I)(x, r) := (Ax, r).

Function h(x) Epigraph epih

λf(xλ) λ · epi f

supi∈I fi(x)
⋂
i∈I epi fi

f(Ax) [A× I]−1epi f

Table 3.1: New functions from scaling (λ > 0), intersections, and preimages
of epigraphs.

In particular, the intersection of epigraphs epi fi for i ∈ I is the epigraph
of the pointwise supremum h(x) = supi∈I fi(x), while the preimage of an
epigraph epi f under a linear map A× I is the epigraph of the precomposed
function h(x) = f(Ax).

Exercise 3.13. Establish the correspondences in Table 3.1. Deduce that if
the functions f and fi are convex, then so are the functions h in the table.

Going beyond the examples in Table 3.1, there is a convenient way to
construct a convex function from sets in E ×R, which are not necessarily
epigraphs. Fix a set Q ⊂ E×R and define the lower envelope

EQ(x) := inf{r : (x, r) ∈ Q}.

See Figure 3.4 for an illustration.
The following exercise follows directly from the definition of convexity.

Exercise 3.14. b Let Q ⊂ E ×R be a set. Establish the following state-
ments.

1. If the infimum in the definition of EQ(x) is attained at every point x
where it is finite, then equality holds:

epiEQ = Q+ ({0} ×R+) .



52 CHAPTER 3. CONVEX ANALYSIS

Q

epi EQ

Figure 3.4: Lower envelope of Q.

What goes wrong if the infimum is not attained at some x with EQ(x)
finite?

2. If Q is convex, then the envelope EQ : E→ R is a convex function.

A primary example of the lower envelope construction arises from min-
imizing out a function in one of its variable. Namely, for any bivariate
function g : E×Y → R, the function

h(x) := inf
y

g(x, y) (3.2)

is called the infimal projection of g. A quick computation (do it!) shows
that we may equivalently write

h(x) = inf{r : (x, r) ∈ πx,r(epi g)}, (3.3)

where πx,r is the canonical projection πx,r(x, y, r) = (x, r). Thus f is the
lower envelope generated by the convex set Q := πx,r(epi g). Using Ex-
ercise 3.14, we deduce that if g is convex, then so is h. Moreover, if the
infimum in the definition (3.2) is attained at any x at which h(x) is finite,
then equality holds:

epih = πx,r(epi g).

An important example of the infimal projection, is the infimal convolu-
tion of two functions f, g : E→ R defined as

(f � g)(x) := inf
y
{f(y) + g(x− y)}. (3.4)

The name infimal convolution comes from the similarity of the construction
with the integral convolution, where the integral and multiplication have
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been replaced by infimum and sum, respectively. A quick computation (do
it!) shows that we may equivalently write

(f � g)(x) = inf{r : (x, r) ∈ epi f + epi g}.

Hence, the infimal convolution is the lower envelope of Q := epi f + epi g.
Using Exercise 3.14, we deduce that if f and g are convex, then so is the
convolution f�g. Moreover, if the infimum in the definition (3.4) is attained
at any x at which (f � g)(x) is finite, then equality holds:

epi (f � g) = epi f + epi g. (3.5)

Thus, under a mild regularity condition, addition of epigraphs corresponds
to the infimal convolution operation.

As the final example of the epigraphical projection, fix a function f : E→
R and a linear map A : E→ Y. Define the function

h(x) := min
y
{f(y) : Ay = x} (3.6)

Notice that h is the infimal projection of g(x, y) = f(y) + δ{0}(x − Ay).
Unraveling notation, the reader should verify the equivalent representation

h(x) = inf{r : (x, r) ∈ (A× I)epi f}.

Hence h is the lower envelope of the linear image Q := (A× I)epi f . Using
Exercise 3.14, we deduce that if f is convex, then so is the value function
h. Moreover, if the infimum in the definition (3.6) is attained at any x at
which h(x) is finite, then equality holds:

epih = (A× I)epi f.

Table 3.2 summarizes the three examples (3.2), (3.4), and (3.6).

Function h(x) Lower envelope of Q ⊂ E×R

infy f(x, y) πx,repi f

miny{f(y) : Ay = x} [A× I]epi f

infy f(y) + g(x− y) epi f + epi g

Table 3.2: New functions from sums, projections, and images of epigraphs.

A cautionary warning is now in order. Recall from Section 1.5 that we
call a function f closed if epi f is a closed set. As discussed in Section 2.1,
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linear images and sums of closed sets might not be closed. By the same
token, the infimal convolution and epigraphical projection of closed functions
might not be closed. Consequently, we will have to be careful with closure
issues when dealing with these two functional operations.

Exercise 3.15. Consider a function f : E→ R and define the set

Q := R++({1} × epi f).

1. Show that Q is the epigraph of the perspective function fπ : R×E→ R
defined by

f(λ, x) =

{
λf(xλ) if λ > 0

+∞ otherwise
.

Deduce that if f is convex, then so is fπ.

2. Define the quadratic-over-linear function

g(y) =

{
‖Ay−b‖2
〈c,y〉−q if 〈c, y〉 > q

+∞ otherwise
.

for some linear map A : E → Y, points b ∈ Y and c ∈ E, and q ∈ R.
Use the previous part of the exercise to show that g is convex.

[Hint: Write g as the perspective function of ‖ · ‖2 composed with a
linear map.]

3.3 The closed convex envelope

When encountering a nonconvex and possibly nonclosed function, it is con-
venient to introduce the following definition, which plays the role of the
closed convex hull in convex geometry.

Definition 3.16 (Closed convex envelope). The closed convex envelope of
a function f : E → R is the function whose epigraph is the closed convex
hull of epi f , and will be denoted by co f .

The reader should verify that the set cl (conv(epi f)) is indeed an epi-
graph of some function. Though the definition of the closed convex envelope
is geometrically pleasing, it is not convenient for computation. A better de-
scription arises from minorants, which facilitate a dual representation of
the functions that is analogous to the dual representation of convex sets
(Theorem 2.21)
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Definition 3.17 (Minorants). Given two functions f and g on E, we say
that g is a minorant of f if it satisfies g(y) ≤ f(y) for all y ∈ E. If in
addition, g has the form g(x) = 〈a, x〉 + b for some a ∈ E and b ∈ R, then
we call g an affine minorant of f . In the case b = 0, we call g a linear
minorant of f .

The following theorem is a direct analogue of Theorem 2.21. Namely,
Theorem 2.21 shows that we may write epi (co f) as an intersection of half-
spaces in E×R. The following theorem shows that the vertical halfspaces
of the form {(x, r) : 〈a, x〉 = b} can be discarded from this dual descrip-
tion, and therefore that the envelope co f can be written as the pointwise
supremum of affine minorants of f . See Figure 3.5 for an illustration.

epi f

epi g1
epi g2

Figure 3.5: Affine envelope representation of f ; the functions g1 and g2 are
affine minorants of f .

Theorem 3.18 will play a crucial role when we discuss Fenchel conjugacy—
a central topic in convex analysis.

Theorem 3.18 (Affine envelope representation). A proper function f : E→
R admits an affine minorant if and only if (co f) is proper. Under these two
equivalent conditions, equality holds:

(co f)(x) = sup{g(x) : g : E→ R is an affine minorant of f}. (3.7)

Proof. Define the set Q := cl (conv(epi f)). Clearly if f admits an affine
minorant, then co f never takes the value −∞ and is therefore proper.
Henceforth, we assume that (co f) is proper. We will show that f admits
at least one affine minorant and that (3.7) holds, thereby completing the
proof. Applying Theorem 2.21, we deduce that Q can be written as an
intersection of halfspaces in E ×R. Observe that one of the halfspaces in
this representation must be nonvertical; otherwise, Q would be a union of
vertical lines, thereby contradicting that co f is proper. Let us write this
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nonvertical halfspace as the epigraph of an affine minorant g1 of f ; we will
use this function shortly.

Let h(·) be the function defined on the right-hand-side of (3.7). We will
show that (co f) and h have the same epigraphs. Since h is a pointwise
supremum, we may write epih as an intersection of halfspaces:

epih =
⋂
{epi g : g : E→ R is an affine minorant of f}.

In particular, the inclusion Q ⊂ epih clearly holds. Suppose now for the
sake of contradiction that there exists a point (x̄, r̄) ∈ epih that is not in Q.
The separation theorem (Theorem 2.19) yields (a, µ) ∈ E × R and b ∈ R
such that the halfspace

H = {(x, r) : 〈(a, µ), (x, r)〉 ≤ b}

contains Q and does not contain (x̄, r̄). By the nature of epigraphs, the
inequality µ ≤ 0 holds (why?). If µ < 0, then H is nonvertical, thereby
contradicting the definition of h. Thus, we may assume µ̄ = 0. The strategy
now is to perturb H by using g1 in order to make it nonvertical. To this end,
define the function g2(x) := 〈a, x〉 − b and observe H = {(x, r) : g2(x) ≤ 0}.
In particular, every point x ∈ dom f satisfies g2(x) ≤ 0. We therefore deduce

λg2(x) + g1(x) ≤ f(x)

for all points x ∈ E and any λ > 0. Thus the function g3(x) := λg2(x)+g1(x)
is an affine minorant of f . Taking into account g2(x̄) > 0, we arrive at the
contradiction

h(x̄) ≥ g3(x̄) = λg2(x̄) + g1(x̄),

when λ > 0 is sufficiently large.

The following exercise shows that for positively homogeneous functions,
one may replace affine functions in the envelope description of Theorem 3.18
by linear functions.

Exercise 3.19. b Consider a proper positively homogeneous function
h : E → R. Show that h admits a linear minorant if and only if coh is
proper. Show that under these two equivalent conditions, equality holds:

(coh)(x) = sup{g(x) : g : E→ R is a linear minorant of h}.
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Exercise 3.20. Show that if h : R→ R is a proper positively homogeneous
function, then equality holds

(coh) + δB = co (h+ δB).

Deduce the expression inf
‖x‖≤1

h(x) = inf
‖x‖≤1

(coh)(x).

The following exercise is a nice consequence of Exercise 3.19. It shows
that any closed sublinear function is a support function of some set. This
result will underly a key duality relationship between subdifferentials and
subderivatives in Section 3.5.

Exercise 3.21. b Let h : E → R be a proper, positively homogeneous
function. Define the set

Q = {x : 〈x, y〉 ≤ h(y) ∀y ∈ E}.

Show that co h is proper if and only if Q is nonempty. Prove that under
these two equivalent conditions, co h is the support function of Q.

[Hint: Notice that Q parametrizes the set of linear minorants of h. There-
fore, the support function of Q is the pointwise supremum of all linear
minorants of h. Complete the proof by appealing to Exercise 3.19.]

3.4 The Fenchel conjugate

In convex geometry, one could associate with any convex cone its polar.
Convex analysis takes this idea much further through a new operation on
functions, called Fenchel conjugacy. Indeed, this construction subsumes all
notions of duality we have encountered so far.

Definition 3.22. For a function f : E → R, define the Fenchel conjugate
function f? : E→ R by

f?(y) = sup
x∈E

{〈y, x〉 − f(x)}.

Though the definition might seem strange at first, this operation arises
naturally from epigraphical geometry. From the very definition of the Fenchel
conjugate, the epigraph epi f? consists of all pairs (y, r) satisfying f(x) ≥
〈y, x〉 − r for all points x. Thus epi f? encodes all affine minorants x 7→
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〈y, x〉− r of f . An alternate insightful interpretation is through the support
function to the epigraph. Observe

f?(y) = sup
x∈E
{〈(y,−1), (x, f(x))〉}

= sup
(x,r)∈epi f

{〈(y,−1), (x, r)〉}

= δ?epi f (y,−1).

Thus the conjugate f?(y) is exactly the support function of epi f evaluated
at (y,−1). Since the support function is sublinear, the appearance of −1 in
the last coordinate simply serves as a normalization constant. See Figure 3.6
for an illustration of the two outlined viewpoints.

epi f

x̄

g(x) = 〈y1, x〉 + b1

g(x) = 〈y2, x〉 + b2

(y1,−b1)

(y2,−b2)

epi f?

Figure 3.6: Epigraphs of the function f = max{−x, 1
2x

2} and its conjugate
f? = 1

2 max{0, x}2 + δ[−1,∞)(x).

Notice that f? is a pointwise supremum of affine functions and is there-
fore closed and convex. Moreover, one can verify that f? is proper as long
as co f is proper (check this!). Table 3.3 records the Fenchel conjugate of a
few notable univariate functions.

We can now explain the symbol δ?Q we have been using for the support
function of a set Q. Observe that the Fenchel conjugate of the indicator
function δQ is exactly the support function of Q, thereby explaining the
notation δ?Q for the latter.

Exercise 3.23. Show that the set FQ of halfspaces in Theorem 2.21 coin-
cides with epi δ?Q.

We aim to show now that much like taking the double polar of a cone,
taking the Fenchel conjugate twice results in the closed convex envelope of
the function. As the first, step, the following exercise verifies this claim for
affine functions.
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f(x) dom f f?(y) dom f?

|x| R 0 [−1, 1]
1
p |x|

p, p > 1 R 1
q |y|

q (1
p + 1

q = 1) R√
1 + x2 R −

√
1− y2 [-1,1]

− log(x) (0,∞) −1− log(−y) (−∞, 0)

ex R y log(y)− y [0,∞)

x log(x) (0,∞) ey − 1 R

log(1 + ex) R y log(y) + (1− y) log(1− y) [0, 1]

Table 3.3: Examples of convex functions and their Fenchel conjugates.

Exercise 3.24. b Show that for any affine function f(x) = 〈a, x〉 + b, the
conjugate takes the form f?(y) = −b+δ{a}(y). Deduce the equality f?? = f .

We will also use the following elementary observation.

Exercise 3.25. b For any function g : E×Y → R, the estimate holds:

sup
y

inf
x

g(x, y) ≤ inf
x

sup
y

g(x, y).

We can now prove the biconjugacy theorem alluded to previously.

Theorem 3.26 (Biconjugacy). For any proper function f : E→ R, equality
f?? = cof holds.

Proof. We begin by successively computing:

(f?)?(x) = sup
y
{〈x, y〉 − f?(y)}

= sup
y
{〈x, y〉 − sup

z
{〈z, y〉 − f(z)}}

= sup
y

inf
z
{〈y, x− z〉+ f(z)}

≤ inf
z

sup
y
{〈y, x− z〉+ f(z)} (3.8)

= inf
z

{
f(z) x = z
+∞ x 6= z

= f(x),

where (3.8) follows from Exercise 3.25.
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Thus we have established f?? ≤ f . Notice that f?? is by definition closed
and convex. Hence the inequality f?? ≤ cof holds. To complete the proof,
let g(·) be any affine minorant of f . By the definition of the conjugate, we
see that conjugacy is order reversing and hence g? ≥ f?. Exercise 3.24 then
yields g = (g?)? ≤ (f?)?. Taking the supremum over all affine minorants g
of f and using Exercise 3.18 implies cof ≤ f??, as claimed.

The biconjugacy theorem incorporates many duality ideas we have al-
ready seen in convex geometry. For example, let K be a nonempty cone. It
is immediate from the definition of conjugacy that δ?K = δK◦ . Consequently,
Theorem 3.26 shows

δcl convK = co δK = (δK)?? = δ?K◦ = δK◦◦ .

Hence we deduce K◦◦ = cl convK. This is exactly the conclusion of Exer-
cise 2.27.

Exercise 3.27. Show that for any closed, convex set Q ⊂ E containing the
origin, it holds:

γQ(x) = δ?Q◦(x).

The Fenchel conjugacy interacts beautifully with the epigraphical set
operations, as summarized in the Table 3.4.

Function h(x) Fenchel conjugate h?(y)

λf(x) λf?( yλ)

f(x+ b) f?(y)− 〈b, y〉
infz g(x, z) g?(y, 0)

f � g f? + g?

infy{f(y) : Ay = x} f?(Ay)

Table 3.4: Duality in epigraphical operations; here, f and g are proper
convex functions and λ > 0.

Exercise 3.28. Verify the correspondences in Table 3.4.

3.5 Subgradients and subderivatives

Section 2.6 introduced the tangent cone as a first-order approximation of
a convex set, along with its polar, the normal cone. This section follows
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a similar theme for an arbitrary function f , introducing the subderivatives
df(x)(·) (analogue of directional derivative) and the subdifferential ∂f(x)
(set of generalized gradient). There is a tight connection between these two
constructions and epigraphical geometry: the epigraph of the subderivative
df(x) is the tangent cone to the epigraph Tepi f (x, f(x)), while the subdiffer-
ential ∂f(x) can be identified with a slice of the normal cone Nepi f (x, f(x)).
The main result of the section establishes the following striking relationship:
the subderivative coincides with the support function of the subdifferential,
provided the latter is nonempty. The following two sections investigate the
subdifferential and subderivative constructions, in turn.

3.5.1 Subdifferential

By their nature, nonsmooth functions cannot be approximated by affine
functions up to a first-order error. Optimization problems, however, are
inherently one-sided, that is one aims to either minimize or maximize a
function. Consequently, it seems plausible that theory and algorithms can
use one-sided affine approximations of functions. With this in mind, we
introduce the following key definition, which simply replaces the equality in
the definition of the gradient by an inequality.

Definition 3.29 (Subdifferential). Consider a function f : E → R and a
point x, with f(x) finite. Then a vector v ∈ E is called a subgradient of f
at x if the inequality holds:

f(y) ≥ f(x) + 〈v, y − x〉+ o(‖y − x‖) as y → x. (3.9)

The set of all such vectors v is called the subdifferential of f at x, and is
denoted by ∂f(x). For points x at which f(x) is infinite, we set ∂f(x) = ∅.

Thus a vector v is a subgradient of f at x if the affine function y 7→
f(x) + 〈v, y − x〉 minorizes f up to first-order near x; see Figure 3.7a. The
set ∂f(x) should therefore be thought of as a set of generalized gradients.
In particular, the inclusion 0 ∈ ∂f(x) is a necessary condition for x to be a
local minimizer.

Lemma 3.30 (Necessary condition for optimality). Let x be a local mini-
mizer of a function f : E → R, and suppose that f(x) is finite. Then the
inclusion 0 ∈ ∂f(x) holds.

Reassuringly, for differentiable functions, the subdifferential consists only
of the gradient.
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l(y) = f(x) + 〈v, y − x〉

x

epi f

(a) Subgradient of nonconvex function

∂f(x) × {−1}

Nepi f (x, f(x))

Tepi f (x, f(x))

(b) Tangents and normals

Figure 3.7: Subdifferential of a nonconvex function.

Exercise 3.31 (Subdifferential of differentiable functions). b Consider a
function f : E → R that is differentiable at x. Then equality ∂f(x) =
{∇f(x)} holds.

[Hint: The inclusion ∇f(x) ∈ ∂f(x) is clear from the definition of the
gradient. Conversely, fix any subgradient v ∈ ∂f(x) and a vector h ∈ E..
Then for all small t > 0, the definition of the subgradient implies

f(x+ th) ≥ f(x) + t〈v, h〉+ o(t),

while differentiability yields

f(x+ th) = f(x) + t〈∇f(x), h〉+ o(t).

Combine the two estimates to deduce ∇f(x) = v.]

Let us look at a few simple examples to get a feeling for subdifferential
computations. More interesting examples will appear at the end of the
section, after we develop some finer tools.

Exercise 3.32. Define the univariate functions

f(x) := |x|, g(x) := −|x|, and h(x) :=

{
−
√
x if x ≥ 0

∞ if x < 0
.
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Show that ∂f(x), ∂g(x), and ∂h(x) are given by the following expressions,
respectively:

−1 if x < 0

[−1, 1] if x = 0

1 if x > 0

 ,


1 if x < 0

∅ if x = 0

−1 if x > 0

 ,

{
∅ if x ≤ 0
−1

2
√
x

if x > 0

}
.

epi f

(a) f(x) = |x|

epi g

(b) g(x) = −|x|

epi gepih

(c) h(x) = −
√
x

Figure 3.8: Examples of subdifferentials.

Computing subdifferentials of more interesting functions, such as point-
wise maxima f(x) = supi=1,...,n fi(x), sums f1+f2, and compositions f(Ax),
requires a calculus of subderivatives. Chapter 4 is devoted entirely to devel-
oping such a calculus for subdifferentials of convex functions. Consequently,
subdifferential formulas for many more interesting functions will appear in
Chapter 4. The following exercise develops two elementary calculus rules
that we can already prove, and which will be useful in the sequel.

Exercise 3.33 (Separable sum). Let fi : Ei → R, for i = 1, . . . , k, be a
proper function on a Euclidean spaces Ei. Show that the subdifferential of
the separable function f(x1, x2, . . . , xn) =

∑k
i=1 fi(xi) is given by

∂f(x1, x2, . . . , xn) = ∂f(x1)× . . .× ∂f(xk).

Deduce an expression for the subdifferential of the `1 norm ‖ · ‖1.

Exercise 3.34 (Smooth plus nonsmooth). b Consider two proper functions
f, g : E → R and suppose that f is differentiable at a point x. Show the
equality

∂(f + g)(x) = ∇f(x) + ∂g(x).

Given a set Q ⊂ E, observe the equality ∂δQ(x) = NQ(x) (check this!).
Hence, the normal cone is an example of a subdifferential. The relation-
ship between normal cones and subdifferentials runs much deeper, as the
following exercise shows.
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Theorem 3.35. b Consider a function f : E→ R and a point x, with f(x)
finite. Then the equivalence holds:

v ∈ ∂f(x) ⇐⇒ (v,−1) ∈ Nepi f (x, f(x)).

Proof. The forward implication =⇒ is immediate from definitions; we leave
the details for the reader to verify. Conversely, fix a pair (v,−1) ∈ Nepi f (x, f(x)).
The definition of the normal cone guarantees

r ≥ f(x) + 〈v, y − x〉+ o(‖(y, r))− (x, f(x))‖), (3.10)

as (y, r)→ (x, f(x)) in epi f . Let us first argue that the quotients f(y)−f(x)
‖y−x‖

are bounded from below on a neighborhood of x. To see this, observe that
(3.10) guarantees

r ≥ f(x) + 〈v, y − x〉 − 1
2(‖y − x‖+ |r − f(x)|), (3.11)

for all (y, r) in epi f sufficiently close to (x, f(x)). In particular, if r < f(x),
then rearranging (3.11) and using the Cauchy-Schwarz inequality yields

r ≥ f(x) + 2〈v, y − x〉 − ‖y − x‖ ≥ f(x)− (1 + 2‖v‖)‖x− y‖. (3.12)

We therefore deduce liminfy→x
f(y)−f(x)
‖y−x‖ > −∞, as claimed.

Seeking to verify the subgradient definition (3.9), consider any sequence
yi → x, with f(yi) finite. Clearly, we may assume f(yi) ≤ f(x) + 〈v, yi − x〉
for all indices i, since otherwise (3.9) holds trivially. The Cauchy-Schwarz

inequality therefore guarantees limsup
i→∞

f(yi)−f(x)
‖yi−x‖ < ∞. Thus the quotients

|f(yi)−f(x)|
‖yi−x‖ are uniformly bounded. Plugging in ri = f(yi) into (3.10) yields

f(yi)− f(x)− 〈v, yi − x〉 ≥ o(‖(yi, f(yi))− (x, f(x))‖). (3.13)

Observe now that the vectors ζi := (yi, f(yi))− (x, f(x)) satisfy

o(‖ζi‖)
‖yi−x‖ = o(‖ζi‖)

‖ζi‖ ·
‖ζi‖
‖yi−x‖ = o(‖ζi‖)

‖ζi‖ ·
√

1 + (f(yi)−f(x))2

‖yi−x‖2 → 0.

Therefore, the term o(‖ζi‖) on the right side of (3.13) is o(‖yi − x‖), which
directly implies v ∈ ∂f(x), as claimed.

Thus, we may identify the subdifferential ∂f(x) with the slice of the
normal cone Nepi f (x, f(x))∩(E×{−1}). See Figure 3.7b for an illustration.
An important consequence of Theorem 3.35 is that the subdifferential ∂f(x)
is always a closed convex set. When the target function f is convex, the
definition of the subdifferential simplifies, as one expects.
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Exercise 3.36. b Consider a convex function f : E → R and a point x,
with f(x) finite. Show that the inclusion v ∈ ∂f(x) holds if and only if

f(y) ≥ f(x) + 〈v, y − x〉 holds for all y ∈ E.

[Hint: Use Exercises 2.36 and 3.35.]

Thus if f is convex, then a subgradient v ∈ ∂f(x) has the property that
the affine function y 7→ f(x) + 〈v, x− y〉 globally minorizes f , with no error
term. See Figure 3.9 for an illustration. This is the power of convexity
and should be emphasized: subgradients of convex functions automatically
furnish global affine minorants. In particular, the zero vector is a subgradient
of a convex function f at x if and only if x is a global minimizer of f .

x

epi f

`(y) = f(x) + 〈v, y − x〉

(a) Subgradient of a convex function

Tepi f (x, f(x))

Nepi f (x, f(x))

∂f(x) × {−1}

(b) Tangents and normals

Figure 3.9: Subdifferential of a convex function.

Corollary 3.37. A point x is a global minimizer of a proper convex function
f : E→ R if and only if the inclusion 0 ∈ ∂f(x) holds.

Certainly if the subdifferential is empty at some point, then it provides no
useful information. Looking back at Exercise 3.32, we see that a nonconvex
function (e.g. f(x) = −| · |) could easily have an empty subdifferential set
at a point in the interior of its domain. In contrast, the following exercise
shows that any convex function admits a subgradient at every point in the
relative interior of its domain. This result is sharp in the sense that even
a convex function may fail to admit a subgradient on the boundary of its
domain. One example is the function h(x) = −

√
x in Exercise 3.32.

Theorem 3.38 (Existence of subgradients). Consider a proper convex func-
tion f : E → R. Then the subdifferential ∂f(x) is nonempty at every point
x ∈ ri (dom f).
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Proof. We first prove the theorem when dom f has nonempty interior. For
any point x ∈ int (dom f), Exercise 2.39 yields a nonzero vector (v, α) ∈
Nepi f (x, f(x)). In the case α = 0, the very definition of the normal cone
guarantees v ∈ Ndom f (x̄), which is not possible since x̄ lies in int (dom f).
Therefore we deduce α < 0. Rescaling yields the inclusion (−α−1v,−1) ∈
Nepi f (x, f(x)). Theorem 3.35 therefore guarantees −α−1v ∈ ∂f(x), thereby
completing the proof.

Suppose now that dom f has empty interior. Without loss of generality,
we may assume that the domain of f contains the origin. Define the lin-
ear subspace L := aff (dom f) and define the function g : L × L⊥ → R by
g(x, y) = g(x). Clearly, g is convex and its domain dom g = dom f × L⊥
has nonempty interior. Therefore, by what we have already proved, for ev-
ery point x ∈ ri (dom f), the subdifferential set ∂g(x, 0) = ∂f(x) × {0} is
nonempty. The proof is complete.

The subdifferential and the Fenchel conjugate function are intimately
linked by the following theorem; see the accompanying Figure 3.10.

Theorem 3.39 (Fenchel-Young Inequality). Consider a proper convex func-
tion f : E→ R. Then for any points x, y ∈ E, the inequality

f(x) + f?(y) ≥ 〈x, y〉 holds, (3.14)

while equality holds if and only if y ∈ ∂f(x).

Proof. Fix two points x, y ∈ E. Observe

f?(y) = sup
z
{〈z, y〉 − f(z)} ≥ 〈x, y〉 − f(x),

establishing the claimed inequality (3.14). Next, Exercise 3.36 shows that
the inclusion y ∈ ∂f(x) holds if and only if f(z) ≥ f(x) + 〈y, z − x〉 for all
z, or equivalently if 〈y, x〉− f(x) ≥ 〈y, z〉− f(z) for all z. Taking supremum
over z, this condition amounts to

〈y, x〉 − f(x) ≥ sup
z
{〈y, z〉 − f(z)} = f?(y).

This is the reverse direction in the inequality (3.14).

A crucial consequence of the Fenchel-Young inequality is that the con-
jugacy operation acts as an inverse on the level of subdifferentials.

Corollary 3.40. Suppose f : E→ R is proper, closed, and convex. Then

y ∈ ∂f(x) ⇐⇒ x ∈ ∂f?(y).
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l(x) = 〈x, y〉 − f?(y)

x̄

y ∈ ∂f(x̄)

epi f

Figure 3.10: Tightness in the Fenchel-Young inequality

Proof. Theorem 3.39 shows that y lies in ∂f(x) if and only if

〈x, y〉 = f(x) + f?(y).

On the other hand by Theorem 3.26, we have f(x)+f?(y) = (f?)?(x)+f?(y).
Applying Theorem 3.39 again with f replacing f?, we deduce y ∈ ∂f(x) if
and only if x ∈ ∂f?(y).

Using Corollary 3.40, we can now compute the subdifferential of a few
more interesting functions.

Exercise 3.41. Let Q ⊂ E be a closed convex set. Show the equality

∂δ?Q(v) = argmax
x∈Q

〈v, x〉 for all x ∈ E. (3.15)

Use this expression to do the following exercises.

1. Show that the coordinate maximum function mx : Rn → R defined by
mx (x1, . . . , xn) = max{x1, . . . , xn} satisfies

∂mx (x) = conv{ei : i ∈ I(x)},

where I(x) := {i : xi = mx (x)} denotes the set of active indices.

2. Show that the `2-norm on Rn satisfies

∂‖x‖2 =

{
x
‖x‖2 if x 6= 0

clB if x = 0
.
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3. Show that the `∞ norm on Rn satisfies

∂‖x‖∞ = conv

 ⋃
i∈I(x)

∂|xi|

 ,

where I(x) := {i : xi = ‖x‖∞} denotes the set of active indices.

[Hint: Use Corollary 3.40 together with Exercise 2.37 to establish (3.15).
Recognize that mx (·), ‖ · ‖2, and ‖ · ‖∞ functions are the support functions
of the unit simplex ∆n, the unit `2-ball, and the unit `1 ball, respectively.
Use the expression (3.15) to complete the proof.]

We end with an illuminating exercise, which shows that the subdifferen-
tial of a convex function satisfies a nice closeness property.

Exercise 3.42. Consider a proper, closed, convex function f : E → R.
Show that for any sequences of point xi ∈ E and vi ∈ ∂f(xi), such that
(xi, vi) converge to some pair (x̄, v̄), the inclusion v̄ ∈ ∂f(x̄) must hold.
Deduce that the graph of the subdifferential {(x, v) ∈ E×E : v ∈ ∂f(x)} is
a closed set.

3.5.2 Subderivative

Subgradients of a function f describe affine minorants of f up to a first-order
error. An interesting alternative construction would instead aim to measure
the rate of change of f along a given direction. How should we measure the
rate of change of a nonsmooth function f along a given direction u ∈ E?
The classical answer is the directional derivative

Definition 3.43 (Directional derivative). Consider a function f : E → R
and fix a point x, with f(x) finite. The directional derivative of f at x in
direction u ∈ E is defined by

f ′(x̄, u) := lim
τ↘0

f(x̄+ τu)− f(x̄)

τ
(3.16)

provided the limit exists.

The definition of the directional derivative for general functions f is
deeply flawed. First, the limit in the expression (3.16) might not exist. This
problem turns out not to be too serious for most functions of interest; in
particular, the forthcoming Lemma 3.48 shows that the limit does exist for
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0 x̄

u

x1

x2

xi

Figure 3.11: Example when the function f ′(x̄, ·) is not closed.

convex functions. A much more serious deficit is that function u 7→ f ′(x̄, u)
is not closed even if f is a closed, convex function; this is in contrast to the
nice closedness properties of the subdifferential (Exercise 3.42).

A simple example will clarify what can go wrong. Let f : R2 → R be the
indicator function of the closed unit disk and define the basepoint x̄ = (1, 0).
A quick computation yields the expression

f ′(x̄, u) =

{
0 if u1 < 0

+∞ otherwise

Thus the function u 7→ f ′(x̄, u) is not closed. What goes wrong is that
intuitively one expects f ′(x̄, u) = 0 for u = (0, 1), and yet the value of the
directional derivative is f ′(x̄, u) = ∞. What is at fault is the requirement
that the approaching points xi = x̄ + τiu in the difference quotients must
lie on the ray {x̄} + R+{u}. If we would have instead allowed a sequence
xi lying on the circle approaching x̄, the problem would disappear. See
Figure 3.11 for an illustration.

This example suggests that a better definition would compute difference
quotients along a sequence of points that approaches x̄ “directionally” along
u, but not necessarily lying in the ray {x̄} + R+{u}. That is, we should
focus on points xi → x̄ satisfying τ−1

i (xi− x̄)→ u for some sequence τi ↘ 0.
Solving for xi, we may write xi = x̄+ τiwi for some sequence wi → u. Thus
a better measure of variation in direction u would involve the difference
quotients f(x̄+τw)−f(x̄)

τ as τ tends to zero and w tends to u. With this in
mind, we introduce the following definition.

Definition 3.44 (Subderivative). Consider a function f : E → R and a
point x̄, with f(x̄) finite. Then the subderivative function df(x̄) : E → R is
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defined by

df(x̄)(u) = liminf
τ↘0
w→u

f(x̄+ τw)− f(x̄)

τ
.

The following exercise shows that the subderivative of a function is
closely tied to the tangent cone to its epigraph.

Exercise 3.45. b Show that for any function f : E → R and a point x,
with f(x) finite, equality holds:

epi df(x) = Tepi f (x, f(x)).

For example, the grey region in Figure 3.7b coincides with the epigraph
of the subderivative function u 7→ df(x)(u). An important consequence of
Exercise 3.45 is that the function df(x)(·) is closed and positively homoge-
neous, since the tangent cone is always a closed cone.

The following exercise shows that when f is locally Lipschitz continu-
ous around x̄, the sequence w in the definition of the subderivative can be
replaced simply by u—often, a convenient simplification. Note that local
Lipschitz continuity excludes the example of the indicator function of the
unit disk, discussed previously.

Exercise 3.46. Consider a function f : E→ R that is Lipschitz continuous
on a neighborhood of a point x̄. Then equality holds:

df(x̄)(u) = liminf
τ↘0

f(x̄+ τu)− f(x̄)

τ
.

For a smooth function f , the gradient and the directional derivative are
tightly related by the expression f ′(x, u) = 〈∇f(x), u〉. The following exer-
cise shows that this relationship extends naturally to the nosmooth setting:
the closed convex envelope of the subderivative is the support function of
the subdifferential.

Theorem 3.47 (Subderivative as the support function). b Consider a func-
tion f : E → R and a point x̄, with f(x̄) finite. Then the following two
properties are equivalent:

∂f(x̄) 6= ∅ ⇐⇒ co df(x̄) is proper.

Under these two equivalent conditions, the envelope co df(x̄) is the support
function of the subdifferential ∂f(x̄).
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Proof. We will verify the relationship

∂f(x̄) = {v ∈ E : 〈u, v〉 ≤ df(x̄)(u) ∀u ∈ E}. (3.17)

Then the statement of the theorem will follow immediately from Exer-
cise 3.21. To this end, observe the following equivalences:

v ∈ ∂f(x̄) ⇐⇒ (v,−1) ∈ Nepi f (x̄, f(x̄)) (3.18)

⇐⇒ 〈(v,−1), (u, r)〉 ≤ 0 ∀(u, r) ∈ Tepi f (x̄, f(x̄)) (3.19)

⇐⇒ 〈v, u〉 ≤ df(x̄)(u) ∀u ∈ E, (3.20)

where (3.18) follows directly from Theorem 3.35, the equivalence (3.19) fol-
lows from Lemma 2.35, and (3.18) is a consequence of Exercise 3.45. We
have thus proved that (3.17) holds, and the proof is complete.

So far, the discussion of the subderivative df(x̄)(·) did not assume con-
vexity of f . Our next goal is to show that when f is convex, the subderiva-
tive df(x̄)(·) coincides with the closure of the directional derivative function
cl f ′(x̄, ·). We begin with the following lemma, which shows that the limit in
the definition of the directional derivative (3.16) exists for convex functions.

Lemma 3.48. Suppose f : E→ R is convex and fix a point x with f(x) fi-

nite. Then for any point u ∈ E, the quotients f(x+τu)−f(x)
τ are nondecreasing

in τ , and therefore f ′(x, u) exists in R for every u ∈ E.

Proof. Fix any reals τ̂ , τ satisfying 0 < τ̂ < τ . Using convexity, successively
compute

f(x+ τ̂u)− f(x)

τ̂
=
f
((

τ−τ̂
τ

)
x+ τ̂

τ (x+ τu)
)
− f(x)

τ̂

≤
τ−τ̂
τ f(x) + τ̂

τ f(x+ τu)− f(x)

τ̂

=
f(x+ τu)− f(x)

τ

The result follows.

Not surprisingly, the directional derivative f ′(x, ·) of a convex function
f is itself a convex function.

Exercise 3.49. Let f : E → R be a proper convex function. Verify that
for any point x ∈ dom f , the directional derivative function u 7→ f ′(x, u) is
sublinear.
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We are now ready to prove the following theorem

Theorem 3.50 (Subderivative and directional derivative). Consider a proper
convex function f : E→ R and fix a point x̄ ∈ dom f . Then equality holds:

df(x̄)(·) = cl f ′(x̄, ·). (3.21)

Consequently, as long as ∂f(x̄) is nonempty, we have

df(x̄) = cl f ′(x̄, ·) = δ?∂f(x̄).

Proof. Without loss of generality, we may suppose x̄ = 0 and f(x̄) = 0
throughout the proof. Observe that since f is convex, the tangent cone
Tepi f (x̄, f(x̄)) is closed and convex. Therefore using Exercise 3.45, we deduce
that df(x̄) is a closed sublinear function. The inequality df(x̄)(·) ≤ f ′(x, ·) is
immediate from definitions, and therefore we conclude df(x̄)(·) ≤ cl f ′(x, ·).
To see the reverse inequality, we will show the inclusion

epi f − {(x̄, f(x̄))} ⊂ epi f ′(x̄, ·). (3.22)

To this end, fix an arbitrary point (x, r) ∈ epi f , and compute

f(x̄+ (x− x̄))− f(x̄)

1
≤ r − f(x̄).

Monotonicity of difference quotients (Lemma 3.48) guarantees f ′(x̄, x− x̄) ≤
r − f(x̄), and therefore

(x, r)− (x̄, f(x̄)) = (x− x̄, r − f(x̄)) ∈ epi f ′(x̄, ·)

Thus the inclusion (3.22) holds. Using Exercise 2.33 we deduce Tepi f (x̄, f(x̄)) ⊂
cl epi f ′(x̄, ·). Exercise 3.45 therefore implies cl f ′(x̄, ·) ≤ df(x̄), thereby com-
pleting the proof of (3.21). The final claim is now immediate from Exer-
cise 3.47.

3.6 Lipschitz continuity of convex functions

Theorem 3.38 showed that the subdifferential ∂f(x) of a convex function f is
nonempty at every point x ∈ ri (dom f). This section proves a much stronger
statement: a convex function f is Lipschitz continuous on any compact
subset of ri (dom f). To better appreciate the subtlety of this guarantee, it is
worthwhile to see what can go wrong at points in the relative boundary of the
domain. First, the example h(x) = −

√
x discussed in Exercise 3.32, shows
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that a closed convex function may fail to be locally Lipschitz continuous
relative to its domain. A more interesting example is the function f : R2 →
R, depicted in Figure 3.12 and defined by

f(x, y) =


y2

x if x > 0

0 if (x, y) = (0, 0)

+∞ otherwise

. (3.23)

It is straightforward to see that f is closed and convex, but is not even
continuous at the origin relative to its domain.

Figure 3.12: Plot of the function f(x, y) in equation (3.23).

We begin with the following exercise that relates Lipschitz continuity to
the size of subgradients.

Exercise 3.51. b Let f : E → R be a proper convex function and let Q
be any open subset of dom f . Prove the identity:

sup
x,y∈Q

|f(x)− f(y)|
‖x− y‖

= sup
x∈Q, v∈∂f(x)

‖v‖. (3.24)

[Hint: The inequality ≤ in (3.24) follows from the subgradient inequality
and Cauchy–Schwarz. To see the reverse inequality, fix x ∈ Q and v ∈ ∂f(x),
and estimate the error f(x+ tv)− f(x) using the subgradient inequality.]

Exercise 3.52. b Consider a proper, closed, convex function f : E → R.
Show that f is L-Lipschitz continuous if and only if every vector in domh?

is bounded in norm by L.

[Hint: Using Corollary 3.40, verify sup
x∈E, v∈∂f(x)

‖v‖ = sup
y∈domh?

‖y‖. Com-

plete the proof by appealing to Exercise 3.51.]
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We are ready to prove the main result of this section.

Corollary 3.53. Consider a proper convex function f : E → R and let Q
be a compact subset of ri (dom f). Then f is Lipschitz continuous on Q

Proof. Without loss of generality, we may suppose that dom f has nonempty
interior. Since Q is compact, we may choose a bounded open set U satisfying
Q ⊂ U and clU ⊂ int (dom f) (verify this!). We will argue supx∈U,v∈∂f(x) ‖v‖ <
∞, and therefore f is Lipschitz continuous on Q by Exercise 3.51. To
verify the claim, suppose for the sake of contradiction that there exist
sequences xi ∈ U and vi ∈ ∂f(xi) satisfying ‖vi‖ → ∞. Since U is
bounded, we may pass to a subsequence and assume that xi tends to some
x̄ ∈ clU ⊂ int (dom f) and vi

‖vi‖ tends to some unit vector v̄. We will show

that the inclusion v̄ ∈ Ndom f (x̄) holds, which is impossible since x̄ lies in
int (dom f). To this end, observe that the subgradient inequality takes the
form

f(y) ≥ f(xi) + 〈vi, y − xi〉 for all y ∈ dom f.

Dividing through by ‖vi‖ and passing to the limit yields

liminf
i→∞

f(xi)

‖vi‖
≤ 〈v̄, x̄− y〉 for all y ∈ dom f. (3.25)

Since f is proper, it admits an affine minorant and therefore f is clearly
bounded from below on the compact set clU . Therefore the left side of
(3.25) is nonnegative, and the inclusion v̄ ∈ Ndom f (x̄) holds, as claimed.

We end the section with the following exercise, which shows that the
converse of Exercise 3.31 holds for convex functions.

Exercise 3.54. b A proper convex function f : E→ R is differentiable at
x if and only if ∂f(x) is a singleton, in which case it must be that ∂f(x) =
{∇f(x)}.
[Hint: The forward implication is Exercise 3.31. To see the converse, assume
∂f(x) = {v} for some v ∈ E. Next, verify the inclusion Ndom f (x)+∂f(x) ⊂
∂f(x) and deduce x ∈ int (dom f). Consider any sequence yi → x and
choose any vectors vi ∈ ∂f(yi), guaranteed to exist by Theorem 3.38.
Use Exercise 3.51 and Corollary 3.53 to deduce that the sequence {vi}
is bounded. Using the subgradient inequality and Exercise 3.42, argue
limsupi→∞

f(yi)−f(x)−〈v,yi−x〉
‖yi−x‖ ≤ limi→∞ ‖v − vi‖ = 0.]
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3.7 Strong convexity, Moreau envelope, and the
proximal map

This section introduces class of strongly convex functions. Such functions
play a fundamental role both in theory and algorithms, as we will see. In par-
ticular, typical algorithms for strongly convex functions converge faster than
for functions that are merely convex. One of the main results of the section
is the Baillon-Haddad theorem, which shows that a proper, closed, convex
function is strongly convex if and only its Fenchel conjugate is smooth. In
this sense, smoothness and strong convexity are dual property. On our way
to proving this theorem, we will introduce the Moreau envelope, which serves
as a smooth approximation of a convex function, and the proximal map that
appears in the expression for its gradient. These three notions— strong con-
vexity, Moreau envelope, and the proximal map—will appear often in later
sections.

Definition 3.55 (Strong convexity). A function f : E → R is called µ-
strongly convex (with µ ≥ 0) if the perturbed function x 7→ f(x)− µ

2‖x‖
2 is

convex.

Trivially, convex functions are strongly convex with parameter µ = 0.
More generally, if f is a convex function, then f+ µ

2‖·‖
2 is µ-strongly convex.

Indeed, this is the typical way in which strongly convex functions arise,
as quadratic perturbations of convex functions. Checking strong convexity
of a C2-smooth function simply amounts to lower-bounding the minimal
eigenvalue of the Hessian.

Exercise 3.56. Show that a C2-smooth function f : U → R, defined on an
open set U ⊂ E, is α-strongly convex if and only if the relation ∇2f(x) �
−αI holds for all x ∈ U .
[Hint: Apply Theorem 3.8.]

The main use of strong convexity stems from a strengthened sugradient
inequality, established in the following theorem.

Theorem 3.57. Let f : E → R be a µ-strongly convex function. Then for
any x ∈ E and v ∈ ∂f(x), the estimate holds:

f(y) ≥ f(x) + 〈v, y − x〉+
µ

2
‖y − x‖2 for all y ∈ E.

Proof. Fix a point x ∈ R and a vector v ∈ ∂f(x). Define the convex function
g := f − µ

2‖ · ‖
2 and note the equality ∂g(x) = ∂f(x)− µx (Exercise 3.34).
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The subgradient inequality for g therefore guarantees

g(y) ≥ g(x) + 〈v − µx, y − x〉.

Plugging in the definition of g and rearranging yields

f(y) ≥ f(x) + 〈v, y − x〉+
µ

2

(
‖y‖2 + ‖x‖2 − 2〈x, y〉

)
= f(x) + 〈v, y − x〉+

µ

2
‖y − x‖2,

as we had to show.

Thus, strong convexity of a function f guarantees that any point x and
subgradient v ∈ ∂f(x) yield a quadratic function y 7→ f(x) + 〈v, y − x〉 +
µ
2‖y− x‖

2 that minorizes f . Notice that in this way, strong convexity plays
an opposite role to smoothness. Recall from Exercise 1.15 that if f is β-
smooth, then the quadratic y 7→ f(x) + 〈∇f(x), y − x〉 + β

2 ‖y − x‖
2 is an

upper-estimator of f for any x. See Figure 3.13 for an illustration.
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(b) Smoothness

Figure 3.13: Depiction of strong convexity (left) and smoothness (right).
Left: f(x) = |x|+x2 (black), quadratic lower model formed at x = 1 (blue);
Right: f(x) = log(1 + ex) + 7x2 (black), quadratic upper model formed at
x = 5 (blue)

The following is a direct consequence of Theorem 3.57.

Exercise 3.58. b Any proper, closed, µ-strongly convex function f : E→
R has a unique minimizer x, which moreover satisfies

f(y)− f(x) ≥ µ

2
‖y − x‖2 for all y ∈ E. (3.26)

[Hint: Argue using Theorem 3.57 that f is coercive, and apply Exercise 1.6
to deduce existence of a minimizer x. Deduce the claimed inequality (3.26)
from Theorem 3.57. Conclude uniqueness from (3.26).]
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A minimizer of any function f , by definition, satisfies f(y)−f(x) ≥ 0 for
all y. The estimate (3.26) guarantees that if f is µ-strongly convex, then we
can squeeze out an extra quadratic term µ

2‖y − x‖
2 on the right-hand-side.

We will use Exercise 3.58 heavily in what follows.

As we alluded to previously, smoothness and strong convexity play op-
posite roles: one has to do with upper quadratic approximations and the
other with lower quadratic approximations. We will now see that this obser-
vation can be made precise through the language of duality. We will prove
that a closed convex function is β-smooth if and only if its Fenchel conju-
gate is 1

β -strongly convex. The argument will be based on the following two
constructions, which are critically important in their own right.

Definition 3.59. For any function f : E → R and real α > 0, define the
Moreau envelope and the proximal map, respectively:

fα(x) := min
y

f(y) +
1

2α
‖x− y‖2

proxαf (x) := argmin
y

f(y) +
1

2α
‖x− y‖2.

The reader should recognize the Moreau envelope simply as the infimal
convolution

fα = f �
(

1

2α
‖ · ‖2

)
.

In particular, when f is proper, closed, and convex the perturbed function
f + 1

2α‖x− ·‖
2 is proper, closed, and strongly convex. Consequently, Exer-

cise 3.58 guarantees that proxαf (x) is a singleton for every x. Taking into
account the expression (3.5), we recognize the epigraph of fα as the sum:

epi fα = epi f + epi

(
1

2α
‖ · ‖2

)
, (3.27)

An example will help to gain some intuition. Letting f be the absolute value
functionf = | · |, a quick computation shows (Figure 3.14)

fα(x) =

{
1

2α |x|
2 if |x| ≤ α

|x| − 1
2α otherwise

}
, proxαf (x) =


x− α if x ≥ α
0 if |x| ≤ α
x+ α if x ≤ −α

 .

The envelope fα appears often in the statistics literature, under the name of
the Huber function. Notice that the Huber function coincides with a simple
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epi | · |

epi | · |α

(a) epi | · |α = epi | · |+ epi 1
2 | · |

2

α−α

gph (proxα|·|)

(b) gph (proxα|·|)

Figure 3.14: Moreau envelope and the proximal map of | · |.

quadratic near the origin and then grows linearly. The associated proximal
map proxαf is called soft-thresholding in statistics and signal processing.

In the simplest case that f is the indicator function of a closed con-
vex set Q, the Moreau envelope reduces to the squared distance fα(x) =
1

2αdist2
Q(x), while the proximal map becomes the nearest point projection

proxαf (x) = projQ(x). Consequently, a great deal of intuition can be gained
by treating the proximal map as a generalization of the nearest-point pro-
jection for functions. The following theorem, which plays an analogous role
to Exercise 2.18 for projections, shows that the proximal map of a proper,
closed, convex function is 1-Lipschitz continuous.

Theorem 3.60. Consider a proper, closed, convex function f : E → R.
Then the set proxf (x) is a singleton for every point x ∈ E. Moreover, for
any points x, y ∈ E the estimate holds:

‖proxf (x)− proxf (y)‖2 ≤ 〈proxf (x)− proxf (y), x− y〉.

In particular, the proximal map x 7→ proxf (x) is 1-Lipschitz continuous.

Proof. Notice that for every point x, the function z 7→ f(z) + 1
2‖z − x‖

2

is proper, closed, and 1-strongly convex, and hence has a unique minimizer
(Exercise 3.58 ). Thus the proximal set proxf is a singleton everywhere on E,
as claimed. Next, consider any two points x, y ∈ E and define x+ = proxf (x)
and y+ = proxf (y). By definition x+ is the minimizer of the function

f + 1
2‖ · −x‖

2 and y+ is the minimizer of f + 1
2‖ · −y‖

2. Using strong
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convexity and Exercise 3.58, we therefore deduce

f(x+) +
1

2
‖x+ − x‖2 ≤

(
f(y+) +

1

2
‖y+ − x‖2

)
− 1

2
‖y+ − x+‖2

= f(y+) +
1

2
‖y+ − y‖2 − 1

2
‖y+ − x+‖2

+
1

2
‖y+ − x‖2 − 1

2
‖y+ − y‖2

≤
(
f(x+) +

1

2
‖x+ − y‖2

)
− ‖y+ − x+‖2

+
1

2
‖y+ − x‖2 − 1

2
‖y+ − y‖2.

Rearranging yields the claimed estimate:

‖y+ − x+‖2 ≤ 1

2

(
‖x+ − y‖2 − ‖y+ − y‖2 + ‖y+ − x‖2 − ‖x+ − x‖2

)
= 〈x+ − y+, x− y〉.

The Cauchy-Schwarz inequality then implies ‖y+−x+‖ ≤ ‖x−y‖ as claimed.

The proximal map of a convex function and that of its conjugate are
closely related, as the following theorem shows.

Theorem 3.61 (Moreau decomposition). For any proper, closed, convex
function f : E→ R, equality holds

proxf (x) + proxf?(x) = x ∀x ∈ E.

Proof. Using the definition of the proximal map, we successively deduce

z = proxf (x)⇐⇒ 0 ∈ ∂
(
f +

1

2
‖ · −x‖2

)
(z)

⇐⇒ x− z ∈ ∂f(z)

⇐⇒ z ∈ ∂f?(x− z) (3.28)

⇐⇒ 0 ∈ ∂f?(x− z)− z

⇐⇒ 0 ∈ ∂
(
f? +

1

2
‖ · −x‖2

)
(x− z)

⇐⇒ x− z = proxf?(x).

where (3.28) follows from Corollary 3.40. This completes the proof.
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Theorem 3.61 is geometrically appealing when specialized to indicator
functions of cones. Letting f be the indicator function of a closed, convex
cone K ⊂ E, the theorem guarantees:

projK(x) + projK◦(x) = x ∀x ∈ E.

See Figure 3.15 for an illustration.

K

K◦

x

projK(x)

projK◦ (x)

Figure 3.15: Polar decomposition of a point x = projK(x) + projK◦(x)

Thus every point x can be decomposed as a sum of a point in K and a
point in K◦. When K is a linear subspace, we simply recover the orthogonal
decomposition. Continuing with the linear algebraic analogy, the following
exercise shows that the polar decomposition is unique.

Exercise 3.62. Let K ⊂ E be a nonempty, closed, convex cone. Show that
for any three points x, y, z ∈ E, the following conditions are equivalent.

1. z = x+ y with x ∈ K, y ∈ K◦, 〈x, y〉 = 0,

2. x = projK(z) and y = projK◦(z).

Exercise 3.63. Compute the proximal operator proxαf of the following
functions: f(x) = ‖x‖1, f(x) = ‖x‖2, f(x) = ‖x‖∞.

Looking at Figure 3.14b, it appears that the Moreau envelope of the
absolute value function is smooth. This is not a coincidence. An intuitive
reason stems from the expression (3.27) for the epigraph of the Moreau en-
velope. The addition of epi 1

2α‖·‖
2 to an epigraph of a convex function tends

to “smooth out” its nonsmooth features. The following theorem provides a
formal justification.

Theorem 3.64. For any proper, closed, convex function f : E → R, the
envelope fα is continuously differentiable on E with gradient

∇fα(x) = α−1(x− proxαf (x)). (3.29)

Consequently ∇fα is Lipschitz continuous with parameter α−1.
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Proof. Suppose first α = 1 and fix a point x ∈ E. We aim to show that the
subdifferential of fα is a singleton at every point. To this end, we successively
deduce the equivalences

z ∈ ∂fα(x) ⇐⇒ x ∈ ∂(f � 1
2‖ · ‖

2)?(z) (3.30)

⇐⇒ x ∈ ∂
(
f? +

(
1
2‖ · ‖

2
)?)

(z) (3.31)

⇐⇒ x ∈ ∂f?(z) + z

⇐⇒ 0 ∈ ∂(f? + 1
2‖ · −x‖

2)(z)

⇐⇒ z = proxf?(x)

⇐⇒ z = x− proxf (x), (3.32)

where (3.30) follows from Corollary 3.40 and the definition of the Moreau
envelope, the second equivalence (3.31) uses the conjugate formula for the
infimal convolution in Exercise 3.28, and the last equivalence (3.32) follows
from Theorem 3.61. Thus we deduce that the subdifferential ∂fα(x) is a
singleton. Hence by Exercise 3.54, the envelope fα is differentiable with
∇fα(x) = x − proxf (x). It follows immediately from Theorem 3.60 that
∇fα is 1-Lipschitz continuous. Returning to the general setting α 6= 1,
observe that α · fα is the Moreau-Yosida envelope of αf with parameter 1.
Applying what we have already proved for the case α = 1 completes the
argument.

Exercise 3.65 (Mean-value theorem). Consider a proper convex function
f : R → R and fix two points x, y ∈ ri (dom f). Show that there exists a
point z ∈ [x, y] and a subgradient v ∈ ∂f(z) satisfying

f(y)− f(x) = 〈v, y − x〉.

[Hint: Explain why without loss of generality you can assume that dom f
has nonempty interior. Then apply the mean value theorem to the Moreau
envelope fα(x) and note the inclusion ∇fα(x) ∈ ∂f(proxαf (x)). Complete
the proof by letting α tend to zero. Why is it important that x and y lie in
the interior of dom f?]

We end the section with the following theorem, which formalizes the
duality between smoothness and strong convexity.

Theorem 3.66 (Baillon-Haddad). A proper, closed, convex function f : E→
R is µ-strongly convex if and only if the conjugate f? is µ−1-smooth.
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Proof. Suppose that f is µ-strongly convex and define the convex function
g(x) := f(x)− µ

2‖x‖
2. We may then write

f? =
(
g + µ

2‖ · ‖
2
)?

= g? � 1
2µ‖ · ‖

2.

The right-hand-side is simply the Moreau envelope of g? with parameter µ,
and is therefore µ−1-smooth by Theorem 3.64.

To see the converse, assume that f? is µ−1-smooth. To simplify notation,
define h := f? and β := 1/µ. We will show that h? is 1

β -strongly convex,
thereby completing the proof. To this end, define the function g(x) :=
β
2 ‖ · ‖

2 − h. Taking derivatives, we compute

〈∇g(y)−∇g(x), y − x〉 = β‖y − x‖2 − 〈∇h(y)−∇h(x), y − x〉 ≥ 0,

for all x, y ∈ E, where the last inequality follows from Exercise 3.12 . Thus
g is convex by Theorem 3.8. We now express h as

h(y) = β
2 ‖y‖

2 − g(y) = β
2 ‖y‖

2 − g??(y)

= β
2 ‖y‖

2 − sup
x
{〈y, x〉 − g?(x)}

= inf
x

{
β
2 ‖y‖

2 − 〈y, x〉+ g?(x)
}
.

Using this expression for h, we compute the conjugate

h?(z) = sup
y
{〈z, y〉 − h(y)}

= sup
y

{
〈z, y〉 − inf

x

{
β
2 ‖y‖

2 − 〈y, x〉+ g?(x)
}}

= sup
x

sup
y

{
〈z, y〉 − β

2 ‖y‖
2 + 〈y, x〉 − g?(x)

}
= sup

x

{
sup
y

{
〈z + x, y〉 − β

2 ‖y‖
2
}
− g?(x)

}
= sup

x

1
2β‖z + x‖2 − g?(x).

Subtracting 1
2β‖z‖

2 from both sides yields

h?(z)− 1
2β‖z‖

2 = sup
x

1
β 〈z, x〉+ 1

2β‖x‖
2 − g?(x).

The right-hand-side is a pointwise supremum of affine functions in z and is
therefore convex. This completes the proof.
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Exercise 3.67. Show that any β-smooth function h : E→ R can be written
as the Moreau envelope f1/β of some closed convex function f : E→ R.

Another notable consequence of the Baillon-Haddad theorem is that
strongly convex functions are subgradient dominated.

Theorem 3.68. Any proper, closed, α-strongly convex function f : E→ R
satisfies the subgradient dominance condition:

f(x)−min f ≤ 1

α
‖v‖2 for all x ∈ E, v ∈ ∂f(x).

Proof. Let x∗ be a minimizer of f . Fix any x ∈ E and v ∈ ∂f(x). We
compute

f(x)− f∗ ≤ 〈v, x− x∗〉 ≤ ‖v‖ · ‖x− x∗‖

= ‖v‖ · ‖∇f?(v)−∇f?(0)‖ ≤ 1

α
‖v‖2, (3.33)

where (3.33) follows from Corollary 3.40 and Theorem 3.66.

Theorem 3.68 plays an important role when analyzing algorithms. We
will encounter a number of algorithms for minimizing a convex function f
that generate sequences xi and vi ∈ ∂f(xi) satisfying vi → 0. When f is
strongly convex, Theorem 3.68 allows to translate estimates on the norms
‖vi‖ into estimates on the function gap f(xi)−min f .

3.8 Monotone operators and the resolvant

Optimization problems in applications often arise in the structured form

(P ) min
x

h(Ax) + g(x)

for some proper, closed, convex functions g : E → R and h : Y → R and
A : E → Y a linear map. Such optimization problems will be the main
focus of Chapter 4. An important result of the chapter (Corollary 4.11) will
show that under mild conditions, a point x is optimal for (P) if and only if
there exists a “dual variable” y such that the pair (x, y) jointly satisfies the
inclusion [

0
0

]
∈
[

0 A∗
−A 0

] [
x
y

]
+ ∂g(x)× ∂h?(y). (3.34)

Thus, letting T (x, y) denote the set on the right-side of (3.34), the problem
(P ) is equivalent to finding a pair (x, y) satisfying 0 ∈ T (x, y). Notice that
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T (x, y) is a sum of a skew symmetric linear operator and the subdifferen-
tial of a proper, closed, convex function. In this section, we will see that
even though T (x, y) is not the subdifferential of any convex function, it does
satisfy a nice “monotonicity property”. It it this monotonicity property
that enables application of a number of efficient algorithms to the system
(3.34). In this section, we will use convex analytic techniques to study gen-
eral monotone operators. The obtained results will serve as the foundation
for the primal-dual algorithms developed in Chapter 7.

3.8.1 Notation and basic properties

We begin with some basic notation. A set-valued map T , denoted T : E ⇒
Y, is an assignment that maps E to the powerset of Y. Thus T assigns to
every point x ∈ E a subset T (x) ⊂ Y. We have already encountered an
important set-valued map: the subdifferential ∂f of a function f : E → R
is a set-valued map from E to E. The domain, range, and graph of a map
T : E⇒ Y are defined by

domT = {x ∈ E : T (x) 6= ∅},

rangeT =
⋃
x∈E

T (x),

gphT = {(x, y) ∈ E×Y : y ∈ T (x)},

respectively. Thus the domain of T consists of all points x where T (x) is
nonempty. The range of T consists of all points y that satisfy y ∈ T (x)
for some point x. Finally the graph of T simply “stacks” the images of T ;
see Figure 3.16 for an illustration. In particular, a set-valued map is fully
described by its graph. The inverse map T−1 : Y ⇒ E is defined as

T−1(y) = {x ∈ E : y ∈ T (x)}.

Notice that the inverse map is always well-defined, as a set-valued map.
The graph of T−1 is simply the image of the graph of T under the reflection
(x, y) 7→ (y, x).

A set-valued map T : E⇒ Y is called surjective if equality, rangeT = Y,
holds. We say that T is single-valued if T (x) is a singleton set for every x ∈ E.
Single-valued maps T correspond to point-to-point maps in the conventional
sense. The sum T1 +T2 of two set-valued maps T1 : E⇒ Y and T2 : E⇒ Y
is the set-valued map defined through set-addition

(T1 + T2)(x) = T1(x) + T2(x).
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gph T
gph T−1

Figure 3.16: Graph of the set-valued map T (x) = conv
{

4
3x, 4x

}
and that

of its inverse T−1(y) = 1
4conv{y, 3y}.

In this section, we will be primarily interested in set-valued maps that
satisfy the following monotonicity property.

Definition 3.69 (Monotone operator). A set-valued map T : E ⇒ E is a
monotone operator if it satisfies

〈y1 − y2, x1 − x2〉 ≥ 0 for all (x1, y1), (x2, y2) ∈ gphT.

gph T

Figure 3.17: Graph of a monotone map T : R⇒ R.

To gain some intuition, let us look at a univariate set-valued map T : R⇒
R. Then by definition T is monotone if the inequality (y1−y2)(x1−x2) ≥ 0
holds for all pairs (x1, y1), (x2, y2) ∈ gphT . That is, whenever x1 ≥ x2, the



86 CHAPTER 3. CONVEX ANALYSIS

inequality y1 ≥ y2 must hold for all y1 ∈ T (x1) and y2 ∈ T (x2); see Fig-
ure 3.17 for an illustration. In particular, observe that the graph depicted
in Figure 3.17 is very “thin” within its ambient space. Exercise 3.80 will
formalize this observation for all monotone operators.

The main two examples of monotone operators are skew symmetric lin-
ear operators and subdifferentials of convex functions. Recall that a linear
operator A : E→ E is skew-symmetric if it satisfies A∗ = −A.

Exercise 3.70. Establish the following.

1. Show that a linear map A : E→ E (not necessarily self-adjoint) is mono-
tone if and only if 〈Ax, x〉 ≥ 0 for all x ∈ E.

2. Show that any skew symmetric linear operator A : E→ E is monotone.

3. Show that the subdifferential ∂f : E⇒ E of any convex function f : E→
R is monotone.

4. Show that a skew symmetric linear operator A : E→ E is the subdiffer-
ential of a convex function if and only if A is identically zero.

Monotonicity is preserved under a variety of operations. In particular,
the sum of a skew symmetric linear operator and the subdifferential of a
convex function is monotone.

Exercise 3.71. Let T , T1, and T2 be monotone operators on E and fix
λ > 0. Show that T−1, T1 + T2, and λT are monotone operators.

General monotone operators can be quite pathological. For example,
given a monotone operator T on E and an arbitrary set S ⊂ E, one can
redefine T (x) = ∅ for all x ∈ S and maintain monotonicity. The full power
of monotonicity becomes available only once the the map in question is
maximally monotone in the following sense.

Definition 3.72 (Maximal monotone operators). A monotone mapping
T : E ⇒ E is maximally monotone if gphT is not properly contained in
the graph of any other monotone operator.

Thus a monotone operator T : E⇒ E is maximally monotone if and only
if no enlargement of its graph is possible without destroying monotonicity.
More concretely, in order to show that a monotone map T is maximal mono-
tone, one must argue that any pair (x̂, ŷ) ∈ E×E satisfying

〈ŷ − y, x̂− x〉 ≥ 0 ∀(x, y) ∈ gphT
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must satisfy the inclusion (x̂, ŷ) ∈ gphT.
Coming back to the two main examples, we will now show that skew

symmetric linear operators and subdifferentials of proper, closed, convex
functions are indeed maximally monotone. The following lemma, in partic-
ular, guarantees that skew symmetric linear operators are indeed maximally
monotone.

Lemma 3.73. Any continuous monotone map T : E → E is maximally
monotone.

Proof. Consider a pair (x̂, ŷ) ∈ E × E satisfying 〈ŷ − T (x), x̂ − x〉 ≥ 0 for
all x ∈ E. Then setting x = x̂ − tu for some t > 0 and u ∈ E, we deduce
〈ŷ−T (x̂− tu), u〉 ≥ 0. Letting t tend to zero and appealing to continuity of
T yields the estimate 〈ŷ − T (x̂), u〉 ≥ 0 for all u ∈ E. Setting u = T (x̂)− ŷ,
we conclude ‖ŷ−T (x̂)‖2 ≤ 0 and therefore ŷ = T (x̂), as we had to show.

Checking maximal monotonicity from the definition is often difficult.
The following lemma provides a convenient sufficient condition for a mono-
tone operator T to be maximal monotone, namely surjectivity of the opera-
tor I + T . Maximal monotonicity of the subdifferential of a proper, closed,
convex function will follow quickly from this lemma. We will later prove
that surjectivity of I+T is not only sufficient for maximal monotonicity but
also necessary—a much deeper result.

Lemma 3.74 (Surjectivity is sufficient). Let T : E ⇒ E be a monotone
operator such that I + T is surjective. Then T is maximal monotone.

Proof. Fix a pair (x̂, ŷ) ∈ E×E satisfying

〈ŷ − y, x̂− x〉 ≥ 0 ∀(x, y) ∈ gphT. (3.35)

Since I + T is surjective, there exists x ∈ E satisfying x̂ + ŷ ∈ (I + T )(x).
Therefore we may set y = x̂+ ŷ − x in (3.35), thereby deducing

0 ≤ 〈ŷ − (x̂+ ŷ − x), x̂− x〉 = −‖x̂− x‖2.

We conclude x = x̂ and therefore ŷ ∈ T (x̂), as we had to show.

Lemma 3.75 (Convex subdifferential). Let f : E→ R be a proper, closed,
convex function. Then the subdifferential ∂f : E⇒ E is maximal monotone.

Proof. In light of Lemma 3.74, it suffices to argue that the map I + ∂f is
surjective. To this end, observe that I+∂f is precisely the subdifferential of
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the function g = f + 1
2‖ · ‖

2. The conjugate g? is the Moreau envelope of f?

and is therefore C1-smooth by Theorem 3.64. Therefore given any v ∈ E,
the point x := ∇g?(v) satisfies v ∈ ∂g(x) by Corollary 3.40. Thus ∂g is
indeed surjective as claimed.

Coming back to our two running examples, we have already observe
that the sum of a skew symmetric linear operator and the subdifferential
of a proper, closed, convex function is monotone. More importantly, the
following exercises shows that the sum is maximal monotone.

Exercise 3.76. Let A : E → E be a skew symmetric linear operator and
let T : E⇒ E be a maximal monotone operator. Show that the sum A+ T
is maximal monotone.

[Hint: Recall that if A is skew-symmetric, then equality 〈Ax, x〉 = 0 holds
for all x ∈ E.]

3.8.2 The resolvant and the Minty parametrization

We next discuss an important generalization of the proximal map to mono-
tone operators, which will form the core of primal-dual algorithms explored
in Chapter ??. Recall that the proximal operator of a proper, closed, convex
function f : E→ R is defined by

proxf (x) = argmin
z

{
f(z) +

1

2
‖z − x‖2

}
.

Let us rewrite proxf purely in terms of the subdifferential of f . Appealing
to first-order optimality conditions, we may write:

z = proxf (x) ⇐⇒ 0 ∈ ∂f(z) + (z − x) ⇐⇒ x ∈ (I + ∂f)(z).

Thus we may identify the proximal map as the set-valued inverse

proxf (x) = (I + ∂f)−1(x).

This expression for the proximal map suggests a generalization to any set-
valued operator.

Definition 3.77 (Resolvant). Let T : E ⇒ E be a set-valued operator.
Then the resolvant operator RT : E⇒ E is defined by

RT (x) = (I + T )−1.
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Similar to the proximal map, we expect the resolvant of a maximal mono-
tone operator to be single-valued everywhere and non-expensive. This is
indeed the case.

Theorem 3.78 (Properties of the resolvant). Let T : E⇒ E be a maximal
monotone operator. Then the resolvant RT : E → E is a globally defined
single-valued map satisfying

‖RT (x)−RT (y)‖2 ≤ 〈RT (x)−RT (y), x− y〉 ∀x, y ∈ E. (3.36)

In particular, the resolvant RT is non-expansive.

The most involved part of the proof of Theorem 3.78 is to show that
the domain of RT is all of E, or equivalently that the operator I + T is
surjective. Notice this is precisely the converse of Lemma 3.74. We state
this result as Theorem 3.79, but postpone its proof until Section 3.8.3, since
it is somewhat long.

Theorem 3.79 (Surjectivity). Let T : E ⇒ E be a monotone operator.
Then T is maximal monotone if and only if I + T is surjective.

With Theorem 3.79 at hand, the proof of Theorem 3.78 is straightfor-
ward.

Proof of Theorem 3.78. Theorem 3.79 guarantees that the resolvant RT has
as its domain all of E. For any pairs (x1, y1), (x2, y2) ∈ gphRT , the definition
of the resolvant guarantees the inclusions xi − yi ∈ T (yi) for i = 1, 2. Using
monotonicity of T , we deduce

0 ≤ 〈(x1 − y1)− (x2 − y2), y1 − y2〉 = 〈x1 − x2, y1 − y2〉 − ‖y1 − y2‖2.

Rearranging, yields the guarantee

‖y1 − y2‖2 ≤ 〈x1 − x2, y1 − y2〉. (3.37)

In particular, in the case x1 = x2, the right side becomes zero and therefore
y1 = y2. We conclude that RT (x) is a singleton for every x. The estimate
(3.37) is then exactly (3.36). Combining (3.36) with the Cauchy-Schwarz
inequality directly implies that RT is non-expensive.

The following exercise explores further properties of the resolvant. In
particular, it shows that if T : E ⇒ E is a maximal monotone operator,
then the map z 7→ (RT (z),RT−1(z)) is a bijection from E to gphT , whose
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inverse is simply the restriction of the linear map (x, y) 7→ x + y to gphT .
Moreover, the bijection is Lipschitz continuous in both directions. In this
sense, the graph of any monotone operator is “thin” inside its ambient space
E×E.

Exercise 3.80 (Minty parametrization). Consider a map T : E⇒ E.

1. Show the inverse resolvant identity

RT−1 = I −RT .

Recognize this identity as the generalization of Theorem 3.61.

[Hint: Unrolling notation, the claimed equation amounts to the identity
I − (I + T )−1 = (I + T−1)−1. This identity can be proved directly
from the definition of the inverse map. Show first that the inclusion
z ∈ (I − (I + T )−1)(x) is equivalent to x− z ∈ T−1(z); then add z to be
both sides and conclude the result.]

2. Suppose now that T is maximal monotone and define the map

H(z) 7→ (RT (z),RT−1(z)).

Show that H is a Lipschitz continuous bijection from E to gphT , whose
inverse is the restriction of the linear map (x, y) 7→ x + y to gphT .
See Figure 3.18 for an illustration. Deduce that H furnishes a Lipschitz
homeomorphism between gphT and E.

[Hint: The fact that the image of H is contained in gphT follows directly
from the definition of the resolvant and part 1. Lipschitz continuity of
H follows from Theorem 3.78. The fact that the inverse of H is the
restriction of the linear map (x, y) 7→ x + y to gphT again follows from
the definition of the resolvant and part 1.

3.8.3 Proof of the surjectivity theorem.

In this section, we prove the surjectivity Theorem 3.79. The argument
will be based on analyzing the subdifferential of a certain convex function
associated to a monotone operator.

Definition 3.81 (Fitzpatrick function). With any monotone operator T : E⇒
E, we associate the Fitzpatrick function FT : E×E→ R defined by

FT (x, y) = 〈x, y〉 − inf
(x̄,ȳ)∈gphT

〈ȳ − y, x̄− x〉.
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gph T

Figure 3.18: Illustration of the Minty parametrization of gphT in Exer-
cise 3.80. The dashed black lines are the level sets of the linear map
(x, y) 7→ x + y, which restricts to a bijection between gphT and R. The
green arrows indicate the resulting bijection.

The main use of the Fitzpatrick function FT is that it enables a gen-
eralization of the Fenchel-Young inequality for maximal monotone opera-
tors. Indeed, one should think of FT as playing a similar role to the sum
f(x) + f?(y) in the case when T = ∂f is the subdifferential of a proper,
closed, and convex function f .

Lemma 3.82 (Fitzpatrick inequality). Let T : E⇒ E be a maximal mono-
tone operator. Then the Fitzpatrick function FT is proper, closed, and con-
vex. Moreover, for any pair (x, y) ∈ E×E the inequality

FT (x, y) ≥ 〈x, y〉 holds, (3.38)

while equality holds if and only if y ∈ T (x).

Proof. Observe that we may express the Fitzpatrick function as

FT (x, y) = sup
(x̄,ȳ)∈gphT

{〈x, y〉 − 〈ȳ − y, x̄− x〉}

= sup
(x̄,ȳ)∈gphT

{〈ȳ, x〉+ 〈x̄, y〉 − 〈ȳ, x̄〉} .

Thus FT is a pointwise supremum of affine functions, and is therefore closed
and convex. Next, observe that monotonicity of T guarantees

inf
(x̄,ȳ)∈gphT

〈ȳ − y, x̄− x〉 = 0 ∀(x, y) ∈ gphT,
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while maximal monotonicity of T implies

inf
(x̄,ȳ)∈gphT

〈ȳ − y, x̄− x〉 < 0 ∀(x, y) ∈ (E×E) \ gphT.

Thus the inequality (3.38) always holds, while equality holds in (3.38) if
and only if (x, y) lies in gphT . Finally, the fact that FT is proper is now
immediate from (3.38) (why?).

The next lemma shows that the inclusion y ∈ T (x) can be verified using
the subdifferential of the Fitzpatrick function.

Lemma 3.83 (Subdifferential of the Fitzpatrick function). Let T : E ⇒ E
be a maximal monotone operator and fix a pair (x1, y1) ∈ E × E and a
subgradient (y2, x2) ∈ ∂FT (x1, y1). Then the inequality

〈y1 − y2, x1 − x2〉 ≤ 0 holds. (3.39)

Moreover, if equality holds, then the inclusion y2 ∈ T (x2) is valid.

Proof. We compute

〈y1 − y2, x1 − x2〉 = 〈y1, x1〉 − 〈y1, x2〉 − 〈y2, x1〉+ 〈y2, x2, 〉
≤ FT (x1, y1)− 〈y1, x2〉 − 〈y2, x1〉+ 〈y2, x2〉,

(3.40)

where the inequality follows from Lemma 3.82. Aiming to upper bound
FT (x1, y1), fix a pair (x̄, ȳ) ∈ gphT . Then using the subgradient inequality,
we deduce

FT (x1, y1) ≤ FT (x̄, ȳ) + 〈(y2, x2), (x1, y1)− (x̄, ȳ)〉
= 〈x̄, ȳ〉+ 〈y2, x1 − x̄〉+ 〈x2, y1 − ȳ〉,

where the last equality follows from Lemma 3.82. Combining this estiamate
with (3.40), we conclude

〈y1 − y2, x1 − x2〉 ≤ 〈x̄, ȳ〉 − 〈y2, x̄〉 − 〈x2, ȳ〉+ 〈y2, x2〉 = 〈ȳ − y2, x̄− x2, 〉.

Hence taking the infumum of the right-side over (x̄, ȳ) ∈ gphT we conclude

〈y1 − y2, x1 − x2〉 ≤ inf
(x̄,ȳ)∈gphT

〈ȳ − y2, x̄− x2, 〉 = 〈x2, y2〉 − FT (x2, y2).

An application of Lemma 3.82 completes the proof.

We are now ready to prove Theorem 3.79.
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Proof of Theorem 3.79. The backward implication is Lemma 3.74. Con-
versely, suppose that T is maximal monotone. We will show that v = 0 lies
in the range of T . Surjectivity of T will then follow simply by replacing T
with T − {v} for an arbitrary vector v ∈ E.

Suppose for the moment that we can find a pair (x, y) ∈ E×E satisfying
the inclusion −(x, y) ∈ ∂FT (x, y). Then Lemma 3.83 immediately implies

0 ≥ 〈y − (−x), x− (−y)〉 = ‖x+ y‖2 ≥ 0

Thus equality holds throughout, and we conclude −x ∈ T (−y) and x = −y.
Therefore zero indeed lies in the range of T + I. It remains to construct the
pair (x, y). To this end, define the strongly convex function

g(x, y) = FT (x, y) +
1

2
(‖x‖2 + ‖y‖2).

Let (x, y) be the minimizer of g. Then the optimality condition (0, 0) ∈
∂g(x, y) becomes −(x, y) ∈ ∂FT (x, y), and therefore (x, y) is exactly the
pair we seek.

Comments

Almost all of the material in this section can be found in standard text-
books on convex analysis (Bauschke-Combettes [4], Borwein-Lewis [8], Rock-
afellar [31], Hiriart-Urruty and Lemaréchal [17]) and variational analysis
(Rockafellar-Wets [33], Mordukhovich [25]), with some significant variation
in the order in which the material is presented and in the proofs. The driving
theme of translating geometric properties of epigraphs to analytic properties
of functions originates in [31]. The proof of the biconjugacy Theorem 3.26 is
taken from [8], while the proof of the Baillon-Haddad Theorem 3.66 is taken
from Bauschke-Combettes [3]. Section 3.8 is an introduction to monotone
operator theory. For more details on the subject and historical references
we refer the reader to Bauschke-Combettes [4]. The proof of the surjectivity
theorem in Section 3.8.3 is due to Simons-Zălinescu [36]. The original proofs
of the surjectivity theorem and maximal monotonicity of the subdifferential
of a proper, closed, convex function is due to Rockafellar [32]. The Fitz-
patrick function was introduced by Fitzpatrick in [14], and has now become
a standard tool in monotone operator theory.
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Chapter 4

Subdifferential calculus and
primal/dual problems

Thus far, the only procedure we have for computing the subdifferential is di-
rectly from the definition. In this way, we have computed the subdifferentials
of all the `p-norms and of the pointwise maximum mx (·) in Exercise 3.41.
Computing subdifferentials for a broader class of functions requires devel-
oping a calculus of subgradients. For example, we need calculus rules for
computing subdifferentials of sums and of compositions of convex functions
with linear maps. The goal of this chapter is to develop such a calculus.
Along the way, we will see that subdifferential calculus is intimately tied to
two seemingly unrelated topics: stability of an (1) optimization problem to
perturbations and (2) existence of solutions to an auxiliary (dual) problem.
Such primal/dual pairs of optimization problems are important in their own
right, independently of calculus. Indeed, most of the chapter is devoted to
the primal/dual formalism, with calculus one of its many consequences.

Calculus. Plainly put, the reason why subdifferential calculus is subtle is
that functions may take infinite values. Before delving into technical details,
it is best first to see a (pathological) example where a subdifferential rule
may actually fail. Let A and B be two closed convex sets in E. The sum
rule of subdifferentials, which we expect to hold, would say

∂(δA + δB)(x) = ∂δA(x) + ∂δB(x),

or equivalently

NA∩B(x) = NA(x) +NB(x). (4.1)

95
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The very definition of the normal cone shows that the inclusion ⊃ always
holds for any x ∈ A ∩ B (check this!). The reverse inclusion ⊂ is much
less clear at first sight. Indeed, verifying this inclusion amounts to showing
that any vector v ∈ NA∩B(x) can be decomposed into a sum of normals to
individual sets A and B—in essence, an existence statement.

For the sake of building intuition, let us contrast two explicit instances
of A and B, depicted in Figure 4.1.

Unstable Intersection: Define the shifted unit disks (Figure 4.1a)

A := clB1(0,−1) and B := clB1(0, 1) (4.2)

The intersection A∩B consists only of the origin, and therefore the left-side
of (4.1) evaluated at the origin is all of R2. The right-side in contrast equals
R×{0}; thus, equality in (4.1) fails. The intuitive explanation for what has
gone wrong is that the intersection A ∩ B is highly unstable under pertur-
bations: translating A by a small vector v may yield an empty intersection
(A+ v) ∩B = ∅. In particular, the interiors of A and B do not meet.

Stable Intersection: Define the shifted disks (Figure 4.1b)

A := clB1(0,−3/4) and B := clB1(0, 3/4) (4.3)

and set x = (0,
√

7
4 ). A quick computation shows that the sum rule (4.1)

holds. In contrast with the first example (4.2), the intersection A ∩ B is
stable because the interiors of A and B do meet.

x

A B

(a) Sum rule fails

x BA

NA∩B(x)

(b) Sum rule holds

Figure 4.1: Normal cone to an intersection.

The two instances (4.2) and (4.3) illustrate the subtlety of subdifferential
calculus. In particular, it is clear that the sum rule will require some mild
assumption on the way that the domains of the functions intersect.



97

Primal-dual pairs of optimization problems. We will see that valid-
ity of subdifferential sum and chain rules is intimately tied to success of
a certain lower-bounding procedure. To illustrate, consider the problem of
linear programming

(P ) min
x∈Rn

〈b, x〉 subject to Ax ≥ c,

for some matrix A ∈ Rm×n and vectors b ∈ Rn and c ∈ Rm. How can
we judge the quality of a putative feasible solution x? If we knew a good
lower bound ` on the optimal value, we could compute the gap f(x) − `.
One simple lower bound can be generated as follows. For any feasible point
x ∈ Rn and any y ≥ 0, the quantity 〈y, c − Ax〉 is negative. Therefore the
estimate holds:

〈b, x〉 ≥ 〈b, x〉+ 〈y, c−Ax〉 = 〈b−AT y, x〉+ 〈c, y〉.

Thus if we further impose the restriction b = AT y, the estimate becomes
independent of x and we obtain a lower bound on the optimal value of (P ).
Choosing the best such lower bound amounts to a new optimization problem

(D) max
y∈Rm

〈c, y〉 subject to AT y = b, y ≥ 0.

This problem is called the dual. A central result of linear programming
is the strong duality theorem: as long as the optimal value of (P ) or (D)
is finite, the two are equal and are attained. In particular, the best lower
bound achieved by the outlined procedure matches the true optimal value of
(P ). Strong duality is an existence statement, much like the subdifferential
sum rule, since it ensure existence of an optimal dual solution.

The Fenchel-Rockafellar and Lagrangian dualities extend the formalism
outlined about to nonlinear convex optimization problems. Strong duality
holding in these more general settings is equivalent to validity of a sum and
chain rules for subdifferentials.

Roadmap. We begin developing subdifferential calculus by computing the
subdifferential of the infimal projection p(y) = infx F (x, y) in Section 4.1.
The main observation is that ∂p(0) consists of solutions of an auxiliary
optimization problem. Building on this, Section 4.2 introduces Fenchel-
Rockafellar, Lagrangian, and minimax primal/dual pairs, and deduces the
sum and chain rules for subdifferential calculus. Section 3.8 introduces basic
properties of monotone operators, with the key surjectivity theorem proved
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using strong duality. The final Section 4.3 is devoted to computing the
subdifferential of spectral matrix functions; these are functions of symmetric
matrices that depend on the matrix only through its eigenvalues.

4.1 The subdifferential of the value function

When solving an optimization problem, one is often interested not only in the
optimal value, but also in how this value changes under small perturbation
to the problem data. More formally, consider an arbitrary convex function
F : E×Y → R and the parametric optimization problem:

p(y) := inf
x
F (x, y)

The reader should think of y as a perturbation parameter and the problem
corresponding to p(0) as the original “primal” problem. The assignment
y 7→ p(y) is called the value function. The reader should recognize p as the
infimal projection of F .

A worthwhile goal is to study how p(y) varies as y is perturbed around
the origin. Thus with the machinery we have developed, we aim to compute
the subdifferential ∂p(0). Subdifferential calculus and duality theory—the
two themes of the chapter—will follow quickly under an appropriate choice
of the function F . Remarkably, we will see that ∂p(0) coincides with the set
of maximizers of an auxiliary convex optimization problem. To make this
idea precise, define the new parametric family of problems

q(x) := sup
y
− F ?(x, y).

Let us call the problem corresponding to q(0) the parametric dual. The
terminology is easy to explain. Indeed, looking at the Table 3.4 and invoking
Exercise 3.28 yields the equality p?(y) = F ?(0, y), and therefore

p??(0) = sup
y
{〈0, y〉 − p?(y)} = sup

y
−F ?(0, y) = q(0). (4.4)

Thus q(0) is the biconjugate of p evaluated at zero. Hence we expect that
under mild conditions, equality p(0) = q(0) should hold. This is indeed
the case, and moreover, the subdifferential ∂p(0) consists precisely of the
optimal solutions y to the parametric dual problem.

Theorem 4.1 (Parametric optimization). Suppose that F : E ×Y → R is
proper, closed, and convex. Then the following are true.
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1. (Weak duality) The inequality p(0) ≥ q(0) always holds.

2. (Subdifferential) If p(0) is finite, then the inclusion holds:

∂p(0) ⊂ argmax
y

− F ?(0, y). (4.5)

If in addition, the inclusion 0 ∈ ri (dom p) holds, then (4.5) holds with
equality.

3. (Strong duality) If the subdifferential ∂p(0) is nonempty, then equality
p(0) = q(0) holds and the supremum q(0) is attained.

Proof. Part (1) is immediate from the inequality p(0) ≥ p??(0). Next sup-
pose p(0) is finite. Observe that a vector φ satisfies φ ∈ ∂p(0) if and only if
for all y it holds:

p(0) ≤ p(y)− 〈φ, y〉 = inf
x

{
F (x, y)−

〈(
0
φ

)
,

(
x
y

)〉}
.

Taking the infimum over y, we deduce φ ∈ ∂p(0) if and only if p(0) ≤
−F ?(0, φ). Thus in light of (1) any subgradient φ ∈ ∂p(0) is dual op-
timal, that is (4.5) holds. Suppose now p(0) is finite and the inclusion
0 ∈ ri dom p holds. Observe that then p is proper (Exercise 3.2). More-
over, since p is lower-semicontinous on a neighborhood of 0, the equality
p??(0) = (co p)(0) = p(0) holds. Consider a vector φ ∈ argmaxy −F ?(0, y).
Since p? coincides with F ?(0, ·), we conclude 0 ∈ ∂p?(φ). Corollary 3.40
therefore guarantees φ ∈ ∂p??(0) ⊂ ∂p(0). Thus equality holds in (4.5).

Finally, suppose that there exists a subgradient φ ∈ ∂p(0). Since the
function y 7→ p(0) + 〈φ, y〉 is an affine minorant of p, using Theorem 3.18 we
deduce

p(0) + 〈φ, 0〉 ≤ (co p)(0) = p??(0) ≤ p(0).

Thus, equality p(0) = q(0) holds, while the supremum q(0) is clearly attained
by (2). The proof is complete.

4.2 Duality and subdifferential calculus

The idea of duality has appeared throughout the previous sections, culmi-
nating in the definition of the Fenchel conjugate. In this section, we will
use these ideas to investigate the so-called primal-dual pairs of convex op-
timization problems. Roughly speaking, we will see that for a number of
well-structured convex minimization problems, there are natural ways to
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obtain lower bounds on their optimal value. The task of finding the largest
such lower bound is itself another optimization problem, called the dual. A
central question is therefore to determine conditions ensuring that the best
lower-bound matches the primal optimal value. As a bonus, we would also
like to know that optimality in the primal can indeed be certified by a dual
feasible solution, or in other words that the dual optimal value is attained.
The answer for both questions will come directly from Theorem 4.1. The
sum and chain rules for subdifferentials will follow immediately from dual
attainment.

4.2.1 Fenchel-Rockafellar duality

Consider a general class of structured optimization problems

(P ) inf
x∈E

h(Ax) + g(x),

where h : Y → R and g : E→ R are some proper functions and A : E→ Y
is a linear map. Let us call this problem (P ) the primal. Define now a new
convex optimization problem, called the dual:

(D) sup
y∈Y

− h?(y)− g?(−A∗y).

The dual problem (D) arises naturally from a lower-bounding procedure.
Let us try to find simple lower bounds for val(P ), the optimal value of (P ).
From the Fenchel-Young inequality, any ȳ ∈ domh? yields the lower bound:

val(P ) = inf
x
h??(Ax) + g(x),

≥ inf
x
〈ȳ,Ax〉 − h?(ȳ) + g(x)

= −h?(ȳ)− sup
x∈E

{〈−A∗ȳ, x〉 − g(x)}

= −h?(ȳ)− g?(−A∗ȳ).

The right-hand-side is exactly the evaluation of the dual objective function
at ȳ. Thus val(D) is the supremum over all lower-bounds on val(P ) that can
be obtained in this way. In particular, we have deduced the weak-duality
inequality

val(P ) ≥ val(D).

Table 4.1 lists a few notable examples of Fenchel-Rockafellar dual problems.
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Primal (P ) Dual (D)

min
x

1
2‖Ax− b‖

2
2 + ‖x‖1 maxy

{
−1

2‖y‖
2 − 〈b, y〉 : ‖AT y‖∞ ≤ 1

}
min

x: ‖x‖q≤1
‖Ax− b‖p max

y:‖y‖p̄≤1
− ‖AT y‖q̄ − 〈b, y〉

min
x
{〈c, x〉 : Ax = b, x ∈ K} max

y
{〈b, y〉 : AT y − c ∈ K◦}

min
x

{
1
2〈Qx, x〉+ 〈c, x〉 : Ax ≥ b

}
max
y≥0
−1

2
〈Q−1(c−AT y), c−AT y〉+ 〈b, y〉

Table 4.1: Fenchel-Rockafellar dual pairs. The parameters are: K is a
convex cone, Q � 0, and p, p̄, q, q̄ ∈ [1,∞] satisfy p−1 + p̄−1 = q−1 + q̄−1 = 1.

Exercise 4.2. Verify that the problems in the second column of Table 4.1
are the Fenchel-Rockafellar duals of the problems in the first column.

[Hint: You may find Exercise 3.27 helpful.]

The goal now is to show that when h and g are proper, closed, and
convex and a mild compatibility condition holds, we can be sure that strong
duality holds: val(P ) = val(D) and the dual optimal value is attained. The
argument proceeds by interpreting Fenchel-Rockafellar duality within the
parametric framework of Theorem 4.1. The perturbation function will take
the following simple form

p(y) = inf
x
h(Ax+ y) + g(x).

In order to guarantee the inclusion 0 ∈ ri (dom p), we will require the fol-
lowing simple lemma establishing a calculus rule for the relative interior.

Lemma 4.3. (Calculus of relative interiors) For any two nonempty convex
sets Q ∈ E, P ∈ Y and a linear map A : E→ Y, inclusions hold:

A(riQ) + riP ⊂ ri (A(Q) + P ), (4.6)

ri (Q) ∩ A−1(riP ) ⊂ ri (Q ∩ A−1P ). (4.7)

Proof. We first prove (4.6). Without loss of generality, we may assume
P = {0}, since otherwise we may replace A with the new linear map (x, y) 7→
Ax+ y and replace Q with Q× P (check this!). Translating Q if necessary,
we may assume that Q contains the origin. Let A : aff Q→ A(aff Q) be the
linear map obtained by restricting the domain and range of A. By definition,
A is a surjective linear map and therefore maps open sets to open sets. In
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particular, the set A(riQ) is contained in A(Q) and is open in A(aff Q).
Therefore the inclusion A(riQ) ⊂ riA(Q) holds, as claimed.

Next, we prove (4.7). Without loss of generality, we may assume Q = E,
since otherwise we may redefine the linear map A to be x 7→ (x,Ax) and
replace P with Q×P (check this!). Define the mapA : A−1(aff P )→ aff P to
be the restriction ofA. By continuity of Ā, the preimageA−1(riP ) is open in
A−1(aff P ) and is contained in A−1P . The inclusion A−1(riP ) ⊂ ri (A−1P )
follows immediately, as claimed.

We are now ready to prove the main result of the section.

Theorem 4.4 (Fenchel-Rockafellar duality). Consider the problems:

(P ) min
x

h(Ax) + g(x)

(D) max
y
− g?(−A∗y)− h?(y).

where g : E → R and h : Y → R are proper, closed convex functions, and
A : E→ Y is a linear map. Suppose that the regularity condition holds:

0 ∈ ri (domh)−A(ri dom g) (4.8)

Then the primal and dual optimal values are equal and the dual optimal
value is attained, if finite.

Proof. We first show that the two problems (P ) and (D) fit the perturbation
framework of Theorem 4.1 with

F (x, y) = h(Ax+ y) + g(x).

To this end, observe

F ?(x, y) = sup
z,w
{〈(z, w), (x, y)〉 − h(Az + w)− g(z)}.

Making the substitution v := Az + w yields

F ?(x, y) = sup
z,v
{〈z, x〉+ 〈v −Az, y〉 − h(v)− g(z)}

= sup
z
{〈z, x−A∗y〉 − g(z)}+ sup

v
{〈v, y〉 − h(v)}

= g?(x−A∗y) + h?(y).
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Thus the Fenchel dual problem (D) is exactly q(0) = supy −F ?(0, y). A
quick computation shows

dom p = domh−A(dom g). (4.9)

Lemma 4.3, allows us to take relative interiors of both sides in (4.9). There-
fore, assumption (4.8) implies 0 ∈ ri (dom p). If p(0) = −∞, there is nothing
to prove. Hence we may suppose that p(0) is finite. Theorem 3.2 then implies
that p is proper, while Theorem 3.38 in turn guarantees that the subdiffer-
ential ∂p(0) is nonempty. Finally, an application of Theorem 4.1 completes
the proof.

In many applications, the primal problem (P ) looks slightly different:

(P ) min
x
〈c, x〉+ h(b−Ax) + g(x),

for some vectors b ∈ Y and c ∈ E. Some thought shows that this formulation
can be put into the standard form of Theorem 4.4 simply by replacing g with
g + 〈c, ·〉 and replacing h with h(b− ·). Then the dual reads:

(D) max
y
〈b, y〉 − g?(A∗y − c)− h?(y),

and the regularity condition (4.8) becomes

b ∈ A(ri dom g) + ri (domh).

Among the most important consequences of Theorem 4.4 are a sum and
a chain rule for subdifferentials.

Theorem 4.5 (Subdifferential calculus). Let g : E→ R and h : Y → R be
proper, closed convex functions and A : E→ Y a linear map. Then for any
point x, the inclusion holds:

∂(g + h ◦ A)(x) ⊃ ∂g(x) +A∗∂h(Ax). (4.10)

Moreover, equality holds under the regularity condition

0 ∈ ri (domh)−A(ri dom g). (4.11)

Proof. The inclusion 4.10 follows immediately by adding the subgradient
inequalities for g at x and for h at Ax. Assume now (4.11) holds. Fix a
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vector v ∈ ∂(g+h◦A)(x). Without loss of generality we may assume v = 0,
since otherwise, we may replace g by g − 〈v, ·〉. Thus x minimizes

(P ) min
z

h(Ax) + g(x).

Consider now the dual problem

(D) max
y
− g?(−A∗y)− h?(y).

Theorem 4.4 guarantees that the primal and dual optimal values are equal
and the dual optimal value is attained. Letting y be any dual optimal
solution, we deduce

0 = (g(x) + h(Ax)) + (g?(−A∗y) + h?(y))

= (g(x) + g?(−A∗y)) + (h(Ax) + h?(y))

≥ 〈x,−A∗y〉+ 〈Ax, y〉 = 0, (4.12)

where the (4.12) follows from the Fenchel-Young inequality (Theorem 3.39).
Hence equality holds throughout and we learn

g(x) + g?(−A∗y) = 〈x,−A∗y〉 and h(Ax) + h?(y) = 〈Ax, y〉.

Using the characterization of equality in Theorem 3.39 yields the decompo-
sition

0 = −A∗y +A∗y ∈ ∂g(x) +A∗∂h(Ax),

as claimed.

The calculus of normal cones is now an immediate consequence

Corollary 4.6 (Normal cone calculus). Let A,B ⊂ E be nonempty, closed,
convex sets. Then for any point x ∈ A ∩B, the inclusion holds:

NA∩B(x) ⊃ NA(x) +NB(x).

Moreover, equality holds under the regularity condition (riA) ∩ (riB) 6= ∅.

We derived subdifferential sum and chain rules as a consequence of strong
duality. The following exercise, shows an essential converse.

Exercise 4.7. Consider the primal and dual problems in Theorem 4.4,
where g and h are proper, closed, convex functions. Suppose that x is a
minimizer of the primal (P ) and it satisfies the calculus rule:

0 ∈ A∗∂h(Ax) + ∂g(x).
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Show that strong duality holds: the optimal values of (P ) and (D) are equal,
and the dual admits a maximizer.

[Hint: By the assumptions, we may write 0 = A∗y+w for some y ∈ ∂h(Ax)
and w ∈ ∂g(x). Using the inversion formula (Corollary 3.40), arrive at the
inclusion 0 ∈ ∂h?(y)−A∂g?(−A∗y). Deduce that y is optimal for the dual
(D). To show that the optimal values of (P ) and (D) are equal, simplify
the quantity (g(x) + h(Ax)) + (g?(−A∗y) + h?(y)) using the Fenchel-Young
inequality.

The following two exercises provide two useful calculus rules that follow
by applying Theorem 4.6 to epigraphs.

Exercise 4.8 (Pointwise maximum). Consider arbitrary convex functions
fi : E→ R for i = 1, . . . , k and define the function g(x) = max{f1(x), . . . , fk(x)}.
Prove the expression:

∂g(x) = conv
⋃
i∈I

∂fi(x),

where I = {i : fi(x) = g(x)} is the active index set.

[Hint:. Compute the normal cone to the intersection
⋂k
i=1 epi fi using the

Corollary 4.6.]

Exercise 4.9 (Normal cone to sublevel sets). Consider a proper, closed,
convex function f : E→ R and a point x̄ ∈ int (dom f) such that f(x̄) is not
the minimum of f . Define the sublevel set Q := {x : f(x) ≤ f(x̄)}. Prove
the formula

NQ(x̄) = R+∂f(x̄).

[Hint: Focus on the epigraphs.]

In the case of linear programming, strong duality holds as long as the
optimal value is finite. That is, the regularity condition (4.11) is not needed.
The following exercise proves this fact.

Exercise 4.10. A convex function f : Rn → R is called polyhedral if its
epigraph is a polyhedron. Any proper polyhedral function can be written as

f(x) = max
i=1,...,k

{〈ui, x〉+ qi}+ δP (x),

for some ui ∈ Rn and qi ∈ R and some polyhedron P ⊂ Rn. (You don’t
need to prove this).
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1. Show that if a polyhedral function is finite at some point, then it must
be proper.

2. Show that a polyhedral function f has a subgradient at every point x at
which it is finite. You may use the following two intuitive facts without
proof: (i) the image of a polyhedron under a linear map is a polyhedron
and (ii) the infimum of a linear function over a polyhedron is always
attained, if finite.

3. Consider the linear programming problem and its dual:

(P ) min
x∈Rn

〈b, x〉 subject to Ax ≥ c,

(D) max
y∈Rm

〈c, y〉 subject to AT y = b, y ≥ 0.

for some matrix A ∈ Rm×n and vectors b ∈ Rn and c ∈ Rm. Show that
if the optimal value of (P ) is finite, then the optimal values of (P ) and
(D) are equal and the dual (D) admits a maximizer.

[Hint: For the second part, use Exercise 4.8. For the third part, define the
value function

p(y) = inf
x∈Rn

〈b, x〉+ δ{c}+Rm
+

(Ax+ y).

Recognize (D) as the parametric dual and argue that p(·) is a proper poly-
hedral function. Use part two of the exercise and Theorem 4.1 to complete
the proof.]

Notice that the optimality conditions for the primal (P ) and the dual
(D) problems, under mild regularity conditions, read as{

0 ∈ A∗∂h(Ax) + ∂g(x)

0 ∈ −A∂g?(−A?y) + ∂h?(y)

}
.

This system of inclusions is not very convenient for two reasons. First, the
variable x and y appear unrelated, even though they are closely related
as we will see. Second, the fact that the subdifferentials ∂h and ∂g are
evaluated at points in the image of A and A∗, respectively, is inconvenient
for computation. We end the section by deriving “primal-dual optimality
conditions” that simultaneously capture optimality for the primal and dual
problems in a convenient form. Such optimality conditions will play an
important role in Chapter 7, when designing primal-dual algorithms. The
proof follows similar reasoning as that of Theorem 4.5.
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Corollary 4.11 (Primal-dual optimality conditions). Consider the prob-
lems:

(P ) min
x

h(Ax) + g(x)

(D) max
y
− g?(−A∗y)− h?(y).

where g : E → R and h : Y → R are proper, closed, convex functions, and
A : E→ Y is a linear map. Suppose that the optimal values of (P ) and (D)
are equal, as is implied for example by either of the two regularity conditions:

0 ∈ ri (domh)−A(ri dom g)

0 ∈ ri (dom g?) +A∗(ri domh?).

Then x is the minimizer of (P ) and y is the maximizer of (D) if and only
if the inclusion holds:[

0
0

]
∈
[

0 A∗
−A 0

] [
x
y

]
+ ∂g(x)× ∂h?(y). (4.13)

Proof. Since the primal and dual optimal values are equal, we deduce that
x is a minimizer of (P ) and y is a maximizer of (D) if and only if equality
holds:

0 = (h(Ax) + g(x)) + (g?(−A∗y) + h?(y)) . (4.14)

The Fenchel-Young inequality (Theorem 3.39) guarantees

h(Ax) +h?(y) ≥ 〈Ax, y〉 and g?(−A∗y) + g(x) ≥ 〈−A∗y, x〉. (4.15)

Adding the two inequalities in (4.15), we see that the right side of (4.14) is
always lower-bounded by zero. We therefore deduce that (4.14) holds if and
only if the inequalities (4.15) hold as equalities. Theorem 3.39 guarantees
that this happens precisely when the inclusions, Ax ∈ ∂h?(y) and −A∗y ∈
∂g(x), hold. These two inclusions are exactly the system (4.13).

4.2.2 Lagrangian Duality

We next look at the principle of duality for a problem class that does not
directly fit in the framework of Fenchel-Rockafellar. The standard problem
of nonlinear programming takes the shape

min
x

f(x)

s.t. gi(x) ≤ 0 ∀i = 1, . . . , k

gi(x) = 0 ∀i = k + 1, . . . ,m

(P )
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for some proper functions f : E → R and gi : E → R. Notice that we may
write this problem in a form resembling the Fenchel-Rockafellar framework,

min
x

f(x) + h(G(x)),

by setting G(x) = (g1(x), . . . , gm(x)) and h = δRk
−×{0}m−k

. Since G is

nonlinear, we can not appeal to Fenchel-Rockafeller duality. Instead, we
will use a direct lower-bounding procedure to derive a dual formulation,
which will be called the Lagrange dual.

To simplify notation, define

G(x) := (g1(x), . . . , gm(x)) and K := Rk
− × {0}m−k.

Not that the polar of K is given by K◦ := Rk
+ ×Rm−k. Next, define the

Lagrangian function

L(x, y) := f(x) + 〈y,G(x)〉.

A quick computation shows (verify this!)

sup
y∈K◦

L(x, y) =

{
f(x) if G(x) ∈ K
+∞ otherwise

.

Consequently, taking the infimum over x ∈ E, we deduce

inf
x

sup
y∈K◦

L(x, y) = val(P ).

Hence any ȳ ∈ K◦ certifies a lower bound on the primal optimal value:

val(P ) ≥ inf
x
L(x, ȳ).

Finding the best lower bound that is achievable in this way is the Lagrange
dual optimization problem:

sup
y∈K◦

Φ(y) where Φ(y) := inf
x
L(x, y). (D)

The following exercise asks the reader to compute the Lagrangian dual
of a few explicit problems.

Exercise 4.12. Compute the Lagrangian duals of the following problems

1. minx {〈c, x〉 : Ax = b, x ∈ Q}, where Q is a closed convex cone.
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2. minx{1
2〈Qx, x〉 : Ax ≤ b}, where Q � 0.

3. minx∈Rn{
∑n

i=1 f(xi) : Ax ≤ b}, for a univariate function f : R→ R.

We will see that under reasonable convexity and compatibility assump-
tions, we can be sure that strong duality holds: val(P ) = val(D) and the dual
optimal value is attained, if finite. First, we need the following observation.

Exercise 4.13. b Show that if {gi}ki=1 are convex and {gi}mi=k+1 are affine
functions, then the function (x, y) 7→ δK(G(x) + y) is convex.

To establish strong duality, we simply apply Theorem 4.1 to the Lagrange
primal-dual pair.

Theorem 4.14. Consider the constrained optimization problem (P ), where
f : E → R is closed, proper, and convex, gi : E → R are convex for i =
1, . . . , k, and gi : E → R are affine functions for i = k + 1, . . . ,m. Then
the primal (P ) and the dual problems (D) fit the perturbation framework of
Theorem 4.1 with

F (x, y) = f(x) + δK(G(x) + y). (4.16)

In particular, the regularity condition

∃x ∈ ri (dom f) with G(x) ∈ Rk
−− × {0}m−k (4.17)

guarantees that the primal and dual optimal values are equal, and the dual
optimal value is attained, if finite.

Proof. Let us verify the assumptions of Theorem 4.1. To this end, let F (·, ·)
be the function defined in (4.16). Note that F is clearly proper and closed,
and is convex by Exercise 4.13. We successively compute

F ?(0, y) = sup
x, v
〈(0, y), (x, v)〉 − F (x, v)

= sup
x, v
〈v, y〉 − f(x)− δK(G(x) + v)

= sup
x, z
〈y, z −G(x)〉 − f(x)− δK(z)

= sup
z∈K

〈y, z〉 − inf
x
{〈y,G(x)〉+ f(x)}

= δK◦(y)− Φ(y).

Thus the Lagrange dual (D) is precisely the problem q(0) = maxy −F ?(0, y).
Next, observe the equality

domF = (dom f ×Rm) ∩ {(x, y) : G(x) + y ∈ K}.
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Let x be a point satisfying Assumption (4.17). Lemma 4.3 and the continuity
assumption on G guarantee the inclusion (x, 0) ∈ ri (domF ) (verify this!).
Since the domain of p(·) is the image of domF under the projection (x, y) 7→
y, Lemma 4.3 guarantees the inclusion 0 ∈ ri (dom p). If p(0) = −∞, there
is nothing to prove. Hence we may suppose that p(0) is finite. Exercise 3.2
then implies that p is proper, while Theorem 3.38 in turn guarantees that the
subdifferential ∂p(0) is nonempty. An application of Theorem 4.4 completes
the proof.

Exercise 4.15. Consider the problem

(P ) min 〈Q0x, x〉
s.t. 〈Qjx, x〉 = bj for j = 1, . . . ,m

where Qj (for j = 0, 1, . . . ,m) are n× n symmetric matrices and b ∈ Rm is
a vector.

1. Prove that the Lagrangian dual of this problem is the Semi-definite Pro-
gram

(D) max
y

yT b

s.t. Q0 −
m∑
j=1

yjQj � 0
(4.18)

2. Use Lagrangian (or Fenchel) duality to derive the dual problem of (D):

(P̂ ) min
X

〈Q0, X〉

s.t. 〈Qj , X〉 = bj for j = 1, . . . ,m

X � 0.

3. When there exists y ∈ Rm such that the matrix Q0 −
∑m

j=1 yjQj is

positive definite, the optimal values of (P̂ ) and (D) are equal. What is
then the relationship between the optimal value of (P ) and that of (P̂ )?
The problem (P̂ ) is called a convex relaxation of (P ). Why?

4.2.3 Minimax duality

We motivated both Fenchel-Rockafellar and Lagrangian duality from the
viewpoint of a lower-bounding procedure. In this section, we discuss an
alternative viewpoint that is applicable in many other contexts. Namely,
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suppose that we are given a function Φ: X ×Y → R of two variables x ∈ X
and y ∈ Y, where X and Y are some sets. One may then define the primal
and the dual problems, respectively:

(P ) inf
x

ϕ(x) where ϕ(x) = sup
y

Φ(x, y)

(D) sup
y

ψ(y) where ψ(y) = inf
x

Φ(x, y)
. (4.19)

Exercise 3.25 guarantees the weak duality inequality:

val(P ) = inf
x

sup
y

Φ(x, y) ≥ sup
y

inf
x

Φ(x, y) = val(D). (4.20)

The question of when equality val(P ) = val(D) holds amounts to deter-
mining conditions on Φ, which ensure that we may freely interchange infx
and supy. The following exercise shows that both Fenchel-Rockafellar and
Lagrangian duality can be understood from this perspective.

Exercise 4.16. Show that the following are true.

1. Let h : Y → R and g : E → R be proper, closed convex functions, and
let A : E → Y be a linear map. Set X = dom g and Y = domh? and
define the function

Φ(x, y) = g(x) + 〈Ax, y〉 − h?(y).

Show that the problems (P ) and (D) in (4.19) are exactly the Fenchel-
Rockafellar primal-dual pair of Section 4.2.1.

2. Fix some proper functions f : E → R and gi : E → R for i = 1, . . . ,m.
Set X = dom f and Y = Rk

+×Rm−k and define the Lagrangian function

Φ(x, y) = f(x) +
m∑
i=1

yigi(x).

Show that the problems (P ) and (D) in (4.19) are exactly the Lagrangian
primal-dual pair of Section 4.2.2.

In this section, we aim to find conditions that ensure primal and dual
attainment along with the equality val(P ) = val(D). To this end, we will
need the following definition.

Definition 4.17. A pair (x∗, y∗) ∈ X ×Y is a saddle point of Φ if it satisfies

Φ(x∗, y) ≤ Φ(x∗, y∗) ≤ Φ(x, y∗) ∀x ∈ X , y ∈ Y.
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Equivalently (x∗, y∗) is a saddle point of Φ if simultaneously x∗ mini-
mizes Φ(·, y∗) and y∗ maximizes Φ(x∗, ·). Using the functions ϕ and ψ, this
amounts to the equation

ϕ(x∗) = Φ(x∗, y∗) = ψ(y∗).

Existence of saddle points completely characterizes primal-dual attain-
ment and zero duality gap.

Lemma 4.18 (Saddle-points and duality). The following are equivalent.

1. x∗ ∈ argminϕ, y∗ ∈ argmaxψ, and ϕ(x∗) = ψ(y∗),

2. (x∗, y∗) is a saddle-point of Φ.

Proof. Suppose (1) holds. We then deduce

ϕ(x∗) = ψ(y∗) = inf
x

Φ(x, y∗) ≤ Φ(x∗, y∗),

ψ(y∗) = ϕ(x∗) = sup
y

Φ(x∗, y) ≥ Φ(x∗, y∗).

Thus (2) holds as claimed. Conversely, suppose (2) holds. Then we compute

inf
x

sup
y

Φ(x, y) ≤ sup
y

Φ(x∗, y) = Φ(x∗, y∗) = inf
x

Φ(x, y∗) ≤ sup
y

inf
x

Φ(x, y).

Taking into account the weak duality inequality (4.20), we deduce that
equality holds throughout. The condition (1) follows immediately.

We are now ready to establish conditions on Φ that ensure equality
val(P ) = val(D). These conditions will be stated in terms “marginal func-
tions” py : E→ R and qx : Y → R, defined by

py(x) =

{
Φ(x, y) if x ∈ X
+∞ otherwise

}
and qx(y) =

{
−Φ(x, y) if y ∈ Y
+∞ otherwise

}
.

The proof of the following theorem, not surprisingly, is based yet again on
recognizing (P ) and (D) as a parametric primal-dual pair for the perturba-
tion function: Define the function p : Y → R by

p(z) := inf
x∈X

sup
y∈Y

{Φ(x, y) + 〈z, y〉}. (4.21)

The reader should convince themselves that when specialized to the Fenchel-
Rockafellar and Lagrangian frameworks, this function reduces precisely to
the perturbation function we used to establish strong duality in Theo-
rems 4.4 and Theorem 4.14.
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Theorem 4.19 (Convex minimax). Consider a function Φ: X × Y → R
defined on some sets X ⊂ E and Y ⊂ Y. Assume the following.

1. (convex-concave) The functions py and qx are proper, closed, and con-
vex for all x ∈ X and y ∈ Y.

2. (coercivity) For some point ȳ ∈ Y, the function pȳ is coercive.

Then equality holds:

inf
x∈X

sup
y∈Y

Φ(x, y) = sup
y∈Y

inf
x∈X

Φ(x, y),

whenever the left-side is finite.

Proof. Define the value function p : Y → R by (4.21). In particular, equality
val(P ) = p(0) holds. Our immediate goal is to show the equality val(D) =
p??(0). To this end, we may express p as the infimal projection

p(z) = inf
x∈E

F (x, z), where F (x, z) := sup
y∈Y

{py(x) + 〈z, y〉}.

Observe that F is closed and convex, since it is the pointwise supremum
of closed convex functions. In particular, we conclude that p is a con-
vex function. Recall from (4.4) the expression for the double conjugate
p??(0) = supy −F ?(0, y). Using the definition of the Fenchel conjugate, we
successively compute

F ?(0, y) = sup
(x,z)

{
〈(x, z), (0, y)〉 − sup

u∈Y
{〈z, u〉+ pu(x)}

}
= sup

x∈X
sup
z∈Y

{
〈z, y〉 − sup

u∈Y
{〈z, u〉 − qx(u)}

}
= sup

x∈X
sup
z∈Y

{〈z, y〉 − q?x(z)}

= sup
x∈X

q??x (y).

Taking into account that qx is proper, closed, and convex for every x ∈ X ,
we conclude

p??(0) = sup
y∈Y
−F ?(0, y) = sup

y∈Y
inf
x∈X

Φ(x, y) = val(D),

as we set out to show. Suppose now that p(0) is finite, and fix a point ȳ ∈ Y
such that pȳ is coercive. We will show that p is lower-semicontinuous at 0,
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from which equality p??(0) = p(0) follows immediately. To this end, consider
a sequence zi → 0. Passing to a subsequence, we may assume that the values
p(zi) converge in [−∞,+∞). Choose now points xi ∈ X satisfying

F (xi, zi) ≤ p(zi) + i−1. (4.22)

We claim that the sequence {xi} is bounded. Indeed, observe

p(zi) + i−1 ≥ F (xi, zi) ≥ pȳ(xi) + 〈zi, y〉 ≥ pȳ(xi)− ‖zi‖ · ‖ȳ‖.

We therefore deduce lim supi→∞ pȳ(xi) < ∞ Since pȳ is coercive, we con-
clude that the sequence {xi} is bounded. Therefore passing to a subse-
quence, we may be sure that xi converges to some point x̄ ∈ E. Taking into
account that F is closed, we conclude

p(0) = inf
x∈E

F (x, 0) ≤ F (x̄, 0) ≤ liminf
i→∞

F (xi, zi) ≤ liminf
i→∞

p(zi),

where the last inequality follows from (4.22). Thus p is lower-semicontinuous
at z = 0, as we had to show. The proof is complete.

An immediate and useful consequence is the Kakutani minimax theorem.

Exercise 4.20 (Convex compact minimax). Consider a continuous function
Φ: E×Y → R, and let X ⊂ E and Y ⊂ Y be two nonempty compact convex
sets. Suppose that Φ(·, y) is convex for all y ∈ Y and Φ(x, ·) is concave for
all x ∈ X . Show that Φ has a saddle point on X × Y.

Exercise 4.21 (Direction of steepest descent). Consider a convex function
f : E→ R and a point x ∈ int (dom f). Verify the equality

min
v:‖v‖≤1

f ′(x, v) = − min
v∈∂f(x)

‖v‖.

Define the vector v̄ ∈ argminv∈∂f(x) ‖v‖ and assume v̄ 6= 0. Show that there
exists ε, α > 0 such that

f(x)− f(x− tv̄) ≥ αt‖v̄‖ for all t ∈ (0, ε).

[Hint: Use Theorem 3.50 and Exercise 4.20.]
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4.3 Spectral functions

The previous sections focused on two closely related ideas of duality and
subdifferential calculus for convex functions. The goal of this section is
to derive an expression for the subdifferential of a special class of functions
(called spectral) on the space of symmetric matrices. These are the functions
that depend on the matrix only through its eigenvalues. Remarkably, we
will be able to explicitly compute Fenchel conjugates, subdifferentials, and
proximal maps of such functions. The expression for the subdifferential, in
particular, can be regarded as a special type of chain rule.

We begin with some notation. The symbol Sn, as before, will denote
the Euclidean space of symmetric matrices, while O(n) will denote the set
of n× n orthogonal matrices. The symbol Π(n) will denote set of all n× n
permutation matrices. In particular, for any vector x ∈ Rn and permutation
π ∈ Π(n), the product πx is the same vector as x but with coordinates
permuted according to π. We next record the following two key definitions,
whose close relationship will be become clear shortly.

Definition 4.22. A function f : Rn → R is called symmetric if it satisfies

f(πx) = f(x), for all x ∈ Rn, π ∈ Π(n).

Definition 4.23. A function F : Sn → R is called spectral if it satisfies

F (UXUT ) = F (X), for all X ∈ Sn, U ∈ O(n).

Thus a function f on Rn is symmetric if its value does not depend on
the ordering of the coordinates of its argument. For example, all `p-norms
are symmetric. A function F on Sn is spectral if it is invariant under con-
jugation of its argument by orthogonal matrices. For example, any function
F on Sn that factors as F = f(λ(X)) is spectral, since the eigenvalues
are invariant under conjugation by orthogonal matrices. Thus, the nega-
tive log-determinant F (X) = − ln det(X) on Sn++ (see Exercise 1.12) and
all Schatten `p-norms ‖X‖p := ‖λ(X)‖p are spectral functions. The latter
function class in particular includes the nuclear norm F (X) =

∑n
i=1 |λi(X)|,

the operator norm F (X) = maxi=1,...,n |λi(X)|, and the Frobenius norm

F (X) =
√∑n

i=1 λ
2
i (X). See Figure 4.2 for an illustration of the unit balls

of these norms.
All of the examples of spectral functions we have seen so far can be

factored as F (X) = f(λ(X)) for some simple symmetric function f : Rn →
R. Indeed, all spectral functions factor in this way.
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(a) p = 1 (b) p = 1.5 (c) p = 2 (d) p = 5 (e) p =∞

Figure 4.2: Unit balls of Schatten `p-norms ‖X‖p = ‖λ(X)‖p over S2.

Exercise 4.24. A function F : Sn → R is spectral if and only if one can
write F = f ◦ λ for some symmetric function f : Rn → R.

[Hint: Explicitly, set f(x) = F (Diag (x)).]

In typical circumstances, the spectral function F may appear highly
complicated, whereas f is simple (e.g. polyhedral). For example, it is not
clear at all that the Schatten `p-norms are indeed norms on Sn, or that
they are even convex functions. In this section, we will see that numerous
analytic properties of F can be described purely in terms of the analogous
properties of f . Before delving into the details, we will need the following
two results. For a vector x in Rn, let x↑ denote the vector with the same
components permuted in nonincreasing order.

Exercise 4.25. b For any two vectors x, y ∈ Rn, the inequality holds:

〈x, y〉 ≤ 〈x↑, y↑〉.

Moreover, equality holds if and only if there exists a permutation π satisfying
π(x) = x↑ and π(y) = y↑.

Exercise 4.26. Consider a convex symmetric function f : Rn → R. Then
whenever the inclusion v ∈ ∂f(x↑) holds, so does the inclusion v↑ ∈ ∂f(x↑).
[Hint: Use the Fenchel-Young inequality together with Exercise 4.25.]

The key tool we will use to build a parallel between analytic properties
of f and those of F = f ◦ λ is Theorem 4.27. The result shows that if two
symmetric matrices X and Y are well-aligned, then so are their vectors of
eigenvalues λ(X) and λ(Y ). The proof will use the following basic linear
algebraic fact: two symmetric matrices X,Y ∈ Sn commute if and only
if they can be simultaneously diagonalized, meaning that there exists U ∈
O(n) such that both UXUT and UY UT are diagonal matrices.
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Theorem 4.27 (Trace Inequality). All matrices X,Y ∈ Sn satisfy the in-
equality:

〈λ(X), λ(Y )〉 ≥ 〈X,Y 〉, (4.23)

with equality if and only if X and Y admit a simultaneous ordered spectral
decomposition, meaning that there exists U ∈ O(n) satisfying

UTXU = Diag (λ(X)), UTY U = Diag (λ(Y )). (4.24)

The reader should verify that the estimate in (4.23) can be equivalently
written as

‖λ(X)− λ(Y )‖2 ≤ ‖X − Y ‖F .

Therefore, Theorem 4.27 shows that the eigenvalue map is 1-Lipschitz conti-
nous and characterizes those pairs of matrices for which the Lipschitz bound
is tight. We postpone the proof of Theorem 4.27 to Section 4.3.3, so as to
not distract from the main theme of the section.

4.3.1 Fenchel conjugate and the Moreau envelope

Armed with Theorem 4.27, we can now prove a precise relationship between
the Fenchel conjugate and the Moreau envelope of a spectral function f ◦ λ
and those of f .

Theorem 4.28. Consider a symmetric function f : Rn → R. Then the
inequalities

(f ◦ λ)?(Y ) = (f? ◦ λ)(Y ) and (f ◦ λ)α(X) = fα(λ(X)),

hold for all X,Y ∈ Sn.

Proof. We begin with the computation of the Fenchel conjugate. To this
end, we successively compute

(f ◦ λ)?(Y ) = sup
X∈Sn

{〈X,Y 〉 − f(λ(X))}

≤ sup
X∈Sn

{〈λ(X), λ(Y )〉 − f(λ(X))} (4.25)

≤ sup
z∈Rn

{〈z, λ(Y )〉 − f(z)} = f?(λ(Y )),
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where (4.25) follows from Theorem 4.27. To see the reverse inequality, fix an
eigenvalue decomposition Y = UDiag (λ(Y ))UT with U ∈ O(n). Observe

f?(λ(Y )) = sup
z∈Rn

{〈z, λ(Y )〉 − f(z)}

≤ sup
X∈Sn

{〈λ(X), λ(Y )〉 − f(λ(X))} (4.26)

= sup
X∈Sn

{〈UDiag (λ(X))UT , Y 〉 − f(λ(X))}

≤ sup
Z∈Sn

{〈Z, Y 〉 − f(λ(Z))} = (f ◦ λ)?(Y ),

where (4.26) uses symmetry of f and Exercise 4.25. We conclude (f ◦
λ)?(X) = (f? ◦ λ)(X), as claimed.

Next, we verify the analogous expression for the Moreau envelope. Fix
a matrix X and an eigenvalue decomposition X = UDiag (λ(X))UT with
U ∈ O(n). We then deduce

(f ◦ λ)α(X) = inf
Z∈Sn

{f(λ(Z)) +
1

2α
‖Z −X‖2F }

≤ inf
z∈Rn

{f(z) +
1

2α
‖UDiag (z)UT − UDiag (λ(X))UT ‖2F }

≤ inf
z∈Rn

{f(z) +
1

2α
‖z − λ(X)‖22} = fα(λ(X)).

Conversely, observe

fα(λ(X)) = inf
z∈Rn

{f(z) +
1

2α
‖z − λ(X)‖22}

≤ inf
Z∈Sn

{f(λ(Z)) +
1

2α
‖λ(Z)− λ(X)‖22}

≤ inf
Z∈Sn

{f(λ(Z)) +
1

2α
‖Z −X‖2F } = (f ◦ λ)α(X) (4.27)

where (4.27) follows from Theorem 4.27. This completes the proof.

Theorem 4.28 has a number of important corollaries. The first is that a
closed symmetric function f is convex if and f ◦ λ is convex.

Corollary 4.29 (Convexity of spectral functions). Let f : Rn → R be a
proper, closed, symmetric function. Then f is convex if and only if f ◦ λ is
convex.
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Proof. If F := f ◦ λ is convex. then writing f(x) = F (Diag (x)), we deduce
that f is convex. Conversely, suppose that f is convex. Is it straightfor-
ward to check that the Fenchel conjugate of a symmetric function is itself
symmetric. Therefore, applying Theorem 4.28 twice yields the equality

(f ◦ λ)?? = f?? ◦ λ = f ◦ λ.

Since f ◦ λ coincides with its double conjugate, it must be convex.

4.3.2 Proximal map and the subdifferential

With Theorem 4.28 at hand, we can now obtain an explicit expression for
the proximal map of f ◦ λ in terms of the proximal map of f .

Theorem 4.30 (Proximal map). Consider a symmetric function f : Rn →
R and an arbitrary matrix X ∈ Sn. Then the expression holds:

proxf◦λ(X) =
{
UDiag (w)UT : w ∈ proxf (λ(X)), U ∈ OX

}
,

where
OX := {U ∈ O(n) : X = UDiag (λ(X))UT }.

Proof. Fix a matrix U ∈ OX and a vector w ∈ proxf (λ(X)). Using Theo-
rem 4.28 we compute

(f ◦ λ)α(X) = fα(λ(X))

= f(w) +
1

2α
‖λ(X)− w‖22

= f(UDiag (w)UT ) +
1

2α
‖X − UDiag (w)UT ‖2F .

Thus UDiag (w)UT lies in proxf◦λ(X). To see the reverse inclusion, fix a
matrix W ∈ proxf◦λ(X). Using Theorem 4.28 we compute

fα(λ(X)) = (f ◦ λ)α(X)

= f(λ(W )) +
1

2α
‖X −W‖2F

≥ f(λ(W )) +
1

2α
‖λ(X)− λ(W )‖2F (4.28)

≥ fα(λ(X)) (4.29)

where (4.28) follows from Theorem 4.27. Thus equality holds throughout.
In particular, we deduce

‖X −W‖2F = ‖λ(X)− λ(W )‖2F and λ(W ) ∈ proxf (λ(X)).
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Theorem 4.27 therefore guarantees that there exists a matrix U ∈ OX sat-
isfying W = UTDiag (λ(W ))U . The proof is complete.

Thus the recipe for computing the proximal map of a spectral function
F = f ◦ λ at a matrix X is simple: form an eigenvalue decomposition
X = UDiag (λ(X))UT , compute any vector w ∈ proxf (λ(X)), and form the

matrix UDiag (w)UT .

Exercise 4.31. Consider a proper, closed, convex, symmetric function
f : Rn → R. Show that the set proxf◦λ(X) consists of all matrices W ∈ Sn

that admit a simultaneous ordered spectral decomposition with X and sat-
isfy λ(W ) ∈ proxf (λ(X)).

Next, we establish an analogous expression for the subdifferential of con-
vex spectral functions.

Theorem 4.32 (Subdifferential of convex spectral functions). Consider a
proper, closed, convex, symmetric function f : Rn → R and an arbitrary
matrix X ∈ Sn. Then the expression holds:

∂(f ◦ λ)(X) =
{
UDiag (y)UT : y ∈ ∂f(λ(X)), U ∈ OX

}
,

where

OX := {U ∈ O(n) : X = UDiag (λ(X))UT }.

Proof. Fix a matrix Y ∈ ∂(f ◦ λ)(X). Then Theorem 3.39 guarantees the
equality

(f ◦ λ)?(Y ) + (f ◦ λ)(X) = 〈Y,X〉.

We therefore deduce

〈λ(Y ), λ(X)〉 ≤ f?(λ(Y )) + f(λ(X) (4.30)

= (f ◦ λ)?(Y ) + (f ◦ λ)(X) (4.31)

= 〈Y,X〉
≤ 〈λ(Y ), λ(X)〉. (4.32)

where (4.31) follows from Theorem 4.28 and (4.32) follows from Theo-
rem 4.27. Hence equality holds throughout. Theorem 4.27 therefore guaran-
tees Therefore combining equality in (4.32) with Theorem 4.27, we deduce
that the matrices X and Y admit a simultaneously ordered decomposition.
Equality in (4.30), in turn, guarantees the inclusion λ(Y ) ∈ ∂f(λ(X)).
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Conversely, consider a matrix Y = UDiag (y)UT for some U ∈ OX and
y ∈ ∂f(λ(X)). Then by similar reasoning as before, we have

〈y, λ(X)〉 = f?(y) + f(λ(X))

= (f ◦ λ)?(Y ) + (f ◦ λ)(X)

≥ 〈Y,X〉 (4.33)

= 〈λ(Y ), λ(X)〉
≥ 〈y, λ(X)〉, (4.34)

where (4.34) follows from Exercise 4.25. Thus equality holds throughout.
From equality in (4.33) we conclude Y ∈ ∂(f ◦ λ)(X), as claimed.

Thus the recipe for computing the subdifferential of a convex spectral
function F = f◦λ at a matrix X is simple: form an eigenvalue decomposition
X = UDiag (λ(X))UT , compute any subgradient y ∈ ∂f(λ(X)), and form
the matrix UDiag (y)UT .

Exercise 4.33. Consider a proper, closed, convex, symmetric function
f : Rn → R. Show that the subdifferential ∂(f ◦λ)(X) consists of all matri-
ces Y ∈ Sn that admit a simultaneous ordered spectral decomposition with
X and satisfy λ(Y ) ∈ ∂f(λ(X)).

Exercise 4.34. Define the function F : Sn → R by F (X) = ‖X‖op. Prove
the expression

∂(f ◦ λ)(I) = {Y � 0 : tr(Y ) = 1}.

We end the section with the promised proof of the trace inequality.

4.3.3 Proof of the trace inequality

Proof of Theorem 4.27. Fix two matrices X,Y ∈ Sn and define the set

L = {UXUT : U ∈ O(n)}.

Since L is compact (why?), the linear function Z 7→ 〈Z, Y 〉 attains its max-
imum over L. Let Z be any maximizer of this linear function over L. Fix
now an arbitrary skew-symmetric matrix W meaning W T = −W . Notice
that for any t ∈ R, the matrix exponential E = etW is an orthogonal matrix,
due to the computation

ET = (etW )T = etW
T

= e−tW = E−1.
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Define the function ϕ ∈ R→ R by

ϕ(t) = 〈etWZe−tW , Y 〉.

Using the Taylor expansion of the exponential, it is straightforward to verify

ϕ′(0) = 〈Y Z − ZY,W 〉.

Since Z is a maximizer of ϕ, equality ϕ′(0) = 0 holds. In particular, setting
W := Y Z − ZY , we deduce Y Z = ZY . Since Z and Y commute, they
must be simultaneously diagonalizable. Thus there exist U ∈ O(n) and a
permutation π satisfying

Y = UDiag (π · λ(Y ))UT , Z = UDiag (λ(Z))UT . (4.35)

Moreover, since Z and X both lie in L, equality λ(Z) = λ(X) holds. Thus

〈X,Y 〉 ≤ 〈Z, Y 〉 = 〈π · λ(Y ), λ(X)〉 ≤ 〈λ(Y ), λ(X)〉, (4.36)

where the last inequality follows from Exercise 4.25. This establishes the
inequality (4.23).

Suppose now that equality holds in (4.23). Then we can set Z = X in
the first place. Thus Y and X are simultaneously diagonalizable and the
estimate (4.36) guarantees the equality

〈π · λ(Y ), λ(X)〉 = 〈λ(Y ), λ(X)〉.

Applying Exercise 4.25, we deduce that there exists a permutation π̂ satis-
fying λ(X) = π̂λ(X) and πλ(Y ) = π̂λ(Y ). Consequently, using (4.35) we
deduce

Y = UDiag (π̂λ(Y ))UT , X = UDiag (π̂λ(X))UT .

Permuting the columns of U according to π̂−1 yields the factorization (4.24),
thereby completing the proof.

4.3.4 Orthogonally invariant functions of rectangular matri-
ces

Thus far, this section has focused on orthogonally invariant functions on
the space of symmetrice matrices Sn. It is possible to develop a completely
parallel theory for orthogonally invariant functions on the Euclidean space
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of rectangular matrices Rm×n. We now outline such results, leaving the
details as exercises.

We begin with the following two definitions that parallel those in the
symmetric setting. Throughout, we let Π±(m) denote the set of m × m.
Thus any matrix π ∈ Π±(m) has exactly one entry ±1 in each row and each
column.

Definition 4.35. A function f : Rm → R is called absolutely symmetric if
it satisfies

f(πx) = f(x), for all x ∈ Rn, π ∈ Π±(m).

Definition 4.36. A function F : Sn → R is called orthogonally invariant if
it satisfies

F (UXV T ) = F (X), for all X ∈ Rm×n, U ∈ O(m), V ∈ O(n).

Without loss of generality, suppose m ≤ n. It is straightforward to
see that a function F is orthogonally invariant if and only if it factors as
F = f ◦ σ, where f is some absolutely symmetric function on Rm and σ
is the singular value map. The trace inequality then takes the following
form. The proof follows along similar lines as its symmetric counterpart
(Theorem 4.27), and is therefore omitted.

Theorem 4.37 (Trace inequality for rectangular matrices).
All matrices X,Y ∈ Rm×n satisfy the inequality:

〈σ(X), σ(Y )〉 ≥ 〈X,Y 〉,

with equality if and only if X and Y admit a simultaneous ordered singular
value decomposition, meaning that there exist U ∈ O(m) and V ∈ O(n)
satisfying

UTXV = Diag (σ(X)), UTY V = Diag (σ(Y )).

The following result is the direct extension of Theorem 4.28, 4.30, and
4.32 to the rectangular setting, with an identical proof.

Theorem 4.38. Consider an absolutely symmetric, proper, closed function
f : Rm → R. Then the expressions hold:

(f ◦ σ)? = f? ◦ σ and (f ◦ σ)α = fα ◦ σ,
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and

proxf◦σ(X) =
{
UDiag (w)V T : w ∈ proxf (σ(X)), (U, V ) ∈ OX

}
,

where we define

OX := {(U, V ) ∈ O(m)×O(n) : X = UDiag (σ(X))V T }.

Moreover, f ◦ σ is convex if and only if f is convex, in which case the
subdifferential admits the form

∂(f ◦ σ)(X) =
{
UDiag (y)V T : y ∈ ∂f(σ(X)), (U, V ) ∈ OX

}
.
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Chapter 5

First-order algorithms for
black-box convex
optimization

This chapter introduces a number of foundational iterative methods for min-
imizing a convex function f on E. The algorithms we consider will only use
first-order information: gradients when f is smooth and subgradients when
f is nonsmooth. The efficiency of any such first-order algorithm is measured
by the number of (sub)gradient evaluations required to produce a point xε
satisfying f(xε) − min f ≤ ε. In particular, we will only be interested in
efficiency guarantees that are independent of the dimension of the ambinet
space E, which the reader should assume is huge. We focus on three algo-
rithms: gradient descent, accelerated gradient descent, and the subgradient
method. We will see that the accelerated gradient method has the best
possible efficiency guarantees among any first-order method for minimizing
smooth convex functions. Similarly, the subgradient method is best in class
for minimizing Lipschitz convex functions. The final section of the chap-
ter provides a more modern view of the three methods based on two-sided
and one-sided model approximation. This viewpoint will lead to important
extensions of these methods to a wider class of problems in Chapter ??.

Roadmap. We begin with Section 5.1, which introduces gradient descent
and the accelerated gradient method for minimizing β-smooth convex func-
tions. Section 5.2 introduces the subgradient method for minimizing L-
Lipschitz convex functions. The final Section 5.3 outlines an illuminating
viewpoint of (accelerated) gradient and subgradient methods based on model

125
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approximation.

5.1 Algorithms for smooth convex minimization

Throughout this section, we consider the optimization problem

min
x∈E

f(x), (5.1)

where f : E → R is a β-smooth and α-strongly convex function. Here,
α, β ≥ 0 are nonnegative real numbers. In particular, the setting α = 0
simply corresponds to convexity. Thus, as a consequence of Corollary 1.15
and Theorem 3.57, the function f satisfies the two sided bound

α

2
‖y − x‖2 ≤ f(y)− f(x)− 〈∇f(x), y − x〉 ≤ β

2
‖y − x‖2, (5.2)

for all x, y ∈ E. Geometrically, this estimate means that f is sandwiched
between the two quadratics

Qx(y) := f(x) + 〈∇f(x), y − x〉+
β

2
‖y − x‖2,

qx(y) := f(x) + 〈∇f(x), y − x〉+
α

2
‖y − x‖2.

See Figure 5.1 for a geometric illustration. The ratio κ := β/α is called the
condition number of f . Intuitively, κ measures the “scaling” of the problem.
In particular, equality κ = 1 holds if and only if f is a spherical quadratic.
We will see that the condition number κ strongly influences convergence
guarantees of numerical methods.

Throughout, we assume that f has at least one minimizer, which is
automatic if α > 0 (why?). The symbols f∗ and x∗ will denote the minimal
value of f and an arbitrary minimizer of f , respectively.

5.1.1 Gradient descent

Gradient descent is the most basic numerical method for the problem (5.1).
In each iteration, the method simply takes a step in the direction of the
negative gradient:

xt+1 = xt − η∇f(xt),

where the parameter η > 0 is to be determined. The classical motivation
for moving along the negative gradient direction is that this is the direction
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x

f

qx

Qx

Figure 5.1: Illustration of a β-smooth and α-strongly convex function f ,
where Qx(y) := f(x) + 〈∇f(x), y − x〉 + β

2 ‖y − x‖
2 is an upper estimator

based at x and qx(y) := f(x)+〈∇f(x), y−x〉+ α
2 ‖y−x‖

2 is a lower estimator
based at x.

of maximal instantaneous decrease

argmin
v: ‖v‖≤1

f ′(x, v) = − ∇f(x)

‖∇f(x)‖
.

In order to determine an appropriate parameter η > 0, let us estimate the
functional decrease achieved by a single gradient step.

Lemma 5.1 (Descent). The gradient step x+ = x− η∇f(xt) satisfies

f(x+) ≤ f(x)− η
(

1− ηβ

2

)
‖∇f(x)‖2.

Proof. Using the right-hand-side of (5.2), we compute

f(x− η∇f(x)) ≤ f(x)− 〈∇f(x), η∇f(x)〉+
β

2
‖η∇f(x)‖2

= f(x)− η
(

1− ηβ

2

)
‖∇f(x)‖2,

as claimed.

Thus the decrease in the function value achieved by a single gradient

step is proportional to η
(

1− ηβ
2

)
‖∇f(x)‖2. Consequently, it is appealing

to choose η to be the maximizer of the concave quadratic η 7→ η
(

1− ηβ
2

)
.
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A quick computation yields the choice η = 1
β . Algorithm 1 records the

resulting procedure. Using this value of η in Lemma 5.1 shows that the
iterates generated by Algorithm 1 satisfy the guarantee

f(xt+1) ≤ f(xt)−
1

2β
‖∇f(xt)‖2 for all t ≥ 0. (5.3)

In words, this estimate means that the functional improvement in each step
f(xt) − f(xt+1) is at least on the same order as the measure of optimality
‖∇f(xt)‖2 at the current iterate. Thus, if xt is highly suboptimal, we expect
that f(xt+1) will be siginificantly smaller than f(xt).

Algorithm 1: Gradient descent

Input: Starting point x0 ∈ E, parameter β > 0, iteration T ∈ N.
Step t = 0, 1, . . . , T − 1:

Set xt+1 = xt − 1
β∇f(xt)

The following theorem establishes a sublinear rate of convergence of gra-
dient descent for minimizing smooth convex functions. Notice that the guar-
antee of the theorem does not depend on the strong convexity constant α,
and is valid even when α = 0.

Theorem 5.2 (Gradient descent under convexity). Let f : E → R be a
convex and β-smooth function. Then the iterates generated by Algorithm 1
satisfy

f(xt)− f∗ ≤
β‖x0 − x∗‖2

2t
.

Proof. We successively compute

f(xt+1) ≤ f(xt) + 〈∇f(xt), xt+1 − xt〉+
β

2
‖xt+1 − xt‖2 (5.4)

= f(xt) + 〈∇f(xt), x
∗ − xt〉+

β

2
‖xt+1 − xt‖2 + 〈∇f(xt), xt+1 − x∗〉

(5.5)

≤ f∗ +
β

2
‖xt+1 − xt‖2 + 〈∇f(xt), xt+1 − x∗〉 (5.6)

= f∗ +
β

2

(
‖xt+1 − xt‖2 − 2〈xt+1 − xt, xt+1 − x∗〉

)
(5.7)

= f∗ +
β

2

(
‖xt − x∗‖2 − ‖xt+1 − x∗‖2

)
, (5.8)
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where (5.4) and (5.7) follow from (5.2), while equalities (5.5), (5.7), and
(5.8) follow from algebraic manipulations.

Subtracting f∗ from both sides and summing for i = 0, . . . , t − 1, the
terms on the right side telescope, yielding

t−1∑
i=0

(f(xi+1)− f∗) ≤ β

2

t−1∑
i=0

(
‖xi − x∗‖2 − ‖xi+1 − x∗‖2

)
≤ β

2
‖x0 − x∗‖2.

Taking into account that that the function values {f(xi)}i≥0 are nonincreas-
ing (Lemma 5.1), we deduce

f(xt)− f∗ ≤
1

t

t−1∑
i=0

(f(xi+1)− f∗) ≤ β‖x0 − x∗‖2

2t
,

as claimed.

The key part of the proof of Theorem 5.2 is the estimate (5.8). Though
this inequality might seem like a lucky coincidence at first, Section ?? will
provide a more appealing geometric explanation.

Theorem 5.2 shows that gradient descent, applied to a convex β-smooth
function, drives the function gap f(xt) − f∗ to zero at a sublinear rate
1/t. When f is in addition α-strongly convex with α > 0, gradient descent
convergences at a linear rate.

Theorem 5.3 (Gradient descent under strong convexity). Let f : E → R
be an α-strongly convex and β-smooth function. Then the iterates generated
by Algorithm 1 satisfy

f(xt+1)− f∗ ≤
(

1− 1

2κ

)
(f(xt)− f∗), (5.9)

‖xt+1 − x∗‖2 ≤
(
κ− 1

κ+ 1

)
‖xt − x∗‖2. (5.10)

Proof. To see (5.9), we combine Lemma 5.1 with Theorem 3.68 to deduce

f(xt+1)− f(xt) ≤ −
1

2β
‖∇f(xt)‖2 ≤ −

1

2κ
(f(xt)− f∗).

Adding and subtracting f∗ from the left-side yields

(f(xt+1)− f∗)− (f(xt)− f∗) ≤ −
1

2κ
(f(xt)− f∗).
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Rearranging completes the proof of (5.9).
Next, we prove (5.10). To this end, we successively compute

‖xt+1 − x∗‖2 = ‖(xt − x∗)− β−1∇f(xt)‖2

= ‖xt − x∗‖2 +
2

β
〈∇f(xt), x

∗ − xt〉+
1

β2
‖∇f(xt)‖2

≤ ‖xt − x∗‖2 +
2

β

(
f∗ − f(xt)−

α

2
‖xt − x∗‖2

)
+

1

β2
‖∇f(xt)‖2

(5.11)

=

(
1− α

β

)
‖xt − x∗‖2 +

2

β

(
f∗ − f(xt) +

1

2β
‖∇f(xt)‖2

)
, (5.12)

where (5.11) follows from strong convexity. Lemma 5.1 guarantees that the
second term in (5.12) is nonpositive, and therefore the quantity ‖xt+1−x∗‖2
tends to zero at the linear rate 1 − κ−1. We can establish a slightly faster
rate by a more careful argument. Namely, strong convexity and Lemma 5.1
guarantee

f∗ +
α

2
‖xt+1 − x∗‖2 ≤ f(xt+1) ≤ f(xt)−

1

2β
‖∇f(xt)‖2,

and therefore

f∗ − f(xt) +
1

2β
‖∇f(xt)‖2 ≤ −

α

2
‖xt+1 − x∗‖2.

Combining this estimate with (5.12) and rearranging yields (5.10).

Thus gradient descent drives both the quantities ‖xt−x∗‖2 and f(xt)−f∗
to zero at a linear rate 1−κ−1. In particular, in light of Section 1.9, we can

be sure that the inequality f(xt)−f∗ ≤ ε holds after t = O(κ · ln
(
f(x0)−f∗

ε

)
)

iterations. Combining Theorems 5.2 and 5.3, we see that gradient descent
satisfies the guarantee:

f(xt)− f∗ ≤ min

{
1

2t
,

(
1− 1

2κ

)t}
· β‖x0 − x∗‖2 for all t ≥ 0.

Thus f(xt)− f∗ is simultaneously bounded by two sequences, one converg-
ing sub-linearly and the other converging linearly to zero. Typically, the
sublinear rate is observed in the early iterations of the algorithm, while the
linear rate is observed towards the end (if at all). See Figure 5.2 for an
illustration.
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Figure 5.2: Sublinear vs. linear rates

5.1.2 Accelerated gradient descent

The reader may now wonder whether there is a faster algorithm for smooth
convex minimization, in terms of the number of gradient evaluations, than
gradient descent. In particular, can the sublinear rate 1/t be improved? The
answer is yes! The accelerated gradient method, outlined in Algorithm 2,
achieves the much faster sublinear rate 1/t2.

Algorithm 2: Accelerated gradient method

Input: Starting point x0 ∈ E.
Set t = 0 and a0 = a−1 = 1, x−1 = x0;
for t = 0, . . . , T do

Set
ut = xt + at(a

−1
t−1 − 1)(xt − xt−1)

xt+1 = ut −
1

β
∇f(ut)

Set the extrapolation coefficient

at+1 =

√
a4
t + 4a2

t − a2
t

2
.

end

The idea of the method is to maintain two sequences of points xt and
ut. The gradient steps are computed along the points ut, while the iterates
xt are used to encode the history, and in particular the momentum, of the
algorithm. The choice of the extrapolation sequence at is subtle and is
entirely motivated by the convergence analysis of the method.
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Theorem 5.4. Let f : E → R be a convex and β-smooth function. Then
the iterates {xt} generated by Algorithm 2 satisfy

f(xt)− f∗ ≤
2β‖x∗ − y0‖2

(t+ 1)2
.

We postpone the proof of Theorem 5.4 until Section ??, where a more
general result will be established. Meanwhile, let us take the validity of
Theorem 5.4 for granted. Recall that gradient descent converges at the
linear rate 1 − κ−1 for smooth strongly convex functions. In contrast, to
make Algorithm 2 linearly convergent, one must modify the method. There
are two such approaches in the literature: (1) modify the definition of at
in (6.20) using the strong convexity constant or (2) periodically restart the
algorithm. We omit the first approach, since it is fairly technical; instead,
we focus on the second approach, which is elementary and has many other
uses.

The idea of restarts is useful in many contexts, often allowing one to
boost sublinear rates to linear rates of convergence under strong convexity
assumptions. Imagine that we run the basic accelerated gradient method
on f for a number of iterations (an epoch) and then restart. Let xit be the
t’th iterate generated in epoch i. Theorem 5.4 along with strong convexity
yields the guarantee

f(xit)− f∗ ≤
2β‖x∗ − xi0‖2

(t+ 1)2
≤ 4κ

(t+ 1)2
· (f(xi0)− f∗). (5.13)

Suppose that in each epoch, we run an accelerated gradient method for T
iterations, and initialize each epoch with the final iterate of the previous
epoch. The estimate (5.13) then guarantees that the function gap shrinks
by a factor of 4κ

(T+1)2 after each epoch. The idea is now to optimally choose

the number of epochs I and the length of each epoch T in order to reach
desired accuracy ε with minimal computational effort.

Theorem 5.5. Let f : E→ R be an α-strongly convex and β-smooth func-
tion. Fix a target accuracy ε > 0 and set the algorithmic parameters

T =
⌈
2e
√
κ
⌉

and I =
⌈
ln
(
f(x0)−f∗

ε

)⌉
.

Then the iterate {xIT } generated by Algorithm 3 satisfies f(x)−f∗ ≤ ε, while
the run of the algorithm uses at most⌈

2e
√
κ
⌉
·
⌈

ln

(
f(x0)− f∗

ε

)⌉
gradient evaluations.
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Algorithm 3: Accelerated gradient method with restarts

Input: Initialx0 ∈ E, epoch length T ∈ N, and epoch number I ∈ N
Set x−1

T = x0.
for i = 0, . . . , I do

Set xi0 = xi−1
T .

Let xiT be the T ’th iterate generated by Algorithm 2, initialized
with xi0.

end

Proof. The estimate (5.13) immediately guarantees:

f(xIT )− f∗ ≤
(

4κ

(T + 1)2

)I
(f(x0)− f∗) ≤ e−I(f(x0)− f∗) ≤ ε, (5.14)

thereby completing the proof.

The efficiency guarantee O(
√
κ · ln

(
f(x0)−f∗

ε

)
of Algorithm (3) is much

better than the efficiency guarantee for gradient descent O(κ · ln
(
f(x0)−f∗

ε

)
.

Indeed, we will see in Section 5.4 that the sublinear and linear efficiency
estimates of the accelerated gradient method are the best possible among
all first-order algorithms for smooth convex minimization.

5.2 Algorithms for nonsmooth convex minimiza-
tion

In this section, we dispense with the smoothness assumption and focus on
the optimization problem

min
x∈Q

f(x), (5.15)

where f : E → R is a convex function that is L-Lipschitz continuous on a
neighborhood of a closed convex set Q ⊂ E. Thus in comparison with the
previous section, we have weakened the smoothness assumption to Lipschitz
continuity, while also allowing a convex constraint set. The analysis of the
projected subgradient method—the content of this section—is essentially
the same whether Q is present or not. Extensions of gradient descent to
the constrained setting, in contrast, require a different argument and will
appear in Section 6.1 .
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5.2.1 Subgradient method

The projected subgradient method, summarized in Algorithm 4, is the basic
algorithm for the problem (5.15). In each iteration t, the algorithm chooses
a subgradient vt ∈ ∂f(xt) and declares

xt+1 = projQ(xt − ηtvt),

for some user specified sequence {ηt}. Thus the method travels in the oppo-
site direction to a subgradient vt and then performs a projection operation
to restore feasibility. Notice that in particular, the projection projQ(·) needs
to be efficiently computable in order for the algorithm to be implementable.

Algorithm 4: Projected subgradient method

Input: Initial x0 ∈ E, iteration T ∈ N, sequence {ηt} ⊂ (0,∞).
Step t = 0, 1, . . . , T − 1:

Choose vt ∈ ∂f(xt)
Set xt+1 = projQ(xt − ηtvt)

There is an important difference between the smooth and nonsmooth
settings. A crucial property of gradient descent is that the function values
f(xt) decrease along the iterate sequence. Indeed, our reasoning for setting
η = 1

β was entirely motivated by the desire to force the function value to
decrease as much as possible in a single iteration (Lemma 5.1). In contrast,
the projected subgradient algorithm for nonsmooth optimization is not a
descent method. Indeed, if v ∈ ∂f(x) is an arbitrary nonzero sugradient,
then following the direction −v might not lead to function decrease. More-
over, even if we could find a vector v ∈ ∂f(xt) of minimal norm, which
by Exercise 4.21 defines a descent direction, it is not possible to uniformly
control the amount by which the function decreases.

Instead, we monitor a different quantity, the distance to an optimal
solution ‖x − x∗‖. To see why this is a reasonable strategy, observe that if
x is not a minimizer of f , then any subgradient v ∈ ∂f(x) satisfies

〈v, x∗ − x〉 ≤ f(x∗)− f(x) < 0. (5.16)

Thus any subgradient v ∈ ∂f(x) makes an obtuse angle with the vector
x∗ − x. It follows immediately that for all sufficiently small η > 0, the
updated point x− ηv moves closer to x∗. Moreover, (5.16) suggests that if

the ratio f(x)−f∗
‖v‖·‖x−x∗‖ is large, then we should be able to make good progress

towards x∗ by following the direction −v. More formally, the convergence
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analysis of the projected subgradient method (Theorem 5.6) will rely on the
elementary estimate

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 − 2ηt(f(xt)− f∗) + η2
t ‖vt‖2.

Intuitively, since the third term on the right scales as η2
t , it can be made

small relative to the second term, which scales as ηt. Thus the function
gap f(xt)− f∗ indeed controls the decrease in the distance to the solution.
Since, the distance ‖xt − x∗‖ is lower bounded by zero, the function values
f(xt) − f∗ must tend to zero. With this intuition in mind, we are now
ready to establish the convergence guarantees for the projected subgradient
method. It is worthwhile to note that in the nonsmooth setting, rather than
measuring the suboptimality of any individual iterate xt, it is most natural
to measure the suboptimality of the running average of the iterates.

Theorem 5.6 (Subgradient method under convexity). Let f : E→ R be a
convex function that is L-Lipschitz continuous on a neighborhood of a closed
convex set Q ⊂ E. Then the iterates generated by Algorithm 4 satisfy

f

(
1∑t
i=0 ηi

t∑
i=0

ηixi

)
− f∗ ≤

‖x0 − x∗‖2 + L2
∑t

i=0 η
2
i

2
∑t

i=0 ηi
. (5.17)

In particular, when using the constant parameter ηt = R
L
√
T+1

for a fixed

R ≥ ‖x0 − x∗‖, the efficiency estimate becomes

f

(
1

T + 1

T∑
t=0

xt

)
− f∗ ≤ RL√

T + 1
. (5.18)

Proof. We successively compute

‖xt+1 − x∗‖2 = ‖projQ(xt − ηtvt)− x∗‖2

= ‖projQ(xt − ηtvt)− projQ(x∗)‖2

≤ ‖(xt − x∗)− ηtvt‖2 (5.19)

= ‖xt − x∗‖2 − 2ηt〈vt, xt − x∗〉+ η2
t ‖vt‖2, (5.20)

≤ ‖xt − x∗‖2 − 2ηt(f(xt)− f∗) + η2
tL

2, (5.21)

where (5.19) uses that projQ is 1-Lipschitz continuous (Theorem 3.60) and
(5.21) uses convexity and Lipschitz continuity of f . Iterating the recursion
yields

‖xT+1 − x∗‖2 ≤ ‖x0 − x∗‖2 − 2

T∑
t=0

ηt(f(xt)− f∗) + L2
T∑
t=0

η2
t .



136CHAPTER 5. FIRST-ORDER ALGORITHMS FOR BLACK-BOX CONVEXOPTIMIZATION

Lower-bounding the left side by zero and rearranging, we conclude

T∑
t=0

ηt(f(xt)− f∗) ≤
‖x0 − x∗‖2 + L2

∑T
t=0 η

2
t

2
. (5.22)

Finally using convexity, observe

f

(
1∑T
t=0 ηt

T∑
t=0

ηtxt

)
− f∗ ≤

∑T
t=0 ηt(f(xt)− f∗)∑t

i=0 ηt
.

Combining this estimate with (5.22) completes the proof of (5.17). Setting
ηt = η for all t = 0, . . . , T − 1 in (5.17) yields the guarantee

f

(
1

T + 1

T∑
t=0

xt

)
− f∗ ≤ ‖x0 − x∗‖2

2(T + 1)η
+
L2η

2
.

Optimizing the right side of (5.17) in η yields the choice η = R
L
√
T+1

and the

guarantee (5.18).

Thus, (5.18) shows that setting ηt to be a constant, the uniform average
of the iterates {xt}Tt=0 is suboptimal by an additive error RL√

T+1
. When

f is α-strongly convex with α > 0, a faster rate is achievable by making
the judicious choice ηt = 2

α(t+1) and averaging the iterates non-uniformly,
namely by assigning higher weight to the latter iterates.

Theorem 5.7 (Subgradient method under strong convexity). Let f : E→ R
be an α-strongly convex function that is L-Lipschitz continuous on a neigh-
borhood of a closed convex set Q ⊂ E. Then the iterates generated by Algo-
rithm 4 with ηt = 2

α(t+1) satisfy

f

(
2

t(t+1)

t∑
i=1

ixi

)
− f∗ ≤ 2L2

α(t+ 1)
.

Proof. Starting from (5.20) and using Lipschitz continuity and strong con-
vexity of f , we compute

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 + 2ηt〈vt, x∗ − xt〉+ η2
t ‖vt‖2

≤ ‖xt − x∗‖2 + 2ηt
(
f∗ − f(xt)− α

2 ‖x
∗ − xt‖2

)
+ η2

tL
2.
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Rearranging and diving through by 2ηt yields the expression

f(xt)− f∗ ≤
(

1− αηt
2ηt

)
‖xt − x∗‖22 −

1

2ηt
‖xt+1 − x∗‖22 +

ηt
2
L2.

Plugging in ηt := 2
α(t+1) and multiplying through by t, we obtain

t
(
f(xt)−f(x∗)

)
≤ αt(t− 1)

4
‖xt − x∗‖2−

αt(t+ 1)

4
‖xt+1 − x∗‖2+

t

α(t+ 1)
L2.

Summing the estimate for i = 1 . . . , t, the first two terms on the right-side
telescope, yielding

t∑
i=1

i
(
f(xi)− f(x∗)

)
≤

t∑
i=1

i
α(i+1)L

2 ≤ tL2

α
.

Dividing through by
∑t

i=1 i = t(t+1)
2 and taking into account that f is

convex, we conclude

f

(
2

t(t+1)

t∑
i=1

ixi

)
− f∗ ≤

(
1∑t
i=1 i

)
·

t∑
i=1

i
(
f(xi)− f(x∗)

)
≤ 2L2

α(t+ 1)
,

as claimed.

5.3 Model-based view of first-order methods

Sections 5.1 and 5.2 presented the “classical” motivation and analysis of
gradient descent and the projected subgradient method. The current section
revisits both algorithms from a more modern perspective, rooted in model
approximation. Sections 6.1 and 6.2 will leverage this viewpoint to develop
new algorithms for a wider class of problems.

Setting the stage, fix a point x ∈ E and a vector v ∈ E, and define the
update

x+ = projQ(x− ηv), (5.23)

where Q is a closed convex set. Clearly, gradient decent and the projected
subgradient method are examples of this update rule, under the settings
v = ∇f(x) and v ∈ ∂f(x), respectively. The key observation now is that
the update (5.23) can be equivalently written in the variational form

x+ = argmin
y∈Q

fx(y) +
1

2η
‖y − x‖2. (5.24)
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where fx(·) is the affine function

fx(y) := f(x) + 〈v, y − x〉. (5.25)

To see this, successively compute

x+ = argmin
y∈Q

‖y − (x− ηv)‖2 = argmin
y∈Q

2η〈v, y − x〉+ ‖y − x‖2

= argmin
y∈Q

fx(y) +
1

2η
‖y − x‖2.

Thus x+ is obtained by minimizing the sum of the affine model fx of f
and a simple quadratic. The assumptions of α-strong convexity and β-
smoothness amount to the lower and upper estimates on approximation
quality, respectively:

f(y) ≤ fx(y) +
β

2
‖y − x‖2 ∀x, y ∈ E, (5.26)

f(y) ≥ fx(y) +
α

2
‖y − x‖2 ∀x, y ∈ E. (5.27)

Observe that in the smooth setting, the function fx + β
2 ‖ · −x‖

2 used
in the update rule (5.24) for gradient descent globally upper bounds f . An
immediate consequence, already well known to us, is that gradient descent
generates iterates with decreasing function values. See Figure 5.3 for an
illustration. In contrast, the function fx+ 1

2η‖·−x‖
2 defining the subgradient

step in the nonsmooth setting might not be an upper model of f for any η >
0. Herein lies the distinction between smooth and nonsmooth optimization.

In Sections 6.1 and 6.2, we will see that the functional form of the models
(5.25) is completely irrelevant for convergence guarantees of gradient descent
and the projected subgradient method. Any algorithm that proceeds accord-
ing to (5.24), with arbitrary convex models fx(·) satisfying the two-sided
accuracy (5.26)&(5.27), enjoys convergence guarantees that parallel those
of gradient descent. Similarly, any algorithm that proceeds according to
(5.24), with arbitrary convex models fx(·) satisfying the one-sided accuracy
(5.27), enjoys convergence guarantees that parallel those of the subgradient
method. The ability to use more interesting models fx will open the door
to a number of new algorithm.

5.4 Lower complexity bounds

This chapter has discussed at great length convergence guarantees of (accel-
erated) gradient descent and of the subgradient method. Tables 5.1 and 5.2
summarize the efficiency estimates of these algorithms.
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Figure 5.3: Left: the black curve depicts the graph of a β-smooth function f ,
the red curve depicts the graph of the function fx(y) = f(x)+〈∇f(x), y−x〉,
the blue curve depicts the graph of the function y 7→ fx(y)+β

2 ‖y−x‖
2. Right:

the black curve depicts the graph of a nonsmooth function f , the red curve
depicts the graph of the function fx(y) = f(x) + 〈v, y − x〉 with v ∈ ∂f(x).

convex, β-smooth α-strongly convex, β-smooth

Gradient descent β‖x0−x∗‖2
ε κ · log(f(x0)−f∗

ε )

Accel. grad. descent

√
β‖x0−x∗‖2

ε

√
κ · log(f(x0)−f∗

ε )

Table 5.1: Number of gradient evaluations to find x satisfying f(x)−f∗ ≤ ε

This section switches gears and instead focuses on lower complexity
bounds, which express limitations on the convergence guarantees that any al-
gorithm can have. In particular, we will see that the convergence guarantees
of accelerated gradient descent are the best possible among any algorithm
for minimizing β-smooth convex functions. Similarly, the convergence guar-
antees of the subgradient method are the best possible among any algorithm
for minimizing L-Lipschitz convex functions.

In order to make such results precise, we specify how an algorithm gath-
ers information about the objective function. Consider an optimization
problem

min
x∈E

f(x), (5.28)

where f : E → R is a finite-valued convex function. We will assume that
an algorithm accesses information about f by querying a first-order oracle,
which on input x ∈ E returns some subgradient v ∈ ∂f(x). In particu-
lar, if f is smooth, then the oracle on input x simply returns the gradient
∇f(x). When f is nonsmooth, the oracle returns an arbitrary subgradi-
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convex, L-Lipschitz α-strongly convex, L-Lipschitz

Subgrad. method L2R2

ε2
L2

αε

Table 5.2: Number of subgradient evaluations to find x satisfying f(x)−f∗ ≤
ε, where an upper bound R ≥ ‖x0 − x∗‖ is assumed to be known.

ent v ∈ ∂f(x). We will prove lower-complexity bounds for a large class of
algorithms, summarized in the following definition.

Definition 5.8 (Linearly-expanding first-order method). An algorithm for
(5.28) is called a linearly-expanding first-order method if it generates an
iterate sequence {xk} satisfying

xt ∈ x0 + span {v0, . . . , vt−1} for t ≥ 1,

where vi ∈ ∂f(xi) is generated by a call to the first-order oracle of f with
input xi.

5.4.1 Lower-complexity bound for nonsmooth convex opti-
mization

We begin by proving a lower-complexity bound for minimizing an L-Lipschitz
continuous convex function on a ball.

Theorem 5.9 (Lower-complexity bound for nonsmooth convex optimiza-
tion). Fix a dimension n ∈ N, an iteration counter t ≤ n, and a real L > 0.
Then there exists a convex function f : Rn → R that is L-Lipschitz contin-
uous on a ball BR(0), for some R > 0, and such that any linear expanding
first-order method initialized at the origin satisfies

min
k=1,...,t−1

f(xk)− min
x∈BR(0)

f(x) ≥ RL

2(1 +
√
t)
.

There also exists an α-strongly convex function f : Rn → R that is Lipschitz
continuous on BR(0), for some R > 0, and such that any linear expanding
first-order method initialized at the origin satisfies

min
k=1,...,t−1

f(xk)− min
x∈BR(0)

f(x) ≥ L2

8αt
.

Proof. Fix two constants γ, α > 0, which will be specified shortly. We will
consider the outcome of applying any linearly expanding first-order method



5.4. LOWER COMPLEXITY BOUNDS 141

to the α-strongly convex function:

f(x) = γ max
i=1,...,t

xi +
α

2
‖x‖2.

Observe the expression for the subdifferential (Exercise 3.41)

∂f(x) = γ · conv{ei : i ∈ I(x)}+ αx,

where I(x) consists of all indices i = 1, . . . , t satisfying xi = maxj=1,...,t xj .
Taking into account that the function x 7→ maxi=1,...,t xi is 1-Lipschtiz con-
tinuous, while the quadratic 1

2‖x‖
2 is R-Lipschitz on the ball BR(0), we

deduce that f is Lipschitz continuous on BR(0) with constant γ + αR.

Next we describe a first-order oracle for f . When asked for a subgradient
at x, the oracle returns γei + αx, where i is the smallest coordinate in the
set of active indices I(x). In particular, if the algorithm is initialized at
x0 = 0, then the oracle returns e1. Therefore the next iterate x1 lies on
the line generated by e1. A simple induction shows that the iterate xk lies
in the linear span of e1, . . . , ek for all k = 1, . . . , t. In particular, the t’th
coordinate of xt−1 is zero and therefore f(xt−1) ≥ 0. Finally, let’s compute
the minimal value of f . We claim that the minimizer of f is the point x∗

defined by setting x∗i = −γ
αt for 1 ≤ i ≤ t and x∗i = 0 for t + 1 ≤ i ≤ n.

To see this, simply observe 0 = γ
∑t

i=1
1
t ei + αx∗ ∈ ∂f(x∗). Therefore, the

minimal value of f is

f∗ = f(x∗) = −γ
2

αt
+
α

2

γ2

α2t
= − γ2

2αt
.

Thus we conclude

f(xi)− f∗ ≥
γ2

2αt
, for all i = 1, . . . , t− 1.

Setting γ = L
2 and R = L

2α proves the lower bound for α-strongly convex

functions. Taking α = L
R

1
1+
√
t

and γ = L
√
t

1+
√
t

completes the the proof of

the lower-bound for non-strongly convex functions. In both cases, a short
computation (do it!) verifies that x∗ indeed lies in BR(0).

In light of Theorem 5.9, we see that the projected subgradient method
has the best possible efficiency estimate when minimizing Lipschitz (strongly)
convex functions on a Euclidean ball. It is worthwhile to note that Theo-
rem 5.9 stipulates that the dimension n of the ambient space is larger than
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the number of iterations t. This is not an artifact of the proof. In the set-
ting n� t, there exist much faster first-order methods than the subgradient
algorithm, indeed ones that converge at a linear rate that depends on n.
The reader may consult for example the recent survey [11] or the classical
text [26].

5.4.2 Lower-complexity bound for smooth convex optimiza-
tion

We now prove a lower complexity bound for minimizing β-smooth convex
functions.

Theorem 5.10 (Lower-complexity bound for smooth convex optimization).
Fix a dimension n ∈ N, an iteration counter 1 ≤ t ≤ (n − 1)/2, and a real
β > 0. Then there exists a convex β-smooth function f : Rn → R so that
the iterates generated by any linearly-expanding first-order method started at
x0 satisfy

f(xt)−min f ≥ 3β‖x0 − x∗‖2

32(t+ 1)2
, (5.29)

where x∗ is any minimizer of f .

Without loss of generality, assume x0 = 0. The argument proceeds by
constructing a uniformly worst function for all linearly-expanding first-order
methods. The construction will guarantee that in the k’th iteration of such
a method, the iterate xt will lie in the subspace Rt×{0}n−t. This will cause
the function value at the iterates to be far from the optimal value.

Here is the precise construction. Fix a constant β > 0 and define the
following family of quadratic functions

ft(z1, z2, . . . , zn) = β
4

(
1
2(z2

1 +
t−1∑
i=1

(zi − zi+1)2 + z2
t )− z1

)
indexed by t = 1, . . . , n. It is easy to check that ft is convex and β-smooth.
Indeed, a quick computation shows

〈∇2ft(x)v, v〉 = β
4

(
(v2

1 +
t−1∑
i=1

(vi − vi+1)2 + v2
t )
)

and therefore

0 ≤ 〈∇2ft(x)v, v〉 ≤ β
4

(
(v2

1 +
t−1∑
i=1

2(v2
i + v2

i+1) + v2
t )
)
≤ β‖v‖2.
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The following exercise establishes a few basic properties of the function
ft that we will need.

Exercise 5.11. Establish the following properties of ft.

1. Define the point x̄t ∈ Rn whose i’th coordinate is given by{
1− i

t+1 , if i = 1, . . . , t

0 if i = t+ 1, . . . , n

Using first-order conditions for optimality, show that x̄t is a minimizer

of ft with optimal value f∗t = β
8

(
−1 + 1

t+1

)
.

2. Taking into account the standard inequalities,

t∑
i=1

i =
t(t+ 1)

2
and

t∑
i=1

i2 ≤ (t+ 1)3

3
,

show the estimate ‖x̄t‖2 ≤ 1
3(t+ 1).

3. Fix indices 1 < i < j < n and a point x ∈ Ri × {0}n−i. Show
that equality fi(x) = fj(x) holds and that the gradient ∇ft(x) lies in
Ri+1 × {0}n−(i+1).

Proof of Theorem 5.10. Proving Theorem 5.10 is now straightforward. Fix
t and apply the linearly-expanding first order method to f := f2t+1 starting
at x0 = 0. Let x∗ be the minimizer of f and f∗ the minimum of f . By
Exercise 5.11 (part 3), the iterate xt lies in Rt × {0}n−t. Therefore by the
same exercise, we have f(xt) = ft(xt) ≥ min ft. Taking into account parts
1 and 2 of Exercise 5.11, we deduce

f(xt)− f∗

‖x0 − x∗‖2
≥

β
8

(
−1 + 1

t+1

)
− β

8

(
−1 + 1

2t+2

)
1
3(2t+ 2)

=
3β

32(t+ 1)2
.

This proves the result.

The lower-complexity bounds in Theorem 5.10 do not depend on the
strong convexity constant. When the target function class consists of β-
smooth and α-strongly convex functions, the analogous complexity bound
becomes

f(xt)− f∗ ≥
(√

κ− 1√
κ+ 1

)2t

‖x0 − x∗‖2. (5.30)
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where x∗ is any minimizer of f . The proof is similar to that of Theorem 5.10,
where one modifies the definition of ft by adding a multiple of the quadratic
‖ · ‖2.

In conclusion, we see that the accelerated gradient method achieves the
best possible efficiency estimate for minimizing β-smooth convex functions.
Similarly, the restarted accelerated gradient method achieves the best possi-
ble efficiency estimate for minimizing α-strongly convex and β-smooth func-
tions.

References: The earliest convergence guarantees for gradient descent and
the subgradient method can be found for example in Nemirovsky-Yudin [26]
and Shor [35]. The accelerated gradient method and its restarted variant
were developed by Nesterov in [28]. The proof of Theorem 5.7 appears
in [18], though an analogous guarantee that is suboptimal by a log factor
appears in [26]. The complexity viewpoint for first-order methods, which
we follows here, originates in the monograph of Nemirovsky-Yudin [26].
The treatment of lower-complexity bounds in Section 5.4 follows the simpli-
fied treatment in Nesterov [27]. Contemporary texts focusing on first-order
methods include Beck [6], Bertsekas [7], Bubeck [11], and Nesterov [27].

5.5 Additional exercises

Exercise 5.12 (Ridge Regression). In this exercise, you will consider the
ridge regression problem:

min
x∈Rn

1

2
‖Ax− y‖22 +

λ

2
‖x‖22,

which aims to recover a point xopt from (noisy) linear measurements y. For
n = 100, m = 80, and λ = 1, generate data as follows:

• the underlying signal is drawn xopt ∼ N(0, I),

• the measurement matrix A ∈ Rm×n is drawn with independent stan-
dard Gaussian rows Ai ∼ N(0, I),

• the observed data y ∈ Rm is

y = Axopt + ε, εi ∼ N(0, 0.25) i.i.d.

Note that the objective function is β−smooth with β = ‖A∗A‖op + λ, and
α−strongly convex with α = λ. In your experiments, you may set β =
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4(m + n) + λ.1 Write code that generates the problem data as above and
implement the following algorithms:

1. Gradient descent,

2. Accelerated gradient descent.

For each algorithm, plot the the function value over the first 50 iterations
on a semilog plot.

Exercise 5.13 (Huber regression). Consider the huber-ized version of ridge
regression:

min
x∈Rn

m∑
i=1

hη(yi − aTi x) +
λ

2
‖x‖22

where aTi are the rows of A, and hη is the huber function with parameter η:

hη(w) =

{
1
2w

2, if |w| ≤ η
η(|w| − η/2), otherwise.

The huber function penalizes large deviations less than the quadratic cost
function, and is therefore often used when outliers are present in the data.
Note that the objective function in this case is β−smooth with β > mη+ λ
and α−strongly convex with α = λ.

Generate xopt and A as in Exercise 5.12, and generate y = Axopt + ε
where ε contains 5 outliers drawn from N(0, 25) and the rest of its entries
are again independent N(0, 0.25). Implement the same two algorithms as in
Exercise 5.12 on this problem, and plot the function values for the first 100
iterations in a semilog plot.

Exercise 5.14 (Logistic regression). Consider the regularized logistic re-
gression problem:

min
θ∈Rn

m∑
i=1

ln
(
1 + exp(−yiθTxi)

)
+
λ

2
‖θ‖22.

Here yi ∈ {±1} are binary labels for the data points xi ∈ Rn, and we are
trying to find the best vector θ of parameters for the model

P (y = 1|x, θ) =
1

1 + e−θT x
.

1By Gaussian concentration, with high probability we have ‖A‖op .
√
m+

√
n.
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(We are doing this by minimizing the negative log likelihood function plus
a regularization term.)

Implement the same two algorithms as before, with n = 50 and m = 100
and λ = 1. Generate data as follows:

1. θopt = (1, . . . , 1)T ;

2. X ∈ Rm×n has i.i.d. standard normal entries, with rows xTi ;

3. z = Xθopt and the true vector of probabilities is p = 1/(1 + exp(−z)),
where the operations are applied entrywise to the vector z;

4. y ∈ {±1}m has independent Bernoulli entries with P (yi = 1) = pi.

5. θ0 has i.i.d. standard normal entries.

Implement the same two algorithms as in Exercise 5.12 on this problem, and
plot the function values for the first 100 iterations in a semilog plot. You
may take the smoothness parameter of the objective function to be β = 100
and the strong convexity parameter to be α = 1.

Exercise 5.15 (Polyak stepsize). Consider a differentiable convex function
f : E→ R and let x∗ be any of its minimizers. Consider the gradient descent
iterates

xk+1 = xk − γk∇f(xk),

for some sequence γk ≥ 0.

1. By writing the term ‖xk+1 − x∗‖2 = ‖(xk+1 − xk) + (xk − x∗)‖2 and
expanding the square, deduce the estimate

1

2
‖xk+1 − x∗‖2 ≤

1

2
‖xk − x∗‖2 − γk(f(xk)− f(x∗)) +

γ2
k

2
‖∇f(xk)‖2.

(5.31)

2. Supposing that you know the minimal value f∗ of f , show that the
sequence γk = f(xk)−f∗

‖∇f(xk)‖2 minimizes the right-hand-side of (5.31) in γ,

thereby yielding the guarantee

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 −
(
f(xk)− f∗

‖∇f(xk)‖

)2

.
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3. Let xk be the sequence generated by the gradient method with γk =
f(xk)−f∗
‖∇f(xk)‖2 . Supposing that f is β-smooth, conclude the estimate

f

(
1

k

k−1∑
i=0

xi

)
− f∗ ≤ 2β‖x0 − x∗‖2

k
.

If f is in addition α-strongly convex, derive the guarantee

‖xk+1 − x∗‖2 ≤
(

1− α

4β

)
‖xk − x∗‖2.
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Chapter 6

Algorithms for additive
composite problems

In the previous chapter, we saw that there is a sharp distinction in the
complexity of smooth and nonsmooth optimization. Namely, the acceler-
ated gradient method finds an ε-approximate minimizer of a β-smooth con-

vex function using on the order of

√
β‖x0−x∗‖2

ε gradient evaluations, while
the subgradient method finds an ε-approximate minimizer of an L-Lipschitz

convex function using on the order of
(
LR
ε

)2
gradient evaluations, where

R ≥ ‖x0 − x∗‖ is assumed to be known. Both efficiency estimates are
the best possible for the two problem classes. That being said, the lower-
complexity bounds we derived make the fundamental assumption that the
only access to the objective functions is through a first-order oracle. Typical
nonsmooth problems that arise in practice, however, are highly structured
and one can hope to use this structure to develop faster algorithms. In this
section, we focus on one well-structured class of problems, for which this is
indeed possible.

Throughout the section, we consider the optimization problem in additive
composite form:

min
x

ϕ(x) = f(x) + r(x), (6.1)

where f : E → R is a “complicated” function and r : E → R is “simple”.
The meaning of the words “complicated” and “simple” will become clear
shortly. The two functions f and r will play different roles algorithmically.
The reader should think of f as a difficult function, which needs to be
replaced by a simpler model within numerical schemes. In contrast, r is
already simple, such as an `p-norm. Let us look at the two most important

149
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examples of this problem class.

Example 6.1 (Smooth plus simple). Consider the setting where

1. f is convex and β-smooth, and

2. r is closed and convex, but possibly nonsmooth.

Let us assume moreover that r is simple in the sense that its proximal map
is efficiently computable. Then a natural algorithm, which we will motivate
shortly, is the proximal gradient method:

xt+1 = proxr/β

(
xt − 1

β∇f(x)
)
.

Thus, the method accesses f by computing its gradient, while accessing r
through its proximal map. We will show that even though the sum ϕ = f+r
is nonsmooth, the proximal gradient method converges at a similar rate as
gradient descent for smooth minimization. Moreover, the proximal gradient
method can be accelerated by using inertia.

Example 6.2 (Lipschitz plus simple). Suppose next that

1. f is convex and L-Lipschitz, and

2. r is closed and convex, but has a huge Lipschitz constant (maybe infinite).

Let us assume again that the proximal map of r is efficiently computable.
Then the proximal subgradient method, which we will motivate shortly, in
each iteration t chooses a subgradient vt ∈ ∂f(xt) and declares

xt+1 = proxηtr (xt − ηtvt) ,

where ηt > 0 is a user-specified control sequence. We will show that even
though the sum ϕ = f + r might not be globally Lipschitz, the proximal
subgradient method converges at a similar rate as the basic subgradient
method for minimizing Lipschitz convex functions.

Moreover, even when r is Lipschitz, the proximal subgradient method
may have advantages oven the vanilla subgradient method. For example,
when r = ‖ · ‖1 is the `1-norm on Rn, the application of the proximal map
proxηt‖·‖1 tends to generate iterates xt that are sparse and are therefore easier
to store and manipulate. The iterates generated by the basic subgradient
method, in contrast, are not sparse.
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Both the proximal gradient and the proximal subgradient methods are
examples of a more general class of algorithms. Namely, in this section we
analyze procedures that simply iterate the steps

xt+1 = argmin
x

fxt(x) + r(x) +
1

2ηt
‖x− xt‖2,

where ηt > 0 is a user specified control sequence and fxt(·) is some “model”
of the function f . We will place relevant assumptions on fxt shortly. Not
surprisingly, the convergence guarantees of Algorithm 5 will strongly depend
on how accurately the models fx(·) approximate f .

Algorithm 5: Model Based Algorithm

Input: Starting point x0 ∈ E, parameters ηt > 0, iteration T ∈ N.
Step t = 0, 1, . . . , T − 1:

Set xt+1 = argmin
x

fxt(x) + r(x) +
1

2ηt
‖x− xt‖2.

6.1 Proximal methods based on two-sided models

In this section, we analyze Algorithm 5, when we have two-sided control
on the error f(y) − fx(y). Formally, we impose the following assumption
throughout the section.

Assumption 6.3 (Two-sided model). Let fx : E→ R be a family of func-
tions indexed by points x ∈ dom r. Assume that there exist real α1, α2 ≥ 0
and β > 0 satisfying the following properties.

(A1) (Two-sided accuracy) The estimate holds:

α1

2
‖y − x‖2 ≤ f(y)− fx(y) ≤ β

2
‖y − x‖2 ∀x, y ∈ E.

(A2) (Convexity) The functions fx(·) + r(·) are α2-strongly convex for all
x ∈ E.

In a nutshell, under assumption (6.3), the convergence guarantees of
Algorithm 5 directly parallel those of gradient descent. Before delving into
the convergence analysis, let us look at three important instantiations of
Algorithm 5 with two-sided models.
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Example 6.4 (Proximal gradient method). The first and most important
example occurs when f : E → R is β-smooth and r : E → R is closed and
and convex. In this case, we may simply use the affine models

fx(y) = f(x) + 〈∇f(x), y − x〉.

Algorithm 5, equipped with these models is called the proximal gradient
method. In particular, setting ηt = 1

β the proximal gradient method iterates:

xt+1 = argmin
x

f(xt) + 〈∇f(xt), x− xt〉+ r(x) +
β

2
‖x− xt‖2. (6.2)

Equivalently, by completely the square, we may write

xt+1 = argmin
x

r(x) +
β

2

∥∥∥x− (xt − 1
β∇f(xt))

∥∥∥2

= proxr/β

(
xt − 1

β∇f(xt)
)
.

When f is α-strongly convex, we may set α1 = α. Similarly if r is α-strongly
convex, we may set α2 = α. Notice that in order to apply the proximal gra-
dient method, the proximal map proxr/β(x) must be computable. In par-
ticular, when r is identically zero, the method reduces to gradient descent.
More generally, if r is the indicator function of a closed convex set Q, the
method reduces to the projected gradient algorithm.

Example 6.5 (Partial-linearization). As the second example, suppose that
f can be written as a pointwise maximum

f(x) = max{f1(x), f2(x), . . . , fk(x)},

for some β-smooth functions fi : E → R. Then we may choose the poly-
hderal models

fx(y) = max
i=1,...,k

{fi(x) + 〈∇fi(x), y − x〉}.

Each iteration of Algorithm 5 with ηt = 1
β then amounts to solving

xt+1 = argmin
x

max{fi(xt)+ 〈∇fi(xt), x−xt〉}+r(x)+
1

2β
‖x−xt‖2. (6.3)

If r is a polyhedral function, then one can rewrite the subproblem (6.3) as
minimizing a simple quadratic function over a polyhedron (why?), for which
specialized algorithms are available. If each function fi is α-strongly convex,
then we may set α1 = α. Similarly if r is α-strongly convex, we may set
α2 = α.
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Example 6.6 (Proximal point method). The most accurate model of a
function is itself fx = f for all x ∈ E. With this choice of the models, we
may set β > 0 arbitrarily. Algorithm 5 is then called the proximal point
method and it simply iterates:

xt+1 = argmin
x

ϕ(x) +
β

2
‖x− xt‖2. (6.4)

Equivalently, the reader should recognize the right side as the evaluation of
the proximal map

xt+1 = proxϕ/β(xt),

Invoking Theorem 3.64, yet another equivalent description of the method
emerges as gradient descent on the Moreau envelope

xt+1 = xt −
1

β
∇ϕ1/β(xt).

The proximal point method is a conceptual algorithm since each subprob-
lem (6.4) typically does not admit a solution in closed form. Instead, the
implementation of the method requires invoking an auxiliary optimization
algorithm, albeit on the strongly convex function ϕ + β

2 ‖ · −xt‖
2. Instead,

one should think of the proximal point method as a conceptual algorithm,
guiding the design and analysis of other algorithms that try to amulate it.
For example, one can think of Algorithm 5, with any models fx satisfying
Assumption 6.3, as an “approximate proximal point method”. This view-
point will be useful for us shortly.

Our main tool for analyzing Algorithm 5 will be the observation that each
iterate xt+1 is by definition the minimizer of the strongly convex function
h(x) := fxt(x) + r(x) + 1

2ηt
‖x− xt‖2. Exercise 3.58 therefore guarantees the

estimate:
h(x) ≥ h(xt+1) +

α

2
‖xt+1 − x‖2 ∀x ∈ E, (6.5)

where α is the strong convexity constant of h. The convergence analysis of
Algorithm 5 will be based entirely on this observation.

6.1.1 Sublinear rate

We are now ready to establish a sublinear rate of convergence for Algo-
rithm 5, which directly parallels Theorem 5.2 for gradient descent. Looking
ahead, it will also be useful to introduce the gap function

∆f (x, y) = f(y)− fx(y).
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Observe that ∆f is always nonnegative. We will see that not only does the
residual f(xt)−f∗ tend to zero at a controlled rate, but so does the average
gap 1

t

∑t−1
i=0 ∆f (xt, x

∗). The consequences of convergence in the average gap
will be discussed in Section 7.1.

Theorem 6.7. The iterates generated by Algorithm 5 with ηt = 1
β satisfy

ϕ(xt)− ϕ(x) +
1

t

t−1∑
i=0

∆f (xi, x) ≤ β‖x0 − x‖2

2t
∀x ∈ E.

Proof. Since xt+1 is the minimizer of the β-strongly convex function fxt +
r + β

2 ‖ · −xt‖
2, we deduce

ϕ(xt+1) ≤ fxt(xt+1) + r(xt+1) +
β

2
‖xt+1 − xt‖2 (6.6)

≤ fxt(x) + r(x) +
β

2
‖x− xt‖2 −

β

2
‖x− xt+1‖2 (6.7)

= ϕ(x)−∆f (xt, x) +
β

2

(
‖xt − x‖2 − ‖xt+1 − x‖2

)
, (6.8)

where (6.6) and (6.8) follow from (A1). Subtracting ϕ(x)−∆f (xt, x) from
both sides, summing for i = 0, . . . , t − 1, and dividing by t completes the
proof.

6.1.2 Linear rate

We next turn to proving a linear rate of convergence for Algorithm 5 that
depends on the constants α1, α2 ≥ 0. To this end, the view of Algorithm 5 as
an approximate proximal point method will be particularly fruitful. Namely,
fix a constant η > 0 and define the map Gη : E→ E by

Gη(x) = η−1(x− x+),

where x+ denotes the update

x+ = argmin
y

fx(y) + r(y) +
1

2η
‖y − x‖2.

The map Gη is called the proximal gradient because in the setting fx =
f , it coincides with the gradient of the Moreau envelope (Theorem 3.64).
Continuing with the analogy, it seems plausible that Gη should act as an
“approximate gradient” for f itself. This is the content of the following
theorem.
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Theorem 6.8. Fix a point x ∈ E and set

x+ = argmin
y

fx(y) + r(y) +
β

2
‖y − x‖2.

Then the estimate

ϕ(y) ≥ ϕ(x+) + 〈G1/β(x), y − x〉+
1

2β
‖G1/β(x)‖2

+
α1

2
‖y − x‖2 +

α2

2
‖y − x+‖2,

(6.9)

holds for all x, y ∈ E.

In particular, in the setting α1 = α2 = 0, we may rewrite the estimate
(6.9) as

ϕ(y) ≥ ϕ(x+) + 〈G1/β(x), y − x〉+
1

2β
‖G1/β(x)‖2

= ϕ(x+) + 〈G1/β(x), y − x+〉 − 1

2β
‖G1/β(x)‖2

for all y ∈ E. That is, ϕ is lower bounded by the affine function ϕ(x+) +
〈G1/β(x), · −x+〉 up to a constant offset 1

2β‖G1/β(x)‖2. See Figure 6.1 for an
illustration.

x+

ϕ(x+) + 〈G1/β(x), y − x+〉

1
2β
‖G1/β(x)‖2

ϕ

Figure 6.1: Depiction of Theorem 6.8
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Proof. Since x+ is the minimizer of the (β + α2)-strongly convex function
fx + r + β

2 ‖y − x‖
2, we deduce

fx(y) + r(y) +
β

2
‖y − x‖2 ≥ fx(x+) + r(x+) +

β

2
‖x+ − x‖2

+
α2 + β

2
‖y − x+‖2.

(6.10)

Property (A1) in turn yields the two estimates

fx(y) + r(y) ≤ ϕ(y)− α1

2
‖y − x‖2,

fx(x+) + r(x+) ≥ ϕ(x+)− β

2
‖x+ − x‖2,

(6.11)

while algebraic manipulations yield the expression

‖x+ − x‖2 − ‖y − x‖2 + ‖y − x+‖2 = 2〈y − x+, x− x+〉
= 2〈y − x, x− x+〉+ 2‖x− x+‖2.

(6.12)

Combining (6.10),(6.11), and (6.12) completes the proof.

There are a few useful consequences of Theorem 6.8 worth highlighting,
which are summarized in the following corollary.

Corollary 6.9. Fix a point x ∈ E, define η = 1
β , and set

x+ = argmin
y

fx(y) + r(y) +
1

2η
‖y − x‖2.

Then the estimates hold:

ϕ(x) ≥ ϕ(x+) +
η

2
‖Gη(x)‖2, (6.13)

〈Gη(x), x− x∗〉 ≥ η

2
‖Gη(x)‖2 +

α1

2
‖x− x∗‖2 +

α2

2
‖x+ − x∗‖2, (6.14)

‖Gη(x)‖ ≥ α1

2
‖x− x∗‖. (6.15)

Proof. Setting y = x in (6.9) immediately yields (6.13). Next, set y = x∗

in (6.9). The inequality (6.14) then follows immediately after using the lower
bound ϕ(x+) ≥ ϕ(x∗). Dividing the inequality (6.14) by ‖x−x∗‖ and using
the upper bound 〈Gη(x), x− x∗〉 ≤ ‖Gη(x)‖ · ‖x− x∗‖ yields (6.15).
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Having proved Corollary 6.9, we can now quickly establish the linear rate
of convergence for Algorithm 5 that is analogous to Theorem 5.3.

Theorem 6.10. Suppose that Assumption 6.3 holds. Then the iterates gen-
erated by Algorithm 5 with ηt = 1

β satisfy

ϕ(xt+1)− ϕ∗ ≤
(

1− α1

4β

)
(ϕ(xt)− ϕ∗), (6.16)

‖xt+1 − x∗‖2 ≤
(
β − α1

β + α2

)
‖xt − x∗‖2. (6.17)

Proof. To simplify notation, set η = 1
β . We estimate

‖xt+1 − x∗‖2 = ‖xt − x∗ − ηGη(xt)‖2

= ‖xt − x∗‖2 − 2η〈Gη(xt), xt − x∗〉+ η2‖Gη(xt)‖2

≤ ‖xt − x∗‖2 − α1η‖xt − x∗‖2 − α2η‖xt+1 − x∗‖2,

where the last inequality follows from (6.14). Rearranging yields (6.17).
Next, setting y = x∗ in (6.9) and using (6.15), we deduce

ϕ(xt+1)− ϕ(x∗) ≤ 〈Gη(xt), xt − x∗〉 −
η

2
‖Gη(xt)‖2

≤ ‖Gη(xt)‖2
(
‖xt − x∗‖
‖Gη(xt)‖

− η

2

)
≤ ‖Gη(xt)‖2

(
2

α1
− η

2

)
.

Combining this estimate with (6.13), we compute

ϕ(xt+1)− ϕ(xt) ≤ −
η

2
‖Gη(xt)‖2 ≤

1

1− 4β
α1

· (ϕ(xt+1)− ϕ(x∗)).

Adding and subtracting ϕ∗ from the left-side and rearranging yields (6.16),
thereby completing the proof.

6.1.3 Accelerated algorithm

In this section, we analyze an accelerated variant of Algorithm 5 that is
in exactly the same spirit as the accelerated gradient method for smooth
minimzation. Algorithm 6 summarizes the resulting procedure.

Exercise 6.11. b Suppose a0 = 1 and at is given by (6.20) for each index
t ≥ 1.
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Algorithm 6: Accelerated proximal method

Input: Starting point x0 ∈ E.
Set t = 0 and a0 = a−1 = 1;
for t = 0, . . . , T do

Set

ut = xt + at(a
−1
t−1 − 1)(xt − xt−1) (6.18)

xt+1 = argmin
x

fut(x) + r(x) +
β

2
‖x− ut‖2 (6.19)

Set

at+1 =

√
a4
t + 4a2

t − a2
t

2
(6.20)

t← t+ 1.
end

1. Show that the relation holds:

1− at+1

a2
t+1

=
1

a2
t

∀t ≥ 0. (6.21)

2. Using induction, establish
∑t

i=0
1
ai

= 1
a2
t

and at ≤ 2
t+2 , for each t ≥ 0.

[Hint: In order to prove
∑t

i=0
1
ai

= 1
a2
t
, rewrite (6.21) as 1

a2
t+1
− 1

a2
t

= 1
at+1

and sum up the equation.]

The following theorem establishes the convergence rate of Algorithm 6.
In particular, Theorem 5.4 whose proof was omitted earlier, is a direct con-
sequence. The main idea of the argument is based on the following algebraic
trick. Recall that the proof of Theorem 6.7 for the unaccelerated algorithm
was based on comparing the value of the function fxt + r at xt+1 with the
value at x∗ based on strong convexity of the function fxt+r+ β

2 ‖·−xt‖
2. We

now use the the interpolated comparison point atx
∗ + (1− at)xt instead of

x∗. The flexibility in choosing at ∈ (0, 1) is a key ingredient that facilitates
an accelerated rate of convergence.

Theorem 6.12. The iterates generated by Algorithm 6 satisfy

ϕ(xt+1)− ϕ(x) + a2
t ·

t∑
i=0

∆f (xi, x)

ai
≤ a2

tβ‖x0 − x‖2

2
∀x ∈ E,
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and therefore the estimate holds:

ϕ(xt+1)− ϕ∗ ≤ 2β‖x0 − x∗‖2

(t+ 2)2
,

Proof. Let xt be the iterates generated by Algorithm 6 and define the func-
tion mt(x) := fut(x) + r(x) for each index t. Since xt+1 is the minimizer of
the β-strongly convex function mt + β

2 ‖ · −ut‖
2, we successively estimate

ϕ(xt+1) ≤ mt(xt+1) +
β

2
‖xt+1 − ut‖2 (6.22)

≤ mt(atx+ (1− at)xt)

+
β

2

(
‖atx+ (1− at)xt − ut‖2 − ‖atx+ (1− at)xt − xt+1‖2

)
(6.23)

≤ atmt(x) + (1− at)mt(xt)

+
βa2

t

2

(
‖x− [xt − a−1

t (xt−t)]‖2 − ‖x− [xt − a−1
t (xt − xt+1)]‖2

)
(6.24)

≤ atϕ(x) + (1− at)ϕ(xt)− at∆f (ut, x)

+
βa2

t

2

(
‖x− [xt − a−1

t (xt − ut)]‖2 − ‖x− [xt − a−1
t (xt − xt+1)]‖2

)
,

(6.25)

where (6.22) and (6.25) follow from Assumption (A1) and (6.24) uses con-
vexity of mt. Subtracting ϕ(x) from both sides and dividing by a2

t then
yields

1

a2
t

(ϕ(xt+1)− ϕ(x)) ≤ 1− at
a2
t

(ϕ(xt)− ϕ(x))−
∆f (ut, x)

at

+
β

2

(
‖x− [xt − a−1

t (xt − ut)]‖2

− ‖x− [xt − a−1
t (xt − xt+1)]‖2

)
.

(6.26)

The update rule (6.18) is precisely designed to force telescoping in the last
two lines of (6.26). To see this, define an auxiliary sequence zt = xt −
a−1
t (xt − ut). Observe that zt+1 then satisfies

zt+1 = xt+1 − a−1
t+1(xt+1 − ut+1) = xt+1 + (a−1

t − 1)(xt+1 − xt)
= xt − a−1

t (xt − xt+1).
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Thus the inequality (6.26) becomes

1

a2
t

(ϕ(xt+1)− ϕ(x)) +
β

2
‖x− zt+1‖2 ≤

1− at
a2
t

(ϕ(xt)− ϕ(x)) +
β

2
‖x− zt‖2

−
∆f (ut, x)

at

=
1

a2
t−1

(ϕ(xt)− ϕ(x)) +
β

2
‖x− zt‖2

−
∆f (ut, x)

at

where the last equality follows directly from the definition of at in (6.20).
Iterating the recurrence yields

1

a2
t

(ϕ(xt+1)− ϕ(x)) ≤ 1− a0

a0
(ϕ(x0)− ϕ(x)) +

β

2
‖x− z0‖2 −

t∑
i=0

∆f (ui, x)

ai
.

Taking into account a0 − 1 = 0, z0 = x0 − a−1
0 (x0 − u0) = u0, and at ≤ 2

t+2
(Exercise 6.11) completes the proof.

Recall that one approach to making the accelerated gradient method
linearly convergent under a strong convexity assumption was to periodically
restart the algorithm. The resulting procedure was summarized in Algo-
rithm 3 with its convergence guarantees developed in Theorem 5.5. Exactly
the same strategy boosts the sublinear rate of Algorithm 6 to an acceler-
ated linear rate, whenever ϕ is strongly convex. We leave the details for the
reader.

6.2 Proximal methods based on lower models

In this section, we consider the additive composite problem class (6.1) but
weaken the Assumption 6.3. Namely, we only assume the one-sided bound
fx ≤ f .

Assumption 6.13 (One-sided model). Assume that there exist real µ ≥ 0
and L ≥ 0 such that the following properties hold:

(B1) (One-sided accuracy) The estimate holds:

fx(x) = f(x) and fx(y) ≤ f(y) ∀x, y ∈ dom r.
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(B2) (Model convexity) The functions fx(·) + r(·) are α-strongly convex for
all x ∈ dom r.

(B3) (Lipschitz property) The function fx(·) is L-Lipschitz continuous on
dom r for every x ∈ dom r.

Throughout the section, we suppose that Assumption 6.13 holds. Be-
fore establishing convergence guarantees of Algorithm 5, let us look at two
examples.

Example 6.14 (Proximal subgradient method). As the first example, sup-
pose that r is closed and convex, and f is convex and L-Lipschitz continuous
on a neighborhood of dom r. The proximal subgradient method then simply
uses the affine models

fx(y) = f(x) + 〈vx, y − x〉,

for some vectors v ∈ ∂f(x). Each step of the algorithm then takes the form

xt+1 = proxηtr (xt − ηtvt) ,

for some vectors vt ∈ ∂f(xt). If r is strongly convex, we may set α to be its
strong convexity constant.

Example 6.15 (Clipped subgradient method). Suppose again that we are
in the setting of Example 6.14, but we also have available a lower-bound `∗

on the optimal value f∗. Then we can use the tighter models

fx(y) = max{f(x) + 〈v, y − x〉, `},

for some v ∈ ∂f(x). The update of Algorithm 5 then takes the form

xt+1 = argmin
x

max{f(xt) + 〈vt, x− xt〉, `}+ r(x) +
1

2ηt
‖x− xt‖2.

In particular, in the case r = 0 a quick computation (do it!) yields the
explicit update

xt+1 = xt −min
{
f(xt)−`
‖vt‖2 , ηt

}
· vt.

Not surprisingly, we will see that Algorithm 5 exhibits similar conver-
gence guarantees as the basic subgradient method for minimizing Lipschitz
convex functions. Before passing to the convergence analysis, we record the
following simple lemma.
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Lemma 6.16. The function f is L-Lipschitz continuous on dom r.

Proof. Assumption (B1) guarantees f(x)−f(y) ≤ fx(x)−fx(y) ≤ L‖x−y‖,
for all x, y ∈ dom r. Switching the roles of x and y completes the proof.

Recall that the convergence guarantees for the subgradient method fun-
damentally relied on the relation

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 − 2ηt(f(xt)− f∗) + η2
tL

2,

where f is the Lipschitz convex function to be minimized. The following
lemma establishes an analogous guarantee for Algorithm 5, from which con-
vergence guarantees will follow quickly.

Lemma 6.17. For every index t ≥ 0 and x ∈ dom r, the inequality holds:

(1 + ηtα)‖xt+1 − x‖2 ≤ ‖xt − x‖2 − 2ηt(ϕ(xt+1)− ϕ(x)) + 2η2
tL

2. (6.27)

Proof. Taking into account that xt+1 is the minimizer of the (α + η−1
t )-

strongly convex function fxt + r + 1
2η‖ · −xt‖

2, we deduce

α+ η−1
t

2
‖x− xt+1‖2 +

1

2ηt
‖xt+1 − xt‖2 −

1

2η
‖x− xt‖2

≤ r(x) + fxt(x)− r(xt+1)− fxt(xt+1)

≤ r(x) + fxt(x)− r(xt+1)− fxt(xt) + L‖xt+1 − xt‖ (6.28)

≤ r(x) + f(x)− r(xt+1)− f(xt) + L‖xt+1 − xt‖ (6.29)

≤ r(x) + f(x)− r(xt+1)− f(xt+1) + 2L‖xt+1 − xt‖ (6.30)

where (6.28) follows from Assumption (B3), inequality (6.29) follows from
(B1), and (6.30) follows from Lemma 6.16.

Define δt := ‖xt+1 − xt‖. Rearranging (6.30) and multiplying through
by 2ηt, we immediately deduce

(1 + ηtα)‖x− xt+1‖2 ≤ ‖x− xt‖2 − 2ηt(ϕ(xt+1)− ϕ(x)) + 4Lδtηt − δ2
t

≤ ‖x− xt‖2 − 2ηt(ϕ(xt+1)− ϕ(x)) + max
δ∈R
{4Lδηt − δ2}

= ‖x− xt‖2 − 2ηt(ϕ(xt+1)− ϕ(x)) + 4L2η2
t .

The proof is complete.

Convergence guarantees of Algorithm 5 now follow quickly, both in the
convex and strongly convex settings.
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Theorem 6.18 (Convergence rate). The iterates generated by Algorithm 5
satisfy

ϕ

(
1∑T
t=0 ηt

T∑
t=0

ηtxt+1

)
− ϕ(x) ≤

1
2‖x0 − x‖2 + L2

∑T
t=0 η

2
t∑T

t=0 ηt
, (6.31)

for any point x ∈ dom r. In particular, if Algorithm 5 uses the constant
parameter ηt = R

L
√

2(T+1)
, for some real R > ‖x0 − x∗‖, the estimate holds:

ϕ

(
1

T+1

T+1∑
t=1

xt

)
− ϕ(x∗) ≤

√
2LR√
T + 1

. (6.32)

Proof. Lemma 6.17 guarantees

2ηt(ϕ(xt+1)− ϕ(x∗)) ≤ ‖xt − x‖2 − ‖xt+1 − x∗‖2 + 2L2η2
t .

The estimate (6.31) then follows by summing across t = 0, . . . , T , divid-
ing through by

∑T
t=0 ηt, and using convexity of ϕ. The estimate (6.32) is

immediate from (6.31).

Theorem 6.19 (Convergence rate under strong convexity). The iterates
generated by Algorithm 5 with ηt = 2

α(t+1) satisfy

ϕ

(
2

(T+2)(T+3)−2

T+1∑
t=1

(t+ 1)xt

)
− ϕ(x) ≤ α‖x0 − x‖2

(T + 2)2
+

8L2

α(T + 2)
.

for any point x ∈ dom r.

Proof. For each index t, define ∆t := 1
2‖x− xt‖

2. Lemma 6.17 yields

ϕ(xt+1)− ϕ(x) ≤ 1

ηt
∆t −

1 + ηtα

ηt
∆t+1 + L2ηt.

Plugging in ηt := 2
α(t+1) , multiplying through by t+2, and summing, we get

T∑
t=0

(t+ 2)(ϕ(xt+1)− ϕ(x)) ≤
T∑
t=0

(
α(t+1)(t+2)

2 ∆t − α(t+2)(t+3)
2 ∆t+1

)
+

T∑
t=0

2L2(t+2)
α(t+1)

≤ α∆0 +
4L2(T + 1)

α
.
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Dividing through by the sum
∑T

t=0(t + 2) = (T+2)(T+3)
2 − 1 and using con-

vexity of ϕ, we conclude

ϕ

(
2

(T+2)(T+3)−2

T∑
t=0

(t+ 2)xt+1

)
− ϕ(x) ≤ α‖x0−x‖2

(T+2)(T+3)−2 + 8L2(T+1)
α((T+2)(T+3)−2)

≤ α‖x0 − x‖2

(T + 2)2
+

8L2

α(T + 2)
,

(6.33)

where (6.33) uses the estimate (T + 2)(T + 3)− 2 ≥ (T + 2)2. The proof is
complete.

References. Most of the material in Section 6.1 is a direct generalization
of the analogous results in Beck and Teboulle [5] and Nesterov [30] for the
(accelerated) proximal gradient method. Namely, the proofs of Theorems 6.7
and 6.12 appear in [5]. The proof of the estimate (6.17) appears in [30]. The
short proof of (6.16) follows the same ideas as put forth by Luo-Tseng [24]
when r is an indicator function of a closed convex set. Section 7.1 follows
the discussion in Tseng [38], though similar techniques appear also Lan-Lu-
Manteiro [19], Lu [23], and Nesterov [29]. The material in Section 6.2 follows
Davis-Drusvyatskiy [13].



Chapter 7

Smoothing and primal-dual
algorithms

In this section, we develop specialized algorithms for problems of the form

min
x

ϕ(x) = h(Ax) + g(x),

where g and h are “simple” convex functions.

7.1 Proximal (accelerated) gradient method solves
the dual

A remarkable feature of the proximal gradient method and its accelerated
variant is that both algorithms not only solve the target problem (6.1) but
also its dual! This section explains this phenomenon. Throughout, we make
the following assumptions.

Assumption 7.1. We assume the following are true for some β,R ≥ 0.

1. (Smooth+simple) Assume that f is convex and β-smooth, while r is
proper, closed, and convex and satisfies sup

x,z∈dom r
‖x− z‖ ≤ R. We set

fx(y) = f(x) + 〈∇f(x), y − x〉 ∀x, y ∈ E.

2. (Dual representation) f admits a “dual description” as

f(x) = max
y∈Y

g(x, y)

165
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for some function g : E×Y → R that is convex in x ∈ E and concave in
y ∈ Y. We suppose moreover that for every x ∈ E, there exists

y ∈ argmax g(x, ·) satisfying ∂xg(x, y) 6= ∅. (7.1)

With this setup, define the dual objective function

ψ(y) = inf
x∈E

{g(x, y) + r(x)}.

The smooth plus simple assumption is by now well familiar to the reader.
In particular, Algorithm 5 becomes the proximal gradient method, while
Algorithm 6 is the accelerated proximal gradient algorithm. To better in-
ternalize the existence of the dual representation, let us look at the most
important example of the Fenchel-Rockafellar duality.

Suppose that we are interested in the optimization problem in the form:

(P ) min
x

ϕ(x) = h(Ax) + g(x),

for some γ-smooth function h : Y → R, a linear map A : E → Y, and
a proper, closed convex function r : E → R. That is, we aim to solve
the additive composite problem (6.1) under the identifications f = h ◦ A
and r = g. A quick computation shows that we may set the smoothness
parameter of f as β = ‖A‖2opγ. We may then express f in the conjugate
form

f(x) = sup
y∈Y

〈Ax, y〉 − h?(y). (7.2)

Observe that the function g(x, y) := 〈Ax, y〉 − h?(y) is indeed convex in x
and concave in y. Moreover, (7.1) holds automatically. Indeed, since h is
γ-smooth, the conjugate h? is strongly convex (Theorem 3.66) and therefore
for every x ∈ E the supremum in (7.2) is attained at a unique point y.
Moreover, differentiating g(x, ·) in y and using Corollary 3.40 yields the
equivalences:

y ∈ argmin g(x, ·) ⇐⇒ Ax ∈ ∂h?(y) ⇐⇒ y = ∇h(Ax).

The reader should verify that the dual objective ψ is then simply the objec-
tive function in the Fenchel-Rockafellar dual problem

(D) max
y

ψ(y) = −h?(y)− g?(−Ay).
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The flexibility of the dual representation in Assumption 7.1 is convenient,
since it is not directly tied to conjugacy. For the rest of the section, we
suppose that Assumption 7.1 holds. We will need the following intuitive
lemma expressing the gradient ∇f(x) in terms of the gradient of g.

Lemma 7.2. Fix two points x ∈ E and y ∈ Y satisfying (7.1). Then g(·, y)
is differentiable at x and equality {∇f(x)} = ∇xg(x, y) holds.

Proof. Fix any subgradient v ∈ ∂xg(x, y). Then for any point z ∈ E, we
compute

f(z) = sup g(z, ·) ≥ g(z, y) ≥ g(x, y) + 〈v, z − x〉 = f(x) + 〈v, z − x〉.

Thus v is a subgradient of f at x. Since f is differentiable at x, we conclude
that ∂xf(x, y) is a singleton, and therefore g(·, y) is differentiable at x by
Exercise 3.54.

We are now ready to show that the proximal gradient method and its
accelerated variant automatically produce iterates that approximately solve
the dual problem supy ψ(y). In a nutshell, if xt are the iterates generates
by the two methods, then the running average of the corresponding dual
points yt approximately solves the dual. In particular, within the Fenchel-
Rockafellar framework, the dual iterates are the simply the running average
of the gradient ∇h(Axt). The main idea of the argument is to relate the gap
function ∆f (x, z) to the dual objective ψ. The following lemma provides the
first indication that the two are closely related.

Lemma 7.3. Fix two point x ∈ E and y ∈ Y satisfying (7.1). Then the
estimate holds:

∆f (x, z) ≥ f(z)− g(z, y) for all z ∈ E.

Proof. Taking into account convexity of g(·, y), we compute

∆f (x, z) = f(z)− f(x)− 〈∇f(x), z − x〉
= f(z)− g(x, y)− 〈∇xg(x, y), z − x〉
≥ f(z)− g(z, y),

(7.3)

as claimed.

The following two main results of the section now follow quickly by
combining the convergence guarantees of the (accelerated) proximal gradient
method (Theorems 6.7 and 6.12) with Lemma 7.3.
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Theorem 7.4 (Dual convergence of prox-gradient). Let {xt} be the it-
erates generated by Algorithm 5 with ηt = 1

β . Define the dual sequence
yt ∈ argmaxy g(xt, y) satisfying ∂xg(xt, yt) 6= ∅ and define the running aver-

age ȳt = 1
t

∑t
i=0 yt. Then the estimate holds:

ϕ(xt)− ψ(ȳt−1) ≤ βR2

2t
.

Proof. Using Theorem 6.7 and the Lemma 7.3 we deduce

β‖x0 − x‖2

2t
≥ ϕ(xt)− ϕ(x) +

1

t

t−1∑
i=0

∆f (xi, x)

≥ ϕ(xt)− ϕ(x) +
1

t

t−1∑
i=0

(f(x)− g(x, yi))

≥ ϕ(xt)− r(x)− g (x, ȳt−1) ,

where the last inequality follows from concavity of g(x, ·). Taking the supre-
mum over x ∈ dom r completes the proof.

Theorem 7.5 (Dual convergence of accelerated prox-gradient). Let {xt}
and {ut} be the iterates generated by Algorithm 6. Define the dual sequence
yt ∈ argmaxy g(ut, y) satisfying ∂xg(ut, yt) 6= ∅ and define the running aver-

age ȳt =
∑t

i=0
a2
t
ai
yt. Then the estimate holds:

ϕ(xt+1)− ψ(ȳt) ≤
2βR2

(t+ 2)2
.
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Proof. Using Theorem 6.12 and Lemma 7.3 we deduce

β‖x0 − x‖2

2
≥ 1

a2
t

(ϕ(xt+1)− ϕ(x)) +
t∑
i=0

∆f (ui, x)

ai

≥ 1

a2
t

(ϕ(xt+1)− ϕ(x)) +
t∑
i=0

f(x)− g(x, yi))

ai

=
1

a2
t

(ϕ(xt+1)− ϕ(x)) +

(
t∑
i=0

1

ai

)
f(x)−

t∑
i=0

g(x, yi)

ai

≥ 1

a2
t

(ϕ(xt+1)− ϕ(x)) +

(
t∑
i=0

1

ai

)
f(x)−

(
t∑
i=0

1

ai

)
· g(x, ȳt)

(7.4)

≥ 1

a2
t

(ϕ(xt+1)− r(x)− g(x, ȳt)) (7.5)

where (7.4) follows from concavity of g(x, ·) and (7.5) follows from Lemma 6.11.
Taking the supremum over x ∈ dom r completes the proof.

7.2 Smoothing technique

In this section, we consider the optimization problem

min
x∈E

ϕ(x) = h(Ax) + g(x),

under the following assumptions:

1. h : Y → R is a L-Lipschitz continuous convex function,

2. g : E → R is a proper, closed, and convex function with a computable
proximal map,

3. A : E→ Y is a linear map.

Notice that the function f(x) = h(Ax) is Lipschitz continuous with
constant L‖A‖op. In particular, the only method we have available for
this problem is the proximal subgradient method, which will find a point x

satisfying ϕ(x)−ϕ∗ ≤ ε after O
(
L2‖A‖2opR2

ε2

)
iterations, where R ≥ ‖x0−x∗‖

is a known upper bound. Each iteration t of the method consists of a single
proximal iteration proxηtg, an evaluation of a subgradient v ∈ ∂h(Ax), and
formation of the vector A∗v ∈ ∂f(xt). In typical applications, the cost of
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computing the proximal map proxηtg and evaluating a subgradient v of h is
negligible compared to the two matrix-vector multiplications Ax and A∗v.
We will now see that if h is sufficiently simple (e.g. with a computable
proximal map), then there are algorithms for the target problem that require
much fewer matrix-vector multiplications.

An appealing strategy, which we now describe, is to simply replace h by
a smooth approximation h̃ and then apply an accelerated proximal gradi-
ent method. There are two important parameters that will determine the
overall efficiency: the error in approximation supx∈dom r h(x)−h̃ and the Lip-

schitz constant of the gradient ∇h̃. One appealing choice for the smoothing
function is the Moreau envelope hν .

Lemma 7.6. The gradient ∇hη is 1
η -Lipschitz continuous and the estimate

holds:

0 ≤ h(x)− hη(x) ≤ ηL2

2
. (7.6)

Proof. The fact that ∇hν is 1
η -Lipschitz continuous was already proved in

Theorem 3.64. Next, observe that since h is L-Lipschitz, the norm of every
vector y ∈ domh? is bounded by L (Exercise 3.52). We therefore deduce

hη(x) =
(
h� 1

2η‖ · ‖
2
)??

(x)

=
(
h? + η

2‖ · ‖
2
)?

(x) (7.7)

= sup
y

{
〈y, x〉 − h?(y)− η

2‖y‖
2
}

≥ sup
y
{〈y, x〉 − h?(y)} − ηL2

2
= h(x)− ηL2

2
,

where (7.7) follows from Table 3.4 (row four). The proof is complete.

In light of Lemma 7.6, we see that the accuracy in approximation h−hη
scales as ∼ η, while the Lipschitz constant of the gradient of ∇hη scales
as ∼ η−1. Using Theorem 6.12, we deduce that the accelerated proximal
gradient method on the smoothed problem

min
x∈E

ϕ̃(x) := hη(Ax) + g(x),

will generate a sequence xt satisfying

ϕ̃(xt+1)− ϕ̃(x∗) ≤
2‖A‖2op‖x0 − x∗‖2

η(t+ 2)2
,
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where x∗ is the minimizer of ϕ. Therefore, we deduce

ϕ(xt+1)− ϕ(x∗) ≤ ϕ̃(xt+1)− ϕ̃(x∗) +
ηL2

2

≤
2‖A‖2op‖x0 − x∗‖2

η(t+ 2)2
+
ηL2

2
.

The first term on the right side is the optimization error, while the second
term is the approximation error. Given a target accuracy ε > 0, we may set
each of the terms to be ε

2 yielding the parameter settings

η =
ε

L2
and t = 1 +

⌈
2L‖A‖op‖x0 − x∗‖

ε

⌉
.

With this parameter choices, the iterate xt+1 generated by the accelerated
proximal subgradient method satisfies ϕ(xt+1)− ϕ(x∗) ≤ ε.

In summary, if we assume that the cost of evaluating the proximal maps
of h and g are negligible compared to the cost of applying the linear map A,

then the efficiency estimate O
(
L‖A‖op‖x0−x∗‖

ε

)
of the outlined smoothing-

based method is much better than the guarantee O
(
L2‖A‖2op‖x0−x∗‖2

ε2

)
for

the proximal subgradient method.
The reader should note that the only properties of the Moreau envelope

hη that were used so far are summarized by Lemma, namely that the ac-
curacy in approximation h − hη and the Lipschitz constant of the gradient
of ∇hη are inversely proportional. Any smooth approximation of h satis-
fying this inverse relationship can be used instead of the Moreau envelope,
yielding efficiency guarantees that still scale as 1/ε.

7.3 Proximal point method

Consider the problem dual pair

(P ) min
x

h(Ax) + g(x)

(D) max
y
− g?(−A∗y)− h?(y).

(7.8)

where g : E → R and h : Y → R are proper, closed, convex functions, and
A : E→ Y is a linear map. We moreover assume that the individual proxi-
mal operators proxtf (x) and proxtg(x) are easily computable. Corollary 4.11
showed that under mild conditions, x is the minimizer of (P ) and y is the
maximizer of (D) if and only if the inclusion holds:
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[
0
0

]
∈
[

0 A∗
−A 0

] [
x
y

]
+ ∂g(x)× ∂h?(y). (7.9)

In this section we design algorithm that explicitly attempt to solve the
system (7.9). The main observation we will use is that the right side of (7.9)
is a maximal monotone operator, as was shown in Exercise 3.76. To this
end, let us abstract away from (7.9) and instead consider the task of solving
the system

0 ∈ T (x) (7.10)

where T : E⇒ E is a maximal-monotone operator. A conceptual algorithm
for this problem is the proximal point method

xt+1 = RT (xt) ∀t ≥ 0.

Notice that the proximal point method is not directly implementable be-
cause the resolvant RT is in general difficult to compute. Nonetheless, the
proximal point method will motivate a number of interesting implementable
algorithm, which can be thought of as approximations of the basic proximal
point method.

Convergence guarantees for the proximal point method follow quickly
from the basic properties of the resolvant established in Theorem 3.78 and
the following elementary exercise.

Theorem 7.7 (Proximal point method). Consider a maximal monotone op-
erator T : E⇒ E and suppose that there exists at least one point x satisfying
0 ∈ T (x). Then the iterates generated by the proximal point method:

xt+1 = RT (t)

converge to some point x∗ satisfying 0 ∈ T (x∗). Moreover, the residuals
satisfy

min
i=0,...,t

‖RT (xi)− xi‖ ≤
√
‖x0 − x∗‖2
t+ 1

.

Proof. As the first step, observe the equivalences

x = RT (x) ⇐⇒ (I + T )(x) = x ⇐⇒ 0 ∈ T (x).

Thus x is a fixed point of the resolvant RT if and only if it satisfies the
desired inclusion 0 ∈ T (x). To simplify notation, set S = RT . Algebraic
manipulations show that the estimate (3.36) can be equivalently written as

‖S(x)− S(y)‖2 + ‖(I − S)x− (I − S)y‖2 ≤ ‖x− y‖2 ∀x, y ∈ E.
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Setting y = xt and x = x∗, we deduce

‖xt+1 − x∗‖2 = ‖S(xt)− S(x∗)‖2 ≤ ‖xt − x∗‖2 − ‖(I − S)xt − (I − S)x∗‖2

= ‖xt − x∗‖2 − ‖S(xt)− xt‖2.

Iterating the recursion and lower bounding the left-side by zero yields

t∑
i=0

‖S(xi)− xi‖2 ≤ ‖x0 − x∗‖2. (7.11)

Dividing by t+ 1, we conclude

min
i=0,...,t

‖S(xi)− xi‖2 ≤
1

t+ 1

t∑
i=0

‖S(xi)− xi‖2 ≤
‖x0 − x∗‖2

t+ 1
, (7.12)

where the first inequality uses that the minimum of finitely many positive
numbers is smaller than their average. Thus (7.7) holds. Next, observe from
(7.11) that the the sequence {‖S(xi) − xi‖2}i≥0 is summable and therefore
tends to zero. Using continuity of S, we deduce that every limit point of
{xt}t≥0 is a fixed point of S. Convergence of the entire sequence {xt}t≥0

follows from Exercise 7.8, whose verification we leave for the reader.

Exercise 7.8 (Fejér monotone). Consider a sequence of points {xt}t≥0 and
a set F ⊂ E such that if the inequality

‖xt+1 − x‖ ≤ ‖xt − x‖,

holds for all x ∈ F and all indices t ≥ 0. Show that if a limit point of the
sequence {xt}≥0 lies in F , then the entire sequence must converge.

Looking back at the proof of Theorem 7.7, it is evident that only two
properties of the resolvant were used. Indeed, an identical result is valid if
T : E ⇒ E is an arbitrary set-valued map and RT is replaced by any map
S : E→ E satisfying the two properties:

(i) the set of fixed points of S coincides with T−1(0),

(ii) S is firmly nonexpansiveness, meaning

‖S(x)− S(y)‖2 ≤ 〈S(x)− S(y), x− y〉 ∀x, y ∈ E.

As observed previously, the proximal point method is a conceptual algo-
rithm because the resolvant RT , in general, can not be evaluated in closed
form, even for the well-structured system (7.9). We now present two algo-
rithms that can be thought of as an implementable modification or approxi-
mation of the proximal point method, specifically tailored to the primal-dual
system (7.9).
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7.3.1 Proximal point method for saddle point problems

Let Φ: : E ×Y → R be a function and let X ⊂ E and Y ⊂ Y be closed
convex sets. Suppose that Φ(·, y) is convex and Φ(x, ·) is concave for all
x ∈ X and y ∈ Y. Consider the saddle point problem

min
x

max
y

Φ(x, y).

Define the primal and dual objective values

ϕ(x) = sup
y

Φ(x, y) and ψ(y) = inf
x

Φ(x, y).

Then a pair (x∗, y∗) is a saddle point of the problem if and only if[
0
0

]
∈
[
∂xΦ(x∗, y∗)
−∂yΦ(x∗, y∗)

]
.

The proximal point method for this inclusion simply iterates

η

[
xt
yt

]
∈
[
xt+1

yt+1

]
+

[
∂xΦ(xt+1, yt+1)
−∂yΦ(xt+1, yt+1)

]
.

Equivalently, (xt+1, yt+1) is the saddle-point of the regularized problem

min
x

max
y

Φ(x, y) +
1

2η
‖x− xt‖2 −

1

2η
‖y − yt‖2.

Theorem 7.9. Suppose that there exists R > 0 such that

‖z1 − z2‖ ≤ R ∀z1, z2 ∈ X × Y.

Let xt and yt be the the iterates produced by the proximal point method and
define the averages x̄t = 1

t

∑t
i=0 xt and ȳt = 1

t

∑t
i=0 yt. Then the estimate

holds:

ϕ(x̄t)− ψ(ȳt) ≤
R2

2(t+ 1)
.

Proof. Since xt+1 is the minimizer of the η−1-strongly convex function Φ(·, yt+1)+
δX + 1

2η‖ · −xt‖
2, we deduce

Φ(xt+1, yt+1) +
1

2η
‖xt+1 − xt‖2 ≤ Φ(x, yt+1) +

1

2η
‖x− xt‖2 −

1

2η
‖xt+1 − x‖2,
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for all x ∈ X . Similarly, since yt+1 is the maximizer of the η−1-strongly
concave function Φ(xt+1, y) + δY − 1

2η‖ · −yt‖
2, we deduce

Φ(xt+1, yt+1)− 1

2η
‖yt+1 − yt‖2 ≥ Φ(xt+1, y)− 1

2η
‖y − yt‖2 +

1

2η
‖yt+1 − y‖2,

for all y ∈ Y. Adding the two estimates yields

Φ(xt+1, y)− Φ(x, yt+1) ≤ 1

2η

(
‖z − zt‖2 − ‖z − zt+1‖2 − ‖zt+1 − zt‖2

)
.

Upper bounding −‖zt+1 − zt‖2 by zero and summing across the iterations,
the right side telescopes and we deduce

t+1∑
i=0

Φ(xi, y)−
t+1∑
i=0

Φ(x, yi+1) ≤ 1

2η

(
‖z − z0‖2 − ‖z − zt+1‖2

)
.

Dividing through by t+ 1 and using that Φ is convex-concave, we conclude

Φ(x̄t+1, y)− Φ(x, ȳt+1) ≤ ‖z − z0‖2

2η(t+ 2)
.

Finally taking the supremum over x and y completes the proof.

7.4 Preconditioned proximal point method

To motivate the first approach, consider solving an inclusion

0 ∈ T (x), (7.13)

for some maximal monotone operator T : R⇒ E, whose resolvant RT may
be difficult to compute. Let D : E→ E be a positive definite linear operator.
Then clearly, the inclusion (7.13) is equivalent to

0 ∈ (D−1 ◦ T )(x).

Moreover the operator (D−1 ◦T ) is maximal monotone in the modified inner
product 〈x, y〉D = 〈Dx, y〉. The possible advantage of such a reformulation is
that in concrete circumstances, it may be possible to choose the “precondi-
tioner” D so that the resolvant of the operator D−1 ◦T is easily computable.

This is indeed the case for the operator T corresponding to the primal-
dual system (7.9). To see this, choose real numbers t, s > 0 such that the
linear operator

D :=

[
1
τ I −A∗
−A 1

sI

]
(7.14)

is positive definite.
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Exercise 7.10. Show that the linear operator D in (7.14) is positive definite
as long as τs‖A‖2op < 1

Computing the resolvant ofD−1◦T at (x, y) amounts to finding (x+, y+) ∈
(I +D−1 ◦ T )−1(x, y), or equivalently[

1
τ I −A∗
−A 1

sI

] [
x− x+

y − y+

]
∈
[

0 A∗
−A 0

] [
x+

y+

]
+ ∂g(x+)× ∂h?(y+).

Rearranging the inclusion yields the system

x− τA∗y ∈ x+ + τ∂g(x+)

y + sA(2x+ − x) ∈ y+ + s∂h?(y+)

Thus the proximal-point method on D−1 ◦ T simply becomes

xt+1 = proxτg(xt − τA∗yt)
yt+1 = proxsh?(yt + sA(2xt+1 − xt))

This algorithm is called the preconditioned proximal point method and is
recorded in Algorithm 7.

Algorithm 7: Preconditioned Proximal Point Algorithm (PPPA)

Input: Initial x0 ∈ dom g, y0 ∈ domh, parameters s, τ > 0,
iteration T ∈ N.
Step t = 0, 1, . . . , T : compute

xt+1 = proxτg(xt − τA∗yt)
yt+1 = proxsh∗(yt + sA(2xt+1 − xt))

The generic guarantees for the proximal point method (Theorem 7.7)
clearly apply to Algorithm 7. Namely, the iterates generated by the algo-
rithm converge to a solution of the system (7.9), provided one exists. We
will now prove a rate of convergence on the suboptimality gap. To this end,
define the function

Φ(x, y) = g(x) + 〈Ax, y〉 − h?(y).

Then we express the primal and dual objective values as

ϕ(x) = sup
y

Φ(x, y) = h(Ax) + g(x)

ψ(y) = inf
x

Φ(x, y) = −g?(−A∗y)− h?(y).
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Theorem 7.11 (Convergence of PPPA). Consider the primal-dual pair
(7.8), where g : E → R and h : Y → R are proper, closed, convex func-
tions, and A : E → Y is a linear map. Suppose moreover that there exists
R > 0 such that

‖z1 − z2‖D ≤ R ∀z1, z2 ∈ (dom g)× (domh?).

Let xt and yt be the the iterates produced by Algorithm 7 and define the
averages x̄t = 1

t

∑t
i=0 xt and ȳt = 1

t

∑t
i=0 yt. Then the estimate holds:

ϕ(x̄t)− ψ(ȳt) ≤
R2

2(t+ 1)
.

Proof. A quick computation shows that the update of Algorithm 7 can be
equivalently written as

xt+1 = argmin
x

g(x) + 〈Ax, yt〉+
1

2τ
‖x− xt‖2

yt+1 = argmin
y

h?(y)− 〈A(2xt+1 − xt), y〉+
1

2s
‖y − yt‖2.

Since xt+1 is the minimizer of the 1
τ -strongly convex function g + 〈A·, yt〉+

1
2τ ‖ · −xt‖

2, we deduce

g(xt+1) + 〈Axt+1, yt〉+
1

2τ
‖xt+1 − xt‖2 ≤ g(x) + 〈Ax, yt〉+

1

2τ
‖x− xt‖2

− 1

2τ
‖xt+1 − x‖2

(7.15)
for all x ∈ E. Exactly the same reasoning for yt+1 shows the estimate

h?(yt+1)− 〈A(2xt+1 − xt), yt+1〉+
1

2s
‖yt+1 − yt‖2

≤ h?(y)− 〈A(2xt+1 − xt), y〉+
1

2s
‖y − yt‖2 −

1

2s
‖y − yt‖2,

(7.16)
for all y ∈ Y. Summing (7.15) and (7.16) yields (miraculously!) the guar-
antee

Φ(xt+1, y)− Φ(x, yt+1) ≤ 1

2
‖zt − z‖2D −

1

2
‖zt+1 − z‖2D −

1

2
‖zt+1 − zt‖2D,
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where we define z = (x, y), zt = (xt, yt), and zt+1 = (xt+1, yt+1). Upper-
bounding the last term by zero and summing the inequalities for the iterates
0, . . . , t+ 1, we conclude

t+1∑
i=0

Φ(xi, y)− Φ(x, yi) ≤
1

2
‖z0 − z‖2D.

Dividing through by t + 2 and noting that Φ(·, y) is convex and Φ(x, ·) is
concave, we arrive at

Φ(x̄t+1, y)− Φ(x, ȳt+1) ≤
‖z0 − z‖2D
2(t+ 2)

.

Taking the supremum over y and x completes the proof

7.5 Extragradient method

Consider the optimization problem

min
x
h(Ax) + g(x),

where h : E → R and g : E → R are closed convex functions. We can
equivalently write it as a saddle point problem

min
x

max
y
g(x) + 〈Ax, y〉 − h∗(y).

In this section, we show how to solve such saddle point problems by iterating
jointly in the (x, y) variables.

Consider a function Φ: E × Y → R and define the primal and dual
objectives

ϕ(x) = sup
y

Φ(x, y) and ψ(y) = inf
x

Φ(x, y)

Assumption 7.12. We assume

Φ(x, y) = p1(x) + g(x, y) + p2(y),

where g : E×Y → R, p1 : E→ R, p2 : Y → R satisfy:

1. g is a β-smooth function,

2. g(·, y) is convex for all y ∈ Y and g(x, ·) is concave for all x ∈ E,



7.5. EXTRAGRADIENT METHOD 179

3. p1 and −p2 are proper, closed, convex functions, and the diameter of
(dom p1)× (dom − p2) is upper bounded by R.

Define

F (z) = [∇xg(x, y),−∇yg(x, y)] P (x, y) = p1(x)− p2(y).

Everywhere, we will use notation z = (x, y).

Algorithm 8: Extra-gradient method

Input: Starting point x0 ∈ E, parameter β > 0, iteration T ∈ N.
Step t = 0, 1, . . . , T − 1: compute

ẑt = proxP/β

(
zt −

1

β
F (zt)

)
,

zt+1 = proxP/β

(
zt −

1

β
F (ẑt)

)
.

(7.17)

The convergence analysis will be based on monitoring the following quan-
tity along the iterate sequence:

sup
z
{P (zt)− P (z) + 〈F (zt), zt − z〉}. (7.18)

The following lemma provides a simple path to translate an upper bound
on (7.18) into guarantees on the difference between the primal and dual
objective values.

Lemma 7.13. For any points z = (x, y) and ẑ = (x̂, ŷ), the estimate holds:

P (ẑ)− P (z) + 〈F (ẑ), ẑ − z〉 ≥ Φ(x̂, y)− Φ(x, ŷ).

Proof. Taking into account convexity of g(·, ŷ) and concavity of g(x̂, ·) we
deduce

〈F (ẑ), ẑ − z〉 = 〈∇xg(x̂, ŷ), x̂− x〉 − 〈∇yg(x̂, ŷ), ŷ − y〉
≥ g(x̂, ŷ)− g(x, ŷ) + g(x̂, y)− g(x̂, ŷ)

= g(x̂, y)− g(x, ŷ),

as claimed. Adding P (x̂) − P (z) to both sides and regrouping terms com-
pletes the proof.
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We are not ready to analyze the algorithm. Notice that we may rewrite
the update equations (7.17) as

ẑt = argmin
z
{〈F (zt), z〉+ P (z) +

β

2
‖z − zt‖2}

zt+1 = argmin
z
{〈F (ẑt), z〉+ P (z) +

β

2
‖z − zt‖2}

Theorem 7.14. Let zt = (xt, yt) be the iterates generated by Algorithm 8
and define the running averages x̄t =

∑t
i=0 x̂t and ȳt =

∑t
i=0 ŷt. Then the

following estimate holds:

ϕ(x̄t)− ϕ(ȳt) ≤
βR2

2(t+ 1)
.

Proof. Since ẑt is the minimizer of the β-strongly convex function 〈F (zt), ·〉+
P + β

2 ‖ · −zt‖
2, we deduce

〈F (zt), ẑt〉+
β

2
‖ẑt − zt‖2 + P (ẑt) ≤ 〈F (zt), u〉+

β

2
‖u− zt‖2 + P (u)

− β

2
‖u− ẑt‖2

(7.19)

for all u ∈ E ×Y. Similarly, since xt+1 is the minimizer of the β-strongly
convex function 〈F (ẑt), ·〉+ P + β

2 ‖ · −zt‖
2, we deduce

〈F (ẑt), zt+1〉+
β

2
‖zt+1 − zt‖2 + P (zt+1) ≤ 〈F (ẑt), z〉+

β

2
‖z − zt‖2 + P (z)

− β

2
‖z − zt+1‖2

(7.20)
for all z ∈ E × Y. Next set u = zt+1 in (7.19). Rearranging (7.19) and
(7.20) yields the following two estimates, respectively:

〈F (zt), ẑt − zt+1〉 ≤
β

2

(
‖zt+1 − zt‖2 − ‖zt+1 − ẑt‖2 − ‖ẑt − zt‖2

)
+ P (zt+1)− P (ẑt)

〈F (ẑt), zt+1 − z〉 ≤
β

2

(
‖z − zt‖2 − ‖z − zt+1‖2 − ‖zt+1 − zt‖2

)
+ P (z)− P (zt+1).

(7.21)

Seeking to bound the quantities 〈F (ẑt), ẑt − z〉, let us decompose it as

〈F (ẑt), ẑt − z〉 = 〈F (ẑt)− F (zt), ẑt − zt+1〉+ 〈F (zt), ẑt − zt+1〉+ 〈F (ẑt), zt+1 − z〉
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Bounding the last two terms using (7.21) yields the estimate

〈F (ẑt), ẑt − z〉 ≤
β

2

(
‖z − zt‖2 − ‖z − zt+1‖2

)
+ P (z)− P (ẑt)

+ 〈F (ẑt)− F (zt), ẑt − zt+1〉 − β
2

(
‖zt+1 − ẑt‖2 + ‖ẑt − zt‖2

)
.

(7.22)

Using the Cauchy–Schwarz inequality and Lipschitz continuity of F , we
deduce that the term on the last line of (7.22) is upper-bounded by

β‖ẑt − zt+1‖ · ‖ẑt − zt‖ −
β

2

(
‖zt+1 − ẑt‖2 + ‖ẑt − zt‖2

)
= 0.

Summing (7.22) for i = 0, . . . , t− 1 and dividing by t yields

1

t

t−1∑
t=0

(P (ẑi)− P (z) + 〈F (ẑi), ẑi − z〉) ≤
β‖z − z0‖2

2t
. (7.23)

Invoking Lemma 7.13 and using convexity of Φ(·, y) and concavity of Φ(x, ·),
we conclude

1

t

t−1∑
t=0

(P (ẑi)− P (z) + 〈F (ẑi), ẑi − z〉) ≥
1

t

t−1∑
t=0

(Φ(x̂i, y)− Φ(x, ŷi))

≥ Φ(x̄t−1, y)− g(x, ȳt−1).

Combining with (7.23) we deduce

Φ(x̄t−1, y)− Φ(x, ȳt−1) ≤ β‖z − z0‖2

2t
.

Taking the supremum over (x, y) ∈ E×Y completes the proof.
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Chapter 8

Introduction to Variational
Analysis

In this chapter, we depart from convexity and analyze computational prob-
lems that may be neither smooth nor convex.

8.1 An introduction to variational techniques.

The typical technique for answering existence questions in various mathe-
matical disciplines is based on fixed point theorems, such as those of Banach,
Brower, and Kakutani. Variational analysis in large part replaces fixed point
arguments with a variational technique that invokes existence of minimizers
for a judiciously chosen potential function. This section presents a few vari-
ational arguments of this type to familiarize the reader with the technique.

As the first example, the following lemma shows that the subdifferential
map of any closed superlinearly growing function is surjective. It is worth-
while for the reader to pause here and try their hand at a direct proof to
better appreciate the elegance of the variational technique.

Lemma 8.1. Consider a proper, closed function f : E → R that is super-
linearly growing, meaning

lim
‖x‖→∞

f(x)

‖x‖
= +∞. (8.1)

Then the subdifferential ∂f : E⇒ E is surjective.

Proof. For any vector v ∈ E, define the potential function fv(x) = f(x) −
〈v, x〉. The assumption (8.1) immediately implies that fv is coercive. Con-

183
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sequently, fv admits a minimizer x. First-order conditions for optimal-
ity therefore yield the inclusion 0 ∈ ∂fv(x) = ∂f(x) − v, or equivalently
v ∈ ∂f(x). Since v ∈ E is arbitrary, we conclude that ∂f is surjective.

To motivate the next example, consider the exponential function f(x) =
ex. Clearly f does not admit any minimizers or even critical points. Nonethe-
less, there does exist an asymptotically critical sequence xi along which the
gradients ∇f(xi) tend to zero. The following exercise uses the variational
technique to establish existence of asymptotically critical sequences for any
proper, closed, function that is bounded from below.

Exercise 8.2 (Asymptotic criticality). Suppose f : E→ R is proper, closed,
and bounded from below. Then there exist sequences xi ∈ E and vi ∈ ∂f(xi)
satisfying vi → 0 and f(xi)→ inf f .
[Hint: Fix a sequence ri → 0 and define the functions fi(y) = f(y)+ 1

2ri
‖y‖2.

Argue that fi is coercive and closed and therefore admits a minimizer xi.
See Figure 8.1.]
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Figure 8.1: Quadratic perturbations of the exponential function.

Recall that the subdifferential of any convex function f is nonempty
at any point in the relative interior of its domain (Theorem 3.38). The
subdifferential would not be a very useful tool for nonconvex functions if it
were often empty. As the final example, the following lemma shows that the
domain of the subdifferential is dense in the domain of the function.

Lemma 8.3 (Density of the subdifferential). Consider a proper closed func-
tion f : E→ R. Then the set dom ∂f is dense in dom f .

Proof. Fix a point x ∈ dom f . We will show that there exists a sequence
xi → x such that the subdifferential ∂f(xi) is nonempty. Since f is closed,
the exists a closed ball Q around x such that the estimate f(y) ≥ f(x)− 1
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Figure 8.2: Illustration of the proof of Ekeland’s principle.

holds for all y ∈ Q. Fix a sequence ri ↘ 0 and define the potential function
fi(y) = f(y) + δQ(y) + 1

2ri
‖y − x‖2. Then fi is clearly closed and coercive

and therefore admits a minimizer xi. Observe f(xi) + 1
2ri
‖xi − x‖2 ≤ f(x)

and therefore ‖xi − x‖2 ≤ 2ri(f(x) − f(xi)) ≤ 2ri. We deduce xi → x.
In particular, xi lies in the interior of Q for all large indices i. Necessary
conditions for optimality thus become 0 ∈ ∂fi(xi) = ∂f(xi) + 1

ri
(xi − x), or

equivalently 1
ri

(x− xi) ∈ ∂f(xi). The proof is complete.

8.2 Variational principles.

We next prove a fundamental existence theorem, which has an appealing
geometric interpretation and will be extensively used in the later sections.
Setting the stage, consider a proper closed function f : E→ R and a point x̄
that is ε-minimal in the sense that f(x̄)− inf f ≤ ε. The following theorem
shows that there exists another point that is

√
ε-close to x̄ and is a true

minimizer of the slightly perturbed function f +
√
ε‖ · −x̃‖. Conceptually,

this existence result is useful because it allows to invoke first-order conditions
for optimality for a nearby function at a nearby point.

Theorem 8.4 has an intriguing geometric interpretation, which motivates
its proof. Namely, if x̄ were a true minimizer of f , then clearly f would admit
a supporting affine minorant at x̄ with zero slope. When x̄ is only an ε-
approximate minimizer, the theorem shows that f admits a conic supporting
minorant f(x̃)−

√
ε‖ ·−x̃‖ at some nearby point x̃ ∈ B√ε(x̄). See Figure 8.2

for an illustration. The width of the conic region scales as 1/
√
ε, and it

therefore closely approximates a supporting halfspace as ε tends to zero.

Theorem 8.4 (Nonsmooth variational principle). Let f : R → R be a
proper closed function. Fix a point x̄ satisfying f(x̄) − inf f ≤ ε for some
finite ε > 0. Then for any δ > 0, there exists a point x̃ satisfying
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1. ‖x̄− x̃‖ ≤ ε
δ ,

2. f(x̃) ≤ f(x̄),

3. {x̃} = argminx{f(x) + δ‖x− x̃‖}.

Proof. The goal is to show that f admits a conic minorant f(x̃)−δ‖·−x̃‖ at
some point x̃ near x̄. To this end, define the function C(x) = f(x̄)−δ‖x−x̄‖.
If the estimate f(x) > C(x) holds for all x 6= x̄, then we may simply set
x̃ = x̄. Suppose therefore that this is not the case and define the set

L := {x : f(x) ≤ C(x)} or equivalently L = {x : f(x)+δ‖x−x̄‖ ≤ f(x̄)}.

Clearly, L is nonempty and compact since it is a sublevel set of the proper,
closed, coercive function f + δ‖ · −x̄‖. Consequently, the function f + δL
admits some minimizer x̃; see Figure 8.2 for an illustration. Since x̃ lies in
L, the inequality holds:

f(x̃) + δ‖x̃− x̄‖ ≤ f(x̄). (8.2)

The two estimates ‖x̄− x̃‖ ≤ ε
δ and f(x̃) ≤ f(x̄) follow immediately. Next,

observe that for all x ∈ L, we have f(x̃) ≤ f(x). Moreover, any point x /∈ L
by definition satisfies f(x)+δ‖x− x̄‖ > f(x̄). Lower-bounding the right side
using (8.2) and rearranging yields

f(x̃) < f(x) + δ‖x− x̄‖ − δ‖x̃− x̄‖ ≤ f(x) + δ‖x− x̃‖,

where we used the reverse triangle inequality. Thus the equality {x̃} =
argminx{f(x) + δ‖x− x̃‖} holds as claimed.

Remarkably, Theorem 8.4 is true in any complete metric space, where
one simply replaces the norm in the statement by the metric. This general-
ization is called the Ekeland’s variational principle. One reasonable critique
of Theorem 8.4 is that it involves a nonsmooth perturbation of f that is
proportional to the norm. The following elementary theorem replaces this
perturbation with the squared Euclidean norm. The geometric consequence
is that supporting conics in Theorem 8.4 are replaced by supporting quadrat-
ics with small slope.

Theorem 8.5 (Smooth variational principle). Let f : E → R be a proper
closed function. Fix a point x̄ satisfying f(x̄) − inf f ≤ ε for some finite
ε > 0. Then for any δ > 0, there exists a point x̃ satisfying

1. ‖x̄− x̃‖ ≤ ε
δ ,
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2. f(x̃) ≤ f(x̄),

3. x̃ ∈ argminx{f(x) + δ2

ε ‖x− x̄‖
2}.

Proof. Since the function f + δ2

ε ‖ · −x̄‖
2 is proper, closed, and coercive, it

admits a minimizer x̃. Consequently, we deduce f(x̃) + δ2

ε ‖x̃− x̄‖
2 ≤ f(x̄).

The claimed properties follow trivially.

A subtle generalization of Theorem 8.5 to complete metric spaces is
called the Borwein-Preiss variational principle. Theorems 8.4 and 8.5 can
typically be used interchangeably in finite dimensions. In the later sections,
we will mostly use Theorem 8.4 as it yields slightly better bounds.

8.3 Descent principle and stability of sublevel sets.

Level and sublevel sets of functions often appear as constraints in optimiza-
tion problems. Consequently, the geometry and stability of such sets with
respect to perurbation play an important role. It is important to keep in
mind that level sets even of C∞-smooth functions can be unwieldy in gen-
eral. Indeed, the celebrated Whitney’s extension theorem guarantees that
any closed set in E, however pathological, can be realized as a level set
of some C∞-smooth function. Consequently, without further assumptions,
there is no difference between closed sets (e.g. fractals) and those that are
cut out by smooth equations! A closely related pathology is that the level-
set mapping α 7→ [f = α] may be highly irregular. To illustrate, consider a
monotone univariate function f : R→ R. Then the mapping α 7→ [f = α] is
simply the inverse f−1 and, as such, its derivative is given by 1/f ′(x). Thus
the local Lipschitz constant of the level-set map is determined by the recip-
rocal of the derivative. In this section, we prove a far reaching generalization
of this phenomenon for sublevel sets of any proper closed function.

Throughout, will measure the deviation between any two sets X,Y ⊂ E
using the Hausdorff distance:

dist(X,Y ) := max

{
sup
x∈X

dist(x, Y ), sup
y∈Y

dist(y,X)

}
.

8.3.1 Level sets of smooth functions.

Before addressing stability of sublevel sets of nonsmooth functions, it is
instructive to consider first the smooth settings, where classical (nonvari-
ational) arguments suffice. To this end, a clear prerequisite for analyzing
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γ̇ = ∇f(γ)
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R

Figure 8.3: Illustration of the descent principle (Theorem 8.6).

stability of the map α 7→ [f = α] is to estimate the range of parameters
α for which the level set [f = α] is nonempty. The following theorem pro-
vides such an estimate, based on an assumed lower bound on the gradient
norm ‖∇f(x)‖ ≥ σ > 0 near a point x̄; see Figure 8.3 for an illustration.
The theorem moreover shows that for a range of right-hand sides α, the
distance from x̄ to the sublevel set [f = α]—a quantity that is difficult to
estimate in general—is linearly bounded by the easily computable residual
value |f(x) − α|. Estimates of this type are often called error bounds, and
will play a prominent role in later sections.

Theorem 8.6 (Smooth descent principle). Let f : E → R be a C1-smooth
function that has a locally Lipschitz continuous gradient. Suppose that for
some point x̄ ∈ E, there are constants α < f(x̄) and σ, r > 0 satisfying
inequality

‖∇f(x)‖ ≥ σ for all x ∈ Br(x̄) ∩ [α < f ≤ f(x̄)].

If in addition f(x̄)− α < rσ, then the estimate holds:

dist(x̄, [f = α]) ≤ σ−1(f(x̄)− α). (8.3)

Proof. The existence theorem for ordinary differential equations yields a
differentiable curve γ : [0, η) → E satisfying γ̇(t) = −∇f(γ(t)) for all t ∈
[0, η), where [0, η) is a maximal domain of definition. Define the set

U := Br(x̄) ∩ [α < f ≤ f(x̄)]
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and define the exit time t∗ := inf{t ≥ 0 : γ(t) /∈ U}. Observe that for any
t ∈ [0, t∗) the fundamental theorem of calculus gives

α− f(x̄) ≤ f(γ(t))− f(γ(0)) =

∫ t

0

d

ds
(f ◦ γ)(s) ds

=

∫ t

0
〈∇f(γ(s), γ̇(s)〉 ds

=

∫ t

0
−‖∇f(γ(s))‖2 ds (8.4)

≤ −tσ2. (8.5)

We claim that t∗ is finite. Indeed, in the case η = ∞, the estimate (8.5)
immediately guarantees that the exit time time t∗ must be finite. In the
complementary case η < ∞, the ODE extension theorem implies ‖γ(t)‖ →
∞ and therefore γ eventually leaves U , as well.

Next, set x∗ := γ(t∗). By continuity, one of the the two conditions,
‖x∗− x̄‖ = r or f(x∗) = α, must hold. We therefore deduce the lower bound
on the length∫ t∗

0
‖γ̇(s)‖ ds ≥ ‖x∗ − x̄‖ ≥ min{r, dist(x̄, [f = α])}.

Continuing (8.4) with t = t∗, we therefore conclude

f(x∗)− f(x̄) = −
∫ t∗

0
‖∇f(γ(s))‖ · ‖γ̇(s)‖ dt ≤ −σmin{r, dist(x̄, [f = α])}.

(8.6)
Rearranging yields

min{r, dist(x̄, [f = α])} ≤ σ−1(f(x̄)− f(x∗)) ≤ σ−1(f(x̄)− α).

Taking into account the assumed inequality r > σ−1(f(x̄) − α) completes
the proof.

An easy consequence of Theorem 8.6 is a gradient-based characterization
of local Lipschitz continuity of the level set map with respect to the Hausdorff
distance.

Corollary 8.7 (Lipschitz continuity of level sets.). Consider a C1-smooth
function f : E → R with a locally Lipschitz continuous gradient. Fix σ >
0 and two real numbers α < β. Then the following two conditions are
equivalent.
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1. (Noncriticality) For all x ∈ [α < f < β] the estimate holds:

‖∇f(x)‖ ≥ σ.

2. (Lipschitz continuity) For all s, t ∈ (α, β) the estimate holds:

dist([f = s], [f = t]) ≤ σ−1|s− t|.

Proof. The implication (1)⇒ (2) follows directly by applying Theorem 8.6
to f and −f . To see the implication (2)⇒ (1), fix a point x ∈ [α < f < β].
Fix a sequence γi → f(x) but distinct from f(x) and choose an arbitrary
sequence xi ∈ proj[f=γi](x). Assumption (2) guarantees

‖x− xi‖ = dist(x, [f = γi]) ≤ σ−1|f(x)− γi| → 0.

Thus xi tends to x and we therefore conclude

‖∇f(x)‖ ≥ lim
i→∞

‖f(xi)− f(x)‖
‖xi − x‖

= lim
i→∞

|γi − f(x)|
dist(x, [f = γi])

≥ σ,

as we had to show.

8.3.2 Sublevel sets of nonsmooth functions.

Our goal for the rest of the section is to generalize Theorem 8.6 to any proper
closed function f . To this end, clearly we must find a replacement for the
norm of the gradient. One appealing candidate is the minimal subgradient
norm dist(0, ∂f(x)). A technical problem with this idea is that the subdiffer-
ential ∂f(x) may be empty even if f is a Lipschitz continuous function. As
a result, it will be convenient to use a slightly different construction, which
coincides with dist(0, ∂f(x)) whenever ∂f(x) is nonempty. Henceforth, for
any real number r, we define the positive part r+ = max{r, 0}.

Definition 8.8 (Slope). Consider a function f : R→ R and a point x with
f(x) finite. The slope of f at x, denoted by |∇f |(x), is the quantity

|∇f |(x) := limsup
y→x

(f(x)− f(y))+

‖x− y‖
.

Thus when x happens to be a local minimizer of f , the slope |∇f |(x) is
zero. If this is not the case, then the slope |∇f |(x) measures the maximal
instanteneous rate of decrease of f at x. The following exercise records a
few basic properties of the slope.
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Exercise 8.9 (Basic properties). Consider a function f : E → R and a
point x with f(x) finite. Verify the following.

1. The equality |∇f |(x) = − inf
‖u‖≤1

df(x)(u) holds.

2. If f is differentiable at x, then equality |∇f |(x) = ‖∇f(x)‖ holds.

3. The inequality, |∇f |(x) ≤ dist(0, ∂f(x)), always holds. Moreover, equal-
ity holds as long as ∂f(x) is nonempty.

[Hint: The first claim follows from the definition of the slope |∇f |(x)
and the subderivative df(x)(u). To see the second claim, verify |∇f |(x) ≤
dist(0, ∂f(x)) directly from definitions. Suppose now that ∂f(x) is nonempty.
Theorem 3.47 then guarantees that the closed convex envelope co df(x) is the
support function of ∂f(x). Using Exercise 3.20 conclude inf‖u‖≤1 df(x)(u) =
inf‖u‖≤1 co df(x)(u). Use this expression to complete the proof.]

We are now ready to establish a generalization of Theorem 8.6 to non-
smooth functions with the slope replacing the norm of the gradient. The
argument is based on the nonsmooth variational principle. This is sharp
contrast to the proof of Theorem 8.6, which relied on the existence theorem
for ODEs and the chain rule for differentiation.

Theorem 8.10 (Decrease principle). Let f : E → R be a proper closed
function. Suppose that for some point x̄ ∈ dom f , there are constants α <
f(x̄) and σ, r > 0 so that the implication

|∇f |(x) ≥ σ for all x ∈ Br(x̄) ∩ [α < f ≤ f(x̄)]

holds. If in addition f(x̄)− α < rσ, then the estimate holds:

dist(x̄, [f ≤ α]) ≤ σ−1(f(x̄)− α).

Proof. Define the function g(u) = (f(u)− α)+ and observe

g(x̄)− inf g ≤ f(x̄)− α.

We aim to apply the nonsmooth variational principle (Theorem 8.4) to the
function g. To this end, set ε := f(x̄)−α. Taking into account the assumed
inequality σ−1ε < r, we may choose δ ∈ (0, σ) satisfying δ−1ε ≤ r. Applying
Theorem 8.4 yields a point x̃ satisfying g(x̃) ≤ g(x̄), ‖x̃− x̄‖ ≤ δ−1ε, and

{x̃} = argmin
u
{g(u) + δ‖u− x̃‖}. (8.7)
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We claim that x̃ lies in the sublevel set [f ≤ α]. To see this, observe that the
equality (8.7) along with the very definition of the slope implies |∇g|(x̃) ≤ σ.
Consequently, if the inequality f(x̃) > α were to hold, then f and g would
coincide on a neighborhood of x̃ (why?) thereby yielding the contradiction
|∇f |(x̃) = |∇g|(x̃) ≤ δ < σ. We conclude dist(x̄, [f ≤ α]) ≤ ‖x̄ − x̃‖ ≤
δ−1(f(x̄)− α). Letting δ tend to σ completes the proof.

A slope-based characterization of local Lipschitz continuity of the sub-
level set map follows quickly.

Corollary 8.11 (Lipschitz continuity of level sets.). Consider a proper
closed function f : E → R. Fix σ > 0 and two real numbers α < β. Then
the following two conditions are equivalent.

1. (Noncriticality) For all x ∈ [α < f < β] the estimate holds:

|∇f |(x) ≥ σ.

2. (Lipschitz continuity) For all s, t ∈ (α, β) the estimate holds:

dist([f ≤ s], [f ≤ t]) ≤ σ−1|s− t|.

Proof. To see the implication (1) ⇒ (2), fix s, t ∈ (α, β). Without loss
of generality suppose s < t. Then for any x ∈ [f ≤ s], we trivially have
dist(x, [f ≤ t]) = 0. On the other hand, for any x ∈ [f ≤ t], Theorem 8.10
directly implies dist(x, [f ≤ t]) ≤ σ−1(t− s). Thus (2) holds.

To see the reverse implication (2)⇒ (1), fix a point x ∈ [α < f < β]. Fix
a strictly increasing sequence γi converging to f(x) and choose an arbitrary
sequence xi ∈ proj[f≤γi](x). Assumption (2) guarantees

‖x− xi‖ = dist(x, [f ≤ γi]) ≤ σ−1|f(x)− γi| → 0.

Thus xi tends to x and we therefore conclude

|∇f |(x) ≥ limsup
i→∞

(f(x)− f(xi))

‖x− xi‖
≥ limsup

i→∞

f(x)− γi
dist(x, [f ≤ γi])

≥ σ,

as we had to show.
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8.4 Limiting subdifferential and limiting slope.

Both the slope |∇f | and the Fréchet subdifferential ∂f have an important
deficiency: they fail to have good semi-continuity properties with respect to
their arguments even if f is Lipschitz continuous. As a simple illustration,
consider the univariate function f(x) = −|x|. It is straightforward to verify
that the graph of the subdifferential gph ∂f is not closed and the slope
function x 7→ |∇f |(x) is not lower-semicontinuous at zero. Though this
seems like a technical issue at first, it is fundamental. For example, desirable
calculus rules fail for the Fréchet subdifferential precisely for this reason. To
illustrate, define the univariate function g(x) = |x| and set f(x) = −|x| as
before. Since the sum f + g is identically zero, the inclusion 0 ∈ ∂(f +
g)(0) clearly holds. On the other hand, the sum of the subdifferentials
∂f(0)+∂g(0) is empty since ∂f(0) is empty. Therefore, the desired inclusion
∂(f + g)(0) ⊂ ∂f(0) + ∂g(0) fails in this setting.

An appealing remedy is to define a new subdifferential that is slightly
larger than ∂f but has good closure properties. Perhaps the first attempt
would be to declare a vector v a “limiting subgradient” of a function f
at x if there exist sequences (xi, vi) ∈ gph ∂f converging to (x, v). This
construction, however, is not well aligned with epigraphical geometry when f
is discontinuous because the points (xi, f(xi)) may not converge to (x, f(x)).
Consequently, when defining the new subdifferential we should instead focus
on sequences xi satisfying (xi, f(xi)) → (x, f(x)). To this end, we say that

a sequence xi converges f -attentively to x, denoted xi
f→ x, if it satisfies

(xi, f(xi)) → (x, f(x)). With this in mind, we define the following two
constructions, which will play a central role in the next sections.

Definition 8.12 (Limiting subdifferential and limiting slope). Consider a
function f : E→ R and a point x with f(x) finite.

1. A vector v is a limiting subgradient of f at x, written v ∈ ∂Lf(x), if
there exist sequences xi ∈ E and vi ∈ ∂f(xi) satisfying (xi, f(xi), vi) →
(x, f(x), v).

2. The limiting slope of f at x as

|∇f |(x) = liminf

y
f→ x

|∇f |(y).

As a simple example, the reader should verify the expressions for the
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function f(x) = −|x|:

∂Lf(x) =


{−1} x < 0

{−1, 1} x = 0

{1} x > 0

and |∇f |(x) =


−1 x < 0

−1 x = 0

1 x > 0

.

Naturally for any set Q ⊂ E and x ∈ Q, we define the limiting normal
cone NL

Q(x) := ∂LδQ(x). Thus for any closed set Q, the inclusion v ∈ NL
Q(x)

means that there are sequences (xi, vi) ∈ gphNQ satisfying (xi, vi)→ (x, v);
in other words, equality gphNL

Q = cl (gphNQ) holds. See Figure 8.4 for an
illustration.

x

Q

NL
Q(x)

NQ(x)

Figure 8.4: Limiting normal cone.

The following exercises establish some basic properties of the limiting
constructions.

Exercise 8.13 (Basic properties). Consider a proper closed function f : E→
R and a point x with f(x) finite.

1. Show that ∂Lf(x) is a closed set, though is possibly not convex.

2. Show that if some sequences xi ∈ E and vi ∈ ∂Lf(xi) satisfy (xi, f(xi), vi)→
(x, f(x), v), then the inclusion v ∈ ∂Lf(x) holds.

3. Show that if f is locally Lipschitz continuous around x, then ∂Lf(x) is
nonempty.

Exercise 8.14 (Limiting normals to epigraph). Consider a function f : E→
R and a point x with f(x) finite. Show the equality

∂Lf(x) = {v ∈ E : (v,−1) ∈ NL
epi f (x, f(x))}.
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Recall from Exercise 8.9 that the slope and the Fréchet subdifferential
of a closed function are related by the expression:

|∇f |(x) = dist(0, ∂f(x)),

as long as ∂f(x) is nonempty. In the next section, we will see somewhat
remarkably that the analogous equality holds for the limiting constructions,
unconditionally.

8.5 Subdifferential calculus

Calculus of subdifferentials is of utmost importance both for theory and
algorithms. Chapter 4 was in large part devoted to developing the calculus
of subdifferentials of convex functions. In this section, we use the variational
techniques to establish calculus rules in the nonconvex settings.

We will make use of two simple exercises. Recall that a Fréchet subgra-
dient v ∈ ∂f(x) is characterized by the inequality

f(y) ≥ f(x) + 〈v, y − x〉+ o(‖y − x‖) as y → x.

The function on the right-hand side may in principle be nonsmooth in y,
due to the presence of the little-o term. The following two exercises show
that we may without loss of generality assume that the little-o term on the
right is indeed C1-smooth.

Exercise 8.15. Consider a function ϕ : [0,+∞) → R+ satisfying ϕ(t) =
o(t) as t↘ 0. Then there exists a function ψ : R→ R+ satisfying

1. ψ(t) ≥ ϕ(|t|) for all t ∈ R,

2. ψ is C1-smooth with ψ(0) = ψ′(0) = 0.

Exercise 8.16 (Supporting smooth minorants). Consider a function f : E→
R and a point x with f(x) finite. Then the inclusion v ∈ ∂f(x) holds if and
only if there exists a C1-smooth function ω : U → R defined on a neighbor-
hood U of x satisfying ω(x) = f(x), ∇ω(x) = v, and ω(y) < f(y) for all
y ∈ U \ {x}.

We now have all the ingredients to establish a chain rule for subdifferen-
tials. Recall that even in the convex case, subdifferential calculus required
some nondegeneracy assumptions. Rather then imposing nondegeneracy
conditions directly, we prove a “fuzzy chain rule” which is always valid.
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Namely, the following theorem shows that when composing a closed func-
tion h(·) with a differentiable map c(·), the inclusion holds:

∂(h ◦ c)(x̄) ⊂ ∇c(x)∗∂h(y) + εB,

where x and y are ε perturbations of x̄ and c(x̄), respectively.

Theorem 8.17 (Fuzzy chain rule). Consider the function f(x) = h(c(x)),
where h : Y → R is a proper, closed function and c : E→ Y is differentiable
around a point x̄ ∈ E. Then the inclusion holds:

∂f(x̄) ⊃ ∇c(x̄)∗∂h(c(x̄)).

Conversely, for every subgradient v ∈ ∂f(x̄) and ε > 0, there exist points
x ∈ E and y ∈ Y satisfying

‖x− x̄‖ ≤ ε, ‖y − c(x̄)‖ ≤ ε, |h(y)− h(c(x̄))| ≤ ε,

and such that the inclusion holds:

v ∈ ∇c(x)∗∂h(y) + εB.

Proof. Fix a vector v ∈ ∂f(x̄). Theorem 8.16 provides for us a C1-smooth
function h : U → R defined on a neighborhood U of x̄ satisfying h(x̄) = f(x̄),
∇h(x̄) = v, and ω(y) < f(y) for all y ∈ U \ {x̄}. In particular, x̄ is a strict
local minimizer of f − ω on U . Shrinking U , we may assume U is a closed
ball and c is differentiable on U . Let V be a compact neighborhood of c(x̄).
Fix a sequence ri ↘ 0 and consider the decoupled minimization problem

min
x∈U,y∈V

Fi(x, y) := h(y)− ω(x) +
1

2ri
‖y − c(x)‖2. (8.8)

Since Fi is closed and coercive, the problem (8.8) admits a minimizer (xi, yi).
Let us show that the sequence (xi, yi) tends to (x̄, c(x̄)) as i tends to infinity.
To this end, passing to a subsequence, we may assume (xi, yi) tends to some
pair (x∗, y∗). Observe Fi(xi, yi) ≤ Fi(x̄, ȳ) = 0 and therefore

1

2ri
‖yi − c(xi)‖2 ≤ ω(xi)− h(yi).

Since the right-hand is bounded, we deduce yi − c(xi) → 0 and therefore
y∗ = c(x∗). Lower-semicontinuity of h guarantees

f(x∗)− ω(x∗) = h(y∗)− ω(x∗)

≤ liminf
i→∞

h(yi)− ω(xi) +
1

2ri
‖yi − c(xi)‖2

= liminf
i→∞

Fi(xi, yi)

≤ liminf
i→∞

Fi(x̄, c(x̄)) = 0.

(8.9)
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Thus x∗ is a minimizer of f − ω on C. Since x∗ is the unique minimizer
of f − ω on C, we deduce x∗ = x̄. Consequently equality holds throughout
(8.9). It follow immediately that h(yi) tends to h(y∗). Finally, since for all
large indices i, the points xi lie in the interior of U , first-order necessary
optimality conditions for (8.8) become

0 ∈ −∇ω(xi)−
1

ri
∇c(xi)∗(yi − c(xi))

0 ∈ ∂h(yi) +
1

ri
(yi − c(xi)).

Substituting the second inclusion into the first and adding and subtracting
v yields

v ∈ ∇c(xi)∗∂h(yi) + (v − ω(xi)).

This completes the proof.

An appealing question is what happens when we allow ε to tend to zero
in Theorem 8.17. Let us look at this question more closely. Namely for any
vector v ∈ ∂(h ◦ c)(x̄), the theorem guarantees

‖v −∇c(xε)∗wε‖ ≤ ε,

for some points xε → x̄, yε → c(x̄) satisfying h(yε) → h(c(x̄)), and wε ∈
∂h(yε). The main problems that may arise when taking the limit as ε → 0
is that the subgradients wε might be unbounded. In order to rule out this
degeneracy, we must ensure that the directions along which subgradient blow
up are disjoint from the null space of ∇c(x̄)∗. To make this assumption
precise, we introduce the following set, which captures such directions of
blow up.

Definition 8.18 (Horizon subdifferential). Consider a function f : E → R
and a point x̄ with f(x̄) finite. We say that v is a horizon subgradient of f
at x, written v ∈ ∂∞f(x) if there exist sequences xi ∈ E, vi ∈ ∂f(xi), and
τi ↘ 0 satisfying (xi, f(xi), τivi)→ (x, f(x), v).

The following exercise establishes a few basic properties of the horizon
subdifferential. In particular, the horizon subdifferential has an intuitive
geometric interpretation in terms of horizontal normals to the epigraph.

Exercise 8.19 (Horizon subdifferential: basic properties). Consider a proper,
closed function f : E→ R and a point x with f(x) finite. Show the following.

1. The set ∂∞f(x) is a closed cone.
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2. The equality, ∂∞f(x) = {v ∈ E : (v, 0) ∈ NL
epi f (x, f(x))}, holds.

3. If f is locally Lipschitz around x, then equality ∂∞f(x) = {0} holds.

4. If f is convex, then the equality, ∂∞f(x) = Ndom f (x), holds.

5. If f is an indicator function of a closed set Q ⊂ E, then we have ∂∞f(x) =
NQ(x).

We are now ready to pass to the limit ε↘ 0 in the fuzzy chain rule.

Corollary 8.20 (Chain rule in limiting form). Consider the function f(x) =
h(c(x)), where h : Y → R is a proper, closed function and c : E→ Y is C1-
smooth around a point x̄ ∈ E. Then the inclusion holds:

∂f(x̄) ⊃ ∇c(x̄)∗∂h(c(x̄)).

Moreover, the transversality condition

∂∞h(x̄) ∩Ker (∇c(x̄)∗) = {0},

guarantees the reverse inclusion

∂Lf(x̄) ⊂ ∇c(x̄)∗∂Lh(c(x̄)).

Proof. We know that for every subgradient v ∈ ∂f(x̄) and ε > 0, there exist
points x ∈ E and y ∈ Y satisfying

‖x− x̄‖ ≤ ε, ‖y − c(x̄)‖ ≤ ε, |h(y)− h(c(x̄))| ≤ ε,

and such that the inclusion holds:

v ∈ ∇c(x)∗w + εB for some w ∈ ∂h(y).

Now let ε ↘ 0. We claim that w is bounded. Indeed if this were not the
case, we would deduce

v

‖w‖
∈ ∇c(x)∗

(
w

‖w‖

)
+

ε

‖w‖
B.

Thus any limit point w̄ of w/‖w‖ satisfies 0 = ∇c(x̄)∗w̄ while at the same
time w̄ ∈ ∂∞h(x̄), which is a contradiction.

As usual, the sum rule is an immediate consequence of the chain rule.
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Corollary 8.21 (Sum rule). Consider two proper, closed functions f1, f2 : E→
R and a point x ∈ dom f1 ∩ dom f2. Then the inclusion holds:

∂(f1 + f2)(x) ⊃ ∂f1(x) + ∂f2(x).

Moreover, the transversality condition

∂∞f1(x) ∩ −∂∞f2(x) = {0} (8.10)

ensures the reverse inclusion

∂L(f1 + f2)(x) ⊂ ∂Lf1(x) + ∂Lf2(x).

Proof. Apply Corollary 8.20 with c(x) = (x, x) and h(y, z) = f1(y) + f2(z).

Note in particular that the transversality condition (8.10) holds trivially
if either f1 or f2 is Lipschitz continuous around x, since the corresponding
horizon subdiffferential consists only of the origin (Exercise 8.19).

We end the section with two intriguing consequences of calculus rules.
The first is a mean-value theorem for nonsmooth and nonconvex functions;
the second shows that the limiting slope coincides with the minimal norm
of limiting subgradients.

Theorem 8.22 (Mean-value I). Consider a proper closed function f : E→
R and fix two points x0, x1 ∈ dom f . Then for every ε > 0, there exists a
point x and a subgradient v ∈ ∂f(x) satisfying x ∈ [x0, x1] + εB, |f(y) −
min[x0,x1] f | ≤ ε, and

f(x1)− f(x0) ≤ 〈v, x1 − x0〉+ ε.

Proof. Define the map c : R→ E by c(t) = (1− t)x0 + tx1 and set

ϕ(t) = f(c(t))− (1− t)f(x0)− tf(x1) + δ[0,1](t).

Observe the equality ϕ(0) = ϕ(1) = 0. Since ϕ is proper, closed, and
coercive it admits some minimizer t̂ ∈ [0, 1]. Applying the fuzzy chain and
sum rules, we deduce that for every ε > 0, there exists t1 ∈ R, t2 ∈ [0, 1],
and x ∈ E satisfying the proximity conditions

max
{
|t1 − t̂|, |t2 − t̂|, |x− c(t1)|, |f(x)− f(c(t̂))|

}
≤ ε

and the the inclusion

0 ∈ 〈∂f(y), x1 − x0〉 − (f(x1)− f(x0)) +N[0,1](t2) + [−ε, ε].

The conclusion of the theorem follows immediately.
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Exercise 8.23 (Mean-value II). Consider a function f that is continuous
on a neighborhood of the line segment [x1, x2] ⊂ dom f . Then for every
ε > 0, there exist a point x ∈ [x0, x1] + εB and a vector v that either lies in
∂f(x) or in −∂(−f)(x) and satisfies

|f(x1)− f(x0)− 〈v, x1 − x0〉| ≤ ε.

[Hint: Proceed as in the proof of Theorem 8.22 but argue that ϕ always
admits a maximizer or a minimizer that lies in the open interval (0, 1).]

Theorem 8.24 (Limiting slope and limiting subdifferential). Consider a
proper closed function f : E → R and a point x with f(x) finite. Then the
equality holds:

|∇f |(x) = dist(0, ∂Lf(x)). (8.11)

Proof. The inequality |∇f |(x) ≤ dist(0, ∂Lf(x)) follows directly from Exer-
cise 8.9 (verify this!). To see the converse, set u := |∇f |(x). If u is infinite,
then the estimate |∇f |(x) ≤ dist(0, ∂Lf(x)) directly implies that ∂Lf(x) is
empty. Therefore, in this case, the claimed equality (8.11) holds trivially.
Consequently, for the rest of the proof we suppose that u is finite.

Fix an arbitrary ε > 0 and let y be a point satisfying

‖y − x‖ < ε, |f(y)− f(x)| < ε, and |∇f |(x) < u+ ε.

Define the function g(z) := f(z) + (u+ ε)‖z − y‖. The lower bound on the
slope ensures that y is a local minimizer of g and therefore

0 ∈ ∂Lg(y) ⊂ ∂Lf(y) + (u+ ε)B.

Rearranging yields dist(0, ∂Lf(y)) ≤ u + ε. Letting ε tend to zero, we
conclude dist(0, ∂Lf(x)) ≤ |∇f |(x), as we had to show.
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