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PREFACE

In this book we aim to present, in a unified framework, a broad spectrum
of mathematical theory that has grown in connection with the study of prob-
lems of optimization, equilibrium, control, and stability of linear and nonlinear
systems. The title Variational Analysis reflects this breadth.

For a long time, ‘variational’ problems have been identified mostly with
the ‘calculus of variations’. In that venerable subject, built around the min-
imization of integral functionals, constraints were relatively simple and much
of the focus was on infinite-dimensional function spaces. A major theme was
the exploration of variations around a point, within the bounds imposed by the
constraints, in order to help characterize solutions and portray them in terms
of ‘variational principles’. Notions of perturbation, approximation and even
generalized differentiability were extensively investigated. Variational theory
progressed also to the study of so-called stationary points, critical points, and
other indications of singularity that a point might have relative to its neighbors,
especially in association with existence theorems for differential equations.

With the advent of computers, there has been a tremendous expansion
of interest in new problem formulations that similarly demand such modes of
analysis but are far from being covered by classical concepts, not to speak
of classical results. For those problems, finite-dimensional spaces of arbitrary
dimensionality are important alongside of function spaces, and theoretical con-
cerns go hand in hand with the practical ones of mathematical modeling and
the design of numerical procedures.

It is time to free the term ‘variational’ from the limitations of its past and
to use it to encompass this now much larger area of modern mathematics. We
see ‘variations’ as referring not only to movement away from a given point along
rays or curves, and to the geometry of tangent and normal cones associated
with that, but also to the forms of perturbation and approximation that are
describable by set convergence, set-valued mappings and the like. Subgradients
and subderivatives of functions, convex and nonconvex, are crucial in analyzing
such ‘variations’, as are the manifestations of Lipschitzian continuity that serve
to quantify rates of change.

Our goal is to provide a systematic exposition of this broader subject as a
coherent branch of analysis that, in addition to being powerful for the problems
that have motivated it so far, can take its place now as a mathematical discipline
ready for new applications.

Rather than detailing all the different approaches that researchers have
been occupied with over the years in the search for the right ideas, we seek to
reduce the general theory to its key ingredients as now understood, so as to
make it accessible to a much wider circle of potential users. But within that
consolidation, we furnish a thorough and tightly coordinated exposition of facts
and concepts.

Several books have already dealt with major components of the subject.
Some have concentrated on convexity and kindred developments in realms of
nonconvexity. Others have concentrated on tangent vectors and subderiva-
tives more or less to the exclusion of normal vectors and subgradients, or vice
versa, or have focused on topological questions without getting into general-
ized differentiability. Here, by contrast, we cover set convergence and set-valued
mappings to a degree previously unavailable and integrate those notions with
both sides of variational geometry and subdifferential calculus. We furnish a
needed update in a field that has undergone many changes, even in outlook. In
addition, we include topics such as maximal monotone mappings, generalized
second derivatives, and measurable selections and integrands, which have not
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in the past received close attention in a text of this scope. (For lack of space,
we say little about the general theory of critical points, although we see that
as a close neighbor to variational analysis.)

Many parts of this book contain material that is new not only in its manner
of presentation but also in research. Each chapter provides motivations at
the beginning and throughout, and each concludes with extensive notes which
furnish credits and references together with historical perspective on how the
ideas gradually took shape. These notes also explain the reasons for some of
the decisions about notation and terminology that we felt were expedient in
streamlining the subject so as to prepare it for wider use.

Because of the large volume of material and the challenge of unifying it
properly, we had to draw the line somewhere. We chose to keep to finite-
dimensional spaces so as not to cloud the picture with the many complications
that a treatment of infinite-dimensional spaces would bring. Another reason for
this choice was the fact that many of the concepts have multiple interpretations
in the infinite-dimensional context, and more time may still be needed for them
to be sorted out. Significant progress continues, but even in finite-dimensional
spaces it is only now that the full picture is emerging with clarity. The abun-
dance of applications in finite-dimensional spaces makes it desirable to have an
exposition that lays out the most effective patterns in that domain, even if, in
some respects, such patterns are not able go further without modification.

We envision that this book will be useful to graduate students, researchers
and practitioners in a range of mathematical sciences, including some front-line
areas of engineering and statistics that draw on optimization. We have aimed
at making available a handy reference for numerous facts and ideas that cannot
be found elsewhere except in technical papers, where the lack of a coordinated
terminology and notation is currently a formidable barrier. At the same time,
we have attempted to write this book so that it is helpful to readers who want
to learn the field, or various aspects of it, step by step. We have provided many
figures and examples, along with exercises accompanied by guides.

We have divided each chapter into a main part followed by sections marked
by ∗, so as to signal to the reader a stage at which it would be reasonable, in a
first run, to skip ahead to the next chapter. The results placed in the ∗ sections
are often important as well as necessary for the completeness of the theory, but
they can suitably be addressed at a later time, once other developments begin
to draw on them.

For updates and errata, see http://math.ucdavis.edu/∼rjbw.
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1. Max andMin

Questions about the maximum or minimum of a function f relative to a set C
are fundamental in variational analysis. For problems in n real variables, the
elements of C are vectors x = (x1, . . . , xn) ∈ IRn. In any application, f or C
are likely to have special structure that needs to be addressed, but we begin
here with concepts associated with maximization and minimization as general
operations.

It’s convenient for many purposes to consider functions f that are allowed
to be extended-real-valued , i.e., to take values in IR = [−∞,∞] instead of just
IR = (−∞,∞). In the extended real line IR, which has all the properties of a
compact interval, every subset R ⊂ IR has a supremum (least upper bound),
which is denoted by supR, and likewise an infimum (greatest lower bound),
inf R, either of which could be infinite. (Caution: The case of R = ∅ is anoma-
lous, in that inf ∅ = ∞ but sup ∅ = −∞, so that inf ∅ > sup ∅ !) Custom
allows us to write minR in place of inf R if the greatest lower bound inf R
actually belongs to the set R. Likewise, we have the option of writing maxR
in place of supR if the value supR is in R.

For inf R and supR in the case of the set R =
{
f(x)

∣∣x ∈ C} ⊂ IR, we
introduce the notation

infC f := inf
x∈C

f(x) := inf
{
f(x)

∣∣x ∈ C},
supC f := sup

x∈C
f(x) := sup

{
f(x)

∣∣x ∈ C}.
(The symbol ‘:=’ means that the expression on the left is defined as equal to
the expression on the right. On occasion we’ll use ‘=:’ as the statement or
reminder of a definition that goes instead from right to left.) When desirable
for emphasis, we permit ourselves to write minC f in place of infC f when
infC f is one of the values in the set

{
f(x)

∣∣x ∈ C} and likewise maxC f in

place of supC f when supC f belongs to
{
f(x)

∣∣x ∈ C}.
Corresponding to this, but with a subtle difference dictated by the inter-

pretations that will be given to ∞ and −∞, we introduce notation also for the
sets of points x where the minimum or maximum of f over C is regarded as
being attained:



2 1. Max and Min

argminCf := argmin
x∈C

f(x)

:=

{{
x ∈ C ∣∣ f(x) = infC f

}
if infC f �=∞,

∅ if infC f =∞,

argmaxCf := argmax
x∈C

f(x)

:=

{{
x ∈ C ∣∣ f(x) = supC f

}
if supC f �= −∞,

∅ if supC f = −∞.

Note that we don’t regard the minimum as being attained at any x ∈ C when
f ≡ ∞ on C, even though we may write minC f =∞ in that case, nor do we
regard the maximum as being attained at any x ∈ C when f ≡ −∞ on C. The
reasons for these exceptions will be explained shortly. Quite apart from whether
infC f < ∞ or supC f > −∞, the sets argminC f and argmaxC f could be
empty in the absence of appropriate conditions of continuity, boundedness or
growth. A simple and versatile statement of such conditions will be devised in
this chapter.

The roles of∞ and −∞ deserve close attention here. Let’s look specifically
at minimizing f over C. If there is a point x ∈ C where f(x) = −∞, we know
at once that x furnishes the minimum. Points x ∈ C where f(x) =∞, on the
other hand, have virtually the opposite significance. They aren’t even worth
contemplating as candidates for furnishing the minimum, unless f has ∞ as
its value everywhere on C, a case that can be set aside as expressing a form of
degeneracy—which we underline by defining argminC f to be empty then. In
effect, the side condition f(x) < ∞ is considered to be implicit in minimizing
f(x) over x ∈ C. Everything of interest is the same as if we were minimizing
over C ′ :=

{
x ∈ C ∣∣ f(x) <∞}

instead of C.

A. Penalties and Constraints

This gives birth to an important idea in the context of C being a subset of IRn.
Perhaps f is merely real-valued on C, but whether this is true or not, we can
transform the problem of minimizing f over C into one of minimizing f over
all of IRn just by defining (or as the case may be, redefining) f(x) to be ∞
for all the points x ∈ IRn such that x �∈ C. This helps in thinking abstractly
about minimization and in achieving a single framework for the development
of properties and results.

1.1 Example (equality and inequality constraints). A set C ⊂ IRn may be
specified as consisting of the vectors x = (x1, . . . , xn) such that

x ∈ X and

{
fi(x) ≤ 0 for i ∈ I1,
fi(x) = 0 for i ∈ I2,

where X is some subset of IRn and I1 and I2 are index sets for families of
functions fi : IR

n → IR called constraint functions. The conditions fi(x) ≤ 0
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are inequality constraints on x, while those of form fi(x) = 0 are equality
constraints ; the condition x ∈ X (where in particular X could be all of IRn) is
an abstract or geometric constraint.

A problem of minimizing a function f0 : IRn → IR subject to all of these
constraints can be identified with the problem of minimizing the function f :
IRn → IR defined by taking f(x) = f0(x) when x satisfies the constraints but
f(x) =∞ otherwise. The possibility of having inf f =∞ corresponds then to
the possibility that C = ∅, i.e., that the constraints may be inconsistent.

C

Fig. 1–1. A set defined by inequality constraints.

Constraints can also have the form fi(x) ≤ ci, fi(x) = ci or fi(x) ≥ ci for
values ci ∈ IR, but this doesn’t add real generality because fi can always be
replaced by fi − ci or ci − fi. Strict inequalities are rarely seen in constraints,
however, since they could threaten the attainment of a maximum or minimum.

An abstract constraint x ∈ X is often convenient in representing conditions
of a more complicated or open-ended nature, to be worked out later, but also
for conditions too simple to be worth introducing constraint functions for, such
as upper or lower bounds on the variables xj as components of x.

1.2 Example (box constraints). A set X ⊂ IRn is called a box if it is a product
X1 × · · · × Xn of closed intervals Xj of IR, not necessarily bounded. The
condition x ∈ X , a box constraint on x = (x1, . . . , xn), then restricts each
variable xj to Xj. For instance, the nonnegative orthant

IRn
+
:=

{
x = (x1, . . . , xn)

∣∣xj ≥ 0 for all j
}
= [0,∞)n

is a box in IRn; the constraint x ∈ IRn
+ restricts all variables to be nonnegative.

With X = IRs
+
× IRn−s = [0,∞)s × (−∞,∞)n−s, only the first s variables xj

would have to be nonnegative. In other cases, useful for technical reasons, some
intervals Xj could have the degenerate form [cj, cj ], which would force xj = cj .

Constraints refer to the structure of the set over which the minimization or
maximization should effectively take place, and in the approach of identifying
a problem with a function f : IRn → IR they enter the specification of f . But
the structure of the function being minimized or maximized can be affected by
constraint representations in other ways as well.
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1.3 Example (penalties and barriers). Instead of imposing a direct constraint
fi(x) ≤ 0 or fi(x) = 0, one could add a term θi

(
fi(x)

)
to the function being

minimized, where θi : IR→ IR has θi(t) = 0 for t ≤ 0 but is positive for values
of fi that violate the condition in question. Then θi is a penalty function
associated with fi. A problem of minimizing f0(x) over x ∈ X subject to
constraints on f1(x), . . . , fm(x), might in this way be replaced by:

minimize f0(x) + θ1
(
f1(x)

)
+ · · ·+ θm

(
fm(x)

)
subject to x ∈ X.

A related idea in lieu of fi(x) ≤ 0 is adding a term θi
(
fi(x)

)
where θi is a

barrier function: θi(t) =∞ for t ≥ 0, and θi(t)→∞ as t ↗ 0.

penalty

(a)

barrier

(b)

θ θ

Fig. 1–2. (a) A penalty function with rewards. (b) A barrier function.

As a penalty substitute for a constraint fi(x) ≤ 0, for instance, a term
θi
(
fi(x)

)
with θi(t) = λt+, where t+ := max{0, t} and λ > 0, would give so-

called linear penalties , while θi(t) =
1
2λt

2
+ would give quadratic penalties. The

penalty function

θi(t) =

{
0 if t ≤ 0,
∞ if t > 0,

would enforce fi(x) ≤ 0 by triggering an infinite cost for any transgression.
This is the limiting case of linear or quadratic penalties when λ→∞. Penalty
functions can also involve negative values (rewards) when a constraint fi(x) ≤ 0
is satisfied with room to spare, cf. Figure 1–2(a); the same for barrier functions,
cf. Fig 1–2(b). Common barrier functions for fi(x) ≤ 0 are, for any ε > 0,

θi(t) =

{
ε/|t| when t < 0,
∞ when t ≥ 0,

or θi(t) =

{
−ε log |t| when t < 0,
∞ when t ≥ 0.

These examples underscore the useful range of possibilities opened up
by admitting extended-real-valued functions. They also show that properties
like differentiability which are routinely assumed in classical analysis can’t be
counted on in variational analysis. A function of the composite kind in 1.3 can
fail to be differentiable regardless of the degree of differentiability of the fi’s
because of kinks and jumps induced by the θi’s, which may be essential to the
problem model being used.
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Everything said about minimization can be translated into the language
of maximization, with −∞ taking the part of ∞. Such symmetry is reassur-
ing, but it must be understood that a basic asymmetry is implicit too in the
approach we’re taking. In passing from the minimization of a given function
over C to the minimization of a corresponding function over IRn, we’ve resorted
to an extension by the value ∞, but in the case of maximization it would be
−∞. The extended function would then be different, and so would be the
properties we’d like it to have. In effect we’re abandoning any predisposition
toward having a theory that treats maximization and minimization together on
an equal footing. In the assumptions eventually imposed to identify the classes
of functions most suitable for applying these operations, we mark out separate
territories for each.

In actual practice there’s rarely a need to consider both minimization and
maximization simultaneously for a single combination of a function f and a
set C, so this approach causes no discomfort. Rather than spend too many
words on parallel statements, we adopt minimization as the vehicle of expo-
sition and mention maximization only from time to time, taking for granted
that the reader will generally understand the accommodations needed in that
direction. We thereby enter a pattern of working mainly with extended-real-
valued functions on IRn and treating them in a one-sided manner where ∞ has
a qualitatively different role from that of −∞ in our formulas, and where the
terminology and notation reflect this bias.

Starting off now on this path, we introduce for f : IRn → IR the set

dom f :=
{
x ∈ IRn

∣∣ f(x) <∞}
,

called the effective domain of f , and write

inf f := infx f(x) := inf
x∈IRn

f(x) = inf
x∈dom f

f(x),

argmin f := argminx f(x) := argmin
x∈IRn

f(x) = argmin
x∈dom f

f(x).

We call f a proper function if f(x) < ∞ for at least one x ∈ IRn, and f(x) >
−∞ for all x ∈ IRn, or in other words, if dom f is a nonempty set on which f is
finite; otherwise it is improper . The proper functions f : IRn → IR are thus the
ones obtained by taking a nonempty set C ⊂ IRn and a function f : C → IR,
and putting f(x) =∞ for all x �∈ C. All other kinds of functions f : IRn → IR
are termed improper in this context. While proper functions are our central
concern, improper functions may arise indirectly and can’t always be excluded
from consideration.

The developments so far can be summarized as follows in the language of
optimization.

1.4 Example (principle of abstract minimization). Problems of minimizing a
finite function over some subset of IRn correspond one-to-one with problems of
minimizing over all of IRn a function f : IRn → IR, under the identifications:
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dom f = set of feasible solutions,

argmin f = set of optimal solutions,

inf f = optimal value.

The convention that argmin f = ∅ when f ≡ ∞ ensures that a problem
is not regarded as having an optimal solution if it doesn’t even have a feasible
solution. A lack of feasible solutions is signaled by the optimal value being ∞.

argmin f

f

IR

nIR

Fig. 1–3. Local and global optimality in a difficult yet classical case.

It should be emphasized here that the notation argmin f refers to points
x̄ giving a global minimum of f . A local minimum occurs at x̄ if f(x̄) <∞ and
f(x) ≥ f(x̄) for all x ∈ V , where

V ∈ N (x̄) := the collection of all neighborhoods of x̄.

Then x̄ is a locally optimal solution to the problem of minimizing f . By a
neighborhood of x one means any set having x in its interior, for example a
closed ball

IB(x, λ) :=
{
x′

∣∣ d(x, x′) ≤ λ},
where we use the notation

d(x, x′) := |x− x′| (Euclidean distance), with

|x| := |(x1, . . . , xn)| =
√
x21 + · · ·+ x2n (Euclidean norm).

A point x̄ giving a local minimum of f can also be viewed as giving the global
minimum in an auxiliary problem in which the function agrees with f on some
neighborhood of x̄ but takes the value ∞ elsewhere, so the study of local
optimality can to a large extent be subsumed into the study of global optimality.

An extremely useful type of function in the framework we’re adopting is
the indicator function δC of a set C ⊂ IRn, which is defined by

δC(x) = 0 if x ∈ C, δC(x) =∞ if x �∈ C.
The indicator functions on IRn are characterized as a class by taking on no value
other than 0 or ∞. The constant function 0 is the indicator of C = IRn, while
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the constant function ∞ is the indicator of C = ∅. Obviously dom δC = C,
and δC is proper if and only if C is nonempty.

There’s no question of our wanting to minimize a function like δC , but
indicators nonetheless are important in problems of minimization. To take
a simple but revealing case, suppose we’re given a finite-valued function f0 :
IRn → IR and wish to minimize it over a set C ⊂ IRn. This is equivalent, as
already seen, to minimizing a certain extended-real-valued function f over all
of IRn, namely the one defined by f(x) = f0(x) for x ∈ C but f(x) = ∞ for
x �∈ C. The new observation is that f = f0+δC . The constraint x ∈ C can thus
be enforced by adding its indicator to the function being minimized. Similarly,
the condition that x̄ be locally optimal in minimizing f can be expressed by
x̄ ∈ argmin

(
f + δV

)
for some V ∈ N (x̄).

By identifying each set C with its indicator δC , we can pass between
facts about subsets of IRn and facts about extended-real-valued functions on
IRn. This helps to cross-fertilize between geometrical and analytical concepts.
Further assistance comes from identifying functions on IRn with certain subsets
of IRn+1, as we explain next.

B. Epigraphs and Semicontinuity

Ideas of geometry have traditionally been brought to bear in the study of func-
tions and mappings by applying them to graphs. In variational analysis, graphs
continue to serve this purpose for vector-valued functions, but extended-real-
valued functions require a different perspective. The graph of such a function
on IRn would generally be a subset of IRn × IR rather than IRn+1, and this
wouldn’t be convenient because IRn × IR isn’t a vector space. Anyway, even
if extended values weren’t an issue, the geometry of graphs wouldn’t convey
the properties that turn out to be crucial for our purposes. Graphs have to be
replaced by ‘epigraphs’.

For f : IRn → IR, the epigraph of f is the set

epi f :=
{
(x, α) ∈ IRn × IR ∣∣α ≥ f(x)}

(see Figure 1–4). The epigraph thus consists of all the points of IRn+1 lying
on or above the graph of f . (Note that epi f is truly a subset of IRn+1, not
just of IRn × IR.) The image of epi f under the projection (x, α) �→ x is
dom f . The points x where f(x) = ∞ are the ones such that the vertical line
(x, IR) := {x} × IR misses epi f , whereas the points where f(x) = −∞ are the
ones such that this line is entirely included in epi f .

What distinguishes the class of subsets of IRn+1 that are the epigraphs
of the extended-real-valued functions on IRn? Clearly E belongs to this ‘epi-
graphical’ class if and only if it intersects every vertical line (x, IR) in a closed
interval which, unless empty, is unbounded above. The associated function in
that case is proper if and only if E includes no entire vertical line, and E �= ∅.
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Every property of f has its counterpart in a property of epi f , because the
correspondence between functions and epigraphs is one-to-one. Many proper-
ties also relate very naturally to the various level sets of f . In general, we’ll
find it useful to have the notation

lev≤α f :=
{
x ∈ IRn

∣∣ f(x) ≤ α},
lev

<α f :=
{
x ∈ IRn

∣∣ f(x) < α
}
,

lev
=α f :=

{
x ∈ IRn

∣∣ f(x) = α
}
,

lev
>α f :=

{
x ∈ IRn

∣∣ f(x) > α
}
,

lev≥α f :=
{
x ∈ IRn

∣∣ f(x) ≥ α}.
The most important of these in the context of minimization are the lower level
sets lev≤α f . For α finite, they correspond to the ‘horizontal cross sections’ of
epi f . For α = inf f , one has lev≤α f = lev

=α f = argmin f .

epi f

f
α

n
dom f

lev f_α<

IR

IR

Fig. 1–4. Epigraph and effective domain of an extended-real-valued function.

We’re ready now to answer a basic question about a function f : IRn → IR.
What property of f translates into the sets lev≤α f all being closed? The
answer depends on a one-sided concept of limit.

1.5 Definition (lower limits and lower semicontinuity). The lower limit of a
function f : IRn → IR at x̄ is the value in IR defined by

lim inf
x→x̄

f(x) : = lim
δ ↘ 0

[
inf

x∈IB(x̄,δ)
f(x)

]

= sup
δ>0

[
inf

x∈IB(x̄,δ)
f(x)

]
= sup

V ∈N (x̄)

[
inf
x∈V

f(x)

]
.

1(1)

The function f : IRn → IR is lower semicontinuous (lsc) at x̄ if

lim inf
x→x̄

f(x) ≥ f(x̄), or equivalently lim inf
x→x̄

f(x) = f(x̄), 1(2)

and lower semicontinuous on IRn if this holds for every x̄ ∈ IRn.

The two versions in 1(2) agree because inf
{
f(x)

∣∣x ∈ IB(x̄, δ)
} ≤ f(x̄) for
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all δ > 0. For this reason too,

lim inf
x→x̄

f(x) ≤ f(x̄) always. 1(3)

In replacing the limit as δ ↘ 0 by the supremum over δ > 0 in 1(1) we appeal
to the general fact that

inf
x∈X1

f(x) ≤ inf
x∈X2

f(x) when X1 ⊃ X2.

1.6 Theorem (characterization of lower semicontinuity). The following proper-
ties of a function f : IRn → IR are equivalent:

(a) f is lower semicontinuous on IRn;

(b) the epigraph set epi f is closed in IRn × IR;
(c) the level sets of type lev≤α f are all closed in IRn.

These equivalences will be established after some preliminaries. An exam-
ple of a function on IR that happens to be lower semicontinuous at every point
but two is displayed in Figure 1–5. Notice how the defect is associated with
the failure of the epigraph to include all of its boundary.

f

epi f

x n

IR

IR

Fig. 1–5. An example where lower semicontinuity fails.

In the proof of Theorem 1.6 and throughout the book, we use sequence
notation in which the running index is always superscript ν (Greek ‘nu’). We
symbolize the natural numbers by IN , so that ν ∈ IN means ν = 1, 2, . . .. The
notation xν → x, or x = limν x

ν , refers then to a sequence
{
xν

}
ν∈IN

in IRn

that converges to x, i.e., has |xν − x| → 0 as ν → ∞. We speak of x as a
cluster point of xν as ν → ∞ if, instead of necessarily claiming xν → x, we
wish merely to assert that some subsequence converges to x. (Every bounded
sequence in IRn has at least one cluster point. A sequence in IRn converges to
x if and only if it is bounded and has x as its only cluster point.)

1.7 Lemma (characterization of lower limits).

lim inf
x→x̄

f(x) = min
{
α ∈ IR ∣∣ ∃xν → x̄ with f(xν)→ α

}
.

(Here the constant sequence xν ≡ x̄ is admitted and yields α = f(x̄).)
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Proof. By the conventions explained at the outset of this chapter, the ‘min’
in place of ‘inf’ means that the value on the left is not only the greatest lower
bound in IR of the possible limit values α described in the set on the right,
it’s actually attained as the limit corresponding to some sequence xν → x̄. Let
ᾱ = lim infx→x̄ f(x). We first suppose that xν → x̄ with f(xν) → α and show
this implies α ≥ ᾱ. For any δ > 0 we eventually have xν in the ball IB(x̄, δ)
and therefore f(xν) ≥ inf

{
f(x)

∣∣x ∈ IB(x̄, δ)
}
. Taking the limit in ν with δ

fixed, we get α ≥ inf
{
f(x)

∣∣x ∈ IB(x̄, δ)
}
for arbitrary δ > 0, hence α ≥ ᾱ.

Next we must demonstrate the existence of xν → x̄ such that actually
f(xν)→ ᾱ. Let ᾱν = inf

{
f(x)

∣∣x ∈ IB(x̄, δν)
}
for a sequence of values δν ↘ 0.

The definition of the lower limit ᾱ assures us that ᾱν → ᾱ. For each ν it is
possible to find xν ∈ IB(x̄, δν) for which f(xν) is as near as we please to ᾱν ,
say in the interval [ᾱν , αν ], where αν is chosen to satisfy αν > ᾱν and αν → ᾱ.
(If ᾱ = ∞, we get f(xν) = ᾱν = ∞ automatically.) Then obviously xν → x
and f(xν) has the same limit as ᾱν , namely ᾱ.

dom f

epi f

n

IR

IR

Fig. 1–6. An lsc function with effective domain not closed or connected.

Proof of 1.6. (a)⇒(b). Suppose (xν , αν) ∈ epi f and (xν , αν) → (x̄, α) with
α finite. We have xν → x̄ and αν → α with αν ≥ f(xν) and must show that
α ≥ f(x̄), so that (x̄, α) ∈ epi f . The sequence

{
f(xν)

}
has at least one cluster

point β ∈ IR. We can suppose (through replacing the sequence
{
(xν , αν)

}
ν∈IN

by a subsequence if necessary) that f(xν) → β. In this case α ≥ β, but also
β ≥ lim infx→x̄ f(x) by Lemma 1.7. Then α ≥ f(x̄) by our assumption of lower
semicontinuity.

(b)⇒(c). When epi f is closed, so too is the intersection [epi f ] ∩ (IRn, α)
for each α ∈ IR. This intersection in IRn × IR corresponds geometrically to the
set lev≤α f in IRn, which therefore is closed. The set lev≤−∞ f = lev=−∞ f ,
being the intersection of these closed sets as α ranges over IR, is closed also,
whereas lev≤∞ f is just the whole space IRn.

(c)⇒(a). Fix any x̄ and let ᾱ = lim infx→x̄ f(x). To establish that f is lsc
at x̄, it will suffice to show f(x̄) ≤ ᾱ, since the opposite inequality is automatic.
The case of ᾱ =∞ is trivial, so suppose ᾱ <∞. Consider a sequence xν → x̄
with f(xν)→ ᾱ, as guaranteed by Lemma 1.7. For any α > ᾱ it will eventually
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be true that f(xν) ≤ α, or in other words, that xν belongs to lev≤α f . Since
xν → x̄, this level set, which by assumption is closed, must contain x̄. Thus
we have f(x̄) ≤ α for every α > ᾱ. Obviously, then, f(x̄) ≤ ᾱ.

When Theorem 1.6 is applied to indicator functions, it reduces to the fact
that δC is lsc if and only if the set C is closed. The lower semicontinuity of
a general function f : IRn → IR doesn’t require dom f to be closed, however,
even when dom f happens to be bounded. Figure 1–6 illustrates this.

C. Attainment of a Minimum

Another question can now be addressed. What conditions on a function f :
IRn → IR ensure that f attains its minimum over IRn at some x, i.e., that the
set argmin f is nonempty? The issue is central because of the wide spectrum
of minimization problems that can be put into this simple-looking form.

A fact customarily cited is this: a continuous function on a compact set
attains its minimum. It also, of course, attains its maximum; this assertion
is symmetric with respect to max and min. A more flexible approach is de-
sirable, however. We don’t always wish to single out a compact set, and con-
straints might not even be present. The very distinction between constrained
and unconstrained minimization is suppressed in working with the principle of
abstract minimization in 1.4, not to mention problem formulations involving
penalty expressions as in 1.3. It’s all just a matter of whether the function f
being minimized takes on the value∞ in some regions or not. Another feature
is that the functions we want to deal with may be far from continuous. The one
in Figure 1–6 is a case in point, but that function f does attain its minimum.
A property that’s crucial in this regard is the following.

1.8 Definition (level boundedness). A function f : IRn → IR is (lower) level-
bounded if for every α ∈ IR the set lev≤α f is bounded (possibly empty).

Note that only finite values of α are considered in this definition. The level
boundedness property corresponds to having f(x)→∞ as |x| → ∞.

1.9 Theorem (attainment of a minimum). Suppose f : IRn → IR is lower semi-
continuous, level-bounded and proper. Then the value inf f is finite and the
set argmin f is nonempty and compact.

Proof. Let ᾱ = inf f ; because f is proper, ᾱ < ∞. For α ∈ (ᾱ,∞), the set
lev≤α f is nonempty; it’s closed because f is lsc (cf. 1.6) and bounded because
f is level-bounded. The sets lev≤α f for α ∈ (ᾱ,∞) are therefore compact
and nested: lev≤α f ⊂ lev≤β f when α < β. The intersection of this family of
sets, which is lev≤ᾱ f = argmin f , is therefore nonempty and compact. Since f
doesn’t have the value −∞ anywhere, we conclude also that ᾱ is finite. Under
these circumstances, inf f can be written as min f .
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1.10 Corollary (lower bounds). If f : IRn → IR is lsc and proper, then it
is bounded from below (finitely) on each bounded subset of IRn and in fact
attains a minimum relative to any compact subset of IRn that meets dom f .

Proof. For any bounded set B ⊂ IRn apply the theorem to the function g
defined by g(x) = f(x) when x ∈ clB but g(x) = ∞ when x /∈ clB. The case
where g ≡ ∞ can be dealt with as a triviality, while in all other cases g is lsc,
level-bounded and proper.

The conclusion of Theorem 1.9 would hold with level boundedness replaced
by the weaker assumption that, for some α ∈ IR, the set lev≤α f is bounded
and nonempty; this is easily gleaned from the proof. But level boundedness is
more convenient to work with in applications, and it’s typically present anyway
in situations where the attainment of a minimum is sought.

The crucial ingredient in Theorem 1.9 is the fact that when f is both
lsc and level-bounded it is inf-compact , which means that the sets lev≤α f for
α ∈ IR are all compact. This property is very flexible in providing a criterion
for the existence of optimal solutions, and it can be applied to a variety of
problems, with or without constraints.

1.11 Example (level boundedness relative to constraints). For a problem of
minimizing a continuous function f0 : IRn → IR over a nonempty, closed set
C ⊂ IRn, if all sets of the form{

x ∈ C ∣∣ f0(x) ≤ α} for α ∈ IR
are bounded, then the minimum of f0 over C is finite and attained on a
nonempty, compact subset of C.

This criterion is fulfilled in particular if C is bounded or if f0 is level
bounded, with the latter condition covering even the case of unconstrained
minimization, where C = IRn.

Detail. The problem corresponds to minimizing f = f0 + δC over IRn. Here
f is proper because C �= ∅, and it’s lsc by 1.6 because its level sets of the form
C ∩ {

x
∣∣ f0(x) ≤ α

}
for α < ∞ are closed—by virtue of the closedness of C

and the continuity of f0. In assuming these sets are also bounded, we get the
desired conclusions from 1.9.

An illustration of existence in the pattern of Example 1.11 with C not
necessarily bounded but f0 inf-compact is furnished by f0(x) = |x|. The min-
imization problem consists then of finding the point or points of C nearest to
the origin of IRn. Theorem 1.9 is also applicable, of course, to minimization
problems that do not fit the pattern of 1.11 at all. For instance, in minimizing
the function in Figure 1–6 one isn’t simply minimizing a continuous function
relative to a closed set, but the conditions in 1.9 are satisfied and a minimizing
point exists. This is the kind of situation encountered in general when dealing
with barrier functions, for instance.
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D. Continuity, Closure and Growth

These results for minimization can be extended in evident ways to maximiza-
tion. Instead of the lower limit of f at x̄, the required concept in dealing with
maximization is that of the upper limit

lim sup
x→x̄

f(x) : = lim
δ ↘ 0

[
sup

x∈IB(x̄,δ)

f(x)

]

= inf
δ>0

[
sup

x∈IB(x̄,δ)

f(x)

]
= inf

V ∈N (x̄)

[
sup
x∈V

f(x)

]
.

1(4)

The function f is upper semicontinuous (usc) at x̄ if this value equals f(x̄).
Upper semicontinuity at every point of IRn corresponds geometrically to the
closedness of the hypograph of f , which is the set

hypo f :=
{
(x, α) ∈ IRn × IR ∣∣α ≤ f(x)}, 1(5)

and the closedness of the upper level sets lev≥α f . Corresponding to the lower
limit formula in Lemma 1.7, there’s the upper limit formula

lim sup
x→x̄

f(x) = max
{
α ∈ IR ∣∣∃xν → x̄ with f(xν)→ α

}
.

hypo f

f

n

RI

RI

Fig. 1–7. The hypograph of a function.

Of course, f is regarded as continuous if x→ x̄ implies f(x)→ f(x̄), with
the obvious interpretation being made when f(x̄) =∞ or f(x̄) = −∞.

1.12 Exercise (continuity of functions). A function f : IRn → IR is continuous
if and only if it is both lower semicontinuous and upper semicontinuous:

lim
x→x̄

f(x) = f(x̄) ⇐⇒ lim inf
x→x̄

f(x) = lim sup
x→x̄

f(x).

Upper and lower limits of the values of f also serve to describe the closure
and interior of epi f . In stating the facts in this connection, we use the notation
that
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clC = closure of C =
{
x
∣∣ ∀V ∈ N (x), V ∩ C �= ∅},

intC = interior of C =
{
x
∣∣∃V ∈ N (x), V ⊂ C},

bdryC = boundary of C = clC \ intC (set difference).

1.13 Exercise (closures and interiors of epigraphs). For an arbitrary function
f : IRn → IR and a pair of elements x̄ ∈ IRn and ᾱ ∈ IR, one has

(a) (x̄, ᾱ) ∈ cl(epi f) if and only if ᾱ ≥ lim infx→x̄ f(x),

(b) (x̄, ᾱ) ∈ int(epi f) if and only if ᾱ > lim supx→x̄ f(x),

(c) (x̄, ᾱ) /∈ cl(epi f) if and only if (x̄, ᾱ) ∈ int(hypo f),

(d) (x̄, ᾱ) /∈ int(epi f) if and only if (x̄, ᾱ) ∈ cl(hypo f).

Semicontinuity properties of a function f : IRn → IR are ‘constructive’ to
a certain extent. If f is not lower semicontinuous, its epigraph is not closed (cf.
1.6), but the set E := cl(epi f) is not only closed, it’s the epigraph of another
function. This function is lsc and is the greatest (the highest) of all the lsc
functions g such that g ≤ f . It is called lsc regularization, or more simply, the
lower closure of f , and is denoted by cl f ; thus

epi(cl f) := cl(epi f). 1(6)

The direct formula for cl f in terms of f is seen from 1.13(a) to be

(cl f)(x) = lim inf
x′→x

f(x′). 1(7)

To understand this further, the reader may try the operation out on the function
in Figure 1–5. Of course, cl f ≤ f always.

The usc regularization or upper closure of f is analogously defined in terms
of closing hypo f , which amounts to taking the upper limit of f at every point x.
(With cl f denoting the lower closure, − cl(−f) is the upper closure.) Although
lower and upper semicontinuity can separately be arranged in this manner, f
obviously can’t be redefined to be continuous at x unless the two regularizations
happen to agree at x.

Lower and upper limits of f at infinity instead of at a point x̄ are also
of interest, especially in connection with various growth properties of f in the
large. They are defined by

lim inf
|x|→∞

f(x) := lim
r↗∞

inf
|x|≥r

f(x), lim sup
|x|→∞

f(x) := lim
r↗∞

sup
|x|≥r

f(x). 1(8)

1.14 Exercise (growth properties). For a function f : IRn → IR and exponent
p ∈ (0,∞), if f is lsc and f > −∞ one has

lim inf
|x|→∞

f(x)

|x|p = sup
{
γ ∈ IR

∣∣∣ ∃β ∈ IR with f(x) ≥ γ|x|p + β for all x
}
,

whereas if f is usc and f <∞ one has
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lim sup
|x|→∞

f(x)

|x|p = inf
{
γ ∈ IR

∣∣∣ ∃β ∈ IR with f(x) ≤ γ|x|p + β for all x
}
.

Guide. For the first equation, denote the ‘lim inf’ by γ̄ and the set on the
right by Γ . Begin by showing that for any γ ∈ Γ one has γ ≤ γ̄. Next argue
that for finite γ < γ̄ the inequality f(x) ≥ γ|x|p will hold for all x outside a
certain bounded set B. Then, by appealing to 1.10 on B, demonstrate that
by subtracting off a sufficiently large constant from γ|x|p an inequality can be
made to hold on all of IRn that corresponds to γ being in Γ .

E. Extended Arithmetic

In applying the results so far to particular functions f , one has to be able to
verify the needed semicontinuity. As with continuity, it’s helpful to know how
semicontinuity behaves relative to the operations often used in constructing a
function from others, and criteria for this will be developed shortly. A question
that sometimes must be settled first is the very meaning of such operations for
functions having infinite values. Expressions like f1(x)+ f2(x) and λf(x) have
to be interpreted properly in cases involving ∞ and −∞.

Although the arithmetic of IR doesn’t carry over to IR without certain
deficiencies, many rules extend in an obvious manner. For instance, ∞ +
α should be regarded as ∞ for any real α. The only combinations raising
controversy are 0·∞ and ∞−∞. It’s expedient to set

0·∞ = 0 = 0·(−∞),

but there’s no single, symmetric way of handling ∞−∞. Because we orient
toward minimization, the convention we’ll generally use is inf-addition:

∞+ (−∞) = (−∞) +∞ =∞.
(The opposite convention in IR is sup-addition; we won’t invoke it without ex-
plicit warning.) Extended arithmetic then obeys the associative, commutative
and distributive laws of ordinary arithmetic with one crucial exception:

λ·(∞−∞) �= (λ·∞ − λ·∞) when λ < 0.

With a little experience, it’s as easy to cope with this as it is to keep on the
lookout for implicit division by 0 in algebraic formulas. Since α− α �= 0 when
α = ∞ or α = −∞, one must in particular refrain from canceling from both
sides of an equation a term that might be ∞ or −∞.

Lower and upper limits for functions are closely related to the concept of
the lower and upper limit of a sequence of numbers αν ∈ IR, defined by

lim inf
ν→∞

αν := lim
ν→∞

[
inf
κ≥ν

ακ

]
, lim sup

ν→∞
αν := lim

ν→∞

[
sup
κ≥ν

ακ

]
. 1(9)
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1.15 Exercise (lower and upper limits of sequences). The cluster points of any
sequence {αν}ν∈IN in IR form a closed set of numbers in IR, of which the lowest
is lim infν α

ν and the highest is lim supν α
ν . Thus, at least one subsequence of

{αν}ν∈IN converges to lim infν α
ν , and at least one converges to lim supν α

ν .

In applying ‘lim inf’ and ‘lim sup’ to sums and scalar multiples of sequences
of numbers there’s an important caveat: the rules for ∞−∞ and 0·∞ aren’t
necessarily preserved under limits:

• αν → α and βν → β =⇒/ αν + βν → α+ β when α + β =∞−∞;

• αν → α and βν → β =⇒/ αν·βν → α·β when α·β = 0·(±∞).

Either of the sequences {αν} or {βν} could overpower the other, so limits
involving ∞−∞ or 0·∞ may be ‘indeterminate’.

F. Parametric Dependence

The themes of extended-real-valued representation, semicontinuity and level
boundedness pervade the parametric study of problems of minimization as
well. From 1.4, a minimization problem in n variables can be specified by a
single function on IRn, as long as infinite values are admitted. Therefore, a
problem in n variables that depends on m parameters can be specified by a
single function f : IRn × IRm → IR: for each vector u = (u1, . . . , um) there is
the problem of minimizing f(x, u) with respect to x = (x1, . . . , xn). No loss
of generality is involved in having u range over all of IRm, since applications
where u lies naturally in some subset U of IRm can be handled by defining
f(x, u) =∞ for u /∈ U .

Important issues are the behavior with respect to u of the optimal value
and optimal solutions of this problem in x. A parametric extension of the level
boundedness concept in 1.8 will help in the analysis.

1.16 Definition (uniform level boundedness). A function f : IRn × IRm → IR
with values f(x, u) is level-bounded in x locally uniformly in u if for each ū ∈
IRm and α ∈ IR there is a neighborhood V ∈ N (ū) along with a bounded set
B ⊂ IRn such that

{
x
∣∣ f(x, u) ≤ α

} ⊂ B for all u ∈ V ; or equivalently, there

is a neighborhood V ∈ N (ū) such that the set
{
(x, u)

∣∣u ∈ V, f(x, u) ≤ α
}
is

bounded in IRn × IRm.

1.17 Theorem (parametric minimization). Consider

p(u) := infx f(x, u), P (u) := argminx f(x, u),

in the case of a proper, lsc function f : IRn × IRm → IR such that f(x, u) is
level-bounded in x locally uniformly in u.

(a) The function p is proper and lsc on IRm, and for each u ∈ dom p the
set P (u) is nonempty and compact, whereas P (u) = ∅ when u /∈ dom p.
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(b) If xν ∈ P (uν), and if uν → ū ∈ dom p in such a way that p(uν)→ p(ū)
(as when p is continuous at ū relative to a set U containing ū and uν), then
the sequence {xν}ν∈IN is bounded, and all its cluster points lie in P (ū).

(c) For p to be continuous at a point ū relative to a set U containing ū,
a sufficient condition is the existence of some x̄ ∈ P (ū) such that f(x̄, u) is
continuous in u at ū relative to U .

Proof. For each u ∈ IRm let fu(x) = f(x, u). As a function on IRn, either
fu ≡ ∞ or fu is proper, lsc and level-bounded, so that Theorem 1.9 is applicable
to the minimization of fu. The first case, which corresponds to p(u) =∞, can’t
hold for every u, because f �≡ ∞. Therefore dom p �= ∅, and for each u ∈ dom p
the value p(u) = inf fu is finite and the set P (u) = argmin fu is nonempty and
compact. In particular, p(u) ≤ α if and only if there is an x with f(x, u) ≤ α.
Hence for V ⊂ IRm we have

(lev≤α p) ∩ V = [ image of (lev≤α f) ∩ (IRn × V ) under (x, u) �→ u ].

Since the image of a compact set under a continuous mapping is compact, we
see that (lev≤α p) ∩ V is closed whenever V is such that (lev≤α f) ∩ (IRn × V )
is closed and bounded. From the uniform level boundedness assumption, any
ū ∈ IRm has a neighborhood V such that (lev≤α f) ∩ (IRn × V ) is bounded;
replacing V by a smaller, closed neighborhood of ū if necessary, we can get
(lev≤α f) ∩ (IRn × V ) also to be closed, because f is lsc. Thus, each ū ∈ IRm

has a neighborhood whose intersection with lev≤α p is closed, hence lev≤α p
itself is closed. Then p is lsc by 1.6(c). This proves (a).

In (b) we have for any α > p(ū) that eventually α > p(uν) = f(xν, uν).
Again taking V to be a closed neighborhood of ū as in Definition 1.16, we
see that for all ν sufficiently large the pair (xν , uν) lies in the compact set
(lev≤α f) ∩ (IRn × V ). The sequence {xν}ν∈IN is therefore bounded, and for
any cluster point x̄ we have (x̄, ū) ∈ lev≤α f . This being true for arbitrary
α > p(ū), we see that f(x̄, ū) ≤ p(ū), which means that x̄ ∈ P (ū).

In (c) we have p(u) ≤ f(x̄, u) for all u and p(ū) = f(x̄, ū). The upper
semicontinuity of f(x̄, ·) at ū relative to any set U containing ū therefore implies
the upper semicontinuity of p at ū. Inasmuch as p is already known to be lsc
at ū, we can conclude in this case that p is continuous at ū relative to U .

A simple example of how p(u) = infx f(x, u) can fail to be lsc is furnished
by f(x, u) = exu on IR1 × IR1. This has p(u) = 0 for all u �= 0, but p(0) = 1;
the set P (u) = argminx f(x, u) is empty for all u �= 0, but P (0) = (−∞,∞).
Switching to f(x, u) = |2exu − 1|, we get the same function p and the same
set P (0), but P (u) �= ∅ for u �= 0, with P (u) consisting of a single point. In
this case like the previous one, Theorem 1.17 isn’t applicable; actually, f(x, u)
isn’t level-bounded in x for any u. A more subtle example is obtained with
f(x, u) = min

{ |x − u−1|, 1 + |x|} when u �= 0, but f(x, u) = 1 + |x| when
u = 0. This is continuous in (x, u) and level-bounded in x for each u, but not
locally uniformly in u. Once more, p(u) = 0 for u �= 0 but p(0) = 1; on the
other hand, P (u) = {1/u} for u �= 0, but P (0) = {0}.
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The important question of when actually p(uν) → p(ū) for a sequence
uν → ū, as called for in 1.17(b), goes far beyond the simple sufficient condition
offered in 1.17(c). A fully satisfying answer will have to await the theory of
‘epi-convergence’ in Chapter 7.

Parametric minimization has a simple geometric interpretation.

1.18 Proposition (epigraphical projection). Suppose p(u) = infx f(x, u) for a
function f : IRn × IRm → IR, and let E be the image of epi f under the pro-
jection (x, u, α) �→ (u, α). If for each u ∈ dom p the set P (u) = argminx f(x, u)
is attained, then epi p = E. In general, epi p is the set obtained by adjoining
to E any lower boundary points that might be missing, i.e., by closing the
intersection of E with each vertical line in IRm × IR.
Proof. This is clear from the projection argument given for Theorem 1.17.

α

epi p
epi f

u

x

Fig. 1–8. Epigraphical projection in parametric minimization.

1.19 Exercise (constraints in parametric minimization). For each u in a closed
set U ⊂ IRm let p(u) denote the optimal value and P (u) the optimal solution
set in the problem

minimize f0(x, u) over all x ∈ X satisfying fi(x, u)

{≤ 0 for i ∈ I1,
= 0 for i ∈ I2,

for a closed set X ⊂ IRn and continuous functions fi : X × U �→ IR (for
i ∈ {0} ∪ I1 ∪ I2). Suppose that for each ū ∈ U , ε > 0 and α ∈ IR the set of
pairs (x, u) ∈ X ×U satisfying |u− ū| ≤ ε and f0(x, u) ≤ α, along with all the
constraints indexed by I1 and I2, is bounded in IRn × IRm.

Then p is lsc on U , and for every u ∈ U with p(u) < ∞ the set P (u)
is nonempty and compact. If only f0 depends on u, and the constraints are
satisfied by at least one x, then dom p = U , and p is continuous relative to U .
In that case, whenever xν ∈ P (uν) with uν → ū in U , all the cluster points of
the sequence {xν}ν∈IN are in P (ū).

Guide. This is obtained from Theorem 1.17 by taking f(x, u) = f0(x, u) when
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(x, u) ∈ X×U and all the constraints are satisfied, but f(x, u) =∞ otherwise.
Then p(u) is assigned the value ∞ when u /∈ U .

1.20 Example (distance functions and projections). For any nonempty, closed
set C ⊂ IRn, the distance dC(x) of a point x from C depends continuously
on x, while the projection PC(x), consisting of the points of C nearest to x is
nonempty and compact. Whenever wν ∈ PC(x

ν) and xν → x̄, the sequence
{wν}ν∈IN is bounded and all its cluster points lie in PC(x̄).

Detail. Taking f(w, x) = |w − x| + δC(w), we get dC(x) = infw f(w, x) and
PC(x) = argminw f(w, x), and we can then apply Theorem 1.17.

1.21 Example (convergence of penalty methods). Suppose a problem of type

minimize f(x) over all x ∈ IRn satisfying F (x) ∈ D,
with proper, lsc f : IRn → IR, continuous F : IRn → IRm, and closed D ⊂ IRm,
is approximated through some penalty scheme by a problem of type

minimize f(x) + θ
(
F (x), r

)
over all x ∈ IRn

with parameter r ∈ (0,∞), where the function θ : IRm×(0,∞)→ IR is lsc with
−∞ < θ(u, r)↗δD(u) as r →∞. Assume that for some r̄ ∈ (0,∞) sufficiently
high the level sets of the function x �→ f(x) + θ

(
F (x), r̄

)
are bounded, and

consider any sequence of parameter values rν ≥ r̄ with rν →∞. Then:

(a) The optimal value in the approximate problem for rν converges to the
optimal value in the true problem.

(b) Any sequence {xν}ν∈IN chosen with xν an optimal solution to the ap-
proximate problem for rν is a bounded sequence such that every cluster point
x̄ is an optimal solution to the true problem.

Detail. Set s̄ = 1/r̄ and define g(x, s) := f(x) + θ̃
(
F (x), s

)
on IRn × IR for

θ̃(u, s) :=

{
θ(u, 1/s) when s > 0 and s ≤ s̄,
δD(u) when s = 0,
∞ when s < 0 or s > s̄.

Identifying the given problem with that of minimizing g(x, 0) in x ∈ IRn, and
identifying the approximate problem for parameter r ∈ [r̄,∞) with that of
minimizing g(x, s) in x ∈ IRn for s = 1/r, we aim at applying Theorem 1.17 to
the ‘inf’ p(s) and the ‘argmin’ P (s).

The function θ̃ on IRm×IR is proper (because D �= ∅), and furthermore it’s
lsc. The latter is evident at all points where s �= 0, while at points where s = 0
it follows from having θ̃(u, s)↗ θ̃(u, 0) as s ↘ 0, since then for any α ∈ IR the
set lev≤α θ̃( · , s) in IRm decreases as s decreases in (0, s̄], the intersection over

all s > 0 being lev≤α θ̃( · , 0). The assumptions that f is lsc, F is continuous
and D is closed, ensure through this that g is lsc, and proper as well unless
g ≡ ∞, in which event everything would trivialize.
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The choice of s̄, along with the monotonicity of θ̃(u, s) in s ∈ (0, s̄], ensures
that g is level bounded in x locally uniformly in s, and that p is nonincreasing
on [0, s̄]. From 1.17(a) we have then that p(s) → p(0) as s ↘ 0. In terms of
sν := 1/rν this gives claim (a), and from 1.17(b) we then have claim (b).

Facts about barrier methods of constraint approximation (cf. 1.3) can like-
wise be deduced from the properties of parametric optimization in 1.17.

G. Moreau Envelopes

These properties support a method of approximating general functions in terms
of certain ‘envelope functions’.

1.22 Definition (Moreau envelopes and proximal mappings). For a proper, lsc
function f : IRn → IR and parameter value λ > 0, theMoreau envelope function
eλf and proximal mapping Pλf are defined by

eλf(x) := infw

{
f(w) +

1

2λ
|w − x|2

}
≤ f(x),

Pλf(x) := argminw

{
f(w) +

1

2λ
|w − x|2

}
.

Here we speak of Pλf as a mapping in the ‘set-valued’ sense that will later
be developed in Chapter 5. Note that if f is an indicator function δC , then
Pλf coincides with the projection mapping PC in 1.20, while eλf is (1/2λ)d2C
for the distance function dC in 1.20.

In general, eλf approximates f from below in the manner depicted in Fig-
ure 1–9. For smaller and smaller λ, it’s easy to believe that, eλf approximates
f better and better, and indeed, 1/λ can be interpreted as a penalty parameter
for a putative constraint w− x = 0 in the minimization defining eλf(x). We’ll
apply Theorem 1.17 in order to draw exact conclusions about this behavior,
which has very useful implications in variational analysis. First, though, we
need an associated definition.

f
λe f

Fig. 1–9. Approximation by a Moreau envelope function.



G. Moreau Envelopes 21

1.23 Definition (prox-boundedness). A function f : IRn → IR is prox-bounded
if there exists λ > 0 such that eλf(x) > −∞ for some x ∈ IRn. The supremum
of the set of all such λ is the threshold λf of prox-boundedness for f .

1.24 Exercise (characteristics of prox-boundedness). For a proper, lsc function
f : IRn → IR, the following properties are equivalent:

(a) f is prox-bounded;

(b) f majorizes a quadratic function (i.e., f ≥ q for a polynomial function
q of degree two or less);

(c) for some r ∈ IR, f + 1
2r| · |2 is bounded from below on IRn;

(d) lim inf
|x|→∞

f(x)/|x|2 > −∞.

Indeed, if rf is the infimum of all r for which (c) holds, the limit in (d) is −1
2rf

and the proximal threshold for f is λf = 1/max{0, rf} (with ‘1/0 =∞’).

In particular, if f is bounded from below, i.e., has inf f > −∞, then f is
prox-bounded with threshold λf =∞.

Guide. Utilize 1.14 in connection with (d). Establish the sufficiency of (b) by
arguing that this condition implies (d).

1.25 Theorem (proximal behavior). Let f : IRn → IR be proper, lsc, and prox-
bounded with threshold λf > 0. Then for every λ ∈ (0, λf ) the set Pλf(x)
is nonempty and compact, whereas the value eλf(x) is finite and depends
continuously on (λ, x), with

eλf(x)↗f(x) for all x as λ↘ 0.

In fact, eλνf(xν) → f(x̄) whenever xν → x̄ while λν ↘ 0 in (0, λf ) in such a
way that the sequence {|xν − x̄|/λν}ν∈IN is bounded.

Furthermore, if wν ∈ Pλνf(xν), xν → x̄ and λν → λ ∈ (0, λf), then the
sequence {wν}ν∈IN is bounded and all its cluster points lie in Pλf(x̄).

Proof. Fixing any λ0 ∈ (0, λf ), we apply 1.17 to the problem of minimizing
h(w, x, λ) in w, where h(w, x, λ) = f(w) + h0(w, x, λ) with

h0(w, x, λ) :=

{
(1/2λ)|w − x|2 when λ ∈ (0, λ0],
0 when λ = 0 and w = x,
∞ otherwise.

Here h0 is lsc, in fact continuous when λ > 0 and also on sets of the form{
(w, x, λ)

∣∣ |w−x| ≤ μλ, 0 ≤ λ ≤ λ0} for any μ > 0. Hence h is lsc and proper.
We verify next that h(w, x, λ) is level-bounded in w locally uniformly in (x, λ).
If not, we could have where h(wν , xν , λν) ≤ ᾱ < ∞ with (xν , λν) → (x̄, λ)
but |wν | → ∞. Then wν �= xν (at least for large ν), so λν ∈ (0, λ0] and
f(wν)+(1/2λν)|wν−xν |2 ≤ ᾱ. The choice of λ0 ensures through the definition
of λf the existence of λ1 > λ0 and β ∈ IR such that f(w) ≥ −(1/2λ1)|w|2 + β.
Then −(1/2λ1)|wν |2+(1/2λ0)|wν−xν |2 ≤ ᾱ−β. In dividing this by |wν |2 and
taking the limit as ν → ∞, we get −(1/2λ1) + (1/2λ0) ≤ 0, a contradiction.
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The conclusions come now from Theorem 1.17, with the continuity properties
of h0 being used in 1.17(c) to see that h(x̄, ·, ·) is continuous relative to sets
containing the sequences {(xν , λν)} that come up.

The fact that eλf is a finite, continuous function, whereas f itself may
merely be lower semicontinuous and extended-real-valued, shows that approx-
imation by Moreau envelopes has a natural effect of ‘regularizing’ a function
f . This hints at some of the uses of such approximation which will later be
prominent in many phases of theory.

In the concept of Moreau envelopes, minimization is used as a means of
defining one function in terms of another, just like composition or integration
can be used in classical analysis. Minimization and maximization have this role
also in defining for any family of functions {fi}i∈I from IRn to IR another such
function, called the pointwise supremum, by(

supi∈I fi
)
(x) := supi∈I fi(x), 1(10)

as well as a function, called the pointwise infimum of the family, by(
infi∈I fi

)
(x) := infi∈I fi(x). 1(11)

epi f

f

if

n

IR

IR

Fig. 1–10. Pointwise max operation: intersection of epigraphs.

Geometrically, these functions have a nice interpretation, cf. Figures 1–
10 and 1–11. The epigraph of the pointwise supremum is the intersection of
the sets epi fi, whereas the epigraph of the pointwise infimum is the ‘vertical
closure’ of the union of the sets epi fi (vertical closure in IRn × IR being the
operation that closes a set’s intersection with each vertical line; cf. 1.18).

1.26 Proposition (semicontinuity under pointwise max and min).

(a) supi∈Ifi is lsc if each fi is lsc;

(b) infi∈Ifi is lsc if each fi is lsc and the index set I is finite;

(c) supi∈Ifi and infi∈Ifi are both continuous if each fi is continuous and
the index set I is finite.
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f1 f2

f3

Fig. 1–11. Pointwise min operation: union of epigraphs.

Proof. In (a) and (b) we apply the epigraphical criterion in 1.6; the inter-
section of closed sets is closed, as is the union if only finitely many sets are
involved. We get (c) from (b) and its usc counterpart, using 1.12.

The pointwise min operation is parametric minimization with the index i
as the parameter, and this is a way of finding criteria for lower semicontinuity
beyond the one in 1.26(b). In fact, to say that p(u) = infx f(x, u) for f :
IRn × IRm → IR is to say that p is the pointwise infimum of the family of
functions fx(u) := f(x, u) indexed by x ∈ IRn.

Variational analysis is heavily influenced by the fact that, in general, opera-
tions like pointwise maximization and minimization can fail to preserve smooth-
ness. A function is said to be smooth if it is continuously differentiable, i.e., of
class C1; otherwise it is nonsmooth . (It is twice smooth if of class C2, which
means that all first and second partial derivatives exist and are continuous, and
so forth.) Regardless of the degree of smoothness of a collection of the fi’s, the
functions supi∈Ifi and infi∈Ifi aren’t likely to be smooth, cf. Figures 1–10 and
1–11. Therefore, they typically fall outside the domain of classical differential
analysis, as do the functions in optimization that arise through penalty expres-
sions. The search for ways around this obstacle has led to concepts of one-sided
derivatives and ‘subgradients’ that support a robust nonsmooth analysis , which
we’ll start to look at in Chapter 8. Despite this tendency of maximization and
minimization to destroy smoothness, the process of forming Moreau envelopes
will often be found to create smoothness where none was present initially. (This
will be seen for instance in 2.26.)

H. Epi-Addition and Epi-Multiplication

Especially interesting as an operation based on minimization, for this and other
reasons, is epi-addition, also called inf-convolution. For functions f1 : IRn → IR
and f2 : IRn → IR, the epi-sum is the function f1 f2 : IRn → IR defined by

(f1 f2)(x) := inf
x1+x2=x

{
f1(x1) + f2(x2)

}
= infw

{
f1(x− w) + f2(w)

}
= infw

{
f1(w) + f2(x− w)

}
.

1(12)
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(Here the inf-addition rule ∞ − ∞ = ∞ is to be used in case of conflicting
infinities.) For instance, epi-addition is the operation behind 1.20 and 1.22:

dC = δC | · |, eλf = f
1

2λ
| · |2. 1(13)

1.27 Proposition (properties of epi-addition). Let f1 and f2 be lsc and proper
on IRn, and suppose for each bounded set B ⊂ IRn and α ∈ IR that the set{

(x1, x2) ∈ IRn × IRn
∣∣∣ f1(x1) + f2(x2) ≤ α, x1 + x2 ∈ B

}
is bounded (as is true in particular if one of the functions is level-bounded while
the other is bounded below). Then f1 f2 is lsc and proper. Furthermore,
f1 f2 is continuous at any point x̄ where its value is finite and expressible as
f1(x̄1) + f2(x̄2) with x̄1 + x̄2 = x̄ such that either f1 is continuous at x̄1 or f2
is continuous at x̄2.

Proof. This follows from Theorem 1.17 in the case of minimizing f(w, x) =
f1(x−w) + f2(w) in w with x as parameter. The symmetry between the roles
of f1 and f2 yields the symmetric form of the continuity assertion.

Epi-addition is commutative and associative; the formula in the case of
more than two functions works out to

(f1 f2 · · · fr)(x) = inf
x1+x2+···+xr=x

{
f1(x1) + f2(x2) + · · ·+ fr(xr)

}
.

One has f δ{0} = f for all f , where δ{0} is of course the indicator of the
singleton set {0}. A companion operation is epi-multiplication by scalars λ ≥ 0;
the epi-multiple λ�f is defined by

(λ�f)(x) := λf(λ−1x) for λ > 0

(0�f)(x) :=
{
0 if x = 0, f �≡ ∞,
∞ otherwise.

1(14)

C2
2x

C1

C2C1 +

1x 2x+

1x

Fig. 1–12. Minkowski sum of two sets.
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The names of these operations come from a connection with set algebra.
The translate of a set C by a vector a is C + a :=

{
x + a

∣∣x ∈ C}. General
Minkowski scalar multiples and sums of sets in IRn are defined by

λC :=
{
λx

∣∣x ∈ C}, C/τ = τ−1C, −C = (−1)C,
C1 + C2 :=

{
x1 + x2

∣∣x1 ∈ C1, x2 ∈ C2

}
,

C1 − C2 :=
{
x1 − x2

∣∣x1 ∈ C1, x2 ∈ C2

}
.

In general, C1+C2 can be interpreted as the union of all the translates C1+x2
of C1 obtained through vectors x2 ∈ C2, but it is also the union of all the
translates C2 + x1 of C2 for x1 ∈ C1. Minkowski sums and scalar multiples are
particularly useful in working with neighborhoods. For instance, one has

IB(x, ε) = x+ εIB for IB := IB(0, 1) (closed unit ball). 1(15)

Similarly, for any set C ⊂ IRn and ε > 0 the ‘fattened’ set C + εIB consists of
all points x lying in a closed ball of radius ε around some point of C, cf. Figure
1–13. Note that C1 + C2 is empty if either C1 or C2 is empty.

C

C + IBε

Fig. 1–13. A fattened set.

1.28 Exercise (sums and multiples of epigraphs).

(a) For functions f1 and f2 on IRn, the epi-sum f1 f2 satisfies

epi(f1 f2) = epi f1 + epi f2

as long as the infimum defining (f1 f2)(x) is attained when finite. Regardless
of such attainment, one always has{

(x, α)
∣∣ (f1 f2)(x) < α

}
={

(x1, α1)
∣∣ f1(x1) < α1

}
+
{
(x2, α2)

∣∣ f2(x2) < α2

}
.

(b) For a function f and a scalar λ > 0, the epi-multiple λ�f satisfies

epi(λ�f) = λ(epi f).

Guide. Caution is needed in (a) because the functions fi can take on ∞ and
−∞ as values, whereas elements (xi, αi) of epi fi can only have αi finite.
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IR

nIR

#1 2epi (f f )

epi f1

2epi f

Fig. 1–14. Epi-addition of two functions: geometric interpretation.

For λ = 0, λ(epi f) would no longer be an epigraph in general: 0 epi f =
{(0, 0)} when f �≡ ∞, while 0 epi f = ∅ when f ≡ ∞. The definition of 0�f in
1(14) fits naturally with this and, through the epigraphical interpretations in
1.28, supports the rules

λ�(f1 f2) = (λ�f1) (λ�f2) for λ ≥ 0,

λ1�(λ2�f) = (λ1λ2)�f for λ1 ≥ 0, λ2 ≥ 0.

In the case of convex functions in Chapter 2 it will turn out that another form of
distributive law holds as well, cf. 2.24(c). For such functions a fundamental du-
ality will be revealed in Chapter 11 between epi-addition and epi-multiplication
on the one hand and ordinary addition and scalar multiplication on the other
hand.

f

IR

epi f 4 (epi f)

nIR

4 * f

Fig. 1–15. Epi-multiplication of a function: geometric interpretation.

1.29 Exercise (calculus of indicators, distances, and envelopes).

(a) δC+D = δC δD, whereas δλC = λ�δC for λ > 0,

(b) dC+D = dC dD, whereas dλC = λ�dC for λ > 0,

(c) eλ1+λ2
f = eλ1

(eλ2
f) for λ1 > 0, λ2 > 0.

Guide. In part (b), verify that the function h(x) = | · | satisfies h h = h and
λ�h = h for λ > 0. Demonstrate in the first equation that both sides equal
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δC δD h and in the second that both sides equal (λ�δC) h. In part (c), use
the associative law to reduce the issue to whether (1/2λ1)| · |2 (1/2λ2)| · |2 =
(1/2λ)| · |2 for λ = λ1 + λ2, and verify this by direct calculation.

1.30 Example (vector-max and log-exponential functions). The functions

vecmax(x) := max{x1, . . . , xn}, logexp(x) := log
(
ex1 + · · ·+ exn

)
,

for x = (x1, . . . , xn) ∈ IRn are related by the estimate

ε� logexp−ε log n ≤ vecmax ≤ ε� logexp for any ε > 0. 1(16)

Thus, for any smooth functions f1, . . . , fm on IRn, viewed as the components
of a mapping F : IRn → IRm, the generally nonsmooth function

f(x) = vecmax
(
F (x)

)
= max

{
f1(x), . . . , fm(x)

}
can be approximated uniformly, to any accuracy, by a smooth function

fε(x) = (ε� logexp)
(
F (x)

)
= ε log

(
ef1(x)/ε + · · ·+ efm(x)/ε

)
.

Detail. With μ = vecmax(x), we have eμ/ε ≤∑n
j=1 e

xj/ε ≤ neμ/ε. In taking
logarithms and multiplying by ε, we get the estimates in 1(16). From those
inequalities the function ε� logexp converges uniformly to the function vecmax
as ε ↘ 0. The epigraphical significance of this will emerge in Chapter 3.

Another operation through which new functions are constructed by min-
imization is epi-composition. This combines a function f : IRn → IR with a
mapping F : IRn → IRm to get a function Ff : IRm → IR by

(Ff)(u) := inf
{
f(x)

∣∣F (x) = u
}
. 1(17)

The name comes from the fact that the epigraph of Ff is essentially obtained
by ‘composing’ f with the epigraphical mapping (x, α) �→ (

F (x), α
)
associated

with F . Here is a precise statement which exhibits parallels with 1.28(a).

1.31 Exercise (images of epigraphs). For a function f : IRn → IR and a mapping
F : IRn → IRm, the epi-composite function Ff : IRm → IR has

epi Ff =
{
(F (x), α)

∣∣ (x, α) ∈ epi f
}

as long as the infimum defining (Ff)(u) is attained when it is finite. Regardless
of such attainment, one always has{

(u, α)
∣∣ (Ff)(u) < α

}
=

{
(F (x), α)

∣∣ f(x) < α
}
.

Epi-composition as defined by 1(17) clearly concerns the special case of
parametric minimization in which the parameter vector u gives the right side
of a system of equality constraints, but its usefulness as a concept goes beyond
what this simple description might suggest.
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1.32 Proposition (properties of epi-composition). Let f : IRn → IR be proper
and lsc, and let F : IRn → IRm be continuous. Suppose for each α ∈ IR and
u ∈ IRm that the set

{
x
∣∣ f(x) ≤ α, F (x) ∈ IB(u, ε)

}
is bounded for some

ε > 0. Then the epi-composite function Ff : IRm → IR is proper and lsc, and
the infimum defining (Ff)(u) is attained for each u for which it is finite.

Proof. Let f̄(x, u) = f(x) when u = F (x) but f̄(x, u) = ∞ when u �= F (x).
Then (Ff)(u) = infx f̄(x, u). Applying 1.17, we immediately find justification
for all the claims.

I∗. Auxiliary Facts and Principles

A sidelight on lower and upper semicontinuity is provided by their localization.
A set C ⊂ IRn is said to be locally closed at a point x̄ (not necessarily in C) if
C ∩V is closed for some closed neighborhood V ∈ N (x̄). A test for whether C
is (globally) closed is whether C is locally closed at every x̄.

1.33 Definition (local semicontinuity). A function f : IRn → IR is locally lower
semicontinuous at x̄, a point where f(x̄) is finite, if there is an ε > 0 such that
all sets of the form

{
x ∈ IB(x̄, ε)

∣∣ f(x) ≤ α
}
with α ≤ f(x̄)+ ε are closed. The

definition of f being locally upper semicontinuous at x̄ is parallel.

1.34 Exercise (consequences of local semicontinuity).

(a) f is locally lsc at x̄, a point where f(x̄) is finite, if and only if epi f is
locally closed at

(
x̄, f(x̄)

)
.

(b) f is finite and continuous on some neighborhood of x̄ if and only if f(x̄)
is finite and f is both locally lsc and locally usc at x̄.

Several rules of calculation are often useful in dealing with maximization
or minimization. Let’s look first at one that’s reminiscent of standard rules for
interchanging the order of summation or integration.

1.35 Proposition (interchange of order of minimization). For f : IRn×IRm → IR
one has in terms of p(u) := infx f(x, u) and q(x) := infu f(x, u) that

infx,u f(x, u) = infu p(u) = infx q(x),

argminx,u f(x, u) =
{
(x̄, ū)

∣∣∣ ū ∈ argminu p(u), x̄ ∈ argminx f(x, ū)
}

=
{
(x̄, ū)

∣∣∣ x̄ ∈ argminx q(x), ū ∈ argminu f(x̄, u)
}
.

Proof. Elementary.

Note here that f(x, u) could have the form f0(x, u)+δC(x, u) for a function
f0 on IRn × IRm and a set C ⊂ IRn × IRm, where C could in turn be specified
by a system of constraints fi(x, u) ≤ 0 or fi(x, u) = 0. Then in minimizing
relative to x to get p(u) one is in effect minimizing f0(x, u) subject to these
constraints as parameterized by u.
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1.36 Exercise (max and min of a sum). For any extended-real-valued functions
f1 and f2, one has (under the convention ∞−∞ =∞) the estimates

inf
x∈X

{
f1(x) + f2(x)

} ≥ inf
x∈X

f1(x) + inf
x∈X

f2(x),

sup
x∈X

{
f1(x) + f2(x)

} ≤ sup
x∈X

f1(x) + sup
x∈X

f2(x),

as well as the rule

inf
(x1,x2)∈X1×X2

{
f1(x1) + f2(x2)

}
= inf

x1∈X1

f1(x1) + inf
x2∈X2

f2(x2).

1.37 Exercise (scalar multiples versus max and min). For any extended-real-
valued function f one has (under the convention 0·∞ = 0) that

inf
x∈X

λf(x) = λ inf
x∈X

f(x), sup
x∈X

λf(x) = λ sup
x∈X

f(x) when λ ≥ 0,

while on the other hand

inf
x∈X

f(x) = − sup
x∈X

{− f(x)}, sup
x∈X

f(x) = − inf
x∈X

{− f(x)}.
1.38 Proposition (lower limits of sums). For arbitrary extended-real-valued
functions one has

lim inf
x→x̄

[
f1(x) + f2(x)

] ≥ lim inf
x→x̄

f1(x) + lim inf
x→x̄

f2(x)

if the sum on the right is not ∞−∞. On the other hand, one always has

lim inf
x→x̄

λf(x) = λ lim inf
x→x̄

f(x) when λ ≥ 0.

Proof. From the definition of lower limits in 1.5 we calculate

lim inf
x→x̄

[
f1(x) + f2(x)

]
= lim

δ ↘ 0
inf

x∈IB(x̄,δ)

[
f1(x) + f2(x)

]
≥ lim

δ ↘ 0

[
inf

x∈IB(x̄,δ)

f1(x) + inf
x∈IB(x̄,δ)

f2(x)
]

by the first rule in 1.36 and then continue with

≥ lim
δ ↘ 0

inf
x∈IB(x̄,δ)

f1(x) + lim
δ ↘ 0

inf
x∈IB(x̄,δ)

f2(x) = lim inf
x→x̄

f1(x) + lim inf
x→x̄

f2(x)

as long as this sum is not ∞−∞. The second formula in the proposition is
easily verified from the scalar multiplication rule in 1.37 when λ > 0. When
λ = 0, it’s trivial because both sides of the equation have to be 0.

Since lower semicontinuity is basic to the geometry of epigraphs, there’s a
need for conditions that can facilitate the verification of lower semicontinuity
in circumstances where a function is not just ‘abstract’ but expressed through
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operations performed on other functions. Some criteria have already been given
in 1.17, 1.26 and 1.27, and here are others.

1.39 Proposition (semicontinuity of sums, scalar multiples).

(a) f1 + f2 is lsc if f1 and f2 are lsc and proper.

(b) λf is lsc if f is lsc and λ ≥ 0.

Proof. Both facts follow from 1.38.

The properness assumption in 1.39(a) ensures that f1(x) + f2(x) isn’t
∞−∞, as required in applying 1.38. For f1 + f2 to inherit properness, we’d
have to know that dom f1 ∩ dom f2 isn’t empty.

1.40 Exercise (semicontinuity under composition).

(a) If f(x) = g
(
F (x)

)
with F : IRn → IRm continuous and g : IRm → IR

lsc, then f is lsc.

(b) If f(x) = θ
(
g(x)

)
with g : IRn → IR lsc, θ : IR → IR lsc and non-

decreasing, and with θ extended to infinite arguments by θ(∞) = sup θ and
θ(−∞) = inf θ, then f is lsc.

1.41 Exercise (level-boundedness of sums and epi-sums). For functions f1 and
f2 on IRn that are bounded from below,

(a) f1 + f2 is level-bounded if either f1 or f2 is level-bounded,

(b) f1 f2 is level-bounded if both f1 and f2 are level-bounded.

An extension of Theorem 1.9 serves in the study of computational methods.
A minimizing sequence for a function f : IRn → IR is a sequence {xν}ν∈IN such
that f(xν)→ inf f .

1.42 Theorem (minimizing sequences). Let f : IRn → IR be lsc, level-bounded
and proper. Then every minimizing sequence {xν} for f is bounded and has
all of its cluster points in argmin f . If f attains its minimum at a unique point
x̄, then necessarily xν → x̄.

Proof. Let {xν} be a minimizing sequence and let ᾱ = inf f , which is finite
by 1.9; then f(xν) → ᾱ. For any α ∈ (ᾱ,∞), the point xν eventually lies in
lev≤α f , which on the basis of our assumptions is compact. The sequence {xν}
is thus bounded and has all of its cluster points in lev≤α f . Since this is true for
arbitrary α ∈ (ᾱ,∞), such cluster points all belong in fact to the set lev≤ᾱ f ,
which is the same as argmin f .

The concept of ε-optimal solutions to the problem of minimizing f on IRn is
natural in a context of optimizing sequences and provides a further complement
to Theorem 1.9. Such points form the set

ε–argminx f(x) :=
{
x
∣∣ f(x) ≤ inf f + ε

}
. 1(18)

According to the next result, they can be approximated by nearby points that
are true optimal solutions to a slightly perturbed problem of minimization.
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1.43 Proposition (variational principle; Ekeland). Let f : IRn → IR be lsc with
inf f finite, and let x̄ ∈ ε–argmin f , where ε > 0. Then for any δ > 0 there
exists a point

x̃ ∈ IB(x̄, ε/δ) with f(x̃) ≤ f(x̄), argminx
{
f(x) + δ|x− x̃|} = {x̃}.

Proof. Let ᾱ = inf f and f̄(x) = f(x)+ δ|x− x̄|. The function f̄ is lsc, proper
and level-bounded: lev≤α f̄ ⊂

{
x
∣∣ ᾱ+δ|x−x̄| ≤ α} = IB(x̄, (α−ᾱ)/δ). The set

C := argmin f̄ is therefore nonempty and compact (by 1.9). Then the function
f̃ := f+δC is lsc, proper and level-bounded, so argmin f̃ is nonempty (by 1.9).
Let x̃ ∈ argmin f̃ ; this means that x̃ is a point minimizing f over argmin f̄ . For
all x belonging to argmin f we have f(x̃) ≤ f(x), while for all x not belonging to
it we have f̄(x̃) < f̄(x), which can be written as f(x̃) < f(x)+δ|x−x̄|−δ|x̃−x̄|,
where |x − x̄| − |x̃ − x̄| ≤ |x − x̃|. It follows that f(x̃) < f(x) + δ|x − x̃| for
all x �= x̃, so that the set argminx

{
f(x)+ δ|x− x̃|} consists of the single point

x̃. Moreover, f(x̃) ≤ f(x̄) − δ|x̃ − x̄|, where f(x̄) ≤ ᾱ + ε, so x̃ ∈ lev≤α f for
α = ᾱ+ ε. Hence x̃ ∈ IB(x̄, ε/δ).

The following example shows further how the pointwise supremum oper-
ation, as a way of generating new functions from given ones, has interesting
theoretical uses. It also reveals another role of the envelope functions in 1.22.
Here a function f is regularized from below by a sort of maximal quadratic
interpolation based on specifying a ‘curvature parameter’ λ > 0. The interpo-
lated function hλf that is obtained can serve as an approximation to f whose
properties in some respects are superior to those of f , yet are different from
those of the envelope eλf .

1.44 Example (proximal hulls). For a function f : IRn → IR and any λ > 0, the
λ-proximal hull of f is the function hλf : IRn → IR defined as the pointwise
supremum of the collection of all the quadratic functions of the elementary
form x �→ α − (1/2λ)|x − w|2 that are majorized by f . This function hλf ,
satisfying eλf ≤ hλf ≤ f , is related to the envelope eλf by the formulas

hλf(x) = sup
w∈IRn

{
eλf(w)−

1

2λ
|x− w|2

}
, so hλf = −eλ[−eλf ],

eλf(x) = inf
w∈IRn

{
hλf(w) +

1

2λ
|x− w|2

}
, so eλf = eλ[hλf ].

It is lsc, and it is proper as long as f is proper and prox-bounded with threshold
λf > λ, in which case one has

hλf(x)↗f(x) for all x as λ ↘ 0.

At all points x that are λ-proximal for f , in the sense that f(x) is finite
and x ∈ Pλf(w) for some w, one actually has hλf(x) = f(x). Thus, hλf always
agrees with f on rgePλf . When hλf agrees with f everywhere, f is called a
λ-proximal function.
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Detail. In the notation jλ(u) = (1/2λ)|u|2, let qλ,w,α(x) = α − jλ(x − w),
with the pair (w, α) ∈ IRn × IR as a parameter element. By definition, hλf is
the pointwise supremum of the collection of all the functions qλ,w,α majorized
by f . These functions are continuous, so hλf is lsc by 1.26(a). We have
qλ,w,α ≤ f if and only if α ≤ f(x) + jλ(x− w) for all x, which in the envelope
notation of 1.22 means that α ≤ eλf(w). Therefore, hλf can just as well be
viewed as the pointwise supremum of the collection {gw}w∈IRn , where gw(x) :=
eλf(w)− jλ(x− w). This is what the displayed formula for hλf(x) says.

The observation that eλf is determined by the collection of all quadratics
qλ,w,α ≤ f , with these being the same as the collection of all qλ,w,α ≤ hλf ,
reveals that eλf = eλ[hλf ]. The displayed formula for eλf in terms of hλf is
therefore valid as well.

When x ∈ Pλ(w), we have f(x) + jλ(x − w) ≤ f(x′) + jλ(x
′ − w) for

all x′. As long as f(x) is finite, this comes out as saying that f ≥ qλ,w,α for
α := f(x) + jλ(x − w), with these two functions agreeing at x itself. Then
obviously hλf(x) = f(x).

In the case of f ≡ ∞ we have hλf ≡ ∞ for all λ. On the other hand, if
f isn’t prox-bounded, we have hλf ≡ −∞ for all λ. Otherwise hλf �≡ ∞, yet
hλf ≥ eλf (as seen from taking w = x in the displayed formula). Since eλf is
finite for λ ∈ (0, λf ), hλf must be proper for such λ.

The inequality hλf ≤ hλ′f holds when λ′ ≤ λ, for the following rea-
son. A second-order Taylor expansion of qλ,w,α at any point x̄ shows there’s
a function qλ′,w′,α′ ≤ qλ,w,α with qλ′,w′,α′(x̄) = qλ,w,α(x̄). Hence the sup of
all qλ′,w′,α′ ≤ f is at least as high everywhere as the sup of all qλ,w,α ≤ f .
Thus, hλf(x) increases, if anything, as λ ↘ 0. Because eλf ≤ hλf ≤ f , and
eλf(x)↗f(x) as λ ↘ 0 by 1.25 when f is prox-bounded and lsc, we must likewise
have hλf(x)↗f(x) as λ ↘ 0 in these circumstances.

f

Fig. 1–16. Interpolation of a function by a proximal hull.

It’s intriguing that each of the functions eλf and hλf in Example 1.44
completely embodies all the information necessary to derive the other. This is
a relationship of ‘duality’, and many more examples of such a phenomenon will
appear as we go along, especially in Chapters 6, 8, and 11. (More will be seen
about this specific instance of duality in 11.63.)
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1.45 Exercise (proximal inequalities). For functions f1 and f2 on IRn and any
λ > 0, one has

eλf1 ≤ eλf2 ⇐⇒ hλf1 ≤ hλf2.
Thus in particular, f1 and f2 have the same Moreau λ-envelope if and only if
they have the same λ-proximal hull.

Guide. Get this from the description of these envelopes and proximal hulls in
terms of quadratics majorized by f1 and f2. (See 1.44 and its justification.)

Also of interest in the rich picture of Moreau envelopes and proximal hulls
are the following functions, which illustrate further the potential role of max
and min in generating approximations of a given function. Their special ‘sub-
smoothness’ properties will be documented in 12.62.

1.46 Example (double envelopes). For a proper, lsc function f : IRn → IR that
is prox-bounded with threshold λf , and parameter values 0 < μ < λ < λf , the
Lasry-Lions double envelope eλ,μf is defined by

eλ,μf(x) := supw

{
eλf(w)−

1

2μ
|w − x|2

}
, so eλ,μf = −eμ[−eλf ].

This function is bracketed by eλf ≤ eλ,μf ≤ eλ−μf ≤ f and satisfies

eλ,μf = eλ−μ[hλf ] = hμ[eλ−μf ]. 1(19)

Also, inf eλ,μf = inf eλf = inf f and argmin eλ,μf = argmin eλf = argmin f .

Detail. From eλf = f jλ, with jλ(w) = (1/2λ)|w|2, one easily gets inf eλf =
inf f and argmin eλf = argmin f . The agreement of these with inf eλ,μf and
argmin eλ,μf will follow from proving that eλ,μf lies between eλf and f .

It’s elementary from the definition of Moreau envelopes that eλ−μf ≤ f .
Likewise eμ[−eλf ] ≤ −eλf , hence eλf ≤ eλ,μf . The first equation of 1(19) will
similarly yield eλ,μf ≤ eλ−μf , inasmuch as hλf ≤ f , so we concentrate hence-
forth on 1(19). The formulas in 1.44 and 1.29(c) give eλ,μf = −eμ[−eλf ] =
−eμ[−eμ[eλ−μf ]] = hμ[eλ−μf ]. Because eλf = eλ[hλf ], this implies also that
eλ,μf = eλ,μ[hλf ] = hμ[eλ−μ[hλf ]].

All that remains is verifying for g := eλ−μ[hλf ] that hμg = g, or equiva-
lently through the description of proximal hulls in 1.44, that g is the pointwise
supremum of all the functions of the form qμ,w,α(x) = α − jμ(x − w) that
it majorizes. It suffices to demonstrate for arbitrary x̄ the existence of some
qμ,w̄,ᾱ ≤ g such that qμ,w̄,ᾱ(x̄) = g(x̄). Because we’re dealing with a class of
functions f that’s invariant under translations, we can focus on x̄ = 0.

Let w̃ ∈ Pλ−μ[hλf ](0), which is nonempty by 1.25, since λ − μ < λ < λf
(this being also the proximal threshold for hλf). Then k(w) ≥ k(w̃) = g(0) for
k := hλf + jλ−μ. Next, observe from hλf(w) = supz

{
eλf(z)− jλ(w− z)

}
(cf.

1.44) and the quadratic expansion

jλ(a+ τω)− jλ(a) = τ
[
jλ(a+ ω)− jλ(a)

]− τ(1− τ)jλ(ω), 1(20)
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as applied to a = w̃ − z, that hλf(w̃ + τω) can be estimated for τ ∈ (0, 1) by

supz
{
eλf(z)− jλ(w̃ + τw − z)}

= supz
{
eλf(z)− (1− τ)jλ(w̃ − z)− τjλ(w̃ − z + ω)− τ(1− τ)jλ(ω)

}
≤ (1− τ) supz

{
eλf(z)− jλ(w̃ − z)

}
+ τ supz

{
eλf(z)− jλ(w̃ + ω − z)}

− τ(1− τ)jλ(ω) = (1− τ)hλf(w̃) + τhλf(w̃ + ω)− τ(1− τ)jλ(ω).
Thus, for such τ we have the ‘upper expansion’

hλf(w̃ + τω)− hλf(w̃) ≤ τ
[
hλf(w̃ + ω)− hλf(w̃)

]− τ(1− τ)jλ(ω),
which can be added to the expansion in 1(20) of jλ−μ instead of jλ, this time
at a = w̃, to get for all τ ∈ (0, 1) that

k(w̃ + τω)− k(w̃) ≤ τ
[
k(w̃ + ω)− k(w̃)]+ τ(1− τ)[jλ(ω)− jλ−μ(ω)

]
.

Since k(w̃+τω)−k(w̃) ≥ 0, we must have k(w̃+ω)−k(w̃)+jλ(ω)−jλ−μ(ω) ≥ 0
and, in substituting w = w̃ + ω, can write this as

hλf(w) ≥ g(0)− jλ−μ(w) + jλ−μ(w − w̃)− jλ(w − w̃) for all w. 1(21)

The quadratic function of w on the right side of 1(21) has its second-order
part coming only from the jλ term, due to cancellation in the jλ−μ terms, so
it must be of the form qλ,w̄,ᾱ(w) for some w̄ and ᾱ. From hλf ≥ qλ,w̄,ᾱ we get
eλ−μ[hλf ] ≥ eλ−μ[qλ,w̄,ᾱ]. But the latter is qμ,w̄,ᾱ; this follows from the rule
that [−jλ] jλ−μ = −jμ, which can be checked by simple calculation. Hence
g(x) ≥ qμ,w̄,ᾱ(x) for all x. On the other hand,

qμ,w̄,ᾱ(0) = eλ−μ[qλ,w̄,ᾱ](0) = infw
{
qλ,w̄,ᾱ(w) + jλ−μ(w)

}
= infw

{
g(0) + jλ−μ(w − w̃)− jλ(w − w̃)

}
= g(0),

because jλ−μ ≥ jλ when 0 < μ < λ. Thus, the quadratic function qλ,w̄,ᾱ fits
the prescription.

Commentary

The key notion that a problem of minimizing f over a subset C of a given space
can be represented by defining f to have the value ∞ outside of C, and that lower
semicontinuity is then the essential property to look for, originated independently
with Moreau [1962], [1963a], [1963b], and the dissertation of Rockafellar [1963]. Both
authors were influenced by unpublished but widely circulated lecture notes of Fenchel
[1951], which for a long time were a prime source for the theory of convex functions.

Fenchel’s tactic was to deal with pairs (C, f) where C is a nonempty subset of
IRn and f is a real-valued function on C, and to call such a pair ‘closed’ if the set{

(x, α) ∈ C × IR
∣∣ f(x) ≤ α

}



Commentary 35

is closed in IRn × IR. Moreau and Rockafellar observed that in extending f beyond
C with ∞, not only could notation be simplified, but Fenchel’s closedness property
would reduce to the lower semicontinuity of f , a concept already well understood
in analysis, and the set on which Fenchel focused his attention as a substitute for
the graph of f over C could be studied then as the epigraph of f over IRn. At the
same time, Fenchel’s operation of closing a pair (C, f) could be implemented simply
by taking lower limits of the extended function f , so as to obtain the function we’ve
denoted by cl f . (It must be mentioned that our general usage of ‘closure’ and ‘cl f ’
departs from the traditions of convex analysis in the context of convex functions f ,
where a slightly different operation, ‘biconjugate closure’, has been expressed in this
manner. In passing to the vast territory beyond convex analysis, it’s better to reserve
a different symbol, cl∗f , for the latter operation in its relatively limited range of
interest. For a convex function f , cl f and cl∗f agree in every case except the very
special one where cl f is identically −∞ on its effective domain (cf. 2.5), this domain
D being nonempty and yet not the whole space; then cl∗f differ for points x /∈ D,
where (cl f)(x) = ∞ but (cl∗f)(x) := −∞.)

Moreau and Rockafellar recognized also that, in the extended-real-valued frame-
work, ‘indicator’ functions δC could assume an operational character like that of
characteristic functions in integration. For Fenchel, the corresponding object associ-
ated with a set C would have been a pair (C, 0). This didn’t convey the fertile idea
that constraints can be imposed by adding an indicator to a given function, or that
an indicator function was an extreme case of a penalty or barrier function.

Penalty and barrier functions have some earlier history in association with
numerical methods, but in optimization they were popularized by Fiacco and Mc-
Cormick [1968]. The idea that a sequence of such functions, with parameter values
increasingly severe, can be viewed as converging to an indicator—in the geometric
sense of converging epigraphs (i.e., epi-convergence, which will be laid out in Chapter
7)—originated with Attouch and Wets [1981]. The parametric approach in 1.21 by
way of 1.17 is new.

The study of how optimal values and optimal solutions might depend on the
parameters in a given problem is an important topic with a large literature. The
representation of the main issues as concerned with minimizing a single extended-
real-valued function f(x, u) on IRn × IRm with respect to x, and looking then to the
behavior with respect to u of the infimum p(u) and argmin set P (u), offers a great
conceptual simplification in comparison to what is often seen in this subject, and at
the same time it supports a broader range of applications. Such an approach was first
adopted full scale by Rockafellar [1968a], [1970a], in work with optimization problems
of convex type and their possible modes of dualization. The geometric interpretation
of epi p as the projection of epi f (cf. 1.18 and Fig. 1–8) was basic to this.

The fundamental result of parametric optimization in Theorem 1.17, in which
properties of p(u) and P (u) are derived from a uniform level-boundedness assump-
tion on f(x, u), goes back to Wets [1974]. He employed a form of ‘inf-compactness’,
a concept developed by Moreau [1963c] for the sake of obtaining the attainment of a
minimum as in Theorem 1.9 and other uses. For problems in IRn, we have found it con-
venient instead to keep the boundedness aspect of inf-compactness separate from the
lower semicontinuity aspect, hence the introduction of the term ‘level-boundedness’.
Of course in infinite-dimensional spaces the boundedness and closedness of a level set
wouldn’t guarantee its compactness.

Questions of the existence of solutions and how they depend on a problem’s pa-
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rameters have long been recognized as crucial to applications of mathematics, not only
in optimization, and treated under the heading of ‘well-posedness’. In the past, that
term was usually taken to refer to the existence and uniqueness of a solution and its
continuous behavior in response to data perturbations, as well as accompanying ro-
bustness properties in the convergence of sequences of approximate solutions. Studies
in the calculus of variations, optimal control and numerical methods of minimization,
however, have shown that uniqueness and continuity are often too restrictive to be
adopted as the standards of nicety; see Dontchev and Zolezzi [1993] for a broad ex-
position of the subject and its classical roots. It’s increasingly apparent that forms
of semicontinuity in a problem’s data elements and solution mappings, along with
potential multivaluedness in the latter, are the practical concepts. Semicontinuity of
multivalued mappings will be taken up in Chapter 5, while their generalized differen-
tiation, which likewise is central to well-posedness as now understood, will be studied
in Chapter 8 and beyond.

Semicontinuity of functions was itself introduced by Baire in his 1899 thesis;
see Baire [1905] for more on early developments, for instance the fact that a lower
semicontinuous function on a compact set attains its minimum (cf. Theorem 1.9),
and the fact that the pointwise limit of an increasing sequence of continuous func-
tions is lower semicontinuous. Interestingly, although Baire never published anything
about parametric optimization, he attributes to that topic his earliest inspiration for
studying separately the two inequalities which Cauchy had earlier distilled as the
essence of continuity. In an historical note (Baire [1927]) he says that in late 1896
he considered (as translated to our setting) a function f(x, u) of two real variables
on a product of closed, bounded intervals X and U , assuming continuity in x and u
separately, but not jointly. He looked at p(u) = minx∈X f(x, u) and observed it to
be upper semicontinuous with respect to u ∈ U , even if not necessarily continuous.
(A similar observation is the basis for part (c) of our Theorem 1.17.) Baire explains
this in order to make clear that he arrived at semicontinuity not out of a desire to
generalize, but because he was led to it naturally by his investigations. The same
could now be said for numerous other ‘one-sided’ concepts that have come to be very
important in variational analysis.

Epi-addition originated with Fenchel [1951] in the theory of convex functions,
but Fenchel’s version was slightly different: he automatically replaced f1 f2 by its
lsc hull, cl(f1 f2). Also, Fenchel kept to a format in which a pair (C1, f1) was
combined with a pair (C2, f2) to get a new pair (C, f), which was cumbersome and
did not suggest the ripe possibilities. But Fenchel did emphasize what we now see
as addition of epigraphs, and he recognized that such addition was dual to ordinary
addition of functions with respect to the kind of dualization of convex functions that
we’ll take up in Chapter 11. For the very special case of finite, continuous functions
on [0,∞), a related operation was developed in a series of papers by Bellman and
Karush [1961], [1962a], [1962b], [1963]. They called this the ‘maximum transform’.
Although unaware of Fenchel’s results, they too recognized the duality of this opera-
tion in a certain sense with that of ordinary function addition. Moreau [1963b] and
Rockafellar [1963] changed the framework to that of extended-real-valued functions,
with Rockafellar emphasizing convex functions on IRn but Moreau considering also
nonconvex functions and infinite-dimensional spaces.

The term ‘inf-convolution’ is due to Moreau, who brought to light an analogy
with integral convolution. Our alternative term ‘epi-addition’ is aimed at better
reflecting Fenchel’s geometric motivation and the duality with addition, as well as
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providing a parallel opportunity for introducing the term ‘epi-multiplication’ for an
operation that has a closely associated history, but which hitherto has been nameless.
The new symbols ‘ ’ for epi-addition and ‘�’ for epi-multiplication are designed as
reminders of the ties to ‘+’ and ‘·’.

The results about epi-addition in 1.27 show the power of placing this operation in
the general framework of parametric optimization. In contrast, Moreau [1963b] only
treats the case where one of the functions f1 or f2 is inf-compact, while the other
is bounded below. For other work on epi-addition see Moreau [1970] and especially
Strömberg [1994]. Applications of this operation, although not yet formulated as
such, can be detected as far back as the 1950s in research on solving Hamilton-Jacobi
equations when n = 1; cf. Lax [1957].

Set addition and scalar multiplication have long been a mainstay in functional
analysis, but have their roots in the geometric theories of Minkowski [1910], [1911].
Extended arithmetic, with its necessary conventions for handling ±∞, was first ex-
plored by Moreau [1963c]. The operation of epi-composition was developed by Rock-
afellar [1963], [1970a].

The notion of a proximal mapping, due to Moreau [1962], [1965], wasn’t treated
by him in the parametric form we feature here, but only for λ = 1 in our notation. He
concentrated on convex functions f and the ways that proximal mappings generalize
projection operators. Although he investigated many properties of the associated case
of the epi-addition operation, which yields what we have called an ‘envelope’ function,
he didn’t treat such functions as providing an approximation or regularization of f .
That idea, tied to the increasingly close relationship between f and its λ-envelope as
λ ↘ 0, stems from subsequent work of Attouch [1977] in the convex case and Attouch
and Wets [1983a] for arbitrary functions. Nonetheless, it has seemed appropriate
to attach Moreau’s name to such envelope functions, since it’s he who initiated the
whole study of epi-addition with a squared norm and brought the rich consequences to
everyone’s attention. The term ‘Moreau-Yosida regularization’, which has sometimes
been used in referring to envelopes, doesn’t seem appropriate in our setting because,
at best, it makes sense only for the case of convex functions f (through a connection
with the subgradient mappings of such functions, cf. 10.2).

The double envelopes in 1.46 were introduced by Lasry and Lions [1986] as
approximants that can be better behaved than the Moreau envelopes; for more on
this, see also Attouch and Azé [1993]. The surprising ‘interchange’ formulas for these
double envelopes in 1(19) were discovered by Strömberg [1996].

The variational principle of Ekeland [1974] in Proposition 1.43 is especially use-
ful in infinite-dimensional Banach spaces and general metric spaces, where (with a
broader statement and a different proof relying on completeness instead of compact-
ness) it provides an important handle on the existence of ‘approximate solutions’ to
various problems. Another powerful variational principle which relies on the norm-
squared instead of the norm of a Banach space, has been developed by Borwein and
Preiss [1987].



2. Convexity

The concept of convexity has far-reaching consequences in variational analysis.
In the study of maximization and minimization, the division between problems
of convex or nonconvex type is as significant as the division in other areas
of mathematics between problems of linear or nonlinear type. Furthermore,
convexity can often be introduced or utilized in a local sense and in this way
serves many theoretical purposes.

A. Convex Sets and Functions

For any two different points x0 and x1 in IRn and parameter value τ ∈ IR the
point

xτ := x0 + τ(x1 − x0) = (1− τ)x0 + τx1 2(1)

lies on the line through x0 and x1. The entire line is traced as τ goes from
−∞ to ∞, with τ = 0 giving x0 and τ = 1 giving x1. The portion of the line
corresponding to 0 ≤ τ ≤ 1 is called the closed line segment joining x0 and
x1, denoted by [x0, x1]. This terminology is also used if x0 and x1 coincide,
although the line segment reduces then to a single point.

2.1 Definition (convex sets and convex functions).

(a) A subset C of IRn is convex if it includes for every pair of points the
line segment that joins them, or in other words, if for every choice of x0 ∈ C
and x1 ∈ C one has [x0, x1] ⊂ C:

(1− τ)x0 + τx1 ∈ C for all τ ∈ (0, 1). 2(2)

(b) A function f on a convex set C is convex relative to C if for every
choice of x0 ∈ C and x1 ∈ C one has

f
(
(1− τ)x0 + τx1

) ≤ (1− τ)f(x0) + τf(x1) for all τ ∈ (0, 1), 2(3)

and f is strictly convex relative to C if this inequality is strict for points x0 �= x1
with f(x0) and f(x1) finite.

In plain English, the word ‘convex’ suggests a bulging appearance, but
the convexity of a set in the mathematical sense of 2.1(a) indicates rather the
absence of ‘dents’, ‘holes’, or ‘disconnectedness’. A set like a cube or floating
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disk in IR3, or even a general line or plane, is convex despite aspects of flatness.
Note also that the definition doesn’t require C to contain two different points,
or even a point at all: the empty set is convex, and so is every singleton set
C = {x}. At the other extreme, IRn is itself a convex set.

Fig. 2–1. Examples of closed, convex sets, the middle one unbounded.

Many connections between convex sets and convex functions will soon be
apparent, and the two concepts are therefore best treated in tandem. In both
2.1(a) and 2.1(b) the τ interval (0,1) could be replaced by [0,1] without really
changing anything. Extended arithmetic as explained in Chapter 1 is to be
used in handling infinite values of f ; in particular the inf-addition convention
∞−∞ =∞ is to be invoked in 2(3) when needed. Alternatively, the convexity
condition 2(3) can be recast as the condition that

f(x0) < α0 <∞, f(x1) < α1 <∞, τ ∈ (0, 1)

=⇒ f((1− τ)x0 + τx1) ≤ (1− τ)α0 + τα1.
2(4)

An extended-real-valued function f is said to be concave when −f is con-
vex; similarly, f is strictly concave if −f is strictly convex. Concavity thus cor-
responds to the opposite direction of inequality in 2(3) (with the sup-addition
convention ∞−∞ = −∞).

The geometric picture of convexity, indispensable as it is to intuition, is
only one motivation for this concept. Equally compelling is an association with
‘mixtures’, or ‘weighted averages’. A convex combination of elements x0, x1,. . .,
xp of IRn is a linear combination

∑p
i=0 λixi in which the coefficients λi are

nonnegative and satisfy
∑p

i=0 λi = 1. In the case of just two elements a convex
combination can equally well be expressed in the form (1 − τ)x0 + τx1 with
τ ∈ [0, 1] that we’ve seen so far. Besides having an interpretation as weights
in many applications, the coefficients λi in a general convex combination can
arise as probabilities. For a discrete random vector variable that can take on
the value xi with probability λi, the ‘expected value’ is the vector

∑p
i=0 λixi.

2.2 Theorem (convex combinations and Jensen’s inequality).

(a) A set C is convex if and only if C contains all convex combinations of
its elements.

(b) A function f is convex relative to a convex set C if and only if for every
choice of points x0, x1,. . ., xp in C one has
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f
(∑p

i=0
λixi

)
≤

∑p

i=0
λif(xi) when λi ≥ 0,

∑p

i=0
λi = 1. 2(5)

Proof. In (a), the convexity of C means by definition that C contains all
convex combinations of two of its elements at a time. The ‘if’ assertion is
therefore trivial, so we concentrate on ‘only if’. Consider a convex combination
x = λ0x0+ · · ·+λpxp of elements xi of a convex set C in the case where p > 1,
we aim at showing that x ∈ C. Without loss of generality we can assume that
0 < λi < 1 for all i, because otherwise the assertion is trivial or can be reduced
notationally to this case by dropping elements with coefficient 0. Writing

x = (1− λp)
p−1∑
i=0

λ′ixi + λpxp with λ′i =
λi

1− λp ,

where 0 < λ′i < 1 and
∑p−1

i=0 λ
′
i = 1, we see that x ∈ C if the convex combination

x′ =
∑p−1

i=0 λ
′
ixi is in C. The same representation can now be applied to x′ if

necessary to show that it lies on the line segment joining xp−1 with some
convex combination of still fewer elements of C, and so forth. Eventually one
gets down to combinations of only two elements at a time, which do belong to
C. A closely parallel argument establishes (b).

Any convex function f on a convex set C ⊂ IRn can be identified with a
convex function on all of IRn by defining f(x) = ∞ for all x /∈ C. Convexity
is thereby preserved, because the inequality 2(3) holds trivially when f(x0) or
f(x1) is ∞. For most purposes, the study of convex functions can thereby
be reduced to the framework of Chapter 1 in which functions are everywhere
defined but extended-real-valued.

2.3 Exercise (effective domains of convex functions). For any convex function
f : IRn → IR, dom f is a convex set with respect to which f is convex. The
proper convex functions on IRn are thus the functions obtained by taking a
finite, convex function on a nonempty, convex set C ⊂ IRn and giving it the
value ∞ everywhere outside of C.

The indicator δC of a set C ⊂ IRn is convex if and only if C is convex.
In this sense, convex sets in IRn correspond one-to-one with special convex
functions on IRn. On the other hand, convex functions on IRn correspond
one-to-one with special convex sets in IRn+1, their epigraphs.

2.4 Proposition (convexity of epigraphs). A function f : IRn → IR is convex if
and only if its epigraph set epi f is convex in IRn×IR, or equivalently, its strict
epigraph set

{
(x, α)

∣∣ f(x) < α <∞}
is convex.

Proof. The convexity of epi f means that whenever (x0, α0) ∈ epi f and
(x1, α1) ∈ epi f and τ ∈ (0, 1), the point (xτ , ατ) := (1− τ)(x0, α0) + τ(x1, α1)
belongs to epi f . This is the same as saying that whenever f(x0) ≤ α0 ∈ IR and
f(x1) ≤ α1 ∈ IR, one has f(xτ ) ≤ ατ . The latter is equivalent to the convexity
inequality 2(3) or its variant 2(4). The ‘strict’ version follows similarly.



A. Convex Sets and Functions 41
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Fig. 2–2. Convexity of epigraphs and effective domains.

For concave functions on IRn it is the hypograph rather than the epigraph
that is a convex subset of IRn × IR.
2.5 Exercise (improper convex functions). An improper convex function f must
have f(x) = −∞ for all x ∈ int(dom f). If such a function is lsc, it can only
have infinite values: there must be a closed, convex set D such that f(x) = −∞
for x ∈ D but f(x) =∞ for x /∈ D.

Guide. Argue first from the definition of convexity that if f(x0) = −∞ and
f(x1) <∞, then f(xτ ) = −∞ at all intermediate points xτ as in 2(1).

Improper convex functions are of interest mainly as possible by-products
of various constructions. An example of an improper convex function having
finite as well as infinite values (it isn’t lsc) is

f(x) =

⎧⎨
⎩
−∞ for x ∈ (0,∞)
0 for x = 0
∞ for x ∈ (−∞, 0).

2(6)

The chief significance of convexity and strict convexity in optimization
derives from the following facts, which use the terminology in 1.4 and its sequel.

2.6 Theorem (characteristics of convex optimization). In a problem of minimiz-
ing a convex function f over IRn (where f may be extended-real-valued), every
locally optimal solution is globally optimal, and the set of all such optimal
solutions (if any), namely argmin f , is convex.

Furthermore, if f is strictly convex and proper, there can be at most one
optimal solution: the set argmin f , if nonempty, must be a singleton.

Proof. If x0 and x1 belong to argmin f , or in other words, f(x0) = inf f and
f(x1) = inf f with inf f < ∞, we have for τ ∈ (0, 1) through the convexity
inequality 2(3) that the point xτ in 2(1) satisfies

f(xτ ) ≤ (1− τ) inf f + τ inf f = inf f,

where strict inequality is impossible. Hence xτ ∈ argmin f , and argmin f is
convex. When f is strictly convex and proper, this shows that x0 and x1 can’t
be different; then argmin f can’t contain more than one point.
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In a larger picture, if x0 and x1 are any points of dom f with f(x0) >
f(x1), it’s impossible for x0 to furnish a local minimum of f because every
neighborhood of x0 contains points xτ with τ ∈ (0, 1), and such points satisfy
f(xτ ) ≤ (1 − τ)f(x0) + τf(x1) < f(x0). Thus, there can’t be any locally
optimal solutions outside of argmin f , where global optimality reigns.

The uniqueness criterion provided by Theorem 2.6 for optimal solutions is
virtually the only one that can be checked in advance, without somehow going
through a process that would individually determine all the optimal solutions
to a problem, if any.

B. Level Sets and Intersections

For any optimization problem of convex type in the sense of Theorem 2.6 the
set of feasible solutions is convex, as seen from 2.3. This set may arise from
inequality constraints, and here the convexity of constraint functions is vital.

2.7 Proposition (convexity of level sets). For a convex function f : IRn → IR
all the level sets of type lev≤α f and lev<α f are convex.

Proof. This follows right from the convexity inequality 2(3).

a<a, x> >α

= α
<a, x>

< α\<a, x>

Fig. 2–3. A hyperplane and its associated half-spaces.

Level sets of the type lev≥α f and lev>α f are convex when, instead, f
is concave. Those of the type lev=α f are convex when f is both convex and
concave at the same time, and in this respect the following class of functions
is important. Here we denote by 〈x, y〉 the canonical inner product in IRn:〈

x, y
〉
= x1y1 + · · ·+ xnyn for x = (x1, . . . , xn), y = (y1, . . . , yn).

2.8 Example (affine functions, half-spaces and hyperplanes). A function f on
IRn is said to be affine if it differs from a linear function by only a constant:

f(x) =
〈
a, x

〉
+ β for some a ∈ IRn and β ∈ IR.

Any affine function is both convex and concave. As level sets of affine functions,
all sets of the form

{
x
∣∣ 〈a, x〉 ≤ α} and

{
x
∣∣ 〈a, x〉 ≥ α}, as well as all those of

the form
{
x
∣∣ 〈a, x〉 < α

}
and

{
x
∣∣ 〈a, x〉 > α

}
, are convex in IRn, and so too

are all those of the form
{
x
∣∣ 〈a, x〉 = α

}
. For a �= 0 and α finite, the sets in
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the last category are the hyperplanes in IRn, while the others are the closed
half-spaces and open half-spaces associated with such hyperplanes.

Affine functions are the only finite functions on IRn that are both convex
and concave, but other functions with infinite values can have this property,
not just the constant functions ∞ and −∞ but examples such as 2(6).

A set defined by several equations or inequalities is the intersection of the
sets defined by the individual equations or inequalities, so it’s useful to know
that convexity of sets is preserved under taking intersections.

2.9 Proposition (intersection, pointwise supremum and pointwise limits).

(a)
⋂

i∈I Ci is convex if each set Ci is convex.

(b) supi∈I fi is convex if each function fi is convex.

(c) supi∈I fi is strictly convex if each fi is strictly convex and I is finite.

(d) f is convex if f(x) = lim supν f
ν(x) for all x and each fν is convex.

Proof. These assertions follow at once from Definition 2.1. Note that (b) is the
epigraphical counterpart to (a): taking the pointwise supremum of a collection
of functions corresponds to taking the intersection of their epigraphs.

C if = 0

Fig. 2–4. A feasible set defined by convex inequalities.

As an illustration of the intersection principle in 2.9(a), any set C ⊂ IRn

consisting as in Example 1.1 of the points satisfying a constraint system

x ∈ X and

{
fi(x) ≤ 0 for i ∈ I1,
fi(x) = 0 for i ∈ I2,

is convex if the set X ⊂ IRn is convex and the functions fi are convex for i ∈ I1
but affine for i ∈ I2. Such sets are common in convex optimization.

2.10 Example (polyhedral sets and affine sets). A set C ⊂ IRn is said to be
a polyhedral set if it can be expressed as the intersection of a finite family of
closed half-spaces or hyperplanes, or equivalently, can be specified by finitely
many linear constraints , i.e., constraints fi(x) ≤ 0 or fi(x) = 0 where fi is
affine. It is called an affine set if it can be expressed as the intersection of
hyperplanes alone, i.e., in terms only of constraints fi(x) = 0 with fi affine.
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Affine sets are in particular polyhedral, while polyhedral sets are in par-
ticular closed, convex sets. The empty set and the whole space are affine.

Detail. The empty set is the intersection of two parallel hyperplanes, whereas
IRn is the intersection of the ‘empty collection’ of hyperplanes in IRn. Thus,
the empty set and the whole space are affine sets, hence polyhedral. Note that
since every hyperplane is the intersection of two opposing closed half-spaces,
hyperplanes are superfluous in the definition of a polyhedral set.

The alternative descriptions of polyhedral and affine sets in terms of linear
constraints are based on 2.8. For an affine function fi that happens to be a
constant function, a constraint fi(x) ≤ 0 gives either the empty set or the whole
space, and similarly for a constraint fi(x) = 0. Such possible degeneracy in a
system of linear constraints therefore doesn’t affect the geometric description
of the set of points satisfying the system as being polyhedral or affine.

Fig. 2–5. A polyhedral set.

2.11 Exercise (characterization of affine sets). For a nonempty set C ⊂ IRn the
following properties are equivalent:

(a) C is an affine set;

(b) C is a translate M + p of a linear subspace M of IRn by a vector p;

(c) C has the form
{
x
∣∣Ax = b

}
for some A ∈ IRm×n and b ∈ IRm.

(d) C contains for each pair of distinct points the entire line through them:
if x0 ∈ C and x1 ∈ C then (1− τ)x0 + τx1 ∈ C for all τ ∈ (−∞,∞).

(affine)

M (subspace)O

M + p p

Fig. 2–6. Affine sets as translates of subspaces.
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Guide. Argue that an affine set containing 0 must be a linear subspace.
A subspace M of dimension n − m can be represented as the set of vectors
orthogonal to certain vectors a1, . . . , am. Likewise reduce the analysis of (d) to
the case where 0 ∈ C.

Taking the pointwise supremum of a family of functions is just one of many
convexity-preserving operations. Others will be described shortly, but we first
expand the criteria for verifying convexity directly. For differentiable functions,
conditions on first and second derivatives serve this purpose.

C. Derivative Tests

We begin the study of such conditions with functions of a single real variable.
This approach is expedient because convexity is essentially a one-dimensional
property; behavior with respect to line segments is all that counts. For instance,
a set C is convex if and only if its intersection with every line is convex. By the
same token, a function f is convex if and only if it’s convex relative to every
line. Many of the properties of convex functions on IRn can thus be derived
from an analysis of the simpler case where n = 1.

2.12 Lemma (slope inequality). A real-valued function f on an interval C ⊂ IR
is convex on C if and only if for arbitrary points x0 < y < x1 in C one has

f(y)− f(x0)
y − x0 ≤ f(x1)− f(x0)

x1 − x0 ≤ f(x1)− f(y)
x1 − y . 2(7)

Then for any x ∈ C the difference quotient Δx(y) :=
[
f(y)− f(x)]/(y − x) is

a nondecreasing function of y ∈ C \ {x}, i.e., one has Δx(y0) ≤ Δx(y1) for all
choices of y0 and y1 not equal to x with y0 < y1.

Similarly, strict convexity is characterized by strict inequalities between the
difference quotients, and then Δx(y) is an increasing function of y ∈ C \ {x}.

IR

f

IR nx0 x1y

Fig. 2–7. Slope inequality.

Proof. The convexity of f is equivalent to the condition that

f(y) ≤ x1 − y
x1 − x0 f(x0) +

y − x0
x1 − x0 f(x1) when x0 < y < x1 in C, 2(8)
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since this is 2(3) when y is xτ for τ = (y−x0)/(x1−x0). The first inequality is
what one gets by subtracting f(x0) from both sides in 2(8), whereas the second
corresponds to subtracting f(x1). The case of strict convexity is parallel.

2.13 Theorem (one-dimensional derivative tests). For a differentiable function
f on an open interval O ⊂ IR, each of the following conditions is both necessary
and sufficient for f to be convex on O:

(a) f ′ is nondecreasing on O, i.e., f ′(x0) ≤ f ′(x1) when x0 < x1 in O;

(b) f(y) ≥ f(x) + f ′(x)(y − x) for all x and y in O;

(c) f ′′(x) ≥ 0 for all x in O (assuming twice differentiability).

Similarly each of the following conditions is both necessary and sufficient for f
to be strictly convex on O:

(a′) f ′ is increasing on O: f ′(x0) < f ′(x1) when x0 < x1 in O.

(b′) f(y) > f(x) + f ′(x)(y − x) for all x and y in O with y �= x.

A sufficient (but not necessary) condition for strict convexity is:

(c′) f ′′(x) > 0 for all x in O (assuming twice differentiability).

Proof. The equivalence between (a) and (c) when f is twice differentiable is
well known from elementary calculus, and the same is true of the implication
from (c′) to (a′). We’ll show now that [convexity] ⇒ (a) ⇒ (b) ⇒ [convexity].
If f is convex, we have

f ′(x0) ≤ f(x1)− f(x0)
x1 − x0 =

f(x0)− f(x1)
x0 − x1 ≤ f ′(x1) when x0 < x1 in O

from the monotonicity of difference quotients in Lemma 2.12, and this gives
(a). On the other hand, if (a) holds we have for any y ∈ O that the function
gy(x) := f(x) − f(y) − f ′(y)(x− y) has g′y(x) ≥ 0 for all x ∈ (y,∞) ∩ O but
g′y(x) ≤ 0 for all x ∈ (−∞, y) ∩ O. Then gy is nondecreasing to the right of y
but nonincreasing to the left, and it therefore attains its global minimum over
O at y. This means that (b) holds. Starting now from (b), consider the family
of affine functions ly(x) = f(y) + f ′(y)(x − y) indexed by y ∈ O. We have
f(x) = maxy∈O ly(x) for all x ∈ O, so f is convex on O by 2.9(b).

In parallel fashion we see that [strict convexity]⇒ (a′)⇒ (b′). To establish
that (b′) implies not just convexity but strict convexity, consider x0 < x1 in
O and an intermediate point xτ as in 2(1). For the affine function l(x) =
f(xτ ) + f ′(xτ )(x− xτ ) we have f(x0) > l(x0) and f(x1) > l(x1), but f(xτ ) =
l(xτ ) = (1− τ)l(x0) + τ l(x1). Therefore, f(xτ ) < (1− τ)f(x0) + τf(x1).

Here are some examples of functions of a single variable whose convexity or
strict convexity can be established by the criteria in Theorem 2.13, in particular
by the second-derivative tests:

• f(x) = ax2 + bx+ c on (−∞,∞) when a ≥ 0; strictly convex when a > 0.
• f(x) = eax on (−∞,∞); strictly convex when a �= 0.
• f(x) = xr on (0,∞) when r ≥ 1; strictly convex when r > 1.
• f(x) = −xr on (0,∞) when 0 ≤ r ≤ 1; strictly convex when 0 < r < 1.
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• f(x) = x−r on (0,∞) when r > 0; strictly convex in fact on this interval.
• f(x) = − log x on (0,∞); strictly convex in fact on this interval.

The case of f(x) = x4 on (−∞,∞) furnishes a counterexample to the
common misconception that positivity of the second derivative in 2.13(c′) is not
only sufficient but necessary for strict convexity: this function is strictly convex
relative to the entire real line despite having f ′′(0) = 0. The strict convexity
can be verified by applying the condition to f on the intervals (−∞, 0) and
(0,∞) separately and then invoking the continuity of f at 0. In general, it can
be seen that 2.13(c′) remains a sufficient condition for the strict convexity of a
twice differentiable function when relaxed to allow f ′′(x) to vanish at finitely
many points x (or even on a subset of O having Lebesgue measure zero).

To extend the criteria in 2.13 to functions of x = (x1, . . . , xn), we must
call for appropriate conditions on gradient vectors and Hessian matrices. For
a differentiable function f , the gradient vector and Hessian matrix at x are

∇f(x) :=
[
∂f

∂xj
(x)

]n
j=1

, ∇2f(x) :=

[
∂2f

∂xi∂xj
(x)

]n,n
i,j=1

.

Recall that a matrix A ∈ IRn×n is called positive-semidefinite if 〈z, Az〉 ≥ 0 for
all z, and positive-definite if 〈z, Az〉 > 0 for all z �= 0. This terminology applies
even if A is not symmetric, but of course 〈z, Az〉 depends only on the symmetric
part of A, i.e., the matrix 1

2 (A+A∗), where A∗ denotes the transpose of A. In
terms of the components aij of A and zj of z, one has

〈z, Az〉 =
n∑

i=1

n∑
j=1

aijzizj .

2.14 Theorem (higher-dimensional derivative tests). For a differentiable func-
tion f on an open convex set O ⊂ IRn, each of the following conditions is both
necessary and sufficient for f to be convex on O:

(a) 〈x1 − x0,∇f(x1)−∇f(x0)〉 ≥ 0 for all x0 and x1 in O;

(b) f(y) ≥ f(x) + 〈∇f(x), y − x〉 for all x and y in O;

(c) ∇2f(x) is positive-semidefinite for all x in O (f twice differentiable).

For strict convexity, a necessary and sufficient condition is (a) holding with
strict inequality when x0 �= x1, or (b) holding with strict inequality when
x �= y. A condition that is sufficient for strict convexity (but not necessary) is
the positive definiteness of the Hessian matrix in (c) for all x in O.

Proof. As already noted, f is convex on O if and only if it is convex on
every line segment in O. This is equivalent to the property that for every
choice of y ∈ O and z ∈ IRn the function g(t) = f(y + tz) is convex on any
open interval of t values for which y + tz ∈ O. Here g′(t) =

〈
z,∇f(y + tz)

〉
and g′′(t) =

〈
z,∇2f(y + tz)z

〉
. The asserted conditions for convexity and

strict convexity are equivalent to requiring in each case that the corresponding
condition in 2.13 hold for all such functions g.
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Twice differentiable concave or strictly concave functions can similarly be
characterized in terms of Hessian matrices that are negative-semidefinite or
negative-definite.

2.15 Example (quadratic functions). A function f on IRn is quadratic if it’s
expressible as f(x) =

1
2 〈x,Ax〉+ 〈a, x〉+ const., where the matrix A ∈ IRn×n

is symmetric. Then ∇f(x) = Ax + a and ∇2f(x) ≡ A, so f is convex if and
only if A is positive-semidefinite. Moreover, a function f of this type is strictly
convex if and only if A is positive-definite.

Detail. Note that the positive definiteness of the Hessian is being asserted as
necessary for the strict convexity of a quadratic function, even though it was
only listed in Theorem 2.14 merely as sufficient in general. The reason is that if
A is positive-semidefinite, but not positive-definite, there’s a vector z �= 0 such
that 〈z, Az〉 = 0, and then along the line through the origin in the direction of
z it’s impossible for f to be strictly convex.

Because level sets of convex functions are convex by 2.7, it follows from
Example 2.15 that every set of the form

C =
{
x
∣∣ 1
2 〈x,Ax〉+ 〈a, x〉 ≤ α

}
with A positive-semidefinite

is convex. This class of sets includes all closed Euclidean balls as well as general
ellipsoids, paraboloids, and ‘cylinders’ with ellipsoidal or paraboloidal base.

Algebraic functions of the form described in 2.15 are often called quadratic,
but that name seems to carry the risk of suggesting sometimes that A �= 0 is
assumed, or that second-order terms—only—are allowed. Sometimes, we’ll
refer to them as linear-quadratic as a way of emphasizing the full generality.

2.16 Example (convexity of vector-max and log-exponential). In terms of x =
(x1, . . . , xn), the functions

vecmax(x) := max{x1, . . . , xn}, logexp(x) := log
(
ex1 + · · ·+ exn

)
,

are convex on IRn but not strictly convex.

Detail. Convexity of f = logexp is established via 2.14(c) by calculating in
terms of σ(x) =

∑n
j=1 e

xj that

〈
z,∇2f(x)z

〉
=

1

σ(x)

n∑
j=1

exjz2j −
1

σ(x)2

n∑
j=1

n∑
i=1

e(xi+xj)zizj

=
1

2σ(x)2

n∑
i=1

n∑
j=1

e(xi+xj)(zi − zj)2 ≥ 0.

Strict convexity fails because f(x + t1l) = f(x) + t for 1l = (1, 1, . . . , 1). As
f = vecmax is the pointwise max of the n linear functions x �→ xj , it’s convex
by 2.9(c). It isn’t strictly convex, because f(λx) = λf(x) for λ ≥ 0.
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2.17 Example (norms). By definition, a norm on IRn is a real-valued function
h(x) = ‖x‖ such that

‖λx‖ = |λ|‖x‖, ‖x+ y‖ ≤ ‖x‖+ ‖y‖, ‖x‖ > 0 for x �= 0.

Any such a function h is convex, but not strictly convex. The corresponding
balls

{
x
∣∣ ‖x − x0‖ ≤ ρ

}
and

{
x
∣∣ ‖x− x0‖ < ρ

}
are convex sets. Beyond the

Euclidean norm |x| = (
∑n

j=1 |xj|2)1/2 these properties hold for the lp norms

‖x‖p :=
(∑n

j=1
|xj |p

)1/p

for 1 ≤ p <∞, ‖x‖∞ := max
j=1,...,n

|xj|. 2(9)

Detail. Any norm satisfies the convexity inequality 2(3), but the strict version
fails when x0 = 0, x1 �= 0. The associated balls are convex as translates of level
sets of a convex function. For any p ∈ [1,∞] the function h(x) = ‖x‖p obviously
fulfills the first and third conditions for a norm. In light of the first condition,
the second can be written as h

( 1
2x + 1

2y
) ≤ 1

2h(x) +
1
2h(y), which will follow

from verifying that h is convex, or equivalently that epi h is convex. We have
epi h =

{
λ(x, 1)

∣∣x ∈ B, λ ≥ 0
}
, where B =

{
x
∣∣ ‖x‖p ≤ 1

}
. The convexity of

epi h can easily be derived from this formula once it is known that the set B is
convex. For p =∞, B is a box, while for p ∈ [1,∞) it is lev≤1 g for the convex
function g(x) =

∑n
j=1 |xj |p, hence it is convex in that case too.

D. Convexity in Operations

Many important convex functions lack differentiability. Norms can’t ever be
differentiable at the origin. The vector-max function in 2.16 fails to be differ-
entiable at x̄ = (x̄1, . . . , x̄n) if two coordinates x̄j and x̄k tie for the max. (At
such a point the function has ‘kinks’ along the lines parallel to the xj-axis and
the xk axis.) Although derivative tests can’t be used to establish the convexity
of functions like these, other criteria can fill the need, for instance the fact in
2.9 that a pointwise supremum of convex functions is convex. (A pointwise
infimum of convex functions is convex only in cases like a decreasing sequence
of convex functions or a ‘convexly parameterized’ family as will be treated in
2.22(a).)

2.18 Exercise (addition and scalar multiplication). For convex functions fi :
IRn → IR and real coefficients λi ≥ 0, the function

∑m
i=1 λifi is convex. It is

strictly convex if for at least one index i with λi > 0, fi is strictly convex.

Guide. Work from Definition 2.1.

2.19 Exercise (set products and separable functions).

(a) If C = C1×· · ·×Cm where each Ci is convex in IRni , then C is convex
in IRn1 × · · · × IRnm . In particular, any box in IRn is a closed, convex set.
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(b) If f(x) = f1(x1)+· · ·+fm(xm) for x = (x1, . . . , xm) in IRn1×· · ·×IRnm ,
where each fi is convex, then f is convex. If each fi is strictly convex, then f
is strictly convex.

2.20 Exercise (convexity in composition).

(a) If f(x) = g(Ax+a) for a convex function g : IRm → IR and some choice
of A ∈ IRm×n and a ∈ IRm, then f is convex.

(b) If f(x) = θ
(
g(x)

)
for a convex function g : IRn → IR and a nondecreas-

ing convex function θ : IR → IR, the convention being used that θ(∞) = ∞
and θ(−∞) = inf θ, then f is convex. Furthermore, f is strictly convex in the
case where g is strictly convex and θ is increasing.

(c) Suppose f(x) = g
(
F (x)

)
for a convex function g : IRm → IR and a

mapping F : IRn → IRm, where F (x) =
(
f1(x), . . . , fm(x)

)
with fi convex for

i = 1, . . . , s and fi affine for i = s + 1, . . . , m. Suppose that g(u1, . . . , um) is
nondecreasing in ui for i = 1, . . . , s. Then f is convex.

An example of a function whose convexity follows from 2.20(a) is f(x) =
‖Ax − b‖ for any matrix A, vector b, and any norm ‖ · ‖. Some elementary
examples of convex and strictly convex functions constructed as in 2.20(b) are:

• f(x) = eg(x) is convex when g is convex, and strictly convex when g is
strictly convex.
• f(x) = − log |g(x)| when g(x) < 0, f(x) = ∞ when g(x) ≥ 0, is convex
when g is convex, and strictly convex when g is strictly convex.
• f(x) = g(x)2 when g(x) ≥ 0, f(x) = 0 when g(x) < 0, is convex when g is
convex.

As an example of the higher-dimensional composition in 2.20(c), a vector of
convex functions f1, . . . , fm can be composed with vecmax or logexp, cf. 2.16.
This confirms that convexity is preserved when a nonsmooth function, given as
the pointwise maximum of finitely many smooth functions, is approximated by
a smooth function as in Example 1.30. Other examples in the mode of 2.20(c)
are obtained with g(z) of the form∣∣z∣∣

+
:= max{z, 0} for z ∈ IR

in 2.20(b), or more generally

∣∣z∣∣
+
:=

√∣∣z1∣∣2
+
+ · · ·+ ∣∣zm∣∣2

+
for z = (z1, . . . , zm) ∈ IRm 2(10)

in 2.20(c). This way we get the convexity of a function of the form f(x) =∣∣(f1(x), . . . , fm(x))
∣∣
+
when fi is convex. Then too, for instance, the pth power

of such a function is convex for any p ∈ [1,∞), as seen from further composition
with the nondecreasing, convex function θ : t �→ ∣∣t∣∣p

+
.

2.21 Proposition (images under linear mappings). If L : IRn → IRm is linear,
then L(C) is convex in IRm for every convex set C ⊂ IRn, while L−1(D) is
convex in IRn for every convex set D ⊂ IRm.
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Proof. The first assertion is obtained from the definition of the convexity
of C and the linearity of L. Specifically, if u = (1 − τ)u0 + τu1 for points
u0 = L(x0) and u1 = L(x1) with x0 and x1 in C, then u = L(x) for the
point x = (1− τ)x0 + τx1 in C. The second assertion can be proved quite as
easily, but it may also be identified as a specialization of the composition rule
in 2.20(a) to the case of g being the indicator δC .

Projections onto subspaces are examples of mappings L to which 2.21 can
be applied. If D is a subset of IRn × IRd and C consists of the vectors x ∈ IRn

for which there’s a vector w ∈ IRd with (x, w) ∈ D, then C is the image of D
under the mapping (x, w) �→ x, so it follows that C is convex when D is convex.

2.22 Proposition (convexity in inf-projection and epi-composition).

(a) If p(u) = infx f(x, u) for a convex function f on IRn × IRm, then p is
convex on IRm. Also, the set P (u) = argminx f(x, u) is convex for each u.

(b) For any convex function f : IRn → IR and matrix A ∈ IRm×n the
function Af : IRm → IR defined by (Af)(u) := inf

{
f(x)

∣∣Ax = u
}
is convex.

Proof. In (a), the set D =
{
(u, α)

∣∣ p(u) < α < ∞}
is the image of the set

E =
{
(x, u, α)

∣∣ f(x, u) < α <∞}
under the linear mapping (x, u, α) �→ (u, α).

The convexity of E through 2.4 implies that ofD through 2.21, and this ensures
that p is convex. The convexity of P (u) follows from 2.6.

Likewise in (b), the set D′ =
{
(u, α)

∣∣ (Af)(u) < α < ∞}
is the image

of E′ =
{
(x, α)

∣∣ f(x) < α < ∞}
under the linear transformation (x, α) �→

(Ax, α). Again, the claimed convexity is justified through 2.4 and 2.21.

The notation Af in 2.22(b) is interchangeable with Lf for the mapping
L : x �→ Ax, which fits with the general definition of epi-composition in 1(17).

2.23 Proposition (convexity in set algebra).

(a) C1 + C2 is convex when C1 and C2 are convex.

(b) λC is convex for every λ ∈ IR when C is convex.

(c) When C is convex, one has (λ1 + λ2)C = λ1C + λ2C for λ1, λ2 ≥ 0.

Proof. Properties (a) and (b) are immediate from the definitions. In (c) it
suffices through rescaling to deal with the case where λ1+λ2 = 1. The equation
is then merely a restatement of the definition of the convexity of C.

As an application of 2.23, the ‘fattened’ set C + εIB is convex whenever C
is convex; here IB is the closed, unit Euclidean ball, cf. 1(15).

2.24 Exercise (epi-sums and epi-multiples).

(a) f1 f2 is convex when f1 and f2 are convex.

(b) λ�f is convex for every λ > 0 when f is convex.

(c) When f is convex, one has (λ1+λ2)�f = (λ1�f) (λ2�f) for λ1, λ2 ≥ 0.

Guide. Get these conclusions from 2.23 through the geometry in 1.28.

2.25 Example (distance functions and projections). For a convex set C, the
distance function dC is convex, and as long as C is closed and nonempty, the
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projection mapping PC is single-valued, i.e., for each point x ∈ IRn there is a
unique point of C nearest to x. Moreover PC is continuous.

Detail. The distance function (from 1.20) arises through epi-addition, cf.
1(13), so its convexity is a consequence of 2.24. The elements of PC(x) minimize
|w−x| over all w ∈ C, but they can also be regarded as minimizing |w−x|2 over
all w ∈ C. Since the function w �→ |w − x|2 is strictly convex (via 2.15), there
can’t be more than one such element (see 2.6), but on the other hand there’s
at least one (by 1.20). Hence PC(x) is a singleton. The cluster point property
in 1.20 ensures then that, as a single-valued mapping, PC is continuous.

For a convex function f , the Moreau envelopes and proximal mappings
defined in 1.22 have remarkable properties.

2.26 Theorem (proximal mappings and envelopes under convexity). Let f :
IRn → IR be lsc, proper, and convex. Then f is prox-bounded with threshold
∞, and the following properties hold for every λ > 0.

(a) The proximal mapping Pλf is single-valued and continuous. In fact
Pλf(x)→ Pλ̄f(x̄) whenever (λ, x)→ (λ̄, x̄) with λ̄ > 0.

(b) The envelope function eλf is convex and continuously differentiable,
the gradient being

∇eλf(x) =
1

λ

[
x− Pλf(x)

]
.

Proof. From Definition 1.22 we have eλf(x) := infw gλ(x, w) and Pλf(x) :=
argminw gλ(x, w) for the function gλ(x, w) := f(w) + (1/2λ)|w − x|2, which
our assumptions imply to be lsc, proper and convex in (x, w), even strictly
convex in w. If the threshold for f is ∞ as claimed, then eλf and Pλf have
all the properties in 1.25, and in addition eλf is convex by 2.22(a), while Pλf
is single-valued by 2.6. This gives everything in (a) and (b) except for the
differentiability in (b), which will need a supplementary argument. Before
proceeding with that argument, we verify the prox-boundedness.

In order to show that the threshold for f is ∞, it suffices to show for
arbitrary λ > 0 that eλf(0) > −∞, which can be accomplished through The-
orem 1.9 by demonstrating the boundedness of the level sets of gλ(0, ·). If
the latter property were absent, there would exist α ∈ IR and points xν with
f(xν)+ (1/2λ)|xν|2 ≤ α such that 1 < |xν | → ∞. Fix any x0 with f(x0) <∞.
Then in terms of τν = 1/|xν | ∈ (0, 1) and x̄ν := (1 − τν)x0 + τνxν we have
τν → 0 and

f(x̄ν) ≤ (1− τν)f(x0) + τνf(xν)

≤ (1− τν)f(x0) + τνα− (1/2λ)|xν| → −∞.
The sequence of points x̄ν is bounded, so this is incompatible with f being
proper and lsc (cf. 1.10). The contradiction proves the claim.

The differentiability claim in (b) is next. Continuous differentiability will
follow from the formula for the gradient mapping, once that is established, since
Pλf is already known to be a continuous, single-valued mapping. Consider
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any point x̄, and let w̄ = Pλf(x̄) and v̄ = (x̄ − w̄)/λ. Our task is to show
that eλf is differentiable at x̄ with ∇eλf(x̄) = v̄, or equivalently in terms of
h(u) := eλf(x̄+u)−eλf(x̄)−〈v̄, u〉 that h is differentiable at 0 with ∇h(0) = 0.
We have eλf(x̄) = f(w̄) + (1/2λ)|w̄ − x̄|2, whereas eλf(x̄ + u) ≤ f(w̄) +
(1/2λ)|w̄ − (x̄+ u)|2, so that

h(u) ≤ 1

2λ
|w̄ − (x̄+ u)|2 − 1

2λ
|w̄ − x̄|2 − 1

λ
〈x̄− w̄, u〉 = 1

2λ
|u|2.

But h inherits the convexity of eλf and therefore has 1
2h(u)+

1
2h(−u) ≥ h

( 1
2u+

1
2 (−u)

)
= h(0) = 0, so from the inequality just obtained we also get

h(u) ≥ −h(−u) ≥ − 1

2λ
| − u|2 = − 1

2λ
|u|2.

Thus we have
∣∣h(u)∣∣ ≤ (1/2λ)|u|2 for all u, and this obviously yields the desired

differentiability property.

Especially interesting in Theorem 2.26 is the fact that regardless of any
nonsmoothness of f , the envelope approximations eλf are always smooth.

E. Convex Hulls

Nonconvex sets can be ‘convexified’. For C ⊂ IRn, the convex hull of C, denoted
by conC, is the smallest convex set that includes C. Obviously conC is the
intersection of all the convex sets D ⊃ C, this intersection being a convex set
by 2.9(a). (At least one such set D always exists—the whole space.)

2.27 Theorem (convex hulls from convex combinations). For a set C ⊂ IRn,
conC consists of all the convex combinations of elements of C:

conC =
{∑p

i=0
λixi

∣∣∣xi ∈ C, λi ≥ 0,
∑p

i=0
λi = 1, p ≥ 0

}
.

con C

C

Fig. 2–8. The convex hull of a set.

Proof. Let D be the set of all convex combinations of elements of C. We
have D ⊂ conC by 2.2, because conC is a convex set that includes C. But
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D is itself convex: if x is a convex combination of x0, . . . , xp in C and x′ is
a convex combination of x′0, . . . , x

′
p′ in C, then for any τ ∈ (0, 1), the vector

(1− τ)x+ τx′ is a convex combination of x0, . . . , xp and x′0, . . . , x′p′ together.
Hence conC = D.

Sets expressible as the convex hull of a finite subset of IRn are especially
important. When C = {a0, a1, . . . , ap}, the formula in 2.27 simplifies: conC
consists of all convex combinations λ0a0 + λ1a1 + · · · + λpap. If the points
a0, a1, . . . , ap are affinely independent , the set con{a0, a1, . . . , ap} is called a
p-simplex with these points as its vertices . The affine independence condition
means that the only choice of coefficients λi ∈ (−∞,∞) with λ0a0 + λ1a1 +
· · ·+λpap = 0 and λ0+λ1+ · · ·+λp = 0 is λi = 0 for all i; this holds if and only
if the vectors ai − a0 for i = 1, . . . , p are linearly independent. A 0-simplex is
a point, whereas a 1-simplex is a closed line segment joining a pair of distinct
points. A 2-simplex is a triangle, and a 3-simplex a tetrahedron.

Fig. 2–9. The convex hull of finitely many points.

Simplices are often useful in technical arguments about convexity. The
following are some of the facts commonly employed.

2.28 Exercise (simplex technology).

(a) Every simplex S = con{a0, a1, . . . , ap} is a polyhedral set, in particular
closed and convex.

(b) When a0, . . . , an are affinely independent in IRn, every x ∈ IRn has a
unique expression in barycentric coordinates: x =

∑n
i=0 λiai with

∑n
i=0 λi = 1.

(c) The expression of each point of a p-simplex S = con{a0, a1, . . . , ap} as
a convex combination

∑p
i=0 λiai is unique: there is a one-to-one correspon-

dence, continuous in both directions, between the points of S and the vectors
(λ0, λ1, . . . , λp) ∈ IRp+1 such that λi ≥ 0 and

∑p
i=0 λi = 1.

(d) Every n-simplex S = con{a0, a1, . . . , an} in IRn has nonempty interior,
and x ∈ intS if and only if x =

∑n
i=0 λiai with λi > 0 and

∑n
i=0 λi = 1.

(e) Simplices can serve as neighborhoods: for every point x̄ ∈ IRn and
neighborhood V ∈ N (x̄) there is an n-simplex S ⊂ V with x̄ ∈ intS.

(f) For an n-simplex S = con{a0, a1, . . . , an} in IRn and sequences aνi → ai,
the set Sν = con{aν0 , aν1 , . . . , aνn} is an n-simplex once ν is sufficiently large.
Furthermore, if xν → x with barycentric representations xν =

∑n
i=0 λ

ν
i a

ν
i and

x =
∑n

i=0 λiai, where
∑n

i=0 λ
ν
i = 1 and

∑n
i=0 λi = 1, then λνi → λi.
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dim=0 dim=1 dim=2 dim=3

Fig. 2–10. Simplices of dimensions 0, 1, 2 and 3.

Guide. In (a)-(d) simplify by translating the points to make a0 = 0; in (a) and
(c) augment a1, . . . , ap by other vectors (if p < n) in order to have a basis for
IRn. Consider the linear transformation that maps ai to ei = (0, . . . , 1, 0, . . . , 0)
(where the 1 in ei appears in ith position). For (e), the case of x̄ = 0 and
convex neighborhoods V = IB(0, ε) is enough. Taking any n-simplex S with
0 ∈ intS, show there’s a δ > 0 such that δS ⊂ IB(0, ε). In (f) let A be
the matrix having the vectors ai − a0 as its columns; similarly, Aν . Identify
the simplex assumption on S with the nonsingularity of A and argue (by way
of determinants for instance) that then Aν must eventually be nonsingular.
For the last part, note that x = Az + a0 for z = (λ1, . . . , λn) and similarly
xν = Aνzν + aν0 for ν sufficiently large. Establish that the convergence of Aν

to A entails the convergence of the inverse matrices.

In the statement of Theorem 2.27, the integer p isn’t fixed and varies over
all possible choices of a convex combination. This is sometimes inconvenient,
and it’s valuable then to know that a fixed choice will suffice.

2.29 Theorem (convex hulls from simplices; Carathéodory). For a set C �= ∅ in
IRn, every point of conC belongs to some simplex with vertices in C and thus
can be expressed as a convex combination of n+1 points of C (not necessarily
different). For every point in bdryC, the boundary of C, n points suffice.
When C is connected, then every point of conC can be expressend as the
combination of no more than n points of C.

Proof. First we show that conC is the union of all simplices formed from
points of C: each x ∈ conC can be expressed not only as a convex combination∑p

i=0 λixi with xi ∈ C, but as one in which x0, x1, . . . , xp are affinely indepen-
dent. For this it suffices to show that when the convex combination is chosen
with p minimal (which implies λi > 0 for all i), the points xi can’t be affinely
dependent. If they were, we would have coefficients μi, at least one of them
positive, such that

∑p
i=0 μixi = 0 and

∑p
i=0 μi = 0. Then there is a largest

τ > 0 such that τμi ≤ λi for all i, and by setting λ′i = λi − τμi we would get
a representation x =

∑p
i=0 λ

′
ixi in which

∑p
i=0 λ

′
i = 1, λ′i ≥ 0, and actually

λ′i = 0 for some i. This would contradict the minimality of p.
Of course when x0, x1, . . . , xp are affinely independent, we have p ≤ n.

If p < n we can choose additional points xp+1, . . . , xn arbitrarily from C and
expand the representation x =

∑p
i=0 λixi to x =

∑n
i=0 λixi by taking λi = 0

for i = p+ 1, . . . , n. This proves the first assertion of the theorem.



56 2. Convexity

By passing to a lower dimensional space if necessary, one can suppose
that conC is n-dimensional. Then conC is the union of all n-simplices whose
vertices are in C. A point in bdryC, while belonging to some such n-simplex,
can’t be in its interior and therefore must be on boundary of that n-simplex.
But the boundary of an n-simplex is a union of (n−1)-simplices whose vertices
are in C, i.e., every point in bdryC can be obtained as the convex combination
of no more than n point in C.

Finally, let’s show that if some point x̄ in conC, but not in C, has a
minimal representation

∑n
i=0 λ̄ixi involving exactly n+ 1 points xi ∈ C, then

C can’t be connected. By a translation if necessary, we can simplify to the
case where x̄ = 0; then

∑n
i=0 λ̄ixi = 0 with 0 < λ̄i < 1,

∑n
i=0 λ̄i = 1, and

x0, x1, . . . , xn affinely independent. In this situation the vectors x1, . . . , xn are
linearly independent, for if not we would have an expression

∑n
i=1 μixi = 0 with∑n

i=1 μi = 0 (but not all coefficients 0), or one with
∑n

i=1 μi = 1; the first case
is precluded by x0, x1, . . . , xn being affinely independent, while the second is
impossible by the uniqueness of the coefficients λ̄i, cf. 2.28(b). Thus the vectors
x1, . . . , xn form a basis for IRn, and every x ∈ IRn can be expressed uniquely as
a linear combination

∑n
i=1 αixi, where the correspondence x↔ (α1, . . . , αn) is

continuous in both directions. In particular, x0 ↔ (−λ̄1/λ̄0, . . . ,−λ̄n/λ̄0).
Let D be the set of all x ∈ IRn with αi ≤ 0 for i = 1, . . . , n; this is a

closed set whose interior consists of all x with αi < 0 for i = 1, . . . , n. We have
x0 ∈ intD but xi /∈ D for all i �= 0. Thus, the open sets intD and IRn \D both
meet C. If C is connected, it can’t lie entirely in the union of these disjoint
sets and must meet the boundary of D. There must be a point x′0 ∈ C having
an expression x′0 =

∑n
i=1 αixi with αi ≤ 0 for i = 1, . . . , n but also αi = 0 for

some i, which we can take to be i = n. Then x′0 +
∑n−1

i=1 |αi|xi = 0, and in

dividing through by 1 +
∑n−1

i=1 |αi| we obtain a representation of 0 as a convex
combination of only n points of C, which is contrary to the minimality that
was assumed.

2.30 Corollary (compactness of convex hulls). For any compact set C ⊂ IRn,
conC is compact. In particular, the convex hull of a finite set of points is
compact; thus, simplices are compact.

Proof. Let D ⊂ (IRn)n+1 × IRn+1 consist of all w = (x0, . . . , xn, λ0, . . . , λn)
with xi ∈ C, λi ≥ 0,

∑n
i=0 λi = 1. From the theorem, conC is the image of D

under the mapping F : w �→ ∑n
i=0 λixi. The image of a compact set under a

continuous mapping is compact.

For a function f : IRn → IR, there is likewise a notion of convex hull:
con f is the greatest convex function majorized by f . (Recall that a function
g : IRn → IR is majorized by a function h : IRn → IR if g(x) ≤ h(x) for
all x. With the opposite inequality, g is minorized by h.) Clearly, con f
is the pointwise supremum of all the convex functions g ≤ f , this pointwise
supremum being a convex function by 2.9(b); the constant function −∞ always
serves as such a function g. Alternatively, con f is the function obtained by
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taking epi(con f) to be the epigraphical closure of con(epi f). The condition
f = con f means that f is convex. For f = δC one has con f = δD, where
D = conC.

2.31 Proposition (convexification of a function). For f : IRn → IR,

(
con f

)
(x) = inf

{∑n

i=0
λif(xi)

∣∣∣ ∑n

i=0
λixi = x, λi ≥ 0,

∑n

i=0
λi = 1

}
.

Proof. We apply Theorem 2.29 to epi f in IRn+1: every point of con(epi f)
is a convex combination of at most n + 2 points of epi f . Actually, at most
n+1 points xi at a time are needed in determining the values of con f , since a
point (x̄, ᾱ) of con(epi f) not representable by fewer than n+2 points of epi f
would lie in the interior of some n+1-simplex S in con(epi f). The vertical line
through (x̄, ᾱ) would meet the boundary of S in a point (x̄, α̃) with ᾱ > α̃, and
such a boundary point is representable by n + 1 of the points in question, cf.
2.28(d). Thus, (con f)(x) is the infimum of all numbers α such that there exist
n+ 1 points (xi, αi) ∈ epi f and scalars λi ≥ 0, with

∑n
i=0 λi(xi, αi) = (x, α),∑n

i=0 λi = 1. This description translates to the formula claimed.

con f

f

Fig. 2–11. The convex hull of a function.

F. Closures and Continuity

Next we consider the relation of convexity to some topological concepts like
closures and interiors of sets and semicontinuity of functions.

2.32 Proposition (convexity and properness of closures). For a convex set C ⊂
IRn, clC is convex. Likewise, for a convex function f : IRn → IR, cl f is convex.
Moreover cl f is proper if and only if f is proper.

Proof. First, for sequences of points xν0 and xν1 in C converging to x0 and x1
in clC, and for any τ ∈ (0, 1), the points xντ = (1− τ)xν0 + τxν1 ∈ C, converge
to xτ = (1− τ)x0+ τx1, which therefore lies in clC. This proves the convexity
of clC. In the case of a function f , the epigraph of the function cl f (the lsc
regularization of f introduced in 1(6)-1(7)) is the closure of the epigraph of f ,
which is convex, and therefore cl f is convex as well, cf. 2.4.

If f is improper, so is cl f by 2.5. Conversely, if cl f is improper it is
−∞ on the convex set D = dom(cl f) = cl(dom f) by 2.5. Consider then a
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simplex S = con{a0, a1, . . . , ap} of maximal dimension in D. By a translation
if necessary, we can suppose a0 = 0, so that the vectors a1, . . . , ap are linearly
independent. The p-dimensional subspace M generated by these vectors must
include D, for if not we could find an additional vector ap+1 ∈ D linearly in-
dependent of the others, and this would contradict the maximality of p. Our
analysis can therefore be reduced to M , which under a change of coordinates
can be identified with IRp. To keep notation simple, we can just as well as-
sume that M = IRn, p = n. Then S has nonempty interior; let x ∈ intS,
so that x =

∑n
i=0 λiai with λi > 0,

∑n
i=0 λi = 1, cf. 2.28(d). For each i we

have (cl f)(ai) = −∞, so there is a sequence aνi → ai with f(aνi ) → −∞.
Then for ν sufficiently large we have representations x =

∑n
i=0 λ

ν
i a

ν
i with

λνi > 0,
∑n

i=0 λ
ν
i = 1, cf. 2.28(f). From Jensen’s inequality 2.2(b), we ob-

tain f(x) ≤∑n
i=0 λ

ν
i f(a

ν
i ) ≤ max{f(aν0), f(aν1), . . . , f(aνn)} → −∞. Therefore,

f(x) = −∞, and f is improper.

The most important topological consequences of convexity can be traced to
a simple fact about line segments which relates the closure clC to the interior
intC of a convex set C, when the interior is nonempty.

2.33 Theorem (line segment principle). A convex set C has intC �= ∅ if and
only if int(clC) �= ∅. In that case, whenever x0 ∈ intC and x1 ∈ clC, one has
(1− τ)x0 + τx1 ∈ intC for all τ ∈ (0, 1). Thus, intC is convex. Moreover,

clC = cl(intC), intC = int(clC).

Proof. Leaving the assertions about int(clC) to the end, start just with the
assumption that intC �= ∅. Choose ε0 > 0 small enough that the ball IB(x0, ε0)
is included in C. Writing IB(x0, ε0) = x0+ε0IB for IB = IB(0, 1), note that our
assumption x1 ∈ clC implies x1 ∈ C + ε1IB for all ε1 > 0. For arbitrary fixed
τ ∈ (0, 1), it’s necessary to show that the point xτ = (1−τ)x0+τx1 belongs to
intC. For this it suffices to demonstrate that xτ + ετ IB ⊂ C for some ετ > 0.
We do so for ετ := (1 − τ)ε0 − τε1, with ε1 fixed at any positive value small
enough that ετ > 0 (cf. Figure 2–12), by calculating

xτ + ετ IB = (1− τ)x0 + τx1 + ετ IB ⊂ (1− τ)x0 + τ(C + ε1IB) + ετ IB

= (1− τ)x0 + (τε1 + ετ )IB + τC = (1− τ)(x0 + ε0IB) + τC

⊂ (1− τ)C + τC = C,

where the convexity of C and IB has been used in invoking 2.23(c).
As a special case of the argument so far, if x1 ∈ intC we get xτ ∈ intC;

thus, intC is convex. Also, any point of clC can be approached along a line
segment by points of intC, so clC = cl(intC).

It’s always true, on the other hand, that intC ⊂ int(clC), so the
nonemptiness of intC implies that of int(clC). To complete the proof of the
theorem, no longer assuming outright that intC �= ∅, we suppose x̄ ∈ int(clC)
and aim at showing x̄ ∈ intC.

By 2.28(e), some simplex S = con{a0, a1, . . . , an} ⊂ clC has x̄ ∈ intS.
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Fig. 2–12. Line segment principle for convex sets.

Then x̄ =
∑n

i=0 λiai with
∑n

i=0 λi = 1, λi > 0, cf. 2.28(d). Consider in C
sequences aνi → ai, and let Sν = con{aν0 , aν1 , . . . , aνn} ⊂ C. For large ν, Sν is an
n-simplex too, and x̄ =

∑n
i=0 λ

ν
i a

ν
i with

∑n
i=0 λ

ν
i = 1 and λνi → λi; see 2.28(f).

Eventually λνi > 0, and then x̄ ∈ intSν by 2.28(d), so x̄ ∈ intC.

2.34 Proposition (interiors of epigraphs and level sets). For f convex on IRn,

int(epi f) =
{
(x, α) ∈ IRn × IR ∣∣x ∈ int(dom f), f(x) < α

}
,

int(lev≤α f) =
{
x ∈ int(dom f)

∣∣ f(x) < α
}

for α ∈ (inf f,∞).

Proof. Obviously, if (x̄, ᾱ) ∈ int(epi f) there’s a ball around (x̄, ᾱ) within
epi f , so that x̄ ∈ int(dom f) and f(x̄) < ᾱ.

On the other hand, if the latter properties hold there’s a simplex S =
con{a0, a1, . . . , an} with x̄ ∈ intS ⊂ dom f , cf. 2.28(e). Each x ∈ S is a
convex combination

∑n
i=0 λiai and satisfies f(x) ≤ ∑n

i=0 λif(ai) by Jensen’s
inequality in 2.2(b) and therefore also satisfies f(x) ≤ max

{
f(a0), . . . , f(an)

}
.

For α̃ := max
{
f(a0), . . . , f(an)

}
the open set intS × (α̃,∞) lies then within

epi f . The vertical line through (x̄, ᾱ) thus contains a point (x̄, α0) ∈ int(epi f)
with α0 > ᾱ, but it also contains a point (x̄, α1) ∈ epi f with α1 < ᾱ, inasmuch
as f(x̄) < ᾱ. The set epi f is convex because f is convex, so by the line
segment principle in 2.33 all the points between (x̄, α0) and (x̄, α1) must belong
to int(epi f). This applies to (x̄, ᾱ) in particular.

Consider now a level set lev≤ᾱ f . If x̄ ∈ int(dom f) and f(x̄) < ᾱ, then
some ball around (x̄, ᾱ) lies in epi f , so f(x) ≤ ᾱ for all x in some neighborhood
of x̄. Then x̄ ∈ int(lev≤ᾱ f). Conversely, if x̄ ∈ int(lev≤ᾱ f) and inf f < ᾱ <
∞, we must have x̄ ∈ int(dom f), but also there’s a point x0 ∈ dom f with
f(x0) < ᾱ. For ε > 0 sufficiently small the point x1 = x̄ + ε(x̄ − x0) still
belongs to lev≤ᾱ f . Then x̄ = (1 − τ)x0 + τx1 for τ = 1/(1 + ε), and we get
f(x̄) ≤ (1− τ)f(x0) + τf(x1) < ᾱ, which is the desired inequality.

2.35 Theorem (continuity properties of convex functions). A convex function
f : IRn → IR is continuous on int(dom f) and therefore agrees with cl f on
int(dom f), this set being the same as int(dom(cl f)). (Also, f agrees with
cl f as having the value ∞ outside of dom(cl f), hence in particular outside of
cl(dom f).) Moreover,
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(cl f)(x) = lim
τ ↗ 1

f
(
(1− τ)x0 + τx

)
for all x if x0 ∈ int(dom f). 2(11)

If f is lsc, it must in addition be continuous relative to the convex hull of any
finite subset of dom f , in particular any line segment in dom f .

Proof. The closure formula will be proved first. We know from the basic
expression for cl f in 1(7) that (cl f)(x) ≤ lim infτ ↗ 1 f((1−τ)x0+τx), so it will
suffice to show that if (cl f)(x) ≤ α ∈ IR then lim supτ ↗ 1 f((1−τ)x0+τx) ≤ α.
The assumption on α means that (x, α) ∈ cl(epi f), cf. 1(6). On the other hand,
for any real number α0 > f(x0) we have (x0, α0) ∈ int(epi f) by 2.34. Then
by the line segment principle in Theorem 2.33, as applied to the convex set
epi f , the points (1− τ)(x0, α0) + τ(x, α) for τ ∈ (0, 1) belong to int(epi f). In
particular, then, f((1− τ)x0 + τx) < (1− τ)α0 + τα for τ ∈ (0, 1). Taking the
upper limit on both sides as τ ↗1, we get the inequality needed.

When the closure formula is applied with x = x0 it yields the fact that cl f
agrees with f on int(dom f). Hence f is lsc on int(dom f). But f is usc there by
1.13(b) in combination with the characterization of int(epi f) in 2.34. It follows
that f is continuous on int(dom f). We have int(dom f) = int(dom(cl f)) by
2.33, because dom f ⊂ dom(cl f) ⊂ cl(dom f). The same inclusions also yield
cl(dom f) = cl(dom(cl f)).

(cl f)(x)

f(x)

x n

f

IR

IR

Fig. 2–13. Closure operation on a convex function.

Consider now a finite set C ⊂ dom f . Under the assumption that f is
lsc, we wish to show that f is continuous relative to conC. But conC is the
union of the simplices generated by the points of C, as shown in the first part
of the proof of Theorem 2.29, and there are only finitely many of these. If a
function is continuous on a finite family of sets, it is also continuous on their
union. It suffices therefore to show that f is continuous relative to any simplex
S = con{a0, a1, . . . , ap} ⊂ dom f . For simplicity of notation we can translate
so that 0 ∈ S and investigate continuity at 0; we have a unique representation
of 0 as a convex combination

∑p
i=0 λ̄iai.

We argue next that S is the union of the finitely many other simplices
having 0 as one vertex and certain ai’s as the other vertices. This will enable
us to reduce further to the study of continuity relative to such a simplex.

Consider any point x̃ �= 0 in S and represent it as a convex combination∑p
i=0 λ̃iai. The points xτ = (1 − τ)0 + τ x̃ on the line through 0 and x̃ can’t
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all be in S, which is compact (by 2.30), so there must be a highest τ with
xτ ∈ S. For this we have τ ≥ 1 and xτ =

∑p
i=0 μiai for μi = (1 − τ)λ̄i + τ λ̃i

with
∑p

i=0 μi = 1, where μi ≥ 0 for all i but μi = 0 for at least one i such

that λ̄i > λ̃i (or τ wouldn’t be the highest). We can suppose μ0 = 0; then in
particular λ̄0 > 0. Since x̃ lies on the line segment joining 0 with xτ , it belongs
to con{0, a1, . . . , ap}. This is a simplex, for if not the vectors a1, . . . , ap would
be linearly dependent: we would have

∑p
i=1 ηiai = 0 for certain coefficients

ηi, not all 0. It’s impossible that
∑p

i=1 ηi = 0, because {a0, a1, . . . , ap} are
affinely independent, so if this were the case we could, by rescaling, arrange that∑p

i=1 ηi = 1. But then in defining η0 = 0 we would be able to conclude from the
affine independence that ηi = λ̄i for i = 0, . . . , p, because 0 =

∑p
i=0(ηi − λ̄i)ai

with
∑p

i=0(ηi − λ̄i) = 0. This would contradict λ̄0 > 0.

We have gotten to where a simplex S0 = con{0, a1, . . . , ap} lies in dom f
and we need to prove that f is not just lsc relative to S0 at 0, as assumed, but
also usc. Any point of S0 has a unique expression

∑p
i=1 λiai with λi ≥ 0 and∑p

i=1 λi ≤ 1, and as the point approaches 0 these coefficients vanish, cf. 2.28(c).
The corresponding value of f is bounded above by λ0f(0) +

∑p
i=1 λif(ai)

through Jensen’s inequality 2.2(b), where λ0 = 1 −∑p
i=1 λi, and in the limit

this bound is f(0). Thus, lim supx→0 f(x) ≤ f(0) for x ∈ S0.

2.36 Corollary (finite convex functions). A finite, convex function f on an
open, convex set O �= ∅ in IRn is continuous on O. Such a function has a
unique extension to a proper, lsc, convex function f on IRn with dom f ⊂ clO.

Proof. Apply the theorem to the convex function g that agrees with f on O
but takes on ∞ everywhere else. Then int(dom g) = O.

Finite convex functions will be seen in 9.14 to have the even stronger
property of Lipschitz continuity locally.

2.37 Corollary (convex functions of a single real variable). Any lsc, convex
function f : IR→ IR is continuous with respect to cl(dom f).

Proof. This is clear from 2(11) when int(dom f) �= ∅; otherwise it’s trivial.

Not everything about the continuity properties of convex functions is good
news. The following example provides clear insight into what can go wrong.

2.38 Example (discontinuity and unboundedness). On IR2, the function

f(x1, x2) =

⎧⎨
⎩
x21/2x2 if x2 > 0,
0 if x1 = 0 and x2 = 0,
∞ otherwise,

is lsc, proper, convex and positively homogeneous. Nonetheless, f fails to be
continuous relative to the compact, convex set C =

{
(x1, x2)

∣∣x41 ≤ x2 ≤ 1
}
in

dom f , despite f being continuous relative to every line segment in C. In fact
f is not even bounded above on C.
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x1

x2

f

Fig. 2–14. Example of discontinuity.

Detail. The convexity of f on the open half-plane H =
{
(x1, x2)

∣∣x2 > 0
}

can be verified by the second-derivative test in 2.14, and the convexity relative
to all of IRn follows then via the extension procedure in 2.36. The epigraph of
f is actually a circular cone whose axis is the ray through (0, 1, 1) and whose
boundary contains the rays through (0, 1, 0) and (0, 0, 1), see Figure 2–14. The
unboundedness and lack of continuity of f relative to H are seen from its
behavior along the boundary of C at 0, as indicated from the piling up of the
level sets of this function as shown in Figure 2–15.

(0, 0)

f =1 f = 2

f = 3

f = 4

x2

x1

Fig. 2–15. Nest of level sets illustrating discontinuity.

G∗. Separation

Properties of closures and interiors of convex sets lead also to a famous principle
of separation. A hyperplane

{
x
∣∣ 〈a, x〉 = α

}
, where a �= 0 and α ∈ IR, is

said to separate two sets C1 and C2 in IRn if C1 is included in one of the
corresponding closed half-spaces

{
x
∣∣ 〈a, x〉 ≤ α

}
or

{
x
∣∣ 〈a, x〉 ≥ α

}
, while C2

is included in the other. The separation is said to be proper if the hyperplane
itself doesn’t actually include both C1 and C2. As a related twist in wording,
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we say that C1 and C2 can, or cannot, be separated according to whether a
separating hyperplane exists; similarly for whether they can, or cannot, be
separated properly . Additional variants are strict separation, where the two
sets lie in complementary open half-spaces, and strong separation, where they
lie in different half-spaces

{
x
∣∣ 〈a, x〉 ≤ α1

}
and

{
x
∣∣ 〈a, x〉 ≥ α2

}
with α1 < α2.

Strong separation implies strict separation, but not conversely.

2.39 Theorem (separation). Two nonempty, convex sets C1 and C2 in IRn can
be separated by a hyperplane if and only if 0 /∈ int(C1 − C2). The separation
must be proper if also int(C1 − C2) �= ∅. Both conditions certainly hold when
intC1 �= ∅ but C2 ∩ intC1 = ∅, or when intC2 �= ∅ but C1 ∩ intC2 = ∅.

Strong separation is possible if and only if 0 /∈ cl(C1−C2). This is ensured
in particular when C1∩C2 = ∅ with both sets closed and one of them bounded.

Proof. In the case of a separating hyperplane
{
x
∣∣ 〈a, x〉 = α

}
with C1 ⊂{

x
∣∣ 〈a, x〉 ≤ α

}
and C2 ⊂

{
x
∣∣ 〈a, x〉 ≥ α

}
, we have 0 ≥ 〈a, x1 − x2〉 for all

x1 − x2 ∈ C1 −C2, in which case obviously 0 /∈ int(C1 −C2). This condition is
therefore necessary for separation. Moreover if the separation weren’t proper,
we would have 0 = 〈a, x1−x2〉 for all x1−x2 ∈ C1−C2, and this isn’t possible if
int(C1−C2) �= ∅. In the case where intC1 �= ∅ but C2∩ intC1 = ∅, we have 0 /∈
(intC1)−C2 where the set (intC1)−C2 is convex (by 2.23 and the convexity of
interiors in 2.33) as well as open (since it is the union of translates (intC1)−x2,
each of which is an open set). Then (intC1)−C2 ⊂ C1−C2 ⊂ cl

[
(intC1)−C2]

(through 2.33), so actually int(C1 − C2) = (intC1) − C2 (once more through
the relations in 2.33). In this case, therefore, we have 0 /∈ int(C1 − C2) �= ∅.
Similarly, this holds when intC2 �= ∅ but C1 ∩ intC2 = ∅.

The sufficiency of the condition 0 /∈ int(C1 − C2) for the existence of a
separating hyperplane is all that remains to be established. Note that because
C1 − C2 is convex (cf. 2.23), so is C := cl(C1 − C2). We need only produce a
vector a �= 0 such that 〈a, x〉 ≤ 0 for all x ∈ C, for then we’ll have 〈a, x1〉 ≤
〈a, x2〉 for all x1 ∈ C1 and x2 ∈ C2, and separation will be achieved with any
α in the nonempty interval between supx1∈C1

〈a, x1〉 and infx2∈C2
〈a, x2〉.

H

1C

C2

Fig. 2–16. Separation of convex sets.

Let x̄ denote the unique point of C nearest to 0 (cf. 2.25). For any x ∈ C
the segment [x̄, x] lies in C, so the function g(τ) = 1

2 |(1− τ)x̄+ τx|2 satisfies
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g(τ) ≥ g(0) for τ ∈ (0, 1). Hence 0 ≤ g′(0) = 〈x̄, x − x̄〉. If 0 /∈ C, so that
x̄ �= 0, we can take a = −x̄ and be done. A minor elaboration of this argument
confirms that strong separation is possible if and only if 0 /∈ C. Certainly
we have 0 /∈ C in particular when C1 ∩ C2 = ∅ and C1 − C2 is closed, i.e.,
C1 − C2 = C; it’s easy to see that C1 − C2 is closed if both C1 and C2 are
closed and one is actually compact.

When 0 ∈ C, so that x̄ = 0, we need to work harder to establish the
sufficiency of the condition 0 /∈ int(C1 − C2) for the existence of a separating
hyperplane. From C = cl(C1−C2) and 0 /∈ int(C1 −C2), we have 0 /∈ intC by
Theorem 2.33. Then there is a sequence xν → 0 with xν /∈ C. Let x̄ν be the
unique point of C nearest to xν ; then x̄ν �= xν , x̄ν → 0. Applying to xν and x̄ν

the same argument we earlier applied to 0 and its projection on C when this
wasn’t necessarily 0 itself, we verify that 〈x− x̄ν , xν− x̄ν〉 ≤ 0 for every x ∈ C.
Let a be any cluster point of the sequence of vectors aν := (xν − x̄ν)/|xν − x̄ν |,
which have |aν | = 1 and 〈x − x̄ν , aν〉 ≤ 0 for every x ∈ C. Then |a| = 1, so
a �= 0, and in the limit we have 〈x, a〉 ≤ 0 for every x ∈ C, as required.

H∗. Relative Interiors

Every nonempty affine set has a well determined dimension, which is the di-
mension of the linear subspace of which it is a translate, cf. 2.11. Singletons
are 0-dimensional, lines are 1-dimensional, and so on. The hyperplanes in IRn

are the affine sets that are (n− 1)-dimensional.

For any convex set C in IRn, the affine hull of C is the smallest affine set
that includes C (it’s the intersection of all the affine sets that include C). The
interior of C relative to its affine hull is the relative interior of C, denoted by
rintC. This coincides with the true interior when the affine hull is all of IRn,
but is able to serve as a robust substitute for intC when intC = ∅.
2.40 Proposition (relative interiors of convex sets). For C ⊂ IRn nonempty
and convex, the set rintC is nonempty and convex with cl(rintC) = clC and
rint(clC) = rintC. If x0 ∈ rintC and x1 ∈ clC, then rint[x0, x1] ⊂ rintC.

Proof. Through a translation if necessary, we can suppose that 0 ∈ C. We
can suppose further that C contains more than just 0, because otherwise the
assertion is trivial. Let a1, . . . , ap be a set of linearly independent vectors chosen
from C with p as high as possible, and let M be the p-dimensional subspace of
IRn generated by these vectors. Then M has to be the affine hull of C, because
the affine hull has to be an affine set containing M , and yet there can’t be any
point of C outside of M or the maximality of p would be contradicted. The
p-simplex con{0, a1, . . . , ap} in C has nonempty interior relative to M (which
can be identified with IRp through a change of coordinates), so rintC �= ∅. The
relations between rintC and clC follow then from the ones in 2.33.
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2.41 Exercise (relative interior criterion). For a convex set C ⊂ IRn, one has
x ∈ rintC if and only if x ∈ C and, for every x0 �= x in C, there exists x1 ∈ C
such that x ∈ rint [x0, x1].

Guide. Reduce to the case where C is n-dimensional.

The properties in Proposition 2.40 are crucial in building up a calculus of
closures and relative interiors of convex sets.

2.42 Proposition (relative interiors of intersections). For a family of convex
sets Ci ⊂ IRn indexed by i ∈ I and such that

⋂
i∈I rintCi �= ∅, one has

cl
⋂

i∈I Ci =
⋂

i∈I clCi. If I is finite, then also rint
⋂

i∈I Ci =
⋂

i∈I rintCi.

Proof. On general grounds, cl
⋂

i∈I Ci ⊂
⋂

i∈I clCi. For the reverse consider
any x0 ∈

⋂
i∈I rintCi and x1 ∈

⋂
i∈I clCi. We have [x0, x1) ⊂

⋂
i∈I rintCi ⊂⋂

i∈I Ci by 2.40, so x1 ∈ cl
⋂

i∈I Ci. This argument has the by-product that
cl
⋂

i∈I Ci = cl
⋂

i∈I rintCi. In taking the relative interior on both sides of this
equation, we obtain via 2.40 that rint

⋂
i∈I Ci = rint

⋂
i∈I rintCi. The fact

that rint
⋂

i∈I rintCi =
⋂

i∈I rintCi when I is finite is clear from 2.41.

2.43 Proposition (relative interiors in product spaces). For a convex set G in
IRn × IRm, let X be the image of G under the projection (x, u) �→ x, and for
each x ∈ X let S(x) =

{
u
∣∣ (x, u) ∈ G}. Then X and S(x) are convex, and

(x, u) ∈ rintG ⇐⇒ x ∈ rintX and u ∈ rintS(x).

Proof. We have X convex by 2.21 and S(x) convex by 2.9(a). We begin
by supposing that (x, u) ∈ rintG and proving x ∈ rintX and u ∈ rintS(x).
Certainly x ∈ X and u ∈ S(x). For any x0 ∈ X there exists u0 ∈ S(x0), and
we have (x0, u0) ∈ G. If x0 �= x, then (x0, u0) �= (x, u) and we can obtain from
the criterion in 2.41 as applied to rintG the existence of (x1, u1) �= (x, u) in
G such that (x, u) ∈ rint

[
(x0, u0), (x1, u1)

]
. Then x1 ∈ X and x ∈ rint[x0, x1].

This proves by 2.41 (as applied to X) that x ∈ rintX . At the same time, from
the fact that u ∈ S(x) we argue via 2.41 (as applied to G) that if u′0 ∈ S(x)
and u′0 �= u, there exists (x′1, u

′
1) ∈ G for which (x, u) ∈ rint

[
(x, u′0), (x

′
1, u

′
1)
]
.

Then necessarily x′1 = x, and we conclude u ∈ rint[u′0, u
′
1], thereby establishing

by criterion 2.41 (as applied to S(x)) that u ∈ rintS(x).
We tackle the converse now by assuming x ∈ rintX and u ∈ rintS(x)

(so in particular (x, u) ∈ G) and aiming to prove (x, u) ∈ rintG. Relying yet
again on 2.41, we suppose (x0, u0) ∈ G with (x0, u0) �= (x, u) and reduce the
argument to showing that for some choice of (x1, u1) ∈ G the pair (x, u) lies in
rint

[
(x0, u0), (x1, u1)

]
. If x0 = x, this follows immediately from criterion 2.41

(as applied to S(x) with x1 = x). We assume therefore that x0 �= x. Since x ∈
rintX , there then exists by 2.41 a vector x̄1 ∈ X , x̄1 �= x0, with x ∈ rint[x0, x̄1],
i.e., x = (1 − τ)x0 + τ x̄1 for a certain τ ∈ (0, 1). We have (x̄1, ū1) ∈ G
for some ū1, and consequently (1 − τ)(x0, u0) + τ(x̄1, ū1) ∈ G. If the point
u′0 := (1−τ)u0+τ ū1 coincides with u, we get the desired sort of representation
of (x, u) as a relative interior point of the line segment

[
(x0, u0), (x̄1, ū1)

]
, whose
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Fig. 2–17. Relative interior argument in a product space.

endpoints lie in G. If not, u′0 is a point of S(x) different from u and, because
u ∈ rintS(x), we get from 2.41 the existence of some u′1 ∈ S(x), u′1 �= u′0, with
u ∈ rint[u′0, u

′
1], i.e., u = (1− μ)u′0 + μu′1 for some μ ∈ (0, 1). This yields

(x, u) = (1− μ)(x, u′0) + μ(x, u′1)

= (1− μ)[(1− τ)(x0, u0) + τ(x̄1, ū1)
]
+ μ(x, u′1)

= τ0(x0, u0) + τ1(x̄1, ū1) + τ2(x, u
′
1),

where 0 < τi < 1, τ0 + τ1 + τ2 = 1.

We can write this as (x, u) = (1− τ ′)(x0, u0) + τ ′(x1, u1) with τ ′ := τ1 + τ2 =
1− τ0 ∈ (0, 1) and (x1, u1) := [τ1/(τ1 + τ2)](x̄1, ū1) + [τ2/(τ1 + τ2)](x, u

′
1) ∈ G.

Here (x1, u1) �= (x0, u0), because otherwise the definition of x1 would imply
x = x̄1 in contradiction to our knowledge that x ∈ rint[x0, x̄1]. Thus, (x, u) ∈
rint

[
(x0, u0), (x1, u1)

]
, and we can conclude that (x, u) ∈ rintG.

2.44 Proposition (relative interiors of set images). For linear L : IRn → IRm,

(a) rintL(C) = L(rintC) for any convex set C ⊂ IRn,

(b) rintL−1(D) = L−1(rintD) for any convex setD ⊂ IRm such that rintD
meets the range of L, and in this case also clL−1(D) = L−1(clD).

Proof. First we prove the relative interior equation in (b). In IRn × IRm let
G =

{
(x, u)

∣∣u = L(x) ∈ D}
= M ∩ (IRn ×D), where M is the graph of L, a

certain linear subspace of IRn×IRm. We’ll apply 2.43 to G, whose projection on
IRn is X = L−1(D). Our assumption that rintD meets the range of L means
M ∩ rint[IRn ×D] �= ∅, where M = rintM because M is an affine set. Then
rintG = M ∩ rint(IRn ×D) by 2.42; thus, (x, u) belongs to rintG if and only
if u = L(x) and u ∈ rintD. But by 2.43 (x, u) belongs to rintG if and only if
x ∈ rintX and u ∈ rint{L(x)} = {L(x)}. We conclude that x ∈ rintL−1(D)
if and only if L(x) ∈ rintD, as claimed in (b). The closure assertion follows
similarly from the fact that clG =M ∩ cl(IRn ×D) by 2.42.

The argument for (a) just reverses the roles of x and u. We take G ={
(x, u)

∣∣x ∈ C, u = L(x)
}
= M ∩ (C × IRm) and consider the projection U of

G in IRm, once again applying 2.42 and 2.43.
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2.45 Exercise (relative interiors in set algebra).

(a) If C = C1×C2 for convex sets Ci ⊂ IRni , then rintC = rintC1×rintC2.

(b) For convex sets C1 and C2 in IRn, rint(C1 + C2) = rintC1 + rintC2.

(c) For a convex set C and any scalar λ ∈ IR, rint(λC) = λ(rintC).

(d) For convex sets C1 and C2 in IRn, the condition 0 ∈ int(C1−C2) holds
if and only if 0 ∈ rint(C1 −C2) but there is no hyperplane H ⊃ C1 ∪C2. This
is true in particular if either C1 ∩ intC2 �= ∅ or C2 ∩ intC1 �= ∅.

(e) Convex sets C1 �= ∅ and C2 �= ∅ in IRn can be separated properly if and
only if 0 /∈ rint(C1−C2). This condition is equivalent to rintC1 ∩ rintC2 = ∅.
Guide. Get (a) from 2.41 or 2.43. Get (b) and (c) from 2.44(a) through
special choices of a linear transformation. In (d) verify that C1 ∪ C2 lies in a
hyperplane if and only if C1 −C2 lies in a hyperplane. Observe too that when
C1 ∩ intC2 �= ∅ the set C1 − intC2 is open and contains 0. For (e), work with
Theorem 2.39. Get the equivalent statement of the relative interior condition
out of the algebra in (b) and (c).

2.46 Exercise (closures of functions).

(a) If f1 and f2 are convex on IRn with rint(dom f1) = rint(dom f2), and
on this common set f1 and f2 agree, then cl f1 = cl f2.

(b) If f1 and f2 are convex on IRn with rint(dom f1) ∩ rint(dom f2) �= ∅,
then cl(f1 + f2) = cl f1 + cl f2.

(c) If f = g◦L for a linear mapping L : IRn → IRm and a convex function
g : IRm → IR such that rint(dom g) meets the range of L, then rint(dom f) =
L−1

(
rint(dom g)

)
and cl f = (cl g)◦L.

Guide. Adapt Theorem 2.35 to relative interiors. In (b) use 2.42. In (c) argue
that epi f = L−1

0 (epi g) with L0 : (x, α) �→ (L(x), α), and apply 2.44(b).

I∗. Piecewise Linear Functions

Polyhedral sets are important not only in the geometric analysis of systems of
linear constraints, as in 2.10, but also in piecewise linearity.

2.47 Definition (piecewise linearity).

(a) A mapping F : D → IRm for a set D ⊂ IRn is piecewise linear on D
if D can be represented as the union of finitely many polyhedral sets, relative
to each of which F (x) is given by an expression of the form Ax + a for some
matrix A ∈ IRm×n and vector a ∈ IRm.

(b) A function f : IRn → IR is piecewise linear if it is piecewise linear on
D = dom f as a mapping into IR.

Piecewise linear functions and mappings should perhaps be called ‘piece-
wise affine’, but the popular term is retained here. Definition 2.47 imposes no
conditions on the extent to which the polyhedral sets whose union is D may
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overlap or be redundant, although if such a representation exists a refinement
with better properties may well be available; cf. 2.50 below. Of course, on the
intersection of any two sets in a representation the two formulas must agree,
since both give f(x), or as the case may be, F (x). This, along with the finite-
ness of the collection of sets, ensures that the function or mapping in question
must be continuous relative to D. Also, D must be closed, since polyhedral
sets are closed, and the union of finitely many closed sets is closed.

2.48 Exercise (graphs of piecewise linear mappings). For F : D → IRm to be
piecewise linear relative to D, it is necessary and sufficient that its graph, the
set G =

{
(x, u)

∣∣x ∈ D, u = F (x)
}
, be expressible as the union of a finite

collection of polyhedral sets in IRn × IRm.

Here we’re interested primarily in what piecewise linearity means for con-
vex functions. An example of a convex, piecewise linear function is the vector-
max function in 1.30 and 2.16. This function f on IRn has the linear formula
f(x1, . . . , xn) = xk on Ck :=

{
(x1, . . . , xn)

∣∣xj−xk ≤ 0 for j = 1, . . . , n
}
, and

the union of these polyhedral sets Ck is the set dom f = IRn.
The graph of any piecewise linear function f : IRn → IR must have a

representation like that in 2.48 relative to dom f . In the convex case, however,
a more convenient representation appears in terms of epi f .

2.49 Theorem (convex piecewise linear functions). A proper function f is both
convex and piecewise linear if and only if epi f is polyhedral.

In general for a function f : IRn → IR, the set epi f ⊂ IRn+1 is polyhedral
if and only if f has a representation of the form

f(x) =

{
max

{
l1(x), . . . , lp(x)

}
when x ∈ D,

∞ when x /∈ D,

where D is a polyhedral set in IRn and the functions li are affine on IRn; here
p = 0 is admitted and interpreted as giving f(x) = −∞ when x ∈ D. Any
function f of this type is convex and lsc, in particular.

Proof. The case of f ≡ ∞ being trivial, we can suppose dom f and epi f to
be nonempty. Of course when epi f is polyhedral, epi f is in particular convex
and closed, so that f is convex and lsc (cf. 2.4 and 1.6).

To say that epi f is polyhedral is to say that epi f can be expressed as the
set of points (x, α) ∈ IRn × IR satisfying a finite system of linear inequalities
(cf. 2.10 and the details after it); we can write this system as

γi ≥
〈
(ci, ηi), (x, α)

〉
= 〈ci, x〉+ ηiα for i = 1, . . . , m

for certain vectors ci ∈ IRn and scalars ηi ∈ IR and γi ∈ IR. Because epi f �= ∅,
and (x, α′) ∈ epi f whenever (x, α) ∈ epi f and α′ ≥ α, it must be true that
ηi ≤ 0 for all i. Arrange the indices so that ηi < 0 for i = 1, . . . , p but ηi = 0
for i = p+ 1, . . . , m. (Possibly p = 0, i.e., ηi = 0 for all i.) Taking bi = ci/|ηi|
and βi = γi/|ηi| for i = 1, . . . p, we get epi f expressed as the set of points
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(x, α) ∈ IRn × IR satisfying

〈bi, x〉 − βi ≤ α for i = 1, . . . , p, 〈ci, x〉 ≤ γi for i = p+ 1, . . . , m.

This gives a representation of f of the kind specified in the theorem, with D the
polyhedral set in IRn defined by the constraints 〈ci, x〉 ≤ γi for i = p+1, . . . , m
and li the affine function with formula 〈bi, x〉 − βi for i = 1, . . . , p.

Under this kind of representation, if f is proper (i.e., p �= 0), f(x) is given
by 〈bk, x〉 − βk on the set Ck consisting of the points x ∈ D such that

〈bi, x〉 − βi ≤ 〈bk, x〉 − βk for i = 1 . . . , p, i �= k.

Clearly Ck is polyhedral and
⋃p

k=1 Ck = D, so f is piecewise linear, cf. 2.47.
Suppose now on the other hand that f is proper, convex and piecewise

linear. Then dom f =
⋃r

k=1Ck with Ck polyhedral, and for each k there exist
ak ∈ IRn and αk ∈ IR such that f(x) = 〈ak, x〉 − αk for all x ∈ Ck. Let

Ek :=
{
(x, α)

∣∣x ∈ Ck, 〈ak, x〉 − αk ≤ α <∞
}
.

Then epi f =
⋃r

k=1Ek. Each set Ek is polyhedral, since an expression for Ck

by a system of linear constraints in IRn readily extends to one for Ek in IRn+1.
The union of the polyhedral sets Ek is the convex set epi f . The fact that epi f
must then itself be polyhedral is asserted by the next lemma, which we state
separately for its independent interest.

2.50 Lemma (polyhedral convexity of unions). If a convex set C is the union
of a finite collection of polyhedral sets Ck, it must itself be polyhedral.

Moreover if intC �= ∅, the sets Ck with intCk = ∅ are superfluous in the
representation. In fact C can then be given a refined expression as the union
of a finite collection of polyhedral sets {Dj}j∈J such that

(a) each set Dj is included in one of the sets Ck,

(b) intDj �= ∅, so Dj = cl(intDj),

(c) intDj1 ∩ intDj2 = ∅ when j1 �= j2.

Proof. Let’s represent the sets Ck for k = 1, . . . , r in terms of a single family
of affine functions li(x) = 〈ai, x〉−αi indexed by i = 1, . . . , m: for each k there
is a subset Ik of {1, . . . , m} such that Ck =

{
x
∣∣ li(x) ≤ 0 for all i ∈ Ik

}
. Let

I denote the set of indices i ∈ {1, . . . , m} such that li(x) ≤ 0 for all x ∈ C.
We’ll prove that

C =
{
x
∣∣ li(x) ≤ 0 for all i ∈ I}.

Trivially the set on the right includes C, so our task is to demonstrate that the
inclusion cannot be strict. Suppose x̄ belongs to the set on the right but not
to C. We’ll argue this to a contradiction.

For each index k ∈ {1, . . . , r} let C′
k be the set of points x ∈ C such that

the line segment [x, x̄] meets Ck, this set being closed because Ck is closed.
For each x ∈ C, a set which itself is closed (because it is the union of finitely
many closed sets Ck), let K(x) denote the set of indices k such that x ∈ C ′

k.
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Select a point x̂ ∈ C for which the number of indices in K(x̂) is as low as
possible. Any point x in C ∩ [x̂, x̄] has K(x) ⊂ K(x̂) by the definition of K(x)
and consequently K(x) = K(x̂) by the minimality of K(x̂). We can therefore
suppose (by moving to the ‘last’ point that still belongs to C, if necessary) that
the segment [x̂, x̄] touches C only at x̂.

For any k, the set of x ∈ C with k /∈ K(x) is complementary to C ′
k and

therefore open relative to C. Hence the set of x ∈ C satisfying K(x) ⊂ K(x̂)
is open relative to C. The minimality of K(x̂) forbids strict inclusion, so there
has to be a neighborhood V of x̂ such that K(x) = K(x̂) for all x ∈ C ∩ V .

Take any index k0 ∈ K(x̂). Because x̂ is the only point of [x̂, x̄] in C, it
must also be the only point of [x̂, x̄] in Ck0

, and accordingly there must be an
index i0 ∈ Ik0

such that li0(x̂) = 0 < li0(x̄). For each x ∈ C ∩ V the line
segment [x, x̄] meets Ck0

and thus contains a point x′ satisfying li0(x
′) ≤ 0 as

well as the point x̄ satisfying li0(x̄) > 0, so necessarily li0(x) ≤ 0 (because li0
is affine). More generally then, for any x �= x̂ in C (but not necessarily in V )
the line segment [x, x̂], which lies entirely in C by convexity, contains a point
x∗ �= x̂ in V , therefore satisfying li0(x

∗) ≤ 0. Since li0(x̂) = 0, this implies
li0(x) ≤ 0 (again because li0 is affine). Thus, i0 is an index with the property
that C ⊂ {

x
∣∣ li0(x) ≤ 0

}
, or in other words, i0 ∈ I. But since li0(x̄) > 0 this

contradicts the choice of x̄ as satisfying li(x̄) ≤ 0 for every i ∈ I.
In passing now to the case where intC �= ∅, there’s no loss of generality

in supposing that none of the affine functions li is a constant function. Then

intCk =
{
x
∣∣ li(x) < 0 for i ∈ Ik

}
, intC =

{
x
∣∣ li(x) < 0 for i ∈ I}.

LetK0 denote the set of indices k such that intCk �= ∅, andK1 the set of indices
k such that intCk = ∅. We wish to show next that C =

⋃
k∈K0

Ck. It will be
enough to show that intC ⊂ ⋃

k∈K0
Ck, since C ⊃

⋃
k∈K0

Ck and C = cl(intC)
(cf. 2.33). If intC �⊂ ⋃

k∈K0
Ck, the open set intC \⋃k∈K0

Ck �= ∅ would be
contained in

⋃
k∈K1

Ck, the union of the sets with empty interior. This is
impossible for the following reason. If the latter union had nonempty interior,
there would be a minimal index set K ⊂ K1 such that int

⋃
k∈K Ck �= ∅. Then

K would have to be more than a singleton, and for any k∗ ∈ K the open set[
int

⋃
k∈K Ck

] \ ⋃k∈K \ {k∗}Ck would be nonempty and included in Ck∗ , in

contradiction to intCk∗ = ∅.
To construct a refined representation meeting conditions (a), (b), and (c),

consider as index elements j the various partitions of {1, . . . , m}; each partition
j can be identified with a pair (I+, I−), where I+ and I− are disjoint subsets of
{1, . . . , m} whose union is all of {1, . . . , m}. Associate with such each partition
j the set Dj consisting of all the points x (if any) such that

li(x) ≤ 0 for all i ∈ I−, li(x) ≥ 0 for all i ∈ I+.
Let J0 be the index set consisting of the partitions j = (I+, I−) such that
I− ⊃ Ik for some k, so that Dj ⊂ Ck. Since every x ∈ C belongs to at least one
Ck, it also belongs to a set Dj for at least one j ∈ J0. Thus, C is the union of
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the sets Dj for j ∈ J0. Hence also, by the argument given earlier, it is the union
of the ones with intDj �= ∅, the partitions j with this property comprising a
possibly smaller index set J within J0. For each j ∈ J the nonempty set intDj

consists of the points x satisfying

li(x) < 0 for all i ∈ I−, li(x) > 0 for all i ∈ I+.
For any two different partitions j1 and j2 in J there must be some i∗ ∈
{1, . . . , m} such that one of the sets Dj1 and Dj2 is contained in the open
half-space

{
x
∣∣ li∗(x) < 0

}
, while the other is contained in the open half-space{

x
∣∣ li∗(x) > 0

}
. Hence intDj1 ∩ intDj2 = ∅ when j1 �= j2. The collection

{Dj}j∈J therefore meets all the stipulations.

J∗. Other Examples

For any convex function f , the sets lev≤α f are convex, as seen in 2.7. But a
nonconvex function can have that property as well; e.g. f(x) =

√|x|.
2.51 Exercise (functions with convex level sets). For a differentiable function
f : IRn → IR, the sets lev≤α f are convex if and only if

〈∇f(x0), x0 − x1〉 ≥ 0 whenever f(x1) ≤ f(x0).
Furthermore, if such a function f is twice differentiable at x̄ with ∇f(x̄) = 0,
then ∇2f(x̄) must be positive-semidefinite.

The convexity of the log-exponential function in 2.16 is basic to the treat-
ment of a much larger class of functions often occurring in applications, espe-
cially in problems of engineering design. These functions are described next.

2.52 Example (posynomials). A posynomial in the variables y1, . . . , yn is an
expression of the form

g(y1, . . . , yn) =
∑r

i=1
ciy

ai1
1 yai2

2 · · · yain
n

where (1) only positive values of the variables yj are admitted, (2) all the coef-
ficients ci are positive, but (3) the exponents aij can be arbitrary real numbers.
Such a function may be far from convex, yet convexity can be achieved through
a logarithmic change of variables. Setting bi = log ci and

f(x1, . . . , xn) = log g(y1, . . . , yn) for xj = log yj ,

one obtains a convex function f(x) = logexp(Ax + b) defined for all x ∈ IRn,
where b is the vector in IRr with components bi, and A is the matrix in IRr×n

with components aij . Still more generally, any function

g(y) = g1(y)
λ1 · · · gp(y)λp with gk posynomial, λk > 0,
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can be converted by the logarithmic change of variables into a convex function
of form f(x) =

∑p
k=1 λk logexp(Akx+ bk).

Detail. The convexity of f follows from that of logexp (in 2.16) and the
composition rule in 2.20(a). The integer r is called the rank of the posynomial.
When r = 1, f is merely an affine function on IRn.

The wide scope of example 2.52 is readily appreciated when one considers
for instance that the following expression is a posynomial:

g(y1, y2, y3) = 5y71/y
4
3 +
√
y2y3 = 5y71y

0
2y

−4
3 + y01y

1/2
2 y

1/2
3 for yi > 0.

The next example illustrates the approach one can take in using the deriva-
tive conditions in 2.14 to verify the convexity of a function defined on more
than just an open set.

2.53 Example (weighted geometric means). For any choice of weights λj > 0
satisfying λ1+ · · ·+λn ≤ 1 (for instance λj = 1/n for all j), one gets a proper,
lsc, convex function f on IRn by defining

f(x) =

{
−xλ1

1 xλ2
2 · · ·xλn

n for x = (x1, . . . , xn) with xj ≥ 0,
∞ otherwise.

Detail. Clearly f is finite and continuous relative to dom f , which is
nonempty, closed, and convex. Hence f is proper and lsc. On int(dom f),
which consists of the vectors x = (x1, . . . , xn) with xk > 0, the convexity of f
can be verified through condition 2.14(c) and the calculation that

〈z,∇2f(x)z〉 = |f(x)|
[∑n

j=1
λj(zj/xj)

2 −
(∑n

j=1
λj(zj/xj)

)2
]
;

this expression is nonnegative by Jensen’s inequality 2.2(b) as applied to the
function θ(t) = t2. (Specifically, θ

(∑n
j=0 λjtj

) ≤ ∑n
j=0 λjθ(tj) in the case of

tj = zj/xj for j = 1, . . . , n, t0 = 0, λ0 = 1 −∑n
j=1 λj .) The convexity of f

relative to all of dom f rather than merely int(dom f), is obtained then by
taking limits in the convexity inequality.

A number of interesting convexity properties hold for spaces of matrices.
The space IRn×n of all square matrices of order n is conveniently treated in
terms of the inner product

〈
A,B

〉
:=

n,n∑
i,j=1

aijbji = trAB, 2(12)

where trC denotes the trace of a matrix C ∈ IRn×n, which is the sum of the
diagonal elements of C. (The rule that trAB = trBA is obvious from this
inner product interpretation.) Especially important is

IRn×n
sym := space of symmetric real matrices of order n, 2(13)
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which is a linear subspace of IRn×n having dimension n(n + 1)/2. This can
be treated as a Euclidean vector space in its own right relative to the trace
inner product 2(12). In IRn×n

sym , the positive-semidefinite matrices form a closed,
convex set whose interior consists of the positive-definite matrices.

2.54 Exercise (eigenvalue functions). For each matrix A ∈ IRn×n
sym denote by

eigA = (λ1, . . . , λn) the vector of eigenvalues of A in descending order (with
eigenvalues repeated according to their multiplicity). Then for k = 1, . . . , n
one has the convexity on IRn×n

sym of the function

Λk(A) := sum of the first k components of eigA.

Guide. Show that Λk(A) = maxP∈Pk
tr[PAP ], where Pk is the set of all

matrices P ∈ IRn×n
sym such that P has rank k and P 2 = P . (These matrices

are the orthogonal projections of IRn onto its linear subspaces of dimension k.)
Argue in terms of diagonalization. Note that tr[PAP ] = 〈A, P 〉.
2.55 Exercise (matrix inversion as a gradient mapping). On IRn×n

sym , the function

j(A) :=

{
log(detA) if A is positive-definite,
−∞ if A is not positive-definite,

is concave and usc, and, where finite, differentiable with gradient∇j(A) = A−1.

Guide. Verify first that for any symmetric, positive-definite matrix C one has
trC − log(detC) ≥ n, with strict inequality unless C = I; for this consider
a diagonalization of C. Next look at arbitrary symmetric, positive-definite
matrices A and B, and by taking C = B1/2AB1/2 establish that

log(detA) + log(detB) ≤ 〈
A,B

〉− n
with equality holding if and only if B = A−1. Show that in fact

j(A) = inf
B∈IRn×n

sym

{〈
A,B

〉− j(B)− n} for all A ∈ IRn×n
sym ,

where the infimum is attained if and only if A is positive-definite and B =
A−1. Using the differentiability of j at such A, along with the inequality
j(A′) ≤ 〈

A′, A−1
〉− j(A−1)− n for all A′, deduce then that ∇j(A) = A−1.

The inversion mapping for symmetric matrices has still other remarkable
properties with respect to convexity. To describe them, we’ll use for matrices
A, B ∈ IRn×n

sym the notation

A � B ⇐⇒ A−B is positive-semidefinite. 2(14)

2.56 Proposition (convexity property of matrix inversion). Let P be the open,
convex subset of IRn×n

sym consisting of the positive-definite matrices, and let
J : P → P be the inverse-matrix mapping: J(A) = A−1. Then J is convex
with respect to � in the sense that
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J
(
(1− λ)A0 + λA1

) � (1− λ)J(A0) + λJ(A1)

for all A0, A1 ∈ P and λ ∈ (0, 1). In addition, J is order-inverting:

A0 � A1 ⇐⇒ A−1
0 � A−1

1 .

Proof. We know from linear algebra that any two positive-definite matrices
A0 and A1 in IRn×n

sym can be diagonalized simultaneously through some choice
of a basis for IRn. We can therefore suppose without loss of generality that
A0 and A1 are diagonal, in which case the assertions reduce to properties that
are to hold component by component along the diagonal, i.e. in terms of the
eigenvalues of the two matrices. We come down then to the one-dimensional
case: for the mapping J : (0,∞)→ (0,∞) defined by J(α) = α−1, is J convex
and order-inverting? The answer is evidently yes.

2.57 Exercise (convex functions of positive-definite matrices). On the convex
subset P of IRn×n

sym consisting of the positive-definite matrices, the relations

f(A) = g(A−1), g(B) = f(B−1),

give a one-to-one correspondence between the convex functions f : P → IR that
are nondecreasing (with f(A0) ≤ f(A1) if A0 � A1) and the convex functions
g : P → IR that are nonincreasing (with g(B0) ≥ g(B1) if B0 � B1). In
particular, for any subset S of IRn×n

sym the function

g(B) = sup
C∈S

tr
[
CB−1C∗] = sup

C∈S

〈
C∗C,B−1

〉
2(15)

is convex on P and nonincreasing.

Guide. This relies on the properties of the inversion mapping J in 2.56,
composing it with f and g in analogy with 2.20(c). The example at the end
corresponds to f(A) = supC∈S tr[CAC∗].

Functions of the kind in 2(15) are important in theoretical statistics. As a
special case of 2.57, we see from 2.54 that the function g(B) = Λk(B

−1), giving
the sum of the first k eigenvalues of B−1, is convex and nonincreasing on the
set of positive-definite matrices B ∈ IRn×n

sym . This corresponds to taking S to
be the set of all projection matrices of rank k.

Commentary

The role of convexity in inspiring many of the fundamental strategies and ideas of
variational analysis, such as the emphasis on extended-real-valued functions and the
geometry of their epigraphs, has been described at the end of Chapter 1. The lecture
notes of Fenchel [1951] were instrumental, as were the cited works of Moreau and
Rockafellar that followed.

Extensive references to early developments in convex analysis and their historical
background can be found in the book of Rockafellar [1970a]. The two-volume opus
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of Hiriart-Urruty and Lemaréchal [1993] provides a more recent perspective on the
subject and its relevance to optimization. The book of Ekeland and Temam [1974] has
long served as a source for extensions to infinite-dimensional spaces and applications
to variational problems related to partial differential equations, as have the lecture
notes of Moreau [1967].

Geometry in its basic sense provided much of the original motivation for study-
ing convex sets, as evidenced by the classical works of Minkowski [1910], [1911]. From
another angle, however, convexity has long been seen as vital for understanding the
topologies of infinite-dimensional vector spaces, again in part through the contribu-
tions of Minkowski in associating gauge functions and norms with convex sets and in
developing polar duality, such as will be discussed in Chapter 11 (see 11.19). Oddly,
though, convex functions received relatively little attention in that context, apart
from the case of norms. For many years, results pertaining to the differentiability
properties of convex functions, for instance, were developed and presented almost ex-
clusively in the case of norms and seen mainly as an adjunct to the study of Banach
space geometry instead of being viewed more broadly, which would easily have been
possible. Little was made of the characterization of the convexity of a function by the
convexity of its epigraph, which provides such a strong bridge between convex geom-
etry and analysis. Perhaps this was because the geometry of the time was focused on
bounded sets, whereas epigraphs are inherently unbounded.

An example of this conceptual limitation is furnished by the famous Hahn-
Banach theorem, which in its traditional formulation says that if a linear function
on a linear subspace is bounded from above by some multiple of a given norm, it
can be extended to the whole space while preserving that bound. Actually, this is
nothing more than a very special case of the separation theorem for convex sets (cf.
Theorem 2.39 in the finite-dimensional setting) as applied to the epigraph of the norm
function. For applications nowadays, separation properties are much more important
than extensions of linear functions. Yet, textbooks on functional analysis in linear
spaces often persist in giving only the traditional version of the Hahn-Banach theorem
rather than its more potent geometric counterpart.

The earliest version of the separation theorem in 2.39, due to Minkowski [1911],
concerned a pair of disjoint convex sets, one of which is bounded. The general version
in 2.45(e), using relative interiors, was developed by Fenchel [1951]. The equivalence
of Fenchel’s condition with 0 /∈ rint(C1 − C2) in 2.45(d) was first utilized in Rock-
afellar [1970a]. The related condition 0 /∈ int(C1 − C2) has ties especially to infinite-
dimensional theory; see Rockafellar [1974a]. For further refinements in the subject of
separation, see Klee [1968].

The usefulness of the classical concept of ‘relative interior’ for convex sets is
one of the basic features distinguishing finite-dimensional from infinite-dimensional
convexity. The key is the fact that every nonempty convex set in IRn lies in the closure
of its relative interior (cf. 2.40). The algebra of the ‘rint’ operation was developed by
Rockafellar [1970a].

The upper bound of n+1 points in Carathéodory’s theorem 2.29 for sets C ⊂ IRn

is primarily useful for compactness arguments which require that only a fixed number
of points come into play at any one time. For the fact that n points suffice when the
set C is connected, see Bonnesen and Fenchel [1934]. Actually this result holds as
long as C is the union of at most n connected sets; cf. Hanner and R̊adström [1951].

The results in 2.26(b) about the Moreau envelopes of convex functions and the
expression of proximal mappings as gradients come essentially from Moreau [1965].
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In speaking of polyhedral sets, we make a distinction between such sets and
‘polyhedra’ in the sense developed in topology in reference to certain unions of sim-
plices. A polyhedral set is a convex polyhedron. Accordingly, many authors use
‘polyhedral convex set’ for this concept, but ‘polyhedral set’ is simpler and has the
advantage that, as an independent term not employed elsewhere, it can be defined
directly as in 2.10 with respect to systems of linear constraints. In contrast, one
isn’t really authorized to speak of such a set as a convex polyhedron without first
demonstrating that it fits the topological definition of a polyhedron, which requires
the serious machinery of the Minkowski-Weyl theorem—see 3.52 and 3.54. On the
other hand, with polyhedral sets defined simply and directly, one can equally well
speak of general polyhedra as piecewise polyhedral sets.

Convex functions with polyhedral epigraphs were studied by Rockafellar [1970a],
but their characterization in 2.49 in terms of the definition of piecewise linearity in
2.47 has not previously been made explicit.

Functions f for which the sets lev≤α f are convex, as in 2.51, are called qua-
siconvex . This usage dates back many decades in game theory and economics, but
an entirely different meaning for ‘quasiconvexity’ prevails in the branch of variational
calculus related to partial differential equations. That meaning, due to Morrey [1952],
refers instead to possibly nonconvex functions f on IRn that, as ‘integrands’, yield
convex integral functionals on certain Sobolev spaces.

The ‘posynomials’ in 2.52 were introduced to optimization theory by Duffin,
Peterson and Zener [1967] for the promotion of various applications in engineering.
The conversion of posynomials to convex functions through a logarithmic change of
variables (and the convexity of the log-exponential function in 2.16) was subsequently
demonstrated by Rockafellar [1970a].

The class of all convex functions f(A) on IRn×n
sym that, like the functions Λk(A)

in 2.54, depend only on the eigenvalues of A was characterized by Davis [1957].
Additional results in this direction may be found in Lewis [1996]. The log-determinant
function in 2.55, which falls into this category as well, has recently gained significance
in the development of interior-point methods for solving optimization problems that
concern matrices. For a survey of that subject see Boyd and Vandenberghe [1995];
for eigenvalue optimization more generally see Lewis and Overton [1996].
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An important advantage that the extended real line IR has over the real line IR
is compactness : every sequence of elements has a convergent subsequence. This
property is achieved by adjoining to IR the special elements ∞ and −∞, which
can act as limits for unbounded sequences under special rules. An analogous
compactification is possible for IRn. It serves in characterizing basic ‘growth’
properties that sets and functions may have in the large.

Every vector x �= 0 in IRn has both magnitude and direction. The magni-
tude of x is |x|, which can be manipulated in familiar ways. The direction of
x has often been underplayed as a mathematical entity, but our interest now
lies in a rigorous treatment where directions are viewed as ‘points at infinity’
to be adjoined to ordinary space.

A. Direction Points

Operationally we wish to think of the direction of x, denoted by dirx, as an
attribute associated with x under the rule that dirx = dirx′ means x′ = λx �= 0
for some λ > 0. The zero vector is regarded as having no direction; dir 0 is
undefined. There is a one-to-one correspondence, then, between the various
directions of vectors x �= 0 in IRn and the rays in IRn, a ray being a closed
half-line emanating from the origin. Every direction can thus be represented
uniquely by a ray, but it will be preferable to think of directions themselves as
abstract points, designated as direction points , which lie beyond IRn and form
a set called the horizon of IRn, denoted by hzn IRn.

For n = 1 there are only two direction points, symbolized by ∞ and −∞;
it’s in adding these direction points to IR that IR is obtained. We follow the
same procedure now in higher dimensions by adding all the direction points in
hzn IRn to IRn to form the extended space

csm IRn := IRn ∪ hzn IRn,

which will be called the cosmic closure of IRn, or n-dimensional cosmic space.
Our aim is to supply this extended space with geometry and topology so that
it can serve as a useful companion to IRn in questions of analysis, just as IR
serves alongside of IR. (Caution: while csm IR1 can be identified with IR,
csm IRn isn’t the product space IR

n
.)
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Fig. 3–1. The ray space model for n-dimensional cosmic space.

There are several ways of interpreting the space csm IRn geometrically,
all of them leading to the same mathematical structure but having different
advantages. The simplest is the celestial model , in which IRn is imagined as
shrunk down to the interior of the n-dimensional ball IB through the mapping
x �→ x/(1 + |x|), and hzn IRn is identified with the surface of this ball. For
n = 3, this brings to mind the picture of the universe as bounded by a ‘celestial
sphere’. For n = 2, we get a Flatland universe comprised of a closed disk, the
edge of which corresponds to the horizon set.

A second approach to setting up the structure of analysis in n-dimensional
cosmic space utilizes the ray space model . This refers to the representation of
csm IRn in IRn × IR that’s illustrated in Figure 3–1. Each x ∈ IRn corresponds
uniquely to a downward sloping ray in IRn×IR, namely the one passing through
(x,−1). The points in hzn IRn, on the other hand, correspond uniquely to
the ‘horizontal’ rays in IRn × IR, which are the ones lying in the hyperplane
(IRn, 0); for the meaning to attach to the set C∞ see Definition 3.3. This
model, although less intuitive than the celestial model and requiring an extra
dimension, is superior for many purposes, such as extensions of convexity, and
it will turn out also to be the most direct in applications involving generalized
differentiation as will be met in Chapter 8. (Such applications, by the way,
dictate the choice of downward instead of upward sloping rays; see Theorem
8.9 and the comment after its proof.)

A third approach, which fits between the other two, uses the fact that each
ray in the ray space model in IRn × IR, whether associated with an ordinary
point of IRn or a direction point in hzn IRn, pierces the closed unit hemisphere

Hn :=
{
(x, β) ∈ IRn × IR ∣∣β ≤ 0, |x|2 + β2 = 1

}
3(1)

in a unique point. Thus, Hn furnishes an alternative model of csm IRn in
which the rim of Hn represents the horizon of IRn. This will be called the
hemispherical model of csm IRn.

This framework leads very naturally to an extended form of convergence.
In expressing it we’ll systematically rely on the notation:
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(0,0)

(x,-1)

C

IR

nIR

(0,-1)

Fig. 3–2. The hemispherical model for n-dimensional cosmic space.

λν ↘ 0 ⇐⇒ λν → 0 with λν > 0.

3.1 Definition (cosmic convergence to direction points). A sequence of points
xν ∈ IRn converges to a direction point dirx ∈ hzn IRn, written xν → dirx
(where x �= 0), if λνxν → x for some choice of λν ↘ 0. Likewise, a sequence of
direction points dirxν ∈ hzn IRn converges to a direction point dirx ∈ hzn IRn,
written dirxν → dirx, if λνxν → x for some choice of scalars λν > 0.

A mixed sequence of ordinary points and direction points converges to
dirx if every subsequence consisting of ordinary points converges to dirx, and
the same holds for every subsequence consisting of direction points.

This definition isn’t sensitive to the particular nonzero vectors chosen in
representing given direction points in the ‘dir’ notation. Clearly, a sequence
of points in csm IRn converges in the extended sense if and only if the corre-
sponding sequence of points in Hn converges in the ordinary sense.

3.2 Theorem (compactness of cosmic space). Every sequence of points in
csm IRn (whether ordinary points, direction points or some mixture) has a
convergent subsequence (in the cosmic sense). In this setting, the bounded se-
quences in IRn are characterized as the sequences of ordinary points such that
no cluster point is a direction point.

Proof. This is immediate from the interpretation in the hemispherical model,
since Hn is compact in IRn × IR.

Obviously hzn IRn is itself compact as a subset of csm IRn, whereas IRn,
its complement, is open as a subset of csm IRn.

Cosmic convergence can be quantified through the introduction of a met-
ric, which can be done in several ways. One possibility is to start from the
Poincaré metric, taking the distance between two points x and y in IRn to be
the Euclidean distance between x/(1 + |x|) and y/(1 + |y|). Then csm IRn can
be identified with the completion of IRn. The extension of Poincaré distance
to this completion furnishes a metric on csm IRn. Another possibility is to
measure distances between points of csm IRn in terms of the distances between
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the corresponding points of Hn in the hemispherical model, either geodesically
or in the Euclidean sense in IRn+1. A different tactic is better, however. The
cosmic metric dcsm that will be adopted in Chapter 4 (see 4.48) is based instead
on the ray space model, which is the real workhorse for analysis in csm IRn.

For a set C ⊂ IRn we must distinguish between csmC, the cosmic closure
of C in which direction points in csm IRn are allowed as possible limits, and
clC, the ordinary closure of C in IRn. The collection of all direction point
limits will be called the horizon of C and denoted by hznC. Thus,

hznC = csmC ∩ hzn IRn, csmC = clC ∪ hznC. 3(2)

The set hznC, closed within hzn IRn, furnishes a precise description of any
unboundedness exhibited by C, and it will be quite important in what follows.

However, rather than working directly with hznC and other subsets of
hzn IRn in developing specific conditions, we’ll generally find it more expedient
to work with representations of such sets in terms of rays in IRn. The reason
is that such representations lend themselves better to calculations and, when
applied later to functions, yield properties more attuned to ‘analysis’.

B. Horizon Cones

A set K ⊂ IRn is called a cone if 0 ∈ K and λx ∈ K for all x ∈ K and
λ > 0. Aside from the zero cone {0}, the cones K in IRn are characterized as
the sets expressible as nonempty unions of rays. The set of direction points
represented by the rays in K will be denoted by dirK. There is thus a one-to-
one correspondence between cones in IRn and subsets of the horizon of IRn,

K (cone in IRn) ←→ dirK (direction set in hzn IRn),

where the cone is closed in IRn if and only if the associated direction set is
closed in hzn IRn. ConesK are said in this manner to represent sets of direction
points. The zero cone corresponds to the empty set of direction points, while
the full cone K = IRn gives the entire horizon.

A general subset of csm IRn can be expressed in a unique way as

C ∪ dirK

for some set C ⊂ IRn and some cone K ⊂ IRn; C gives the ordinary part of the
set and K the horizon part. The corresponding cone in the ray space model in
Figure 3–1 is then

{
(λx,−λ) ∣∣x ∈ C, λ > 0

}∪{(x, 0) ∣∣x ∈ K}
. We’ll typically

express properties of C ∪ dirK in terms of properties of the pair C and K.
Results in which such a pair of sets appears, with K a cone, will thus be one
of the main vehicles for statements about analysis in csm IRn.

In dealing with possibly unbounded subsets C of IRn, the cone K that
represents hznC interests us especially.
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3.3 Definition (horizon cones). For a set C ⊂ IRn, the horizon cone is the closed
cone C∞ ⊂ IRn representing the direction set hznC, so that

hznC = dirC∞, csmC = clC ∪ dirC∞,

this cone being given therefore by

C∞ =

{{
x
∣∣∃xν ∈ C, λν ↘ 0, with λνxν → x

}
when C �= ∅,{

0
}

when C = ∅.
Note that (clC)∞ = C∞ always. If C happens itself to be a cone, C∞

coincides with clC. The rule that C∞ = {0} when C = ∅ isn’t merely a
convention, but is dictated by the principle of having hznC = dirC∞ and
csmC = clC ∪ dirC∞, since the empty set of direction points is represented
by the cone K = {0}.

IRn

C

C 8

Fig. 3–3. The horizon cone associated with an unbounded set.

3.4 Exercise (cosmic closedness). A subset of csm IRn, written as C ∪dirK for
a set C ⊂ IRn and a cone K ⊂ IRn, is closed in the cosmic sense if and only if
C and K are closed in IRn and C∞ ⊂ K. In general, its cosmic closure is

csm(C ∪ dirK) = clC ∪ dir(C∞∪ clK).

3.5 Theorem (horizon criterion for boundedness). A set C ⊂ IRn is bounded if
and only if its horizon cone is just the zero cone: C∞ = {0}.
Proof. A set is unbounded if and only if it contains an unbounded sequence.
Equivalently by the facts in 3.2, a set is bounded if and only if hznC = ∅.
Since C∞ is the cone representing hznC, this means that C∞ = {0}.

Of course, the equivalence in Theorem 3.5 is also evident directly from the
limit formula for C∞ in 3.3. The proof of Theorem 3.5 reminds us, however, of
the underlying principles. The formula just serves as an operational expression
of the correspondence between horizon cones and horizon sets; the cone that
stands for the empty set of directions points is the null cone.

A calculus of horizon cones will soon be developed, and this will make it
possible to apply the criterion in Theorem 3.5 to many situations. A powerful
tool will be the special horizon properties of convex sets.
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3.6 Theorem (horizon cones of convex sets). For a convex set C the horizon
cone C∞ is convex, and for any point x̄ ∈ C it consists of the vectors w such
that x̄+ τw ∈ clC for all τ ≥ 0.

In particular, when C is closed it is bounded unless it actually includes a
half-line

{
x̄+ τw

∣∣ τ ≥ 0
}
from some point x̄, and it must then also include all

parallel half-lines
{
x+ τw

∣∣ τ ≥ 0
}
emanating from other points x ∈ C.

C

_
wx + τ

x
_

Fig. 3–4. Half-line characterization of horizon cones of convex sets.

Proof. There is nothing to prove when C = ∅, so suppose C �= ∅ and fix any
point x̄ ∈ C. If w has the property that x̄+τw ∈ clC for all τ ≥ 0, we can find
points xν ∈ C with

∣∣(x̄+νw)−xν ∣∣ ≤ 1/ν for all ν ∈ IN . Then for λν = 1/ν we
have λνxν → w and can conclude that w ∈ C∞. On the other hand, starting
from the assumption that w ∈ C∞ and taking any τ ∈ (0,∞), we know that
τw ∈ C∞ (because C∞ is a cone) and hence that there are sequences of points
xν ∈ C and scalars λν ∈ (0, 1) with λν ↘ 0 and λνxν → τw. Then the points
(1 − λν)x̄ + λνxν belong to C by convexity and converge to x̄ + τw, which
therefore belongs to clC.

This establishes the criterion for membership in C∞. The assertion about
boundedness is then obvious from Theorem 3.5. The convexity of C∞ now
follows through the convexity of clC in 2.32: if both x̄ + τw0 and x̄ + τw1

belong to clC for all τ > 0 then for any θ ∈ (0, 1) the point

(1− θ)[x̄+ τw0] + θ[x̄+ τw1] = x̄+ τ
[
(1− θ)w0 + θw1

]
likewise belongs to clC for all τ > 0, so (1− θ)w0 + θw1 belongs to C∞.

The properties in Theorem 3.6 and Figure 3–4 associate the horizon cone
of a convex set very closely with its global ‘recession cone’, as will be seen in
6.34. Local and global recession cones for convex and nonconvex sets will be
defined in 6.33.

3.7 Exercise (convex cones). For K ⊂ IRn the following are equivalent:

(a) K is a convex cone.

(b) K is a cone such that K +K ⊂ K.
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(c) K is nonempty and contains
∑p

i=1 λixi whenever xi ∈ K and λi ≥ 0.

Examples of convex cones include all linear subspaces of IRn, in particular
the zero cone K = {0} and the full cone K = IRn. Half-spaces

{
x
∣∣ 〈a, x〉 ≤ 0

}
and

{
x
∣∣ 〈a, x〉 ≥ 0

}
are also in this class, as is the nonnegative orthant IRn

+ in
Example 1.2.

3.8 Proposition (convex cones versus subspaces). For a convex cone K in IRn,
the set M = K ∩ (−K) is the largest of the linear subspaces M such that
M ⊂ K, while M = K −K is the smallest one such that M ⊃ K. For K itself
to be a linear subspace, it is necessary and sufficient that K = −K.

Proof. A set K is a convex cone if and only if it contains the origin and is
closed under the operations of addition and nonnegative scalar multiplication,
cf. 3.7(c). The only thing lacking for a convex cone to be a linear subspace is
the possibility of multiplying by −1. This justifies the last statement of 3.8.
It’s elementary that the sets K ∩ (−K) and K−K are themselves closed under
all the operations in question and are, respectively, the largest such set within
K and the smallest such set that includes K.

Some rules will now be developed for determining horizon cones and using
them to ascertain the closedness of sets constructed by various operations.

3.9 Proposition (intersections and unions). For any collection of sets Ci ⊂ IRn

for i ∈ I, an arbitrary index set, one has[ ⋂
i∈I

Ci

]∞ ⊂⋂
i∈I

C∞
i ,

[ ⋃
i∈I

Ci

]∞ ⊃⋃
i∈I

C∞
i .

The first inclusion holds as an equation for closed, convex sets Ci having
nonempty intersection. The second holds as an equation when I is finite.

Proof. The general facts follow directly from the definition of the horizon
cones in question. The special result in the convex case is seen from the char-
acterization in 3.6.

3.10 Theorem (images under linear mappings). For a linear mapping L : IRn →
IRm and a closed set C ⊂ IRn, a sufficient condition for the set L(C) to be closed
is that L−1(0) ∩ C∞ = {0}. Under this condition one has L(C∞) = L(C)∞,
although in general only L(C∞) ⊂ L(C)∞.

Proof. The condition will be shown first to imply that L carries unbounded
sequences in C into unbounded sequences in IRm. If this were not true, there
would exist by 3.2 a sequence of points xν ∈ C converging to a point of hzn IRn,
but such that the sequence of images uν = L(xν) is bounded. We would then
have scalars λν ↘ 0 with λνxν converging to a vector x �= 0. By definition we
would have x ∈ C∞, but also (because linear mappings are continuous)

L(x) = lim
ν→∞L(λνxν) = lim

ν→∞λνuν = 0,

which the condition prohibits.
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Assuming henceforth that the condition holds, we prove now that L(C) is a
closed set. Suppose uν → u with uν ∈ L(C), or in other words, uν = L(xν) for
some xν ∈ C. The sequence {L(xν)}ν∈IN is bounded, so the sequence {xν}ν∈IN

must be bounded as well, for the reasons just given, and it therefore has a
cluster point x. We have x ∈ C (because C is closed) and u = L(x) (again
because linear mappings are continuous), and therefore u ∈ L(C).

The next task is to show that L(C∞) ⊂ L(C)∞. This is trivial when
C = ∅, so we assume C �= ∅. Any x ∈ C∞ is in this case the limit of λνxν for
some choice of xν ∈ C and λν ↘ 0. The points uν = L(xν) in L(C) then give
λνuν → L(x), showing that L(x) ∈ L(C)∞.

For the inclusion L(C∞) ⊃ L(C)∞, we consider any u ∈ L(C)∞, writ-
ing it as limν λ

νuν with uν ∈ L(C) and λν ↘ 0. For any choice of xν ∈ C
with L(xν) = uν , we have L(λνxν) → u. The boundedness of the sequence
{L(λνxν)} implies the boundedness of the sequence {λνxν}, which therefore
must have a cluster point x. Then x ∈ C∞ and L(x) = u, and we conclude
that u ∈ L(C∞).

The hypothesis in Theorem 3.10 is crucial to the conclusions: counterex-
amples are encountered even when L is a linear projection mapping. Sup-
pose for instance that L is the linear mapping from IR2 into itself given by
L(x1, x2) = (x1, 0). If C is the hyperbola defined by the equation x1x2 = 1,
the cone C∞ is the union of the x1-axis and the x2-axis and doesn’t satisfy
the condition assumed in 3.10: the x2-axis gives vectors x �= 0 in C∞ that
project onto 0. The image L(C) in this case consists of the x1-axis with the
origin deleted; it is not closed. For a different example, where only the inclusion
L(C∞) ⊂ L(C)∞ holds, consider the same mapping L but let C be the parabola
defined by x2 = x21. Then C∞ is the nonnegative x2-axis, and L(C

∞) = {0}.
But L(C) is the x1-axis (hence a closed set), and L(C)∞ is the x1-axis too.

3.11 Exercise (products of sets). For sets Ci ⊂ IRni , i = 1, . . . , m, one has

(C1 × · · · × Cm)∞ ⊂ C∞
1 × · · · × C∞

m .

If every Ci is convex and nonempty, this holds as an equation. It also holds as
an equation when no more than one of the nonempty sets Ci is unbounded.

Guide. Derive the inclusion from the definition of the horizon cone. In the
convex case, use the characterization provided in 3.6.

The equality in 3.11 can fail in some situations where convexity is absent.
An example with m = 2 is obtained by taking C1 = C2 =

{
2k

∣∣ k ∈ IN}
in IR1.

One has C∞
1 = C∞

2 = IR+, but (C1 × C2)
∞ �= IR+ × IR+. This is because a

vector (a, b) belongs to (C1 × C2)
∞ if and only if one has λν(2k

ν

, 2l
ν

)→ (a, b)
for some sequence λν ↘ 0 and exponents kν and lν ; for a > 0 and b > 0 this
is realizable if and only if a/b is an integral power of 2 (the exponent being
positive, negative or zero).

3.12 Exercise (sums of sets). For closed sets Ci ⊂ IRn, i = 1, . . . , m, a sufficient
condition for C1+ · · ·+Cm to be closed is the nonexistence of vectors xi ∈ C∞

i
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such that x1 + · · ·+ xm = 0, except with xi = 0 for all i. Then also

(C1 + · · ·+ Cm)∞ ⊂ C∞
1 + · · ·+ C∞

m ,

where the inclusion holds as an equation if the sets ∅ �= Ci are convex, or if at
most one of them is unbounded.

In particular, if C and B are closed sets with ∅ �= B bounded, then C +B
is closed with (C +B)∞ = C∞.

Guide. Apply the mapping L : (x1, . . . , xm) �→ x1 + · · ·+ xm to the product
set in 3.11, using 3.10.

The possibility that C1 +C2 might not be closed, even though C1 and C2

themselves are closed, is demonstrated in Figure 3–5. This can’t happen if one
of the two sets is also bounded, as the last part of 3.12 makes clear.

1C

2C

1 2C + C

Fig. 3–5. Closed, convex sets whose sum is not closed.

This result can be applied to the convex hull operation, which for cones
takes a special form. The following concept of ‘pointedness’ will be helpful in
determining when the convex hull of a closed cone is closed.

3.13 Definition (pointed cones). A cone K ⊂ IRn is pointed if the equation
x1 + · · ·+ xp = 0 is impossible with xi ∈ K unless xi = 0 for all i.

3.14 Proposition (pointedness of convex cones). A convex cone K ⊂ IRn is
pointed if and only if K ∩ −K = {0}.
Proof. This is immediate from Definition 3.13 and the fact that a convex cone
contains any sum of its elements (cf. 3.7).

3.15 Theorem (convex hulls of cones). For a cone K ⊂ IRn, a vector x belongs
to conK if and only if it can be expressed as a sum x1 + · · ·+xp with xi ∈ K.
When x �= 0, the vectors xi can be taken to be linearly independent (so p ≤ n).

In particular, conK = K + · · · +K (n terms). Moreover, if K is closed
and pointed, so too is conK.

Proof. From 2.27, conK consists of all convex combinations λ1x1+ · · ·+λpxp
of elements xi ∈ K. But K contains all nonnegative multiples of its elements,
so the coefficients λi are superfluous; conK consists of all sums x1 + · · ·+ xp
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with xi ∈ K. Since K is a union of rays emanating from the origin, it is a
connected subset of IRn, and therefore by 2.29, one can restrict p to be n.

On the other hand, if x has an expression x1 + · · ·+ xp with xi ∈ K and
p minimal, the vectors xi must be linearly independent, for otherwise there
would exist coefficients μi, at least one positive, with μ1x1+ · · ·+μpxp = 0. In
this case, supposing without loss of generality that the largest of the positive
components is μp, and μp = 1, we would get x = x′1 + · · · + x′p−1 for x′i =
(1− μi)xi ∈ K, and this would contradict the minimality of p.

The fact that conK consists of all sums x1 + · · ·+ xn with xi ∈ K means
that conK is the image of Kn (product of n copies of K) under the linear
transformation L : (x1, . . . , xn) �→ x1 + · · ·+ xn. According to Theorem 3.10,
this image is a closed set if Kn is closed (true when K is closed) and L−1(0)
meets the horizon cone of Kn, which is Kn itself (because Kn is a cone), only
at 0. The latter condition is precisely the condition that K be pointed. Hence
conK is closed when K is closed and pointed.

Moreover, conK∩[− conK] = {0} in this case, for otherwise some nonzero
sum x1+ · · ·+xp of elements of K would equal −[x′1+ · · ·+x′q] for certain other
elements of K, and then x1 + · · ·+ xp + x′1 + · · ·+ x′q = 0 for a combination of
elements of K which aren’t all 0, in contradiction to the pointedness of K. We
conclude from 3.14 that conK is pointed when K is closed and pointed.

The criterion in 3.10 for closed images under linear mappings has the
following extension, which however says nothing about the horizon cone of the
image. Other extensions will be developed in Chapter 5 (cf. 5.25, 5.26).

3.16 Exercise (images under nonlinear mappings). Consider a continuous map-
ping F : IRn → IRm and a closed set C ⊂ IRn. A sufficient condition for F (C)
to be closed in IRm is the nonexistence of an unbounded sequence {xν}ν∈IN

with {F (xν)}ν∈IN bounded, such that xν → dirx for a vector x �= 0 in C∞.

Guide. Pattern the argument after the proof of Theorem 3.10.

The condition in 3.16 holds in particular when
∣∣F (x)∣∣ → ∞ as |x| → ∞,

or if C∞ = {0}, the latter case being classical through 3.5.

C. Horizon Functions

Our next goal is the application of these ‘cosmic’ ideas to the understanding of
the behavior-in-the-large of functions f : IRn → IR. We look at the direction
points in the cosmic closure of epi f , which form a subset of hzn IRn+1 rep-
resented by a certain closed cone in IRn+1, namely the horizon cone (epi f)∞.
A crucial observation is that—as long as f �≡ ∞—this horizon cone is itself
an epigraph: not only is it a cone, it has the property that if a vector (x, β)
belongs to (epi f)∞, then for all β′ ∈ (β,∞) one also has (x, β′) ∈ (epi f)∞.
This is evident from Definition 3.3 as applied to the set epi f , and it leads to
the following concept.
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3.17 Definition (horizon functions). For any function f : IRn → IR, the associ-
ated horizon function is the function f∞ : IRn → IR specified by

epi f∞ = (epi f)∞ if f �≡ ∞, f∞ = δ{0} if f ≡ ∞.
The exceptional case in the definition arises because the function f ≡ ∞

has epi f = ∅, so (epi f)∞ = {(0, 0)}. The set (epi f)∞ is not an epigraph then,
since it doesn’t contain along with (0, 0) all the points (0, β) with 0 < β <∞.
When such points are added, the set becomes the epigraph of δ{0}.

f
IR

nIR

f 8

Fig. 3–6. An example of a horizon function.

To gain an appreciation of horizon functions and their properties, we must
make concrete what it means for the epigraph of a function to be a cone.

3.18 Definition (positive homogeneity and sublinearity). A function h : IRn →
IR is positively homogeneous if 0 ∈ domh and h(λx) = λh(x) for all x and all
λ > 0. It is sublinear if in addition

h(x+ x′) ≤ h(x) + h(x′) for all x and x′.

Norms and linear functions are examples of positively homogeneous func-
tions that are actually sublinear. An indicator function δC is positively homo-
geneous if and only if C is a cone.

3.19 Exercise (epigraphs of positively homogeneous functions). A function h is
positively homogeneous if and only if epi h is a cone. Then either h(0) = 0 or
h(0) = −∞. When h is lsc with h(0) = 0, it must be proper.

Sublinearity of h is equivalent to h being both positively homogeneous and
convex. It holds if and only if epih is a convex cone.

For every function f one has (cl f)∞ = f∞. If f is positively homogeneous,
one has f∞ = cl f . These relations just specialize to the set E = epi f the fact
that (clE)∞ = E∞, and if E is a cone, also E∞ = clE.

3.20 Exercise (sublinearity versus linearity). For a proper, convex, positively
homogeneous function h : IRn → IR, the set{

x
∣∣h(−x) = −h(x)}
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is a linear subspace of IRn relative to which h is linear. It is all of IRn if and
only if h is a linear function on IRn.

Guide. Apply 3.8 to epi h.

3.21 Theorem (properties of horizon functions). For any f : IRn → IR, the
function f∞ is lsc and positively homogeneous and, if f �≡ ∞, is given by

f∞(w) = lim inf
λ ↘ 0
x→w

(λ�f)(x) := lim
δ ↘ 0

inf
λ∈(0,δ)

x∈IB(w,δ)

λf(λ−1x). 3(3)

When f is convex, f∞ is sublinear (in particular convex), and if f is also lsc
and proper one has for any x̄ ∈ dom f that

f∞(w) = lim
τ→∞

f(x̄+ τw)− f(x̄)
τ

= sup
τ∈(0,∞)

f(x̄+ τw)− f(x̄)
τ

. 3(4)

Proof. Trivially f∞ is lsc and positively homogeneous when it is δ{0}, so sup-
pose f �≡ ∞. Then the epigraph of f∞ is the closed set (epi f)∞ by definition,
and this implies f∞ is lsc (cf. 1.6). Since (epi f)∞ is a cone, f∞ is positively
homogeneous (cf. 3.19). We have f∞(w) = inf

{
β
∣∣ (w, β) ∈ (epi f)∞

}
for any

w ∈ IRn. The formula for (epi f)∞ stemming from Definition 3.3 tells us then
that f∞(w) is the lowest value of β such that for some choice of wν and λν with
λν ↘ 0 and λνwν → w, one can find αν ≥ f(wν) with λναν → β. Equivalently,
f∞(w) is the lowest value of β such that for some choice of xν → w and λν ↘ 0,
one has λνf(xν/λν) → β. Through the sequential characterization of lower
limits in Lemma 1.7 this reduces to saying that f∞(w) is given by 3(3).

The special formula 3(4) in the convex case follows from the characteriza-
tion of C∞ in 3.6 as applied to the closed, convex set C = epi f at

(
x̄, f(x̄)

)
.

The fact that the limit in τ agrees with the supremum in τ comes from the
monotonicity of difference quotients of convex functions, cf. 2.12.

8f

f

Fig. 3–7. Horizon properties of a convex function.

The illustration in Figure 3–6 underscores the geometric ideas behind hori-
zon functions. The special properties in the case of convex functions are brought
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out in Figure 3–7. An interesting example in the convex case is furnished by
the vector-max and log-exponential functions in 1.30 and 2.16, where

(logexp)∞ = vecmax 3(5)

by formula 3(3) or 3(4) and the estimates in 1(16). For convex quadratic
functions, we have

f(x) =
1
2

〈
x,Ax

〉
+

〈
b, x

〉
+ c =⇒ f∞(x) =

〈
b, x

〉
+ δ(x|Ax = 0).

This is seen through either 3(3) or 3(4). For a nonconvex quadratic function
f , given by the same formula but with A not positive-semidefinite (cf. 2.15),
only 3(3) is applicable; then f∞(x) = −∞ for vectors x with 〈x,Ax〉 ≤ 0,
but f∞(x) = ∞ for x with 〈x,Ax〉 > 0. This demonstrates that the horizon
function of a proper—even finite—function f can be improper if the growth
properties of f so dictate.

For a set C ⊂ IRn one has δ∞
C

= δC∞ . The function f(x) = |x − a| + α
yields f∞ = | · |, while f(x) = |x− a|2 + α yields f∞ = δ{0}. In general,

g∞ = f∞ when g(x) = f(x− a) + α. 3(6)

Since epi g in this formula is simply the translate of epi f by the vector (a, α),
the equation is just an analytical expression of the geometric fact that the set
of direction points in the cosmic closure of a set is unaffected when the set is
translated. Indeed, 3(6) reduces to this fact when applied to f = δC and α = 0.

3.22 Corollary (monotonicity on lines). If a proper, lsc, convex function f on
IRn is bounded from above on a half-line

{
x̄ + τw

∣∣ τ ≥ 0
}
, then for every

x ∈ IRn the function τ �→ f(x+ τw) is nonincreasing:

f(x+ τw) ≥ f(x+ τ ′w) when −∞ < τ < τ ′ <∞.
In fact, this has to hold if for any sequence {xν}ν∈IN converging to dirw such
that the sequence {f(xν)}ν∈IN is bounded from above.

Proof. A vector w as described is one such that (w, 0) ∈ (epi f)∞, i.e.,
f∞(w) ≤ 0. The claim is justified therefore by formula 3(4).

f

f 8 flevα

lev0 f 8

Fig. 3–8. Epigraphical interpretation of the horizon cone to a level set.
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Through horizon functions, the results about horizon cones of sets can be
sharpened to take advantage of constraint representations.

3.23 Proposition (horizon cone of a level set). For any function f : IRn → IR
and any α ∈ IR, one has (lev≤α f)

∞ ⊂ lev≤0 f
∞, i.e.,{

x
∣∣ f(x) ≤ α}∞ ⊂ {

x
∣∣ f∞(x) ≤ 0

}
.

This is an equation when f is convex, lsc and proper, and lev≤α f �= ∅. Thus,
for such a function f , if some set lev≤α f is both nonempty and bounded, for
instance the level set argmin f , then f must be level-bounded.

Proof. The inclusion is trivial if lev≤α f is empty, because the horizon cone
of this set is then {0} by definition, whereas f∞(0) ≤ 0 always because f∞

is positively homogeneous (cf. 3.21). Suppose therefore that lev≤α f �= ∅ and
consider any x ∈ (lev≤α f)

∞. We must show f∞(x) ≤ 0, and for this only the
case of x �= 0 requires argument. There exist xν in lev≤α f and λν ↘ 0 with
λνxν → x. Let wν = λνxν . Then λνf(wν/λν) = λνf(xν) ≤ λνα → 0 with
wν → x. This implies by formula 3(3) that f∞(x) ≤ 0.

When f is convex, lsc and proper, the property in 3(4), which holds for
arbitrary x̄ ∈ dom f , yields the further conclusions.

3.24 Exercise (horizon cones from constraints). Let

C =
{
x ∈ X ∣∣ fi(x) ≤ 0 for i ∈ I}

for a nonempty set X ⊂ IRn and finite functions fi on IR
n. Then

C∞ ⊂ {
x ∈ X∞

∣∣ f∞
i (x) ≤ 0 for i ∈ I}.

The inclusion holds as an equation when C is nonempty, X is closed and convex,
and each function fi is convex.

Guide. Combine 3.23 with 3.9, invoking 2.36.

D. Coercivity Properties

Growth properties of a function f involving an exponent p ∈ (0,∞) have al-
ready been met with in Chapter 1 (cf. 1.14). The case of p = 1, which is the
most important, is closely tied to properties of the horizon function f∞.

3.25 Definition (coercivity properties). A function f : IRn → IR is level-coercive
if it is bounded below on bounded sets and satisfies

lim inf
|x|→∞

f(x)

|x| > 0,

whereas it is coercive if it is bounded below on bounded sets and
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lim inf
|x|→∞

f(x)

|x| =∞.

It is counter-coercive if instead

lim inf
|x|→∞

f(x)

|x| = −∞.

For example, if f(x) = |x|p for an exponent p ∈ (1,∞), f is coercive, but
for p = 1 it’s merely level-coercive. For p ∈ (0, 1), f isn’t even level-coercive,
although it’s level-bounded. These cases are shown in Figure 3–9. Likewise,
the function f(x) =

√
1 + |x|2 is level-coercive but not coercive.

Note that properties of dom f can have a major effect: if f is lsc and proper
(hence bounded below on bounded sets by 1.10), and dom f is bounded, then
f is coercive. Thus, the function f defined by f(x) = 1/(1− |x|) when |x| < 1,
f(x) =∞ when |x| ≥ 1, is coercive. An indicator function δC is coercive if and
only if C is bounded.

Counter-coercivity is exhibited by the function f(x) = −|x|p when p ∈
(1,∞), but not when p ∈ (0, 1).

coercive countercoercivelevel-coercive

f
f

f

Fig. 3–9. Coercivity examples.

3.26 Theorem (horizon functions and coercivity). Let f : IRn → IR be lsc and
proper. Then

lim inf
|x|→∞

f(x)

|x| = inf
|x|=1

f∞(x), 3(7)

and in consequence

(a) f is level-coercive if and only if f∞(x) > 0 for all x �= 0; this means for
some γ ∈ (0,∞) there exists β ∈ (−∞,∞) with f(x) ≥ γ|x|+ β for all x;

(b) f is coercive if and only if f∞(x) = ∞ for all x �= 0; this means for
every γ ∈ (0,∞) there exists β ∈ (−∞,∞) with f(x) ≥ γ|x|+ β for all x;

(c) f is counter-coercive if and only if f∞(x) = −∞ for some x �= 0, or
equivalently, f∞(0) = −∞; this means that for no γ ∈ (−∞,∞) does there
exist β ∈ (−∞,∞) with f(x) ≥ γ|x|+ β for all x.

Proof. The sequential characterization of lower limits in Lemma 1.7 adapts
to the kind of limit on the left in 3(7) as well as to the one giving f∞(x) in
3(3). The right side of 3(7) can in this way be expressed as
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inf
{
γ
∣∣∃x, λν ↘ 0, xν , αν ≥ f(xν) with |x| = 1, λναν → γ, λνxν → x

}
= inf

{
γ
∣∣ ∃λν ↘ 0, xν , αν ≥ f(xν) with λναν → γ, |λνxν | → 1

}
= inf

{
γ
∣∣ ∃λν ↘ 0, xν with λνf(xν)→ γ, λν |xν | → 1

}
= inf

{
γ
∣∣ ∃xν with |xν | → ∞, f(xν)/|xν | → γ

}
,

where we have arrived at an expression representing the left side of 3(7). There-
fore, 3(7) is true. From 1.14 we know that the left side of 3(7) is the supremum
of the set of all γ ∈ IR for which there exists β ∈ IR with f(x) ≥ γ|x| + β
for all x. Everything in (a), (b) and (c) then follows, except for the claim in
(c) that the conditions there are also equivalent to having f∞(0) = −∞. If
f∞(x) = −∞ for some x �= 0, then f∞(0) = −∞ because f∞ is lsc and pos-
itively homogeneous (by 3.21). On the other hand, if f∞(0) = −∞ it’s clear
from 3(3) that there can’t exist γ and β in IR with f(x) ≥ γ|x|+β for all x.

3.27 Corollary (coercivity and convexity). For any proper, lsc function f on
IRn, level coercivity implies level boundedness. When f is convex the two
properties are equivalent. No proper, lsc, convex function is counter-coercive.

Proof. The first assertion combines 3.26(a) with 3.23. The second combines
3.26(c) with the fact that by formula 3(4) in Theorem 3.21 every proper, lsc,
convex function f has f∞(0) = 0.

3.28 Example (coercivity and prox-boundedness). If a proper, lsc function f
on IRn is not counter-coercive, it is prox-bounded with threshold λf =∞.

Detail. The hypothesis ensures through 3.26(c) the existence of values γ ∈ IR
and β ∈ IR such that f(x) ≥ γ|x|+ β. Then lim inf|x|→∞ f(x)/|x|2 ≥ 0, hence
by 1.24 the threshold of prox-boundedness for f is ∞.

Coercivity properties are especially useful because they can readily be
verified for functions obtained through various constructions or ‘perturbations’
of other functions. The following are some elementary rules.

3.29 Exercise (horizon functions in addition). Let f1 and f2 be lsc and proper
on IRn, and suppose that neither is counter-coercive. Then

(f1 + f2)
∞ ≥ f∞

1 + f∞
2 ,

where the inequality becomes an equation when both functions are convex and
dom f1 ∩ dom f2 �= ∅. Thus,

(a) if either f1 or f2 is level-coercive while the other is bounded from below
(as is true if it too is level-coercive), then f1 + f2 is level-coercive;

(b) if either f1 or f2 is coercive, then f1 + f2 is coercive.

Guide. Use formula 3(3) while being mindful of 1.36, but in the convex case
use formula 3(4). For the coercivity conclusions apply Theorem 3.26.

A counterexample to equality always holding in 3.29 in the absence of
convexity, even when the domain condition is satisfied, can be obtained from
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the counterexample after 3.11, concerning the horizon cones of product sets,
by considering indicators of such sets.

3.30 Proposition (horizon functions in pointwise max and min). For a collection
{fi}i∈I of functions fi : IR

n → IR, one has(
supi∈I fi

)∞ ≥ supi∈I f
∞
i ,

(
infi∈I fi

)∞ ≤ infi∈I f
∞
i .

The first inequality is an equation when supi∈I fi �≡ ∞ and the functions are
convex, lsc and proper. The second inequality is an equation whenever the
index set is finite.

Proof. This applies 3.9 to the epigraphs in question.

3.31 Theorem (coercivity in parametric minimization). For a proper, lsc func-
tion f : IRn × IRm → IR, a sufficient condition for f(x, u) to be level-bounded
in x locally uniformly in u, which is also necessary when f is convex, is

f∞(x, 0) > 0 for all x �= 0. 3(8)

If this is fulfilled, the function p(u) := infx f(x, u) has

p∞(u) = infx f
∞(x, u), attained when finite. 3(9)

Thus, p is level-coercive if f is level-coercive, and p is coercive if f is coercive.

Proof. The question of whether f(x, u) is level-bounded in x locally uni-
formly in u revolves by definition around whether, for balls IB(ū, ε) and scalars
α ∈ IR, sets of the form C =

(
IRn × IB(ū, ε)

) ∩ lev≤α f are bounded when
nonempty. Boundedness corresponds by Theorem 3.5 to the horizon cone of
such a nonempty set C being just the zero cone. The horizon cone can be
calculated from 3.9 and 3.23:

C∞ ⊂ (
IRn × IB(ū, ε)

)∞ ∩ (
lev≤α f

)∞

⊂ (
IRn × {0}) ∩ {

(x, u)
∣∣ f∞(x, u) ≤ 0

}
=

{
(x, 0)

∣∣ f∞(x, 0) ≤ 0
}
,

where equality holds throughout when f is convex. Clearly, then, condition
3(8) is always sufficient, and if f is convex it is both necessary and sufficient.
The level boundedness property of f ensures through 1.17 and 1.18 that p is a
proper, lsc function on IRm whose epigraph is the image of that of f under the
linear mapping L : (x, u, α) �→ (u, α). We have L−1(0, 0) ∩ (epi f)∞ = (0, 0, 0)
under 3(8), because (epi f)∞ = epi f∞ by definition. This ensures through
Theorem 3.10 that L

(
(epi f)∞

)
= L(epi f)∞, which is the assertion of 3(9) (cf.

the general principle in 1.18 again).

3.32 Corollary (boundedness in convex parametric minimization). Let

p(u) = infx f(x, u), P (u) = argminx f(x, u),

for a proper, lsc, convex function f : IRn × IRm → IR, and suppose that for
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some ū the set P (ū) is nonempty and bounded. Then P (u) is bounded for all
u, and p is a proper, lsc, convex function with horizon function given by 3(9).

Proof. Since P (ū) is one of the level sets of g(x) = f(x, ū), the hypothesis
implies through 3.23 that g∞(x) > 0 for all x �= 0. But g∞(x) = f∞(x, 0) by
formula 3(4) in Theorem 3.21. Therefore, assumption 3(8) of Theorem 3.31 is
satisfied in this case. We see also that all functions f( · , u) on IRn have f∞( · , u)
as their horizon function, so all are level-bounded. In particular, all sets P (u)
must be bounded.

3.33 Corollary (coercivity in epi-addition).

(a) Suppose that f = f1 f2 for proper, lsc functions f1 and f2 on IRn such
that f∞

1 (−w) + f∞
2 (w) > 0 for all w �= 0. Then f is a proper, lsc function and

the infimum in its definition is attained when finite. Moreover f∞ ≥ f∞
1 f∞

2 .
When f1 and f2 are convex, this holds as an equation.

(b) Suppose that f = f1 f2 for proper, lsc functions f1 and f2 on IRn

such that f2 is coercive and f1 is not counter-coercive. Then f is a proper, lsc
function and the infimum in its definition is attained when finite. Moreover
f∞ ≥ f∞

1 . When f1 and f2 are convex, this holds as an equation.

Proof. We have f(x) = infw g(w, x) for g(w, x) = f1(x−w)+f2(w). Theorem
3.31 can be applied using the estimate g∞(w, x) ≥ f∞

1 (w − x) + f∞
2 (w), which

comes from 3.29 and holds as an equation when f1 and f2 are convex. This
yields (a). Then (b) is the special case where f∞

2 has the property in 3.26(b)
but f∞

1 avoids the property in 3.26(c).

3.34 Theorem (cancellation in epi-addition). If f1 g = f2 g for proper, lsc,
convex functions f1, f2 and g such that g is coercive, then f1 = f2.

Proof. The hypothesis implies through 3.33(b) that fi g is finite (since fi
is not counter-coercive, cf. 3.27). Also, fi g is convex (cf. 2.24), hence for all
λ > 0 the Moreau envelope eλ(fi g) is finite, convex and differentiable (cf.
2.26). In terms of jλ(x) := (1/2λ)|x|2 we have

eλ(fi g) = (fi g) jλ = (fi jλ) g = eλfi g.

Then for any choice of v ∈ IRn we have

inf
x

{
[eλ(fi g)](x)− 〈v, x〉

}
= inf

x

{
[eλfi g](x)− 〈v, x〉

}
= inf

x

(
inf

w+w′=x

{
eλfi(w) + g(w′)

}− 〈v, x〉)
= inf

w,w′

{
eλfi(w) + g(w′)− 〈v, w + w′〉}

= inf
w

{
eλfi(w)− 〈v, w〉

}
+ inf

w′

{
g(w′)− 〈v, w′〉},

where the last infimum has a finite value because of the coercivity of g. Our as-
sumption that f1 g = f2 g implies that eλf1 g = eλf2 g and consequently
through this calculation that
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inf
w

{
eλf1(w)− 〈v, w〉

}
= inf

w

{
eλf2(w)− 〈v, w〉

}
for all v. 3(10)

If the targeted conclusion f1 = f2 were false, we would have to have eλf1 �= eλf2
for all λ > 0 sufficiently small, cf. 1.25. Then for any such λ and any x
where these Moreau envelopes disagree, say eλf1(x) > eλf2(x), the vector
v = ∇eλf1(x) would satisfy eλf1(w) ≥ eλf1(x) + 〈v, w − x〉 for all w, so that
we would have

inf
w

{
eλf1(w)− 〈v, w〉

} ≥ eλf1(x)− 〈v, x〉
> eλf2(x)− 〈v, x〉 ≥ inf

w

{
eλf2(w)− 〈v, w〉

}
.

The conflict between this strict inequality and the general equation in 3(10)
shows that necessarily f1 = f2.

3.35 Corollary (cancellation in set addition). If C1+B = C2+B for nonempty,
closed, convex sets C1, C2 and B such that B is bounded, then C1 = C2.

Proof. This specializes Theorem 3.34 to fi = δCi
and g = δB .

Alternative proofs of 3.34 and 3.35 can readily be based on the duality
that will be developed in Chapter 11.

3.36 Corollary (functions determined by their Moreau envelopes). If f1, f2, are
proper, lsc, convex functions with eλf1 = eλf2 for some λ > 0, then f1 = f2.

Proof. This case of Theorem 3.34, for g = (1/2λ)| · |2, was a stepping stone
in its proof.

3.37 Corollary (functions determined by their proximal mappings). If f1, f2,
are proper, lsc, convex functions such that Pλf1 = Pλf2 for some λ > 0, then
f1 = f2 + const.

Proof. From the gradient formula in Theorem 2.26, it’s clear that Pλf1 = Pλf2
if and only if eλf1 = eλf2 + const. = eλ(f2 + const.). The preceding corollary
then comes into play.

E∗. Cones and Orderings

Besides their importance in connection with growth properties and unbound-
edness, cones are useful also in many other ways beyond representing sets of
direction points.

3.38 Proposition (vector inequalities). For an arbitrary closed, convex cone
K ⊂ IRn, define the inequality x ≥K y for vectors x and y in IRn to mean that
x− y ∈ K. The partial ordering ≥K then satisfies:

(a) x ≥K x for all x;

(b) x ≥K y implies −y ≥K −x;



96 3. Cones and Cosmic Closure

(c) x ≥K y implies λx ≥K λy for all λ ≥ 0;

(d) x ≥K y and x′ ≥K y′ imply x+ x′ ≥K y + y′;
(e) xν ≥K yν , xν → x, yν → y, imply x ≥K y.

Conversely, if a relation ‘≥’ for vectors has these properties, it must be of the
form ≥K for a closed, convex cone K.

To have the additional property that x = y when both x ≥K y and y ≥K x,
it is necessary and sufficient to have K be pointed.

Proof. The first part is immediate from the definition of ≥K . In the converse
part, one notes from (d) that x ≥ y must be equivalent to x − y ≥ 0, so the
ordering must be of type ≥K for K =

{
x
∣∣x ≥ 0

}
. The various conditions,

taken with y = 0 in (c), and y = y′ = 0 in(d), and yν = 0 in (e), then force K
to be a closed, convex cone. The role of pointedness is seen from 3.14.

The standard case for vector inequalities in IRn is the one where K is the
nonnegative orthant IRn

+
in 1.2, which in particular is a pointed, closed, convex

cone. For this case the customary notation is simply x ≥ y:

(x1, . . . , xn) ≥ (y1, . . . , yn) ⇐⇒ xj ≥ yj for j = 1, . . . , n.

Such notation is often convenient in representing function inequalities as well,
for instance, a system fi(x) ≤ 0 for i = 1, . . . , m can be written as F (x) ≤ 0
for the mapping F : x �→ (

f1(x), . . . , fm(x)
)
.

Another partial ordering that fits the general pattern in 3.38 is the matrix
ordering described at the end of Chapter 2.

3.39 Example (matrix inequalities). In IRn×n
sym , the space of symmetric real ma-

trices of order n, the partial ordering A � B is the one associated with the
pointed, closed, convex cone consisting of the positive-semidefinite matrices,
and it therefore obeys the rules:

(a) A � A for all A;

(b) A � B implies −B � −A;
(c) A � B implies λA � λB for all λ ≥ 0;

(d) A � B and A′ � B′ imply A+A′ � B +B′;
(e) Aν � Bν , Aν → A, Bν → B, imply A � B.

(f) A � B and B � A imply A = B.

Detail. The set K ⊂ IRn×n
sym consisting of the positive-semidefinite matrices

is defined by the system of inequalities 0 ≤ lx(A) =: 〈x,Ax〉 indexed by the
vectors x ∈ IRn. Each function lx is linear on IRn×n

sym , and the set of solutions to
a system of linear inequalities is always a closed, convex cone. The reason K
is pointed is that the eigenvalues of a symmetric, positive-semidefinite matrix
A are nonnegative. If −A is positive-semidefinite too, the eigenvalues must all
be 0, so A has to be the zero matrix.

The class of cones is preserved under a number of common operations, and
so too is the class of positively homogeneous functions.
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3.40 Exercise (operations on cones and positively homogeneous functions).

(a)
⋂

i∈I Ki and
⋃

i∈I Ki are cones when each Ki is a cone.

(b) K1 +K2 is a cone when K1 and K2 are cones.

(c) L(K) is a cone when K is a cone and L is linear.

(d) L−1(K) is a cone when K is a cone and L is linear.

(e) supi∈I hi and infi∈I hi are positively homogeneous functions when each
hi is positively homogeneous.

(f) h1 + h2 and h1 h2 are positively homogeneous functions when h1 and
h2 are positively homogeneous.

(g) λh is positively homogeneous when h is positively homogeneous, λ ≥ 0.

(h) h◦L is positively homogeneous when h is positively homogeneous and
the mapping L is linear.

In (e), (f), (g) and (h), the assertions remain true when positive homo-
geneity is replaced by sublinearity, except for the inf case in (e).

F∗. Cosmic Convexity

Convexity can be introduced in cosmic space, and through that concept the
special role of horizon cones of convex sets can be better understood.

3.41 Definition (convexity in cosmic space). A general subset of csm IRn, writ-
ten as C ∪ dirK for a set C ⊂ IRn and a cone K ⊂ IRn, is said to be convex if
C and K are convex and C +K ⊂ C.

In the case of a subset C ∪ dirK of csm IRn that actually lies in IRn

(because K = {0}), this extended definition of convexity agrees with the one
at the beginning of Chapter 2. In general, the condition C+K ⊂ C means that
for every point x̄ ∈ C and every direction point dirw ∈ dirK, the half-line{
x̄ + τw

∣∣ τ ≥ 0
}
is included in C, which of course is the property developed

in Theorem 3.6 when C happens to be a closed, convex set and K = C∞.
This property can be interpreted as generalizing to C ∪ dirK the line segment
criterion for convexity: half-lines are viewed as infinite line segments joining
ordinary points with direction points. The idea is depicted in Figure 3–10. A
similar interpretation can be made of the convexity condition onK in Definition
3.41 in terms of ‘horizon line segments’ being included in C ∪ dirK.

3.42 Exercise (cone characterization of cosmic convexity). A set in csm IRn is
convex if and only if the corresponding cone in the ray space model is convex.

Guide. The cone corresponding to C∪dirK in the ray space model of csm IRn

consists of the vectors λ(x,−1) with λ > 0, x ∈ C, along with the vectors (x, 0)
with x ∈ K. Apply to this cone the convexity criterion in 3.7(b).

The convexity of a subset C ∪ dirK of csm IRn is equivalent also to the
convexity of the corresponding subset of Hn in the hemispherical model, when
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0

(C,-1)

-1

(IR, -1)n

Fig. 3–10. Cosmic convexity.

such convexity is taken in the sense of geodesic segments joining pairs of points
of Hn that are not antipodal , i.e., not just opposite each other on the rim of
Hn. For antipodal pairs of points a geodesic link is not well defined, nor is one
needed for the sake of cosmic convexity. Indeed, a subset of the horizon of IRn

consisting of just two points dirx and dir(−x) is convex by Definition 3.41 and
the criterion in 3.42, since the corresponding cone in the ray space model is the
line

{
λ(x, 0)

∣∣ −∞ < λ <∞}
(a convex subset of IRn+1).

3.43 Exercise (extended line segment principle). For a convex set in csm IRn,
written as C ∪ dirK for a set C ⊂ IRn and a cone K ⊂ IRn, one has for any
point x̄ ∈ intC and vector w ∈ K that x̄+ τw ∈ intC for all τ ∈ (0,∞).

Guide. Deduce this from Theorem 2.33 as applied to the cone representing
C ∪ dirK in the ray space model.

Convex hulls can be investigated in the cosmic framework too. For a set
E ⊂ csm IRn, conE is defined of course to be the smallest convex set in csm IRn

that includes E. When E happens not to contain any direction points, i.e., E
is merely a subset of IRn, conE is the convex hull studied earlier.

3.44 Exercise (cosmic convex hulls). For a general subset of csm IRn, written
as C ∪ dirK for a set C ⊂ IRn and a cone K ⊂ IRn, one has

con(C ∪ dirK) = (conC + conK) ∪ dir(conK).

Guide. Work with the cone in IRn+1 corresponding to C ∪ dirK in the ray
space model for csm IRn. The convex hull of this cone corresponds to the
cosmic convex hull of C ∪ dirK.

3.45 Proposition (extended expression of convex hulls). If D = conC + conK
for a pointed, closed cone K and a nonempty, closed set C ⊂ IRn with C∞ ⊂ K,
then D is closed and is the smallest closed onvex set that includes C and whose
horizon cone includes K. In fact D∞ = conK.

Proof. This can be interpreted through 3.4 as concerning a closed subset
C∪dirK of csm IRn. The corresponding cone in the ray space model of csm IRn

is not only closed but pointed, because K is pointed, so its convex hull is closed



G∗. Positive Hulls 99

by 3.15. The latter cone corresponds to (conC + conK) ∪ dir(conK) by 3.44.
Hence this subset of csm IRn is closed, and the claimed properties follow.

In the language of subsets of csm IRn, this theorem can be summarized
simply by saying that if C ∪ dirK is cosmically closed and K is pointed, then
con(C ∪ dirK) is cosmically closed as well. The case of K = {0}, where there
aren’t any direction points in E = C ∪ dirK, is that of the convex hull of a
compact set, already treated in 2.30.

3.46 Corollary (closures of convex hulls). Let C ⊂ IRn be a closed set such that
C∞ is pointed. Then

cl(conC) = conC + conC∞, (cl conC)∞ = conC∞.

Proof. Take K = C∞ in 3.45.

3.47 Corollary (convex hulls of coercive functions). Let f : IRn → IR be proper,
lsc and coercive. Then con f is proper, lsc and coercive, and for each x in the
set dom(con f) = con(dom f) the infimum in the formula for (con f)(x) in 2.31
is attained.

Proof. Here we apply 3.46 to epi f , which is a closed set having epi f∞ as its
horizon cone. By the coercivity assumption this horizon cone consists just of
the nonnegative vertical axis in IRn × IR, cf. 3.26(b).

G∗. Positive Hulls

Another operation of interest is that of forming the smallest cone containing a
set C ⊂ IRn. This cone, called the positive hull of C, has the formula

posC = {0} ∪ {
λx

∣∣x ∈ C, λ > 0
}
, 3(11)

see Figure 3–11. (If C = ∅, one has posC = {0}, but if C �= ∅, one has posC ={
λx

∣∣x ∈ C, λ ≥ 0
}
.) Clearly, C is itself a cone if and only if C = posC.

0

Dpos D

Fig. 3–11. The positive hull of a set.
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Similarly, one can form the greatest positively homogeneous function ma-
jorized by a given function f : IRn → IR. This function is called the positive
hull of f . It has the formula

(pos f)(x) = inf
{
α
∣∣ (x, α) ∈ pos(epi f)

}
, 3(12)

because its epigraph must be the smallest cone of epigraphical type in IRn× IR
containing epi f , cf. 3.19. Using the fact that the set λ epi f for λ > 0 is the
epigraph of the function λ�f : x �→ λf(λ−1x), one can write the formula in
question as

(pos f)(x) = inf
λ≥0

(λ�f)(x) when f �≡ ∞. 3(13)

3.48 Exercise (closures of positive hulls).

(a) Let C ⊂ IRn be closed with 0 /∈ C. Then cl(posC) = (posC) ∪ C∞. If
C is bounded, then posC is closed.

(b) Let f : IRn → IR be lsc with f �≡ ∞ and f(0) > 0. Then cl(pos f) =
min{pos f, f∞}. If in addition pos f ≤ f∞, as is true in particular when f is
coercive or dom f is all of IRn, then pos f is lsc.

Guide. In (a) consider the cone that corresponds to C in the ray space model,
observing that posC is the image of this cone under the projection mapping
L : (x, β) �→ x. Apply Theorem 3.10 to L and the closure of this cone. In (b)
apply (a) epigraphically.

3.49 Exercise (convexity of positive hulls).

(a) For a convex set C, the cone posC is convex.

(b) For a convex function f , the positively homogeneous function pos f is
convex, hence sublinear.

(c) For a proper, convex function f on IRn, the function

h(λ, x) =

⎧⎨
⎩
λf(λ−1x) when λ > 0,
0 when λ = 0 and x = 0,
∞ otherwise,

is proper and convex with respect to (λ, x) ∈ IR×IRn, in fact sublinear in these
variables. The lower closure of h, likewise sublinear but also lsc, is expressed
in terms of the lower closure of f by

(clh)(λ, x) =

{
λ(cl f)(λ−1x) when λ > 0,
f∞(x) when λ = 0,
∞ otherwise.

Guide. Derive (b) from (a) from epigraphs. In (c), determine that h = pos g
for the function g(λ, x) = f(x) when λ = 1, but g(λ, x) = ∞ when λ �= 1. In
taking lower closures, apply 3.48(b) to g.

The joint convexity in 3.49(c) in the variables λ and x is surprising in many
situations and might be hard to recognize without this insight. For instance,
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for any positive-definite, symmetric matrix A ∈ IRn×n the expression

h(λ, x) =
1

2λ
〈x,Ax〉

is convex as a function of (λ, x) ∈ (0,∞) × IRn. This is the case of f(x) =
1
2 〈x,Ax〉. The function in Example 2.38 arises in this way.

3.50 Example (gauge functions). Let C ⊂ IRn be closed and convex with 0 ∈ C.
The gauge of C is the function γC : IRn → IR defined by

γC(x) := inf
{
λ ≥ 0

∣∣x ∈ λC}, so γC = pos(δC + 1).

This function is nonnegative, lsc and sublinear (hence convex) with level sets

C =
{
x
∣∣ γC(x) ≤ 1

}
, C∞ =

{
x
∣∣ γC(x) = 0

}
, posC =

{
x
∣∣ γC(x) <∞}

.

It is actually a norm, having C as its unit ball, if and only if C is bounded
with nonempty interior and is symmetric: −C = C.

epi

0
C

1
γ

C

Fig. 3–12. The gauge function of a set as a positive hull.

Detail. The fact that C is convex with 0 ∈ C ensures having λC ⊂ λ′C when
λ < λ′, and C∞ =

⋃
λ>0 λC (cf. 3.6). From C being closed, we deduce that

lev≤λ γC = λC for all λ ∈ (0,∞), whereas lev≤0 γC = C∞. Hence γC is lsc with
dom γC = posC. Because γC = pos f for f = δC + 1, which is convex, γC is
sublinear by 3.49(b).

Boundedness of C, which is equivalent by 3.5 to C∞ = {0}, corresponds
to the property that γC(x) = 0 only for x = 0. Symmetry of C corresponds to
having γC(−x) = γC(x). The only additional property required for γC to be
a norm (as described in 2.17) is finiteness, which means that for every x �= 0
there exists λ ∈ IR+ with x ∈ λC, or in other words, posC = IRn. Obviously
this is true when 0 ∈ intC.

Conversely, if posC = IRn consider any simplex neighborhood V =
con{a0, . . . , an} of 0 (cf. 2.28), and for each ai select λi > 0 such that ai ∈ λiC.
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Let ε be the lowest of the values λ−1
i . Then εai ∈ C for all i, so that the set

con{εa0, . . . , εan} = εV is (by the convexity of C) a neighborhood of 0 within
C; thus 0 ∈ intC. When C is symmetric, 0 has to belong to its interior if
that’s nonempty, as is clear from the line segment principle in 2.33 (because 0
is an intermediate point on the line segment joining any point x ∈ intC with
the point −x, also belonging to intC).

3.51 Exercise (entropy functions). Under the convention that 0 log 0 = 0, the
function g : IRn → IR defined for y = (y1, . . . , yn) by

g(y) =

{∑n
j=1 yj log yj when yj ≥ 0,

∑n
j=1 yj = 1,

∞ otherwise,

is proper, lsc and convex. Furthermore, the function h : IRn → IR defined by

h(y) =

{∑n
j=1 yj log yj − (

∑n
j=1 yj) log(

∑n
j=1 yj) when yj ≥ 0,

∞ otherwise,

is proper, lsc and sublinear.

Guide. To get the convexity of g, write g(y) as
∑n

j=1 θ(yj)+δ{0}(1−
∑n

j=1 yj)
where θ(t) has the value t log t for t > 0, 0 for t = 0, and ∞ for t < 0. Then to
get the properties of h show that h = pos g.

The function g in 3.51 will be seen in 11.12 to be dual to the log-exponential
function in the sense of the Legendre-Fenchel transform.

The theory of positive hulls and convex hulls has important implications
for the study of polyhedral sets and convex, piecewise linear functions.

3.52 Theorem (generation of polyhedral cones; Minkowski-Weyl). A cone K is
polyhedral if and only if it can be expressed as con(pos{b1, . . . , br}) for some
finite collection of vectors b1, . . . , br.

Proof. Suppose first that K = con
(
pos{b1, . . . , br}

)
. By 3.15, K is the union

of {0} and the finitely many cones KJ = con
(
pos{bj | j ∈ J}

)
corresponding

to index sets J ⊂ {1, . . . , r} such that the vectors bj for j ∈ J are linearly
independent. Each of the convex cones KJ is closed, even polyhedral; this is
obvious from the coordinate representation of KJ relative to a basis for IRn

that includes
{
bj

∣∣ j ∈ J}. As a convex set expressible as the union of a finite
collection of polyhedral sets, K itself is polyhedral by Lemma 2.50.

Suppose now instead that K is polyhedral. Because K is a cone, any
closed half-space

{
x
∣∣ 〈a, x〉 ≤ α

}
that includes K must have α ≥ 0, and then

the half-space
{
x
∣∣ 〈a, x〉 ≤ 0

}
includes K as well. Therefore, K must actually

have a representation of the form

K =
{
x
∣∣ 〈ai, x〉 ≤ 0 for i = 1, . . . , m

}
. 3(14)

In particular, K∞ = K. For the subspace M = K ∩ (−K) (cf. 3.8) we have
K + M = K by 3.6, and therefore in terms of the orthogonal complement
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M⊥ :=
{
w
∣∣ 〈x, w〉 = 0 for all x ∈M}

actually that

K = K ′ +M for K ′ := K ∩M⊥.

Here K ′ is a closed, convex cone too, and K ′ is pointed, because K ′ ∩ (−K ′) ⊂
M ∩M⊥ = {0} (cf. 3.14). Moreover K ′ is polyhedral: for any basis w1, . . . , wd

ofM , K ′ consists of the vectors x satisfying not only 〈ai, x〉 ≤ 0 for i = 1, . . . , m
in 3(14), but also 〈±wk, x〉 ≤ 0 for k = 1, . . . , d. If we can find a representation
K ′ = con

(
pos{b1, . . . , br}

)
, we will have from K = K ′ +M a corresponding

representation K = con
(
pos{b1, . . . , br,±w1, . . . ,±wd}

)
.

This argument shows there’s no loss of generality in focusing on polyhedral
cones that are pointed. Thus, we may assume that K ∩ (−K) = {0}, but also,
to avoid triviality, that K �= {0}. For each index set I ⊂ {1, . . . , m} in 3(14)
let KI denote the polyhedral cone consisting of the vectors x ∈ K such that
〈ai, x〉 = 0 for all i ∈ I. Obviously, the union of all the cones KI is K. Let
K0 be the union of all the cones KI that happen to be single rays, i.e., to have
dimension 1. We’ll demonstrate that if KI has dimension greater than 1, then
any nonzero vector in KI belongs to a sum KI′ +KI′′ for index sets I ′ and I ′′

properly larger than I. This will establish, through repeated application, that
every nonzero vector in K can be represented as a sum of vectors belonging to
cones KI of dimension 1, or in other words, as a sum of vectors in K0. We’ll
know then from 3.15 that K = conK0; in particular K0 �= ∅. Because K0 is the
union of finitely many rays we’ll have K0 = pos{b1, . . . , br} for certain vectors
bj , and the desired representation of K will be achieved.

Suppose therefore that 0 �= x̄ ∈ KI and dimKI > 1. Then there’s a vector
x̃ �= 0 in KI that isn’t just a scalar multiple of x̄. Let

T =
{
τ ∈ IR+

∣∣ x̄− τ x̃ ∈ K}
, T̃ =

{
τ ∈ IR+

∣∣ x̃− τ x̄ ∈ K}
.

It’s clear that T is a closed interval containing 0, and the same for T̃ . On the
other hand, T can’t be unbounded , for if it contained a sequence 0 < τν ↗∞
we would have (1/τν)[x̄ − τν x̃] ∈ K for all ν and consequently in the limit
−x̃ ∈ K, in contradiction to our knowledge that x̃ ∈ K and K ∩ (−K) = {0}.
Therefore, T has a highest element τ ′ > 0. The vector x′ = x̄ − τ ′x̃ must
then be such that the index set I ′ :=

{
i
∣∣ 〈ai, x′〉 = 0

}
is properly larger than

I. Likewise, T̃ has a highest element τ ′′ > 0, and the vector x′′ = x̃ − τ ′′x̄
must be such that the index set I ′′ :=

{
i
∣∣ 〈ai, x′′〉 = 0

}
is properly larger than

I. We note that (1/τ ′′)x̃ − x̄ ∈ K, so 1/τ ′′ ≤ τ ′ by the definition of τ ′. It’s
impossible that 1/τ ′′ = τ ′, because then (1/τ ′′)x̃− x̄ would be the vector −x′,
and we would have both x′ and −x′ in K with x′ �= 0 (because x̃ and x̄ aren’t
multiples of each other), contrary to K ∩ (−K) = {0}. Hence τ ′τ ′′ < 1. Let
x̄′ = [1/(1− τ ′τ ′′)]x′ and x̄′′ = [τ ′/(1− τ ′τ ′′)]x′′. Then x̄′ ∈ KI′ , x̄′′ ∈ KI′′ ,

x̄′ + x̄′′ =
1

1− τ ′τ ′′
(
x̄− τ ′x̃)+ τ ′

1− τ ′τ ′′
(
x̃− τ ′′x̄) = x̄.
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Thus, we have a representation x̄ ∈ KI′ +KI′′ of the kind sought.

3.53 Corollary (polyhedral sets as convex hulls). A set C is polyhedral if and
only if it can be represented as the convex hull of at most finitely many ordinary
points and finitely many direction points, i.e., in the form

C = con{a1, . . . , am}+ con
(
pos{am+1, . . . , ar}

)
.

Proof. A nonempty polyhedral set C specified by a finite system of inequal-
ities 〈cj , x〉 ≤ γj has csmC corresponding in the ray space model to the cone
given by the inequalities

〈
(cj , γj), (x, β)

〉 ≤ 0 and
〈
(0,−1), (x, β)〉 ≤ 0, and

conversely such cones correspond to polyhedral sets C. The result is obtained
by applying Theorem 3.52 to these cones in IRn+1. The rays that generate
them can be normalized to the two types (ai,−1) and (ai, 0).

3.54 Exercise (generation of convex, piecewise linear functions). A function
f : IRn → IR has epi f polyhedral if and only if, for some collection of vectors
ai and scalars ci, f can be expressed in the form

f(x) =

⎧⎪⎨
⎪⎩

infimum of t1c1 + · · ·+ tmcm + tm+1cm+1 + · · ·+ trcr

subject to t1a1 + · · ·+ tmam + tm+1am+1 + · · ·+ trar = x

with ti ≥ 0 for i = 1, . . . , r,
∑

m

i=1
ti = 1,

where the infimum is attained when it is not infinite. Thus, among functions
having such a representation, those for which the infimum for at least one x is
finite are the proper, convex, piecewise linear functions f with dom f �= ∅.
Guide. Use 2.49 and 3.53 to identify the class of functions in question with
the ones whose epigraph is the extended convex hull of finitely many ordinary
points in IRn+1 and direction points in hzn IRn+1. Work out the meaning of
such a representation in terms of a formula for f(x). Derive attainment of the
infimum from the closedness of the epigraph.

3.55 Proposition (polyhedral and piecewise linear operations).

(a) If C is polyhedral, then C∞ is polyhedral. If C1 and C2 are polyhedral,
then so too are C1 ∩ C2 and C1 + C2. Furthermore, L(C) and L−1(D) are
polyhedral when C and D are polyhedral and L is linear.

(b) If f is proper, convex and piecewise linear, f∞ has these properties as
well. If f1 and f2 are convex and piecewise linear, then so too are max{f1, f2},
f1 + f2 and f1 f2, when proper. Also, f◦L is convex and piecewise linear
when f is convex and piecewise linear and the mapping L is linear. Finally, if
p(u) = infx f(x, u) for a function f that is convex and piecewise linear, then p
is convex and piecewise linear unless it has no values other than ∞ and −∞.

Proof. The polyhedral convexity of C∞ is seen from the special case of 3.24
where the functions fi are affine (or from the proof of 3.53). That of C1 ∩ C2

and L−1(D) follows from considering C1, C2 and D as intersections of finite
collections of closed half-spaces as in the definition of polyhedral sets in 2.10.
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For C1+C2 and L(C) one appeals instead to representations as extended convex
hulls of finitely many elements in the mode of 3.53.

The convex piecewise linearity of f∞ follows from that of f because this
property corresponds to a polyhedral epigraph; cf. 2.49 and the definition of
f∞ in 3.17. The convex piecewise linearity of max{f1, f2}, f1 + f2, and f◦L is
evident from the definition of piecewise linearity and the fact that these oper-
ations preserve convexity. For f1 f2 and p one can appeal to the epigraphical
interpretations in 1.18 and 1.28, invoking representations as in 3.54.

Commentary

Many compactifications of IRn have been proposed and put to use. The simplest is the
one-point compactification, in which a single abstract element is added to represent
‘infinity’, but there is also the well known Stone-Čech compactification (making every
bounded continuous function on IRn have a continuous extension to the larger space)
and the compactification of n-dimensional projective geometry, in which a new point
is added for each family of parallel lines in IRn. The latter is closest in spirit to
the ‘cosmic’ compactification developed here, but it’s also quite different because it
doesn’t distinguish between directions that are opposite to each other.

For all the importance of ‘directions’ in analysis, it’s surprising that the notion
has been so lacking in mathematical formalization, aside from the one-dimensional
case served by adjoining ∞ and −∞ to IR. Most often, authors have been content
with identifying ‘directions’ with vectors of length one, which works to a degree but
falls short of full potential because of the easy confusion of such vectors with ones in
an ordinary role, and the lack of a single space in which ordinary points and direction
points can be contemplated together. The portrayal of directions as abstract points
corresponding to equivalence classes of half-lines under parallelism, or in other words
as corresponding one-to-one with rays emanating from the origin, was offered in Rock-
afellar [1970a], but only algebraic issues connected with convexity were then pursued.
A similar idea can be glimpsed in the geometric thinking of Bouligand [1932a] much
earlier, but on an informal basis only. Not until here has the concept been developed
fully as a topological compactification with all its ramifications, although a precursor
was the paper of Rockafellar and Wets [1992].

Interest in cosmic compactification ideas has been driven especially by applica-
tions to the behavior of the ‘min’ operation under the epigraphical convergence of
functions studied in Chapter 7 (and the underpinnings of this theory in Chapter 5),
and by the need for a proper understanding of the ‘horizon subgradients’ that are
crucial in the subdifferential analysis of Chapters 8–10.

Many of the properties of the cosmic closure of IRn have been implicit in other
work, of course, especially with regard to convexity. What we have called the ‘horizon
cone’ of a set was introduced as the ‘asymptotic cone’ by Steinitz [1913], [1914], [1916].
For a convex set C that’s closed, it’s the same as the recession cone of C defined in
Rockafellar [1970a]. We have preferred the term ‘horizon’ here to ‘asymptotic’ for
several reasons. It better expresses the underlying geometry and motivation for the
compactification: horizon cones represent sets of horizon points lying in the horizon of
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IRn. It better lends itself to broader usage in association with functions and mappings,
as well as special kinds of limits in the theory of set convergence in Chapter 4 for
which the term ‘asymptotic’ would be awkward. Also, by being less encumbered than
‘asymptotic’ by other meanings, it helps to make clear how cosmic compactification
ideas enter into variational analysis.

The term ‘recession cone’ was temporarily used by Rockafellar [1981b] in the
present sense of ‘horizon cone’ for nonconvex as well as convex sets, but we reserve
that now for a different concept which better extends the meaning of ‘recession’
beyond the territory of convexity; see 6.33–6.34.

The horizon properties of unbounded convex sets were already well understood
by Steinitz, who can be credited with the facts in Theorem 3.6, in particular. The
corresponding theory of horizon cones was developed further by Stoker [1940]. Such
cones were used by Choquet [1962] in expressing the closures of convex hulls of unions
of convex sets and for closure results in convex analysis more generally by Rockafellar
[1970a] (§8). Some facts, such as the horizon cone criterion for the closedness of the
sum of two sets (specializing the criterion for an arbitrary number of sets in 3.12)
were obtained earlier by Debreu [1959] even for nonconvex sets. The possibility of
inequality in the horizon cone formula for product sets in 3.11 (as demonstrated by
the example following that result) hasn’t previously been noted.

The application of horizon cone theory to epigraphs to generate growth proper-
ties of functions carries forward to the nonconvex case a theme of Rockafellar [1963],
[1966b], [1970a], for convex functions. Growth properties of nonconvex functions,
even on infinite-dimensional spaces, have been analyzed in this manner by Baiocchi,
Buttazzo, Gastaldi and Tomarelli [1988], Zălinescu [1989], and Auslender [1996] for
the purpose of understanding the existence of optimal solutions and the convergence
of methods for finding them.

The coercivity result in 3.26 is new, at least in such detail. We have tried here
to straighten out the terminology of ‘coercivity’ so as to avoid some of the conflicts
and ambiguities that have arisen in what this means for functions f : IRn → IR. For
convex functions f , coercivity was called ‘co-finiteness’ in Rockafellar [1970a] because
of its tie to the finiteness of the conjugate convex function (see 11.8(d)), but that term
isn’t very apt for a general treatment of nonconvex functions. Coercivity concepts
have an important role in nonlinear analysis not just for functions f into IR or IR
but also vector-valued mappings from one linear space into another; cf. Brezis [1968],
[1972], Browder [1968a], [1968b], and Rockafellar [1970c].

The application of coercivity to parametric minimization in Theorem 3.31 ap-
pears for the convex case in Rockafellar [1970a] along with the facts in 3.32. A
generalization to the nonconvex case was presented by Auslender [1996].

The sublinearity fact in 3.20 goes back to the theory of convex bodies (cf. Bon-
nesen and Fenchel [1934]), to which it is related through the notion of ‘support func-
tion’ that will be explained in Chapter 8.

The cancellation rule in 3.35 for sums of convex sets is due to R̊adström [1952]
for compact C1 and C2. The general case with possibly unbounded sets and the
epi-addition version in 3.34 for f1 g = f2 g don’t seem to have been observed
before, although Zagrodny [1994] has demonstrated the latter for g strictly convex
and explored the matter further in an infinite-dimensional setting. These cancellation
results will later be easy consequences of the duality correspondence between convex
sets and their ‘support functions’ (in Chapter 8) and the Legendre-Fenchel transform
for convex functions in (Chapter 11), which convert addition of convex sets and epi-



Commentary 107

addition of convex functions into ordinary addition of functions where cancellation
becomes trivial (when the function being canceled is finite). R̊adström approached
the matter abstractly, but the interpretation via support functions was made soon
after by Hörmander [1954].

For convex cones, pointedness has customarily been defined in terms of the prop-
erty in 3.14. The extension of pointedness to general cones through Definition 3.13,
which gives the same concept when the cone is convex, was proposed by Rockafellar
[1981b] for the express purpose of dealing with convex hulls of unbounded sets. But
that paper attended mostly to other issues and didn’t openly develop results corre-
sponding to 3.15, 3.45 and 3.46, although these were to a certain degree implicit.

The concept of convex hulls of sets consisting of both ordinary points and hori-
zon points, or in other words, in the setting of cosmic convexity as in 3.44, stems from
Rockafellar [1970a]. That book also made the first applications of convex hull theory
to functions, including the dual representation for ‘polyhedral’ functions in 3.53. The
basic Minkowski-Weyl result in 3.52, which effectively furnishes a convex hull repre-
sentation of generalized type for any polyhedral convex set, comes from Weyl [1935],
but the proof given here is new.

The importance of convex cones in setting up general vector inequalities (cf. 3.38)
that might be used in describing constraints has long been recognized in optimization
theory, e.g. Duffin [1956]. Matrix inequalities such as in 3.39 were first utilized for
this purpose by Bellman and Fan [1963] and are now popular in the subject called
‘positive-definite programming’; cf. Boyd and Vanderberghe [1995].

The entropy function g(y) described in 3.51 is fundamental to Boltzman-Shannon
entropy in statistical mechanics. The related function h(y) in 3.51 turns out to be
the key to duality theory in log-exponential programming; see Duffin, Peterson and
Zener [1967] and Rockafellar [1970a] (§30).
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The precise meaning of such basic concepts in analysis as differentiation, in-
tegration and approximation is dictated by the choice of a notion of limit for
sequences of functions. In the past, pointwise limits have received most of the
attention. Whether ‘uniform’ or invoked in an ‘almost everywhere’ sense, they
underlie the standard definitions of derivatives and integrals as well as the very
meaning of a series expansion. In variational analysis, however, pointwise lim-
its are inadequate for such mathematical purposes. A different approach to
convergence is required in which, on the geometric level, limits of sequences of
sets have the leading role.

Motivation for the development of this geometric approach has come from
optimization, stochastic processes, control systems and many other subjects.
When a problem of optimization is approximated by a simpler problem, or
a sequence of such problems, for instance, it’s of practical interest to know
what might be expected of the behavior of the associated sets of feasible or
optimal solutions. How close will they be to those for the given problem?
Related challenges arise in approximating functions that may be extended-
real-valued and mappings that may be set-valued. The limiting behavior of
a sequence of such functions and mappings, possibly discontinuous and not
having the same effective domains, can’t be well understood in a framework
of pointwise convergence. And this fundamentally affects the question of how
‘differentiation’ might be extended to meet the demands of variational analysis,
since that’s inevitably tied to ideas of local approximation.

The theory of set convergence will provide ways of approximating set-
valued mappings through convergence of graphs (Chapter 5) and extended-real-
valued functions through convergence of epigraphs (Chapter 7). It will lead to
tangent and normal cones to general sets (Chapter 6) and to subderivatives
and subgradients of nonsmooth functions (Chapter 8 and beyond).

When should a sequence of sets Cν in IRn be said converge to another such
set C? For operational reasons in handling statements about sequences, it will
be convenient to work with the following collections of subsets of IN :

N∞ :=
{
N ⊂ IN ∣∣ IN \N finite }

={ subsequences of IN containing all ν beyond some ν̄ },
N#

∞ :=
{
N ⊂ IN ∣∣N infinite } = { all subsequences of IN}.
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The set N∞ gives the ‘filter’ of neighborhoods of ∞ that are implicit in the
notation ν → ∞, and N#

∞ is its associated ‘grill’. Obviously, N∞ ⊂ N#
∞. The

subsequences of a sequence {xν}ν∈IN have the form {xν}ν∈N with N ∈ N#
∞,

while those that are ‘tails’ of {xν}ν∈IN have this form with N ∈ N∞.
Subsequences will pervade much of what we do, so an initial investment in

this notation will pay off in simpler formulas and even in bringing analogies to
light that might otherwise be missed. We write limν , limν→∞ or limν∈IN when
ν → ∞ as usual in IN , but limν∈N or limν→N ∞ in the case of convergence of
a subsequence designated by an index set N in N#

∞ or N∞. The relations

N#

∞ =
{
N ⊂ IN

∣∣∣ ∀N ′ ∈ N∞, N ∩N ′ �= ∅
}

N∞ =
{
N ⊂ IN

∣∣∣ ∀N ′ ∈ N#

∞, N ∩N ′ �= ∅
} 4(1)

express a natural duality between N∞ and N#
∞. An appeal to this duality can

be helpful in arguments involving limit operations.

A. Inner and Outer Limits

The issue of whether a sequence of subsets of IRn has a limit can best be
approached through the study of two ‘semilimits’ which always exist.

4.1 Definition (inner and outer limits). For a sequence {Cν}ν∈IN of subsets of
IRn, the outer limit is the set

lim sup
ν→∞

Cν : =
{
x
∣∣∣∃N ∈ N#

∞, ∃xν ∈ Cν (ν ∈ N) with xν→N x
}

=
{
x
∣∣∣∀V ∈ N (x), ∃N ∈ N#

∞, ∀ ν ∈ N : Cν ∩ V �= ∅
}
,

while the inner limit is the set

lim inf
ν→∞ Cν : =

{
x
∣∣∣∃N ∈ N∞, ∃xν ∈ Cν (ν ∈ N) with xν→N x

}
=

{
x
∣∣∣∀V ∈ N (x), ∃N ∈ N∞, ∀ ν ∈ N : Cν ∩ V �= ∅

}
.

The limit of the sequence exists if the outer and inner limit sets are equal:

lim
ν→∞

Cν := lim sup
ν→∞

Cν = lim inf
ν→∞

Cν .

The inner and outer limits of a sequence {Cν}ν∈IN always exist, although
the limit itself might not, but they could sometimes be ∅. When Cν �= ∅ for all
ν, the set lim infν C

ν consists of all possible limit points of sequences {xν}ν∈IN

with xν ∈ Cν for all ν, whereas lim supν C
ν consists of all possible cluster

points of such sequences. In any case, it’s clear from the inclusion N∞ ⊂ N#
∞

that lim infν C
ν ⊂ lim supν C

ν always.
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Fig. 4–1. Limit concepts. (a) A sequence of sets that converges to a limit set. (b) Inner and
outer limits for a nonconvergent sequence of sets.

Without loss of generality, the neighborhoods V in Definition 4.1 can be
taken to be of the form IB(x, ε). Because the condition IB(x, ε) ∩ Cν �= ∅ is
equivalent to x ∈ Cν + εIB, the formulas can then be written just as well as

lim inf
ν→∞ Cν =

{
x
∣∣∣ ∀ ε > 0, ∃N ∈ N∞, ∀ ν ∈ N : x ∈ Cν + εIB

}
,

lim sup
ν→∞

Cν =
{
x
∣∣∣ ∀ ε > 0, ∃N ∈ N#

∞, ∀ ν ∈ N : x ∈ Cν + εIB
}
.

4(2)

Inner and outer limits can also be expressed in terms of distance functions
or operations of intersection and union. Recall that the distance of a point x
from a set C is denoted by dC(x) (cf. 1.20), or alternatively by d(x, C) when
that happens to be more convenient. For C = ∅, we have d(x, C) ≡ ∞. Aside
from that case, not only is the function dC finite everywhere and continuous
(as asserted in 1.20), it satisfies

dC(x
′) ≤ dC(x) + |x′ − x| for all x′ and x. 4(3)

This is evident from the fact that |y − x′| ≤ |y − x|+ |x′ − x| for all y ∈ C.
4.2 Exercise (characterizations of set limits).

(a) lim inf
ν→∞

Cν =
{
x
∣∣∣ lim sup

ν→∞
d(x, Cν) = 0

}
,

lim sup
ν→∞

Cν =
{
x
∣∣∣ lim inf

ν→∞
d(x, Cν) = 0

}
,

(b) lim inf
ν→∞

Cν =
⋂

N∈N#
∞

cl
⋃
ν∈N

Cν, lim sup
ν→∞

Cν =
⋂

N∈N∞

cl
⋃
ν∈N

Cν ,

(c) lim inf
ν→∞

Cν =
⋂
ε>0

[⋃∞
ν=1

⋂∞
κ=ν

(
Cκ + εIB

)]
.
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B. Painlevé-Kuratowski Convergence

When limν C
ν exists in the sense of Definition 4.1 and equals C, the sequence

{Cν}ν∈IN is said to converge to C, written

Cν → C.

Set convergence in this sense is known more specifically as Painlevé-Kuratowski
convergence. It is the basic notion for most purposes, although variants in-
volving the cosmic closure of IRn will be developed for some applications. A
competing notion of convergence with respect to ‘Pompeiu-Hausdorff distance’
will be explained later as amounting to the same thing for bounded sequences
of sets (all in some bounded region of IRn), but otherwise being inappropri-
ate in its meaning and unworkable as a tool for dealing with sets like cones,
epigraphs, and the graphs of mappings (see 4.13). Some preliminary examples
of set limits are:

• A sequence of balls IB(xν, ρν) converges to the ball IB(x, ρ) when xν → x
and ρν → ρ. When ρν → ∞, these balls converge to IRn while their
complements converge to ∅.
• Consider a sequence that alternates between two different closed sets D1

and D2 in IRn, with Cν = D1 when ν is odd but Cν = D2 when ν is even.
Such a sequence fails to converge. Its inner limit is D1 ∩D2, whereas its
outer limit is D1 ∪D2.
• For a set D ⊂ IRn with clD = IRn but D �= IRn (for instance D could be
the set of vectors whose coordinates are all rational), the constant sequence
Cν ≡ D converges to C = IRn, not to D.

4.3 Exercise (limits of monotone and sandwiched sequences).

(a) limν C
ν = cl

⋃
ν∈IN Cν whenever Cν ↗ , meaning Cν ⊂ Cν+1 ⊂ · · ·;

(b) limν C
ν =

⋂
ν∈IN clCν whenever Cν ↘ , meaning Cν ⊃ Cν+1 ⊃ · · ·;

(c) Cν → C whenever Cν
1 ⊂ Cν ⊂ Cν

2 with Cν
1 → C and Cν

2 → C.

4.4 Proposition (closedness of limits). For any sequence of sets Cν ⊂ IRn, both
the inner limit set lim infν C

ν and the outer limit set lim supν C
ν are closed.

Furthermore, they depend only on the closures clCν , in the sense that

clCν = clDν =⇒
{
lim infν C

ν = lim infν D
ν

lim supν C
ν = lim supν D

ν .

Thus, whenever limν C
ν exists, it is closed. (If Cν ≡ C, then limν C

ν = clC.)

Proof. This is obvious from the intersection formulas in 4.2(b).

The closure facts in Proposition 4.4 identify the natural setting for the
study of set convergence as the space of all closed subsets of IRn. Limit sets
of all types are closed, and in passing to the limit of a sequence of sets it’s
only the closures of the sets that matter. The consideration of sets that aren’t
closed is really unnecessary in the context of convergence, and indeed, such
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sets can raise awkward issues, as shown by the last of the examples before 4.3.
On the other hand, from the standpoint of exposition a systematic focus only
on closed sets could be burdensome and might even seem like a restriction; an
extra assumption would have to be added to the statement of every result. We
continue therefore with general sets, as long as it’s expedient to do so.

The next theorem and its corollary provide the major criteria for checking
set convergence.

4.5 Theorem (hit-and-miss criteria). For Cν, C ⊂ IRn with C closed, one has

(a) C ⊂ lim infν C
ν if and only if for every open set O ⊂ IRn with C∩O �= ∅

there exists N ∈ N∞ such that Cν∩O �= ∅ for all ν ∈ N ;

(b) C ⊃ lim supν C
ν if and only if for every compact set B ⊂ IRn with

C ∩B = ∅ there exists N ∈ N∞ such that Cν∩B = ∅ for all ν ∈ N ;

(a′) C ⊂ lim infν C
ν if and only if whenever C ∩ int IB(x, ρ) �= ∅ for a ball

IB(x, ρ), there exists N ∈ N∞ such that Cν ∩ int IB(x, ρ) �= ∅ for all ν ∈ N ;

(b′) C ⊃ lim supν C
ν if and only if, whenever C ∩ IB(x, ρ) = ∅ for a ball

IB(x, ρ), there exists N ∈ N∞ such that Cν ∩ IB(x, ρ) = ∅ for all ν ∈ N .

(c) It suffices in (a′) and (b′) to consider the countable collection of all balls
IB(x, ρ) such that ρ and the coordinates of x are rational numbers.

Proof. In (a), it’s evident from Definition 4.1 that ‘⇒’ holds. The condition
in the second half of (a) obviously implies, in turn, the condition in the second
half of (a′). By demonstrating that the special version of the latter in (c) (for
rational balls only) guarantees C ⊂ lim infν C

ν , we’ll establish the equivalences
in both (a) and (a′).

Consider any x ∈ C and rational ε > 0. There is a rational point
x′ ∈ int IB(x, ε/2). For such a point x′ we have C∩ int IB(x′, ε/2) �= ∅, so by as-
sumption there exists N ∈ N∞ with Cν∩int IB(x′, ε/2) �= ∅ for all ν ∈ N . Then
in particular x′ ∈ Cν +(ε/2)IB, so that x ∈ Cν +(ε/2)IB+(ε/2)IB = Cν + εIB
for all ν ∈ N . Thus, x satisfies the defining condition in 4.1 for membership in
lim infν C

ν .
Likewise, ‘⇒’ holds in (b) on the basis of Definition 4.1, while the condition

in the second half of (b) implies in turn the condition in the second half of (b′)
and then its rational version in (c). We have to argue from the latter back
to the property that C ⊃ lim supν C

ν . Thus, in assuming the rational version
of the condition in the second half of (b′) and considering an arbitrary point
x /∈ C, we need to demonstrate that x fails to belong to lim supν C

ν .
Because C is closed, there’s a rational ε > 0 such that C ∩ IB(x, 2ε) = ∅.

A rational point x′ can be selected from int IB(x, ε), and we then have x ∈
int IB(x′, ε) and C ∩ IB(x′, ε) = ∅. By assumption, there must exist N ∈ N∞
such that Cν∩IB(x′, ε) = ∅ for all ν ∈ N . Since x ∈ int IB(x′, ε), it’s impossible
in this case for x to belong to lim supν C

ν , as seen from Definition 4.1.

4.6 Exercise (index criterion for convergence). The following is sufficient for
limν C

ν to exist: whenever the index set N =
{
ν
∣∣Cν ∩O �= ∅} for an open set

O belongs to N#
∞, it actually belongs to N∞.
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Guide. Argue from Theorem 4.5.

The following consequence of Theorem 4.5 provides a bridge to the quan-
tification of set convergence through distance functions.

4.7 Corollary (pointwise convergence of distance functions). For sets Cν and
C in IRn with C closed, one has Cν → C if and only if d(x, Cν)→ d(x, C) for
every x ∈ IRn. In fact

(a) C ⊂ lim infν C
ν if and only if d(x, C) ≥ lim supν d(x, C

ν) for all x,

(b) C ⊃ lim supν C
ν if and only if d(x, C) ≤ lim infν d(x, C

ν) for all x.

Proof. Nothing is lost by assuming Cν to be closed. For any closed set C′,

d(x, C′) < α ⇐⇒ C′ ∩ int IB(x, α) �= ∅,
d(x, C′) > β ⇐⇒ C′ ∩ IB(x, β) = ∅,

so (a) and (b) are just reformulations of 4.5(a′) and 4.5(b′).

In applying Corollary 4.7 to the case where actually C = lim infν C
ν or

C = lim supν C
ν , one obtains a distance function equation in the second case,

but not in the first, as noted next.

4.8 Exercise (equality in distance limits). For a sequence of sets Cν in IRn

one always has lim infν d(x, C
ν) = d(x, lim supν C

ν), but in general only
lim supν d(x, C

ν) ≤ d(x, lim infν C
ν).

Guide. The specialization of Corollary 4.7(a) and (b) to set limit equalities
doesn’t directly furnish equalities for the limits of the distance functions, just
special inequalities. In the case of lim supν C

ν , however, one can argue that
when α > d(x, lim supν C

ν) there must be a sequence {xν}ν∈N with N ∈ N#
∞,

xν ∈ Cν for ν ∈ N , such that |x−xν | < α. This leads to the opposite inequality.

An example showing that the inequality in the case of lim infν C
ν can’t

always be strengthened to an equality is generated by taking Cν = (IR, 0) ⊂ IR2

when ν is even, Cν = (0, IR) when ν is odd.

Set convergence can be described in terms of ‘gap’ measurements, too.
The gap distance between two nonempty sets C and D in IRn is

gap (C,D) : = inf
{|x− y| ∣∣ x ∈ C, y ∈ D}

= infz
{
d(z, C) + d(z,D)

}
.

4(4)

Observe that gap (C, {x}) = d(x, C) for any singleton {x}; more generally one
has gap (C, IB(x, ρ)) = max [d(x, C)− ρ, 0 ] for any ρ ∈ (0,∞). It follows then
from 4.7 that a sequence of sets Cν converges to a closed set C �= ∅ if and only
if gap (Cν, IB(x, ρ))→ gap (C, IB(x, ρ)) for all x ∈ IRn and ρ > 0.

Not only distances but also projections (as in 1.20) can be used in charac-
terizing set convergence.
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4.9 Proposition (set convergence through projections). For nonempty, closed
sets Cν and C in IRn, one has Cν → C if and only if lim supν d(0, C

ν) < ∞
and the projection mappings PCν have the property that

limsupν PCν (x) ⊂ PC(x) for all x.

When the sets Cν and C are also convex, one simply has that Cν → C if and
only if PCν (x)→ PC(x) for all x.

Proof. Necessity in general: From Cν → C we have d(x, Cν) → d(x, C) <
∞ for all x by 4.7 (in particular x = 0, so that lim supν d(0, C

ν) < ∞).
Consider any x̄ ∈ lim supν PCν (x). There’s an index set N ∈ N#

∞ such that
x̄ = limν∈N x̄ν for points x̄ν ∈ Cν with |x̄ν − x| = d(x, Cν). Taking limits in
this equation we get |x̄− x| = d(x, C), but also x̄ ∈ C, so that x̄ ∈ PC(x).

Sufficiency in general: Consider any x ∈ IRn. It suffices by 4.7 to verify
that d(x, Cν)→ d(x, C). The sets PCν (x) are nonempty by 1.20, so for each ν
we can choose some x̄ν ∈ PCν (x), i.e., x̄ ∈ Cν with |x̄ν − x| = d(x, Cν). These
distances form a bounded sequence, because d(x, Cν) ≤ d(0, Cν) + |x| and
lim supν d(0, C

ν) < ∞. Any cluster point of {d(x, Cν)}ν∈IN must therefore be
of the form |x̄−x| for some cluster point x̄ of {x̄ν}ν∈IN . But such a cluster point
x̄ belongs by assumption to PC(x) and therefore has |x̄− x| = d(x, C). Hence
the unique cluster point of the bounded sequence {d(x, Cν)}ν∈IN is d(x, C),
and the desired conclusion is at hand.

The simplified characterization in the convex case comes from the fact
that the projections PCν (x) and PC(x) are singletons then; cf. 2.25. Of course
d(0, Cν)→ d(0, C) when PCν (0)→ PC(0).

The characterization of set convergence in Proposition 4.9 will be extended
in 5.35 to the ‘graphical convergence’ of the associated projection mappings.

x xxx

C1 C2 Cν
C=lim Cν

ν

P (x)
C

P (x)νCP (x)C1 P (x)C2

Fig. 4–2. Projections onto converging convex sets.

The next result furnishes clear geometric insight into the ‘closeness’ rela-
tionships between sets that are the hallmark of set convergence.

4.10 Theorem (uniformity of approximation in set convergence). For subsets
Cν, C ⊂ IRn with C closed, one has

(a) C ⊂ lim infν C
ν if and only if for every ρ > 0 and ε > 0 there is an

index set N ∈ N∞ with C ∩ ρIB ⊂ Cν + εIB for all ν ∈ N ;
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(b) C ⊃ lim supν C
ν if and only if for every ρ > 0 and ε > 0 there is an

index set N ∈ N∞ with Cν ∩ ρIB ⊂ C + εIB for all ν ∈ N .

Thus, C = limν C
ν if and only if for every ρ > 0 and ε > 0 there is an

index set N ∈ N∞ such that both inclusions hold. The following variants of
the characterizations in (a) and (b) are valid as well:

(a′) C ⊂ lim infν C
ν if and only if for every x̄ ∈ IRn, ρ > 0 and ε > 0, there

is an index set N ∈ N∞ with C ∩ IB(x̄, ρ) ⊂ Cν + εIB for all ν ∈ N ;

(b′) C ⊃ lim supν C
ν if and only if for every x̄ ∈ IRn, ρ > 0 and ε > 0,

there is an index set N ∈ N∞ with Cν ∩ IB(x̄, ρ) ⊂ C + εIB for all ν ∈ N .

In all of these characterizations, it suffices that the inclusions be satisfied
for all ρ large enough (i.e. for every ρ ≥ ρ̄ for some ρ̄ ≥ 0). In addition, ρ and
ε can be restricted to be rational.

Proof. Sufficiency in (a): Suppose the inclusion in (a) holds for all ρ ≥ ρ̄ for
some ρ̄ ≥ 0. Consider any x ∈ C and let ρ ≥ max

{
ρ̄, |x|}. Then x ∈ C ∩ ρIB,

so for any ε > 0 there is an index set N ∈ N∞ with x ∈ Cν + εIB for all ν ∈ N .
This means that x ∈ lim infν C

ν .
Necessity in (a): Suppose to the contrary that one can find ρ > 0, ε > 0

and N ∈ N#
∞ such that points xν ∈ [

C ∩ ρIB]
\
[
Cν + 2εIB

]
exist for ν ∈ N

with xν→N x̄. When ν ∈ N is large enough, one has

2ε ≤ d(xν, Cν) ≤ d(x̄, Cν) + |x̄− xν | ≤ d(x̄, Cν) + ε.

Letting ν→N ∞ and taking Corollary 4.7(a) into account, one gets 2ε ≤
lim supν d(x̄, C

ν) + ε ≤ d(x̄, C) + ε, where d(x̄, C) = 0 because x̄ ∈ C ∩ ρIB.
Then 2ε ≤ ε, an impossibility.

C

0

ρ

ρ

ε

ε

ρd (C, C ) <εν

IB

Cν ρIBU

C + IBε

Fig. 4–3. Closeness between sets in convergence to a limit.

Sufficiency in (b): Let xν→N x̄ for some N ∈ N#
∞ with xν ∈ Cν for all

ν ∈ N . We think of x̄ as an arbitrary point in lim supν C
ν . If the inclusion in

(b) is satisfied for all ρ ≥ ρ̄ for some ρ̄ ≥ 0, it follows that for all ρ > max
{
ρ̄, |x̄|}

and ε > 0, x̄ ∈ C + εIB, i.e., x̄ also belongs to C.



116 4. Set Convergence

Necessity in (b): Suppose to the contrary that one can find ρ > 0, ε > 0
and N ∈ N#

∞ such that for all ν ∈ N , there exists xν ∈ [
Cν ∩ ρIB]

\
[
C + εIB

]
.

Let x̄ be a cluster point of the xν . Then x̄ ∈ lim supν C
ν and x̄ /∈ C + int(εIB),

so lim supν C
ν can’t be included in C.

Justification of (a′) and (b′): These are obtained simply by replacing the
ball ρIB in the proof of (a) and (b) by IB(x̄, ρ) with x̄ chosen arbitrarily.

Restriction of ρ and ε to being rational is possible with impunity because
any real number can be bracketed arbitrarily closely by rational numbers, and
this guarantees that every ball can itself be bracketed arbitrarily closely by
balls having rational radius.

4.11 Corollary (escape to the horizon). The condition Cν → ∅ (or equivalently,
lim supν C

ν = ∅) holds for a sequence {Cν}ν∈IN in IRn if and only if for every
ρ > 0 there is an index set N ∈ N∞ such that Cν ∩ ρIB = ∅ for all ν ∈ N (or,
in other words, dCν (0)→∞). Further, for closed sets Cν and C one has

(a) C ⊂ lim infν C
ν if and only if for all ε > 0, C \ (Cν + εIB)→ ∅;

(b) C ⊃ lim supν C
ν if and only if for all ε > 0, Cν \ (C + εIB)→ ∅.

It suffices in these characterizations that the inclusions be satisfied for all ρ
larger than some ρ̄; in addition, ρ and ε can be restricted to be rational.

Proof. The first criterion is obtained by taking C = ∅ in 4.10(b). Assertions
(a) and (b) reformulate 4.10(a) and 4.10(b) to take advantage of this view in
terms of the convergence of ‘excesses’.

Clearly both 4.10 and 4.11 could be stated equivalently with an arbitrary
bounded set B replacing the arbitrarily large ball ρIB.

0
ρ

C1
Cν

Cν+1

Fig. 4–4. A sequence of sets escaping to the horizon.

In the situation described in Corollary 4.11, the terminology that the se-
quence {Cν}ν∈IN escapes to the horizon is appropriate—not only because the
sequence eventually departs from any bounded region of IRn, but also in light of
the cosmic closure theory in Chapter 3. Although no ordinary point occurs as
a limit of a subsequence of points xν ∈ Cν , and this is the meaning of Cν → ∅,
various direction points in hzn IRn may show up as limits in the cosmic sense.
Horizon limit concepts will be essential later in understanding the behavior of
set convergence with respect to operations like set addition.



C. Pompeiu-Hausdorff Distance 117

Corollary 4.11 can also be exploited to obtain the boundedness of the sets
Cν of a sequence converging to a limit set C that is bounded, provided that
the sets Cν are connected.

4.12 Corollary (limits of connected sets). Let Cν ⊂ IRn be connected with
lim supν C

ν bounded and no subsequence escaping to the horizon. Then there
is a bounded set B ⊂ IRn such that Cν ⊂ B for all ν in some N ∈ N∞.

Proof. Let C = lim supν C
ν and B = C+ εIB for some ε > 0, these sets being

bounded. Let B′ = ρIB for ρ big enough that B ⊂ intB′. From 4.11(b) we
have Cν \B → ∅. Then (Cν \B)∩B′ = ∅ eventually by 4.11, but Cν \B �= Cν

eventually as well, since no subsequence of {Cν} escapes to the horizon. Hence
for all ν in some N ∈ N∞ we have Cν = (Cν ∩B)∪ (Cν \B′) with Cν ∩B �= ∅.
But Cν is connected and B ⊂ intB′, so Cν \B′ = ∅, i.e., Cν ⊂ B.

C. Pompeiu-Hausdorff Distance

Closely related to ordinary—Painlevé-Kuratowski—convergence Cν → C, but
in some important respects distinct from it, is convergence with respect to
Pompeiu-Hausdorff distance.

4.13 Example (Pompeiu-Hausdorff distance). For C, D ⊂ IRn closed and
nonempty, the Pompeiu-Hausdorff distance between C and D is the quantity

dl∞(C,D) := sup
x∈IRn

∣∣dC(x)− dD(x)
∣∣,

where the supremum could equally be taken just over C ∪ D, yielding the
alternative formula

dl∞(C,D) = inf
{
η ≥ 0

∣∣∣ C ⊂ D + ηIB, D ⊂ C + ηIB
}
. 4(5)

A sequence {Cν}ν∈IN is said to converge with respect to Pompeiu-Hausdorff
distance to C when dl∞(Cν, C)→ 0 (these sets being closed and nonempty).

This property entails ordinary set convergence Cν → C and is equivalent to
it when there is a bounded set X ⊂ IRn such that Cν , C ⊂ X . But convergence
with respect to Pompeiu-Hausdorff distance is not equivalent to ordinary set
convergence without this boundedness restriction. Indeed, it is possible to have
Cν → C with dl∞(Cν, C) ≡ ∞. Even for compact sets Cν and C, it is possible
to have Cν → C while dl∞(Cν, C)→∞.

Detail. Since C and D are closed, the expression on the right side of 4(5) is the
same as the infimum of all η ≥ 0 such that dD(x) ≤ η for all x ∈ C and dC(x) ≤
η for all x ∈ D. Thus it is the same as the value obtained when the supremum
defining dl∞(C,D) is restricted x ∈ C ∪ D. This value can’t be greater than
dl∞(C,D), but it can’t be less either, for the following reason. If dD ≤ η on C,
we have for any x ∈ IRn and x′ ∈ C that dD(x) ≤ |x−x′|+dD(x′) ≤ |x−x′|+η,
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and consequently (in taking the infimum over x′ ∈ C) that dD(x) ≤ dC(x)+ η.
Likewise, if dC ≤ η on D we have dC(x) ≤ dD(x) + η for all x ∈ IRn. Then
|dC(x)− dD(x)| ≤ η for all x ∈ IRn.

The implication from Pompeiu-Hausdorff convergence to ordinary set con-
vergence is clear from 4.10, as is the equivalence between the two notions under
the boundedness restriction. An example where Cν → C but dl∞(Cν, C) ≡ ∞
is seen by taking the sets Cν to be rays that rotate to the ray C. An ex-
ample of compact sets Cν → C with dl∞(Cν, C) → ∞ is obtained by taking
Cν = {aν, bν} with aν → a but |bν | → ∞, and letting C = {a}.

ν−1C

1C

νC

ν
νC=lim C

Fig. 4–5. A converging sequence Cν → C with Pompeiu-Hausdorff distance always ∞.

The notation dl∞(C,D) for Pompeiu-Hausdorff distance conforms to a pat-

tern that will come into view later when expressions dlρ(C,D) and d̂lρ(C,D),
depending on a parameter ρ ≥ 0, are introduced to quantify ordinary set con-
vergence as reflected by the estimates in 4.10; see 4(11). Note that because
dl∞(C,D) can have the value ∞, Pompeiu-Hausdorff distance doesn’t furnish
a metric for the space of nonempty, closed subsets of IRn, although it does so
when restricted to the subsets of a bounded set X ⊂ IRn. (This isn’t just a
peculiarity of IRn but would arise for the space of closed subsets of any metric
space in which distances can be unbounded, as can be seen from the initial
formula for dl∞(C,D).)

Anyway, the convergence shortcomings in Example 4.13 make clear that
Pompeiu-Hausdorff distance is unsuitable for analyzing sequences of unbounded
sets or even unbounded sequences of bounded sets, except perhaps in very
special circumstances. A distance expression dl(C,D) that does fully furnish a
metric for set convergence will be provided later, in 4(12).

D. Cones and Convex Sets

For special classes of sets, such as cones and convex sets, special convergence
properties are available.
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4.14 Exercise (limits of cones). For a sequence of cones Kν in IRn, the inner
and outer limits, as well as the limit if it exists, are cones. If Kν �= {0} for all
ν, or just for all ν in some N ∈ N#

∞, then lim supν K
ν �= {0}.

In the presence of convexity, set convergence displays an ‘internal’ unifor-
mity property of approximation which complements the one in 4.10.

4.15 Proposition (limits of convex sets). For a sequence {Cν}ν∈IN of convex
subsets of IRn, lim infν C

ν is convex, and so too, when it exists, is limν C
ν .

(But lim supν C
ν need not be convex in general.)

Moreover, if C = lim infν C
ν and intC �= ∅, for any compact set B ⊂ intC

there exists an index set N ∈ N∞ such that B ⊂ intCν for all ν ∈ N .

Proof. Let C = lim infν C
ν . The convexity of C is elementary: if x0 and x1

belong to C, we can find for all ν in some set N ∈ N∞ points xν0 and xν1 in
Cν such that xν0→N x0 and xν1→N x1. Then for arbitrary λ ∈ [0, 1] we have for
xνλ := (1− λ)xν0 + λxν1 and xλ := (1− λ)x0 + λx1 that xνλ→N xλ, so xλ ∈ C.

B

C1

Cν ’C=lim Cν

Fig. 4–6. Internal approximation in the convergence of convex sets.

Suppose B is a compact subset of intC. For small enough ε > 0 we have
B+2εIB ⊂ C, as seen from the fact that the distance function associated with
the complement of C is positive on B and hence by its continuity (in 1.20) has
a positive minimum on B. Choose ρ large enough so that B+2εIB ⊂ ρIB (i.e.,
ρ ≥ 2ε+maxx∈B |x|), and apply 4.10(a): there exists N ∈ N∞ such that

B + 2εIB ⊂ C ∩ ρIB ⊂ Cν + εIB for all ν ∈ N.
From the cancellation law 3.35 we get B + εIB ⊂ Cν for all ν ∈ N .

Simple examples show that lim supν C
ν need not be convex when every

Cν is convex. For instance, let D1 and D2 be any two closed, convex sets in
IRn, and let Cν = D1 for ν odd but Cν = D2 for ν even. Then lim supν C

ν is
the set D1 ∪D2, which may well be nonconvex.

The internal approximation property in Proposition 4.15 holds in particu-
lar whenever a sequence of convex sets Cν converges to a set C with intC �= ∅.
This agreeable property, illustrated in Figure 4–6, can’t be expected for se-
quences of nonconvex sets, even when they are closed and the limit C happens
anyway to be convex. The kind of difficulty that may arise is shown in Figure



120 4. Set Convergence

4–7. The sets Cν can converge to C even though they are riddled with holes,
as long as the holes get finer and finer and thus vanish in the limit. Of course,
for sets Cν that aren’t closed there’s also the sort of example described just
before 4.3.

1C νC ν
νlim C

Fig. 4–7. Nonconvex sets converging to a convex set despite holes.

In the case of convex sets, the convergence criterion of Theorem 4.10 can
be cast in a simpler form involving the Pompeiu-Hausdorff distance between
truncations.

4.16 Exercise (convergence of convex sets through truncations). For convex
sets Cν , closed and nonempty, one has Cν → C if and only if there exists
ρ0 ≥ 0 such that, for all ρ ≥ ρ0, the truncations Cν ∩ ρIB converge to C ∩ ρIB
with respect to Pompeiu-Hausdorff distance, i.e., dl∞(Cν ∩ ρIB, C ∩ ρIB) → 0.
(Without convexity, the ‘only if’ part fails.)

For another special result, recall that a set D ⊂ IRn is star-shaped (with
respect to q) if there’s a point q ∈ D such that the line segment [q, x] lies in D
for each x ∈ D.

4.17 Exercise (limits of star-shaped sets). If a bounded sequence of star-shaped
sets Cν converges to a set C, then C must be star-shaped. (Without the
boundedness, this can fail.)

Guide. Show that if q̄ is a cluster point of a sequence {qν}ν∈IN such that Cν is
star-shaped at qν , then C is star-shaped at q̄. For a counterexample to C being
star-shaped in the absence of the boundedness assumption on the sequence of
sets Cν , consider in IR2 the sets Cν =

[
(−1, 0), (1, ν)] ∪ [

(1, 0), (−1, ν)] for
ν = 1, 2, . . ..

E. Compactness Properties

A remarkable feature of set convergence is the existence of convergent subse-
quences for any sequence {Cν}ν∈IN of subsets of IRn.

4.18 Theorem (extraction of convergent subsequences). Every sequence of
nonempty sets Cν in IRn either escapes to the horizon or has a subsequence
converging to a nonempty set C in IRn.
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Proof. If the sequence doesn’t escape to the horizon, there’s a point x̂ in its
outer limit. Then for ν in some index set N0 ∈ N#

∞ one can find points xν ∈ Cν

such that xν −→N0 x̂. Consider the countable collection of open balls in 4.5(c)(a′),
writing it as a sequence {Oμ}μ∈IN . Construct a nest N0 ⊃ N1 ⊃ N2 ⊃ . . . of
index sets Nμ ∈ N#

∞ by defining

Nμ =

{{
ν ∈ Nμ−1

∣∣Cν∩Oμ �= ∅} if this set of indices is infinite,{
ν ∈ Nμ−1

∣∣Cν∩Oμ = ∅} otherwise.

Finally, put together an index set N by taking the first index in N to be the
first index in N0 and, step by step, letting the μth element of N be the first
index in Nμ larger than all indices previously added to N . Then N ∈ N#

∞, and
for each μ either Cν ∩ Oμ �= ∅ for all but finitely many ν ∈ N or, quite the
opposite, Cν∩Oμ = ∅ for all but finitely many ν ∈ N . Let C = lim supν∈N Cν .
The set C contains x̂, hence is nonempty. For each of the balls Oμ meeting
C, it can’t be true that Cν∩ Oμ = ∅ for all but finitely many ν, so such balls
Oμ must be in the other category in the construction scheme: we must have
Cν∩Oμ �= ∅ for all but finitely many ν ∈ N . Therefore C ⊂ lim infν∈N Cν by
4.5(c)(a′), so actually Cν→

N C.

The compactness property in Theorem 4.18 yields yet another way of look-
ing at inner and outer limits.

4.19 Proposition (cluster description of inner and outer limits). For any se-
quence of sets Cν in IRn, let L be the collection of all sets C that are cluster
points in the sense of set convergence, i.e., such that Cν→

N C for some index
set N ∈ N#

∞. Then

lim inf
ν→∞

Cν =
⋂

C∈L C, lim sup
ν→∞

Cν =
⋃

C∈LC.

Proof. Any x ∈ lim infν C
ν is the limit of a sequence {xν}ν∈Nx

selected
with xν ∈ Cν and Nx ∈ N∞. It’s then also the limit of any subsequence
{xν}ν∈N with N ⊂ Nx and N ∈ N#

∞, so it belongs to the set limit of the
corresponding subsequence {Cν}ν∈N if that happens to exist. The fact that
some subsequence of {Cν}ν∈IN does converge is provided by Theorem 4.18.
Therefore, lim infν C

ν ⊂ ⋂
C∈L C.

The opposite inclusion for the lim inf comes from the fact that if x doesn’t
belong to lim infν C

ν there must be an index set Nx ∈ N#
∞ such that every Cν

for ν ∈ Nx has empty intersection with a certain neighborhood V of x. By
selecting a subsequence {Cν}ν∈N with N ⊂ Nx, N ∈ N#

∞, such that Cν→
N C,

which is again guaranteed possible by 4.18, we get C ∈ L but x /∈ C.
In the case of the lim sup the inclusion ⊃ is obvious. On the other hand,

any point x belonging to lim supν C
ν is the limit of a sequence {xν}ν∈Nx

chosen
with xν ∈ Cν , Nx ∈ N#

∞. By 4.18 there’s then a subsequence {Cν}ν∈N with
N ⊂ Nx, N ∈ N#

∞, which converges to a set C. In particular we have xν→N x,
so x ∈ C. This gives the opposite inclusion.
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Observe that in the union describing the outer limit in 4.19 there is no need
to apply the closure operation. Despite the possibility of an infinite collection
L being involved, this union is always closed.

F. Horizon Limits

Set limits can equally well be developed in the context of the cosmic space
csm IRn introduced in Chapter 3, and this is useful for a number of purposes,
such as gaining insight later into what happens to a convergent sequence of
sets when various operations are performed on it. The idea is very simple: in
the formulas in Definition 4.1 consider not only ordinary sequences xν→N x in
IRn but also sequences that may converge in the extended sense of Definition
3.1 to a point dirx ∈ hzn IRn; such sequences may consist of ordinary points,
direction points or a mixture. In accordance with the unique representation of
any subset of csm IRn as C ∪ dirK with C a subset of IRn and K a cone in
IRn, we may express convergence in this cosmic sense by

Cν ∪ dirKν →c C ∪ dirK, or C ∪ dirK = c-limν

[
Cν ∪ dirKν

]
.

It’s clear from the foundations of Chapter 3 that such convergence in csm IRn

is equivalent to ordinary convergence of the corresponding sets in Hn, the
hemispherical model for csm IRn, or for that matter, ordinary convergence of
the corresponding cones in IRn+1 in the ray space model for csm IRn. Of course,
cosmic outer and inner limits can be considered along with cosmic limits.

To make this concept easier to work with, it helps to introduce as the
horizon outer limit and the horizon inner limit of a sequence of sets Cν ⊂
IRn the cones in IRn representing the sets of direction points in hzn IRn that
belong, respectively, to the cosmic outer limit and the cosmic inner limit of this
sequence, namely

limsup∞
ν Cν := {0} ∪

{
x
∣∣∣ ∃N ∈ N#

∞, x
ν ∈ Cν, λν ↘ 0, λνxν→N x

}
,

lim inf ∞
ν Cν := {0} ∪

{
x
∣∣∣ ∃N ∈ N∞, x

ν ∈ Cν, λν ↘ 0, λνxν→N x
}
.

4(6)

(In these formulas the union with {0} is superfluous when Cν �= ∅, but it’s
needed for instance to make the limits come out as {0} when Cν ≡ ∅.) We say
that the horizon limit of the sets Cν exists when these are equal:

lim∞
ν C

ν = K ⇐⇒ limsup∞
ν Cν = K = lim inf ∞

ν Cν .

4.20 Exercise (cosmic limits through horizon limits). For any sequence of sets
Cν ⊂ IRn, the cones lim sup∞

ν Cν and lim inf ∞
ν Cν are closed. The cosmic

outer limit of a sequence of sets Cν ∪ dirKν (for cones Kν ⊂ IRn) is(
limsupν C

ν
) ∪ dir

(
limsup∞

ν Cν ∪ limsupν K
ν
)
,
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whereas the cosmic inner limit is(
liminfν C

ν
) ∪ dir

(
lim inf ∞

ν (Cν ∪Kν)
)
.

Thus, Cν ∪ dirKν→c C ∪ dirK if and only if Cν → C and

limsup∞
ν Cν ∪ limsupν K

ν ⊂ K ⊂ lim inf ∞
ν Cν ∪Kν .

Guide. Rely on the geometric principles in the foregoing discussion.

C1
C 3

C 4
C 2

limsup Cν
ν

8
liminf C ν

ν

8

ν >C {0} = C

2ν+1C

C 2ν

Fig. 4–8. Horizon outer and inner limits.

4.21 Exercise (properties of horizon limits). For any sequence of sets Cν ⊂ IRn,
the horizon limit sets lim inf ∞

ν Cν and lim sup∞
ν Cν , as well as lim∞

ν Cν when
it exists, are closed cones which depend only on the sequence {clCν}ν∈IN and
have the following properties:

(a) lim inf ∞
ν Cν ⊂ lim sup∞

ν C
ν ,

(b) lim infν [C
ν ]∞ ⊂ lim inf∞ν Cν and lim supν [C

ν ]∞ ⊂ lim sup∞
ν Cν ,

(c) lim inf ∞
ν Cν ⊃ C∞ when lim infν C

ν ⊃ C,
(d) lim∞

ν C
ν = C∞ when Cν ≡ C,

(e) liminf ∞
ν Cν =

⋂
N∈N#

∞

[ ⋃
ν∈N

Cν
]∞
, limsup∞

ν Cν =
⋂

N∈N∞

[ ⋃
ν∈N

Cν
]∞
.

Guide. Utilize 4.20 and, for (e), also 4.2(b) as applied cosmically.

4.22 Example (eventually bounded sequences). A sequence of sets Cν ⊂ IRn

has the property that lim sup∞
ν Cν = {0} if and only if it is eventually bounded

in the sense that for some index set N ∈ N∞ the set
⋃

ν∈N Cν is bounded.

Our main interest for now with cosmic convergence ideas lies in applying
them in the context of sequences of sets in IRn itself.



124 4. Set Convergence

4.23 Definition (total set convergence). A sequence of sets Cν ⊂ IRn is said to
converge totally to a closed set C ⊂ IRn, written Cν→t C, if csmCν→c csmC,
or equivalently Cν→c csmC, in the context of the cosmic space csm IRn.

The equivalence in this definition holds because ‘csm’ is a closure opera-
tion; the principle in 4.4 can be applied in the hemispherical model for csm IRn.
Figure 4–8 supplies an example where a sequence of sets converges, but not
totally. Total set convergence Cν→t C automatically entails ordinary set con-
vergence Cν → C, and indeed the relationship between these two concepts can
be characterized as follows.

4.24 Proposition (horizon criterion for total convergence). For sets Cν and C
in IRn, one has

Cν→t C ⇐⇒ limν C
ν = C, limsup∞

ν Cν ⊂ C∞,

in which case actually lim∞
ν Cν = C∞.

Proof. Either way, we have Cν → C. Hence C is closed, so csmC = C∪dirC∞

by 3.4. The cosmic outer and inner limits of Cν are the same as those of csmCν ,
because limits of sets aren’t affected when closures are taken (by 4.4—as applied
cosmically). We now invoke 4.20 with Kν = {0}, K = C∞, and are done.

Total convergence Cν→t C, by making demands on the behavior of un-
bounded sequences of selected points xν , imposes a requirement on how the sets
converge ‘in the large’, in contrast to ordinary convergence Cν → C, which is
local in character and at best refers to uniformities relative to bounded regions
as in 4.10. For this reason total convergence is important in situations where
the remote parts of a set can have far-reaching influence on the outcome of a
construction or operation. In such situations ordinary convergence is often too
feeble to ensure the desired properties of limits. Fortunately, some of the most
common cases encountered in dealing with sequences of sets are ones in which
total convergence is an automatic consequence of ordinary convergence.

4.25 Theorem (automatic cases of total convergence). In each of the following
cases, ordinary convergence Cν → C �= ∅ entails total convergence Cν→t C:

(a) Cν is convex for all ν;

(b) Cν is a cone for all ν;

(c) Cν ⊂ Cν+1 for all ν;

(d) Cν ⊂ B for all ν, where B is bounded;

(e) Cν converges to C with respect to Pompeiu-Hausdorff distance.

Proof. In each case we work from the assumption that Cν → C and show
that the additional condition is enough to guarantee that lim sup∞

ν Cν ⊂ C∞,
so that actually Cν→t C. We treat the cases in reverse order.

Case (e) entails that Cν ⊂ C + ενIB for a sequence εν ↘ 0. Then
lim sup∞

ν Cν ⊂ lim sup∞
ν (C + ενIB) = C∞. Case (d) has both lim sup∞

ν C
ν =

{0} and C∞ = {0}. In (c) the relation C = cl
⋃

ν C
ν (cf. 4.3(a)) implies that
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any sequence of points xν ∈ Cν lies in C. The inclusion lim sup∞
ν Cν ⊂ C∞

is then immediate from the definition of the two sets. In (b) it is elementary
that lim sup∞

ν Cν = lim supν C
ν and that C is a cone as well, hence C∞ = C.

But lim supν C
ν = C in consequence of our assumption that Cν → C.

For case (a) consider w ∈ lim sup∞
ν Cν . We must show that w ∈ C∞, and

for that it suffices to show for x̄ ∈ C that C ⊃ {
x̄+τw

∣∣ τ ≥ 0
}
(cf. 3.6). For any

τ ≥ 0 the vector τw belongs to lim sup∞
ν Cν (because this set is a cone), so there

exist N ∈ N#
∞, λν ↘ 0, and xν ∈ Cν such that λνxν→N τw. For the index set N

in this condition we have w ∈ lim inf∞ν∈N Cν and C = lim infν∈N Cν . Hence for
any x̄ ∈ C there is a sequence x̄ν→N x̄ with x̄ν ∈ Cν . Convexity of Cν ensures
that when ν is large enough so that λν ≤ 1, one has (1− λν)x̄ν + λνxν ∈ Cν ;
these points converge to x̄ + τw ∈ lim infν∈N Cν = C. Thus, x̄ + τw ∈ C for
arbitrary τ ≥ 0, as required.

The criterion in 4.25(d), meaning that sequence {Cν}ν∈IN is bounded, can
be broadened slightly: eventual boundedness as defined in 4.22 is enough.

G∗. Continuity of Operations

With these cosmic notions at our disposal along with the basic ones of set con-
vergence, we turn to questions of continuity of operations. If a set is produced
by operations performed on other sets, will an approximation of it be produced
when the same operations are performed on approximations to these other
sets? Often we’ll see that approximations in the sense of total convergence
rather than ordinary convergence are needed in order to get good answers.
Sometimes conditions of convexity must be imposed.

4.26 Theorem (convergence of images). For sets Cν ⊂ IRn and a continuous
mapping F : IRn → IRm, one always has

F
(
liminfν C

ν
) ⊂ liminfν F (C

ν), F
(
limsupν C

ν
) ⊂ limsupν F (C

ν).

The second of these inclusions is an equality if K ∩ lim sup∞
ν C

ν = {0} for the
cone K ⊂ IRn consisting of the origin and all vectors x �= 0 giving directions
dirx that are limits of unbounded sequences on which F is bounded. Under
this condition, therefore,

Cν → C =⇒ F (Cν)→ F (C).

In particular, the latter holds when the sequence {Cν}ν∈IN is eventually
bounded, or when F has the property that

∣∣F (x)∣∣→∞ as |x| → ∞.

Proof. The two general inclusions are elementary consequences of the def-
initions of inner and outer limits. Assuming the additional condition, con-
sider now a point u ∈ limsupν F (C

ν): for some index set N0 ∈ N#
∞ we have

u = limν∈N0
F (xν) with xν ∈ Cν . The sequence {xν}ν∈N0

must be bounded,
for if not there would be an index set N ⊂ N0, N ∈ N#

∞, such that xν→N dirx
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for some x �= 0. Then x ∈ lim sup∞
ν C

ν by definition, and yet {F (xν)}ν∈N

is bounded, because F (xν)→N u; this has been excluded. The boundedness
of {xν}ν∈N0

implies the existence of a cluster point x, belonging by defini-
tion to lim supν C

ν , and because F is continuous, we have F (x) = u. Thus,
u ∈ F (lim supν C

ν), and equality in the outer limit inclusion is established.
With this equality we get, in the case of Cν → C, that

limsupν F (C
ν) = F (C) ⊂ liminfν F (C

ν),

hence limν F (C
ν) = F (C). The condition K ∩ lim sup∞

ν Cν = {0} is satisfied
trivially if the sequence of sets Cν is eventually bounded (cf. 4.22) or ifK = {0}.
Certainly K = {0} if ∣∣F (x)∣∣→∞ as |x| → ∞.

In the case of an eventually bounded sequence {Cν}ν∈IN as in 4.22, the
sequence {F (Cν)}ν∈IN is eventually bounded as well (because F is bounded
on bounded regions of IRn), and the conclusion can be written in the form
Cν→t C =⇒ F (Cν)→t F (C), cf. 4.25. Other cases where total convergence is
preserved can be identified as follows.

4.27 Theorem (total convergence of linear images). For a linear mapping L :
IRn → IRm, if Cν→t C and L−1(0) ∩ C∞ = {0}, then L(Cν)→t L(C).

C

L L L

L(C)1L(C )
νL(C )

1C
νC

Fig. 4–9. Converging sets without convergence of their projections.

Proof. From Cν→t C we have lim sup∞
ν C

ν ⊂ C∞ (by 4.24). On the other
hand, the cone K in 4.26 is L−1(0) in the case of linear F = L. The condition
L−1(0)∩C∞ = {0} therefore implies by 4.26 that L(Cν)→ L(C). It also implies
by 3.10 that L(C∞) ⊂ L(C)∞, so in order to verify that actually L(Cν)→t L(C),
it will suffice (again by 4.24) to show that lim sup∞

ν L(Cν) ⊂ L(C∞).
Suppose u ∈ lim sup∞

ν L(Cν). For indices ν in some set N0 ∈ N#
∞ there

exist xν ∈ Cν and λν ↘ 0 with λνL(xν) →N0
u. Then L(λνxν) →N0

u, because L
is linear. If the sequence {λνxν}ν∈N0

were unbounded, it would have a cluster
point of the form dir x for some x �= 0, and then μνλνxν→N x for some index
set N ⊂ N0, N ∈ N#

∞, and choice of scalars μν ↘ 0. Then x ∈ lim sup∞
ν C

ν ⊂
C∞, yet also L(x) = limν∈N L(μνλνxν) = limν∈N μνL(λνxν) = 0, because
L(λνxν)→N u. This is impossible because L−1(0) ∩ C∞ = {0}. Hence the
sequence {λνxν}ν∈N0

is bounded and has a cluster point x; we have λνxν→N x
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for some index set N ⊂ N0, N ∈ N#
∞. Then x ∈ lim sup∞

ν C
ν ⊂ C∞ and

u = limν∈N L(λνxν) = L(x). Hence, u ∈ L(C∞).

4.28 Example (convergence of projections of convex sets). Let M be a linear
subspace of IRn, and let PM be the projection mapping onto M . For convex
sets Cν ⊂ IRn, if Cν → C �= ∅ and M⊥ ∩ C∞ = {0}, then PM (Cν)→ PM (C).

Detail. This applies Theorem 4.27. The mapping PM is linear with P−1
M (0) =

M⊥. For convex sets, convergence and total convergence coincide, cf. 4.26.

The need for the condition M⊥ ∩ C∞ = {0} in this example (and for the
condition on C∞ more generally in Theorem 4.27) is illustrated in IR2 by

Cν =
{
(x1, x2)

∣∣x2 ≥ x−1
1 , x1 ≥ ν−1

}
, C =

{
(x1, x2)

∣∣x2 ≥ x−1
1 , x1 > 0

}
,

with M taken to be the x1-axis. Then M⊥ ∩ C∞ = {0} × IR+, and C
ν → C

but PM (Cν) = [ν−1,∞) �→ PM (C) = (0,∞).

4.29 Exercise (convergence of products and sums).

(a) If Cν
i → Ci in IR

ni , i = 1, . . . , m, then Cν
1 ×· · ·×Cν

m → C1×· · ·×Cm.
If actually Cν

i →t Ci and C
∞
1 × · · · × C∞

m = (C1 × · · · × Cm)∞, one has

Cν
1 × · · · × Cν

m →t C1 × · · · × Cm.

(b) If lim infν C
ν
i ⊃ Ci for all i, lim infν(C

ν
1 + · · ·+Cν

m) ⊃ C1 + · · ·+Cm.

(c) If Cν
1 →t C1, C

ν
2 →t C2 and C

∞
1 ∩(−C∞

2 ) = {0}, then Cν
1 +C

ν
2 → C1+C2.

(d) If Cν
i →t Ci ⊂ IRn, i = 1, . . . , m, C∞

1 × · · · × C∞
m = (C1 × · · · × Cm)∞,

and the only way to choose vectors xi ∈ C∞
i satisfying x1 + · · ·+ xm = 0 is to

take xi = 0 for all i, then

Cν
1 + · · ·+ Cν

m →t C1 + · · ·+ Cm.

Guide. Derive (a) and (b) directly. To get the total convergence claim in (d),
combine the total convergence fact in (a) with 4.27, taking L to be the linear
mapping (x1, . . . , xm) �→ x1 + · · ·+ xm.

To obtain the inclusion lim supν(C
ν
1 + Cν

2 ) ⊂ C1 + C2 in (c), rely on the
condition C∞

1 ∩ (−C∞
2 ) = {0}, and on lim sup∞

ν C
ν
i = C∞

i for i = 1, 2, to show
that given any sequence xν → x̄, the sequence of sets {Cν

1 ∩ (xν −Cν
2 ), ν ∈ IN}

is eventually bounded. Now let xν→N x̄ be such that N ∈ N#
∞ and for all ν ∈ N ,

xν ∈ Cν
1 +Cν

2 . In particular, this means that x̄ ∈ lim supν(C
ν
1 +Cν

2 ), and that
there exist N0 ∈ N#

∞, N0 ⊂ N , uν→N0
ū with uν ∈ Cν

1 ∩ (xν − Cν
2 ) for ν ∈ N0.

There only remains to observe that ū ∈ C1, and (x̄− ū) ∈ C2.

The condition C∞
1 × · · · × C∞

m = (C1 × · · · × Cm)∞ called for here is
satisfied in particular when the sets Ci are nonempty convex sets, or when
no more than one of them is unbounded, cf. 3.11. An example of how total
convergence of products can fail without this condition is provided by Cν

1 ×Cν
2

with Cν
1 = Cν

2 = {2, 22, . . . , 2ν} ∪ [2ν+1,∞). To see that the assumptions in
part (c) do not yield total convergence of the sums, let C1 = Cν

1 = C×{0} and
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C2 = Cν
2 = {0} × C with C =

{
2k

∣∣ k ∈ IN}
. Note that C∞

1 + C∞
2 = IR2

+ but

lim sup∞
ν (Cν

1 + Cν
2 ) = (C1 + C2)

∞ �= IR2
+, cf. the example after Exercise 3.11.

4.30 Proposition (convergence of convex hulls).

(a) If Kν → K for cones K, Kν ⊂ IRn such that K is pointed, then
conKν → conK.

(b) If Cν → C for sets Cν that are all contained in some bounded region
of IRn, then conCν → conC.

(c) If Cν→t C for sets C, Cν ⊂ IRn with C �= ∅ and C∞ pointed, then
conCν→t cl(conC) = conC + conC∞.

C1

con C1

con Cν

lim con C ν
ν

C ν C ν

Fig. 4–10. Subsets Cν of IR2 with Cν → ∅ while conCν → IR× {0}.

Proof. The statement in (a) applies 4.29(d) in the context of conK being
closed and given by the formula conK = K+ · · ·+K (n terms), cf. 3.15. Here
[K × · · · ×K]∞ = K × · · · ×K = K∞ × · · · ×K∞. Pointedness of K ensures
by definition that the only way to get x1 + · · ·xn = 0 with xi ∈ K is to take
xi = 0 for all i. Note that Kν must then be pointed as well, for all ν in some
index set N ∈ N∞, so that conKν is also pointed for such ν.

Next we address the statement in (c). Define K ⊂ IRn+1 by

K :=
{
λ(x,−1) ∣∣x ∈ C, λ > 0

} ∪ {
(x, 0)

∣∣x ∈ C∞}
,

this being the closure of the cone that represents C in the ray space model
for csm IRn in Chapter 3. Similarly define Kν for Cν . To say that Cν→t C
is to say that Kν → K. The assumption that C∞ is pointed guarantees that
K is pointed. Then conKν → conK by (a). Furthermore, as noted above,
conKν like conK must be closed for all ν sufficiently large. Then conKν and
conK are the cones in the ray space model that correspond to csm(conCν)
and csm(conC). Hence cl(conCν)→t cl(conC) = conC + conC∞.

Finally, we note that (b) is a case of (c) where C∞ = {0}.
4.31 Exercise (convergence of unions). For Cν

i ⊂ IRn, i = 1, . . . , m, one has

Cν
i → Ci =⇒

⋃m

i=1
Cν

i →
⋃m

i=1
Ci,

Cν
i →t Ci =⇒

⋃m

i=1
Cν

i →t
⋃m

i=1
Ci.
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Guide. Rely on the definitions and, in the case of total convergence, 4.24.

In contrast to the convergence of unions, the question of convergence of
intersections is troublesome and can’t be answered without making serious
restrictions. The obvious elementary rule for outer limits, that

limsupν
⋂m

i=1
Cν

i ⊂
⋂m

i=1
limsupν C

ν
i , 4(7)

isn’t reflected in anything so simple for inner limits of sets Cν
i in general.

For pairs of convex sets, however, a positive result about convergence of
intersections can be obtained under a mild assumption involving the degree of
overlap of the limit sets. Recall from Chapter 2 that to say two convex sets
C1 and C2 in IRn can’t be separated (even improperly) is to say there is no
hyperplane H such that C1 lies in one of the closed half-spaces associated with
H while C2 lies in the other. This property, already characterized through
Theorem 2.39 (see also 2.45), will be the key to a powerful fact: for convex sets
Cν

1 → C1 and Cν
2 → C2, we’ll show that if C1 and C2 can’t be separated, then

Cν
1 ∩ Cν

2 → C1 ∩ C2.
We’ll establish this in the next theorem by embedding it in a broader

statement about convergence of solutions to constraint systems of the form

x ∈ X and F (x) ∈ D, where X ⊂ IRn, D ⊂ IRm, F : IRn → IRm,

which in particular could specialize the constraint system in Example 1.1
through interpretation of the components of F (x) =

(
f1(x), . . . , fm(x)

)
as con-

straint functions. When m = n and F is the identity mapping, the solution set
is X ∩D, so the study of approximations to this kind of constraint system will
cover convergence of set intersections as a particular case.

A background fact in this direction, not requiring convexity, is that for a
continuous mapping F : IRn → IRm and sets Dν ⊂ IRm one always has

liminfν F
−1(Dν) ⊂ F−1

(
liminfν D

ν
)
,

limsupν F
−1(Dν) ⊂ F−1

(
limsupν D

ν
)
.

4(8)

Another general fact, allowing also for the approximation of F , is that

lim supν
{
xν ∈ Xν

∣∣F ν(xν) ∈ Dν
} ⊂ {

x ∈ X ∣∣F (x) ∈ D}
when

lim supν X
ν ⊂ X, lim supν D

ν ⊂ D, and F ν(xν)→ F (x), ∀xν → x.
4(9)

To draw a sharper conclusion than 4(9), involving actual convergence of
the set of solutions under the assumption that Xν → X and Dν → D, special-
ization to the case where all the sets are convex and the mappings are linear
is essential. For linear mappings Lν and L from IRn to IRm, pointwise conver-
gence Lν → L is equivalent to convergence Aν → A of the associated matrices
in IRn×m, where Aν → A means that each component of Aν converges to the
corresponding component of A. (For more about the convergence of matrices
see 9.3 and the comments that follow.) From this matrix characterization it’s
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evident that pointwise convergence Lν → L of linear mappings automatically
entails having Lν(xν)→ L(x) whenever xν → x.

4.32 Theorem (convergence of solutions to convex systems). Let

Cν =
{
x ∈ Xν

∣∣Lν(x) ∈ Dν
}
, C =

{
x ∈ X ∣∣L(x) ∈ D}

,

for linear mappings Lν, L : IRn → IRm and convex sets Xν, X ⊂ IRn and
Dν, D ⊂ IRm, such that L(X) cannot be separated from D. If Lν → L,
lim infν X

ν ⊃ X and lim infν D
ν ⊃ D, then lim infν C

ν ⊃ C. Indeed,
Lν → L, Xν → X, Dν → D =⇒ Cν → C.

The following are special cases.

(a) For linear mappings Lν → L and convex sets Dν → D, if D and rgeL
cannot be separated, then (Lν)−1(Dν) → L−1(D).

(b) For matrices Aν → A in IRm×n and vectors bν → b in IRm, if A has full
rank m, then

{
x
∣∣Aνx = bν

}→ {
x
∣∣Ax = b

}
.

(c) For convex sets Cν
1 and Cν

2 in IRn, the inclusion lim infν(C
ν
1 ∩ Cν

2 ) ⊃
lim infν C

ν
1 ∩ lim infν C

ν
2 holds if the convex sets lim infν C

ν
1 and lim infν C

ν
2

cannot be separated. Indeed,

Cν
1 → C1, C

ν
2 → C2 =⇒ Cν

1 ∩ Cν
2 → C1 ∩ C2

as long as C1 and C2 cannot be separated.

Proof. From 4(9) we have C ⊃ lim supν C
ν when lim supν X

ν ⊂ X and
lim supν D

ν ⊂ D, so we concentrate on showing that C ⊂ lim infν C
ν when

lim infν X
ν ⊃ X and lim infν D

ν ⊃ D. Let x̄ ∈ C; we must produce xν ∈ Cν

with xν → x̄. We have x̄ ∈ X and for ū := L(x̄) also ū ∈ D. Hence there exist
x̄ν ∈ Xν with x̄ν → x̄ and ūν ∈ Dν with ūν → ū. For z̄ν := Lν(x̄ν) − ūν we
have z̄ν → 0.

The nonseparation assumption is equivalent by Theorem 2.39 to having
0 ∈ int

(
L(X)−D)

. Then there’s a simplex neighborhood S of 0 in L(X)−D,
cf. 2.28(e); S = con{z0, z1, . . . , zm} with zi = L(xi) − ui for certain vectors
xi ∈ X and ui ∈ D. Accordingly by 2.28(d) there’s a representation

0 =
∑m

i=0
λizi with λi > 0,

∑m

i=0
λi = 1.

Since Xν → X and Dν → D, we can find xνi ∈ Xν and uνi ∈ Dν with xνi → xi
and uνi → ui. Then for zνi = Lν(xνi )− uνi we have zνi → zi, so by 2.28(f) there
exists for ν sufficiently large a representation

0 =
∑m

i=0
λνi z

ν
i =

∑m

i=0
λνi

(
Lν(xνi )− uνi

)
with λνi > 0,

∑m

i=0
λνi = 1,

where λνi → λi. At the same time, since z̄ν → 0, there exists by 2.28(f) for ν
sufficiently large a representation
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z̄ν =
∑m

i=0
λ̄νi z

ν
i =

∑m

i=0
λ̄νi

(
Lν(xνi )− uνi

)
with λ̄νi > 0,

∑m

i=0
λ̄νi = 1,

where λ̄νi → λi. With θν = min{1, λν0/λ̄ν0 , . . . , λνm/λ̄νm} and for ν large enough,
0 ≤ θν ≤ 1 and θν → 1. Then for μν

i = λνi − θν λ̄νi we have 0 ≤ μν
i → 0

and
∑m

i=0 μ
ν
i + θν = 1, so that the vectors xν :=

∑m
i=0 μ

ν
i x

ν
i + θν x̄ν and

uν :=
∑m

i=0 μ
ν
i u

ν
i + θν ūν belong to Xν and Dν by convexity and converge to x̄

and ū. We have 0 = Lν(xν)− uν , so xν ∈ Cν as desired.
For the special case in (a) take Xν = IRn. For (b), set Dν = {bν} in (a),

Lν(x) = Aνx, L(x) = Ax. For (c), let Xν = Cν
1 , D

ν = Cν
2 , and L

ν = I.

The convergence in Theorem 4.32 is of course total, because the sets are
convex; cf. 4.25. The proof of the result reveals a broader truth for situations
where it’s not necessarily true that Xν → X and Dν → D:

liminfν X
ν ⊃ X, liminfν D

ν ⊃ D =⇒ liminfν C
ν ⊃ C

whenever X and D are convex sets such that L(X) and D can’t be separated.

D1

Dν
C 1

C ν

D C

Fig. 4–11. An example where Cν → C and Dν → D but Cν ∩Dν �→ C ∩D.

The pairwise intersection result in 4.32(c) can be generalized as follows to
multiple intersections.

4.33 Exercise (convergence of convex intersections). For sequences of convex
sets Cν

i → Ci in IR
n one has

Cν
1 ∩ · · · ∩ Cν

q → C1 ∩ · · · ∩ Cq

if none of the limit sets Ci can be separated from the intersection
⋂q

k=1, k 	=i Ck

of the others.

Guide. Apply 4.32 to Xν = IRn, Dν = Cν
1 × · · · × Cν

q , L
ν(x) = (x, . . . , x).

H∗. Quantification of Convergence

The properties of distance functions in 4.7 provide the springboard to a de-
scription of set convergence in terms of a metric on a space whose elements are
sets. As background for this development, we need to strengthen the assertion
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in 4.7 about the convergence of distance functions, namely from pointwise con-
vergence to uniform convergence on bounded sets. The following relations will
be utilized.

4.34 Lemma (distance function relations). Let C1 and C2 be closed subsets of
IRn. Let ε > 0, ρ > 0, ρ′ ≥ 2ρ+ dC1

(0). Then

C1 ∩ ρIB ⊂ C2 + εIB ⇐= dC2
≤ dC1

+ ε on ρIB,(a)

dC2
≤ dC1

+ ε on ρIB ⇐= C1 ∩ ρ′IB ⊂ C2 + εIB,(b)

dC2
≤ dC1

+ ε on IRn ⇐= C1 ⊂ C2 + εIB,(c)

dC2
≥ dC1

on ρIB ⇐= 2ρ+ dC1
(0) ≤ dC2

(0).(d)

If C1 is convex, 2ρ can be replaced by ρ in the inequality imposed on ρ′. If also
0 ∈ C1, then ρ

′ can be replaced simply by ρ in (b), so that the implications in
(a) and (b) combine to give

C1 ∩ ρIB ⊂ C2 + εIB ⇐⇒ dC2
≤ dC1

+ ε on ρIB.

This equivalence holds also, even without convexity, when C1 is a cone.

Proof. Suppose C1 �= ∅, since everything is trivial otherwise. If dC2
≤ dC1

+ ε
on ρIB, we have for every x ∈ C1 ∩ ρIB that dC2

(x) ≤ ε (because dC1
(x) = 0).

As C2 is closed, this means C1 ∩ ρIB ⊂ C2 + εIB, which gives (a). For (b) and
(c), note that for any x and any set D satisfying D ⊂ C2 + εIB, we have

d(x,D) ≥ d(x, C2 + εIB) = inf
{
|(y + εz) − x|

∣∣∣ y ∈ C2, z ∈ IB
}

≥ inf
{
|y − x| − ε|z|

∣∣∣ y ∈ C2, z ∈ IB
}

= d(x, C2)− ε,

so that dC2
≤ dD + ε on IRn. With D = C1 we get (c). Taking D = C1 ∩ ρ′IB

we can obtain (b) by verifying that d(x, C1 ∩ ρ′IB) = d(x, C1) when x ∈ ρIB
and ρ′ ≥ 2ρ+ dC1

(0). (When C1 is a cone, it’s enough to have ρ′ ≥ ρ, because
the projection of any x ∈ ρIB on any ray in C1 lies then in ρ′IB; hence the
special assertion at the end of the lemma.)

To proceed with the verification, suppose |x| ≤ ρ and consider any x1 ∈
PC1

(x) (this projection being nonempty by 1.20, since C1 is closed). It will
suffice to demonstrate that x1 ∈ ρ′IB when ρ′ satisfies the inequality specified.
We have |x1| ≤ |x| + |x1 − x| with |x1 − x| = d(x, C1) ≤ d(x, 0) + d(0, C1), so
|x1| ≤ 2|x| + d(0, C1) ≤ 2ρ + d(0, C1) ≤ ρ′, as required. In the special case
where C1 is convex, more can be gleaned by considering also the point x0 ∈ C1

with |x0| = dC1
(0). For any τ ∈ (0, 1) the point xτ = (1 − τ)x0 + τx1 lies in

C1 by convexity, so that

0 ≤ |xτ |2 − |x0|2 = 2τ〈x0, x1 − x0〉+ τ2|x1 − x0|2.
On dividing by τ and taking the limit as τ ↘ 0 we see that 〈x0, x1 − x0〉 ≥ 0.
Likewise, from xτ − x = (x1 − x)− (1− τ)(x1 − x0) we obtain
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0 ≤ |xτ − x|2 − |x1 − x|2 = −2(1− τ)〈x1 − x, x1 − x0〉+ (1− τ)2|x1 − x0|2,
from which it follows on dividing by 1 − τ and taking the limit as τ ↗1 that
〈x− x1, x1 − x0〉 ≥ 0. In combination with the fact that 〈x0, x1 − x0〉 ≥ 0, we
get 〈x−x1+x0, x1−x0〉 ≥ 0. This gives |x1−x0|2 ≤ 〈x, x1−x0〉 ≤ |x||x1−x0|,
hence |x1 − x0| ≤ |x| ≤ ρ. Then |x1| ≤ |x1 − x0| + |x0| ≤ ρ + dC1

(0), so that
we only need to have ρ′ ≥ ρ+ dC1

(0) in order to conclude that x1 ∈ ρ′IB.
The implication in (d) comes simply from observing that for all x ∈ ρIB

one has d(x, C2) ≥ d(0, C2)− d(x, 0) ≥ d(0, C2)− ρ, while similarly d(x, C1) ≤
d(x, 0) + d(0, C1) ≤ ρ+ d(0, C1). Thus, dC2

≥ dC1
on ρIB when ρ+ d(0, C1) ≤

d(0, C2)− ρ, which is true when d(0, C2) ≥ 2ρ+ d(0, C1).

The relations in Lemma 4.34 give a special role to the origin, but the
generalization to balls centered at any point x̄ is immediate through the device
of applying this lemma to the translates C1− x̄ and C2− x̄ instead C1 and C2.
The effect of this is to replace 0 by x̄ and the balls ρIB and ρ′IB by IB(x̄, ρ)
and IB(x̄, ρ′) in the lemma’s statement.

4.35 Theorem (uniformity in convergence of distance functions). For subsets
Cν and C of IRn with C closed and nonempty, one has Cν → C if and only
if the distance functions dCν converge uniformly to dC on all bounded sets
B ⊂ IRn. In more detail with focus on sets B = ρIB,

(a) C ⊂ lim infν C
ν if and only if there exists for each ρ > 0 and ε > 0 an

index set N ∈ N∞ with d(x, Cν) ≤ d(x, C) + ε for all x ∈ ρIB when ν ∈ N ;

(b) C ⊃ lim supν C
ν if and only if there exists for each ρ > 0 and ε > 0 an

index set N ∈ N∞ with d(x, Cν) ≥ d(x, C)− ε for all x ∈ ρIB when ν ∈ N .

Proof. Corollary 4.7 already tells us that Cν → C if and only if dCν (x) →
dC(x) for all x ∈ IRn. Uniform convergence over all bounded sets is an auto-
matic consequence of convergence at each point when a sequence of functions
is equicontinuous at each point. This is just what we have here. According to
4(3) the inequality dC(x1) ≤ dC(x2) + |x1 − x2| holds for all pairs of points
x1 and x2, and likewise for each function dCν . Thus, we can concentrate on
the conditions in (a) and (b) in verifying the equivalence with the asserted set
inclusions.

We rely now on Lemma 4.34 and the geometric characterization of set
convergence in 4.10. Taking C1 = C and C2 = Cν in 4.34(a), we see that if
dCν ≤ dC + ε on ρIB, then C ∩ ρIB ⊂ Cν + εIB. The uniformity condition in
(a) thus implies the condition in 4.10(a). Conversely, if the condition in 4.10(a)
holds, we can take for any ρ the value ρ′ = 2ρ+dC(0) and, by applying 4.10(a)
to ρ′, obtain through 4.34(b) that dCν ≤ dC + ε on ρIB. Then the uniformity
condition in (a) is satisfied.

The argument for the equivalence between the uniformity condition in (b)
and the condition in 4.10(b) is almost identical, with C1 = Cν and C2 = C
in 4.34. The twist is that we must, in the converse part, choose ρ′ so as to
have ρ′ ≥ 2ρ+ dCν (0) for all ν ∈ N such that dCν (0) < 2ρ+ dC(0). The value
ρ′ = 4ρ+ dC(0) definitely suffices.
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Theorem 4.35 is valid in the case of C = ∅ as well, provided only that
the right interpretations are given to the uniform convergence conditions to
accommodate the fact that d(x, C) ≡ ∞ in that case. The main adjustment is
that in (b) one must consider, instead of arbitrarily small ε, an arbitrarily high
real number α and look to having d(x, Cν) ≥ α for all x ∈ ρIB when ν ∈ N .
(The assertions in (a) are trivial when C = ∅.) The appropriate extension
of uniform convergence notions to sequences of general extended-real-valued
functions will be seen in Chapter 7 (starting with 7.12).

In 4.13 it was observed that the Pompeiu-Hausdorff distance dl∞ fails to
provide a quantification of set convergence except under boundedness restric-
tions. A quantification in terms of a metric is possible nevertheless, as will
soon be seen. An intermediate quantification of set convergence, which we’ll
pass through first and which is valuable for its own sake, involves not a single
metric, but a family of pseudo-metrics. A pseudo-metric, we recall, satisfies the
criteria for a metric (nonnegative real values, symmetry in the two arguments,
and the triangle inequality), except that the distance between two different
elements might in some cases be zero.

Because set convergence doesn’t distinguish between a set and its closure
(cf. 4.4), a full metric space interpretation of set convergence isn’t possible
without restriction to sets that are closed. In the notation

sets(IRn) := the space of all subsets of IRn,

cl-sets(IRn) := the space of all closed subsets of IRn,

cl-sets �=∅(IR
n) := the space of all nonempty, closed subsets of IRn,

4(10)

it’s therefore cl-sets(IRn) rather than sets(IRn) that we’ll be turning to in
this context, or actually cl-sets �=∅(IR

n) in keeping with our pattern of treating
sequences Cν → ∅ alternatively as escaping to the horizon in the sense of 4.11.

Two basic measures of distance between sets will be utilized in tandem.
We define for every choice of the parameter ρ ∈ IR+ = [0,∞) and pair of
nonempty sets C and D the values

dlρ(C,D) := max
|x|≤ρ

∣∣∣dC(x)− dD(x)
∣∣∣,

d̂lρ(C,D) := inf
{
η ≥ 0

∣∣∣ C ∩ ρIB ⊂ D + ηIB, D ∩ ρIB ⊂ C + ηIB
}
,

4(11)

where in particular dl0(C,D) = |dC(0) − dD(0)|. Clearly, d̂lρ relates to the
uniform approximation property in 4.10, whereas dlρ relates to the one in 4.35,
and they take off in different ways from the equivalent formulas for dl∞(C,D)
in 4.13. We refer to dlρ(C,D) as the ρ-distance between C and D, although it is

really just a pseudo-distance; the quantity d̂lρ(C,D) serves to provide effective
estimates for the ρ-distance (cf. 4.37(a) below). We don’t insist on applying
these expressions only to closed sets, but the main interest lies in thinking of
dlρ and d̂lρ as functions on cl-sets �=∅(IR

n)× cl-sets �=∅(IR
n) with values in IR+.
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4.36 Theorem (quantification of set convergence). For each ρ ≥ 0, dlρ is a

pseudo-metric on the space cl-sets�=∅(IR
n), but d̂lρ is not. Both families {dlρ}ρ≥0

and {d̂lρ}ρ≥0 characterize set convergence: for any ρ̄ ∈ IR+, one has

Cν → C ⇐⇒ dlρ(C
ν, C)→ 0 for all ρ ≥ ρ̄

⇐⇒ d̂lρ(C
ν, C)→ 0 for all ρ ≥ ρ̄.

Proof. Theorem 4.35 gives us the characterization of set convergence in terms
of dlρ, while 4.10 gives it to us for d̂lρ. For dlρ, the pseudo-metric properties of
nonnegativity dlρ(C1, C2) ∈ IR+, symmetry dlρ(C1, C2) = dlρ(C2, C1), and the
triangle inequality dlρ(C1, C2) ≤ dlρ(C1, C) + dlρ(C,C2), are obvious from the
definition 4(11) and the inequality

|dC1
(x)− dC2

(x)| ≤ |dC1
(x)− dC(x)|+ |dC(x)− dC2

(x)|.
The triangle inequality can fail for d̂lρ: take C1 = {1} ⊂ IR, C2 = {−1},
C = {−6/5, 6/5} and ρ = 1. Thus d̂lρ isn’t a pseudo-metric.

The distance expressions in 4(11) and Theorem 4.35 utilize origin-centered
balls ρIB, but there’s really nothing special about the origin in this. The balls
IB(x̄, ρ) centered at any point x̄ could play the same role. More generally
one could work just as well with the collection of all nonempty, bounded sets
B ⊂ IRn, defining dlB and d̂lB in the manner of 4(11) through replacement ρIB
by B. The end results would essentially be the same, but freed of a seeming
dependence on the origin. For simplicity, though, dlρ and d̂lρ suffice.

The example in the proof of 4.36, showing that d̂lρ doesn’t satisfy the
triangle inequality, can be supplemented by the following example, which leads
to further insights. Fix any ρ > 0 and two different vectors a1 and a2 with
|a1| = 1 = |a2|. Choose any sequence ρν ↘ ρ and define

Cν
1 = {0, ρνa1}, Cν

2 = {0, ρνa2}, C1 = {0, ρa1}, C2 = {0, ρa2},
noting that Cν

1 → C1 and Cν
2 → C2. As a matter of fact, d̂lρ(C

ν
1 , C1) =

d̂lρ(C
ν
2 , C2) = ρν − ρ → 0. But d̂lρ(C

ν
1 , C

ν
2 ) = 0 for all ν, while d̂lρ(C1, C2) =

ρmin
{|a1|, |a2|, |a1 − a2|} > 0. Hence for large ν one has

d̂lρ(C1, C2) > d̂lρ(C1, C
ν
1 ) + d̂lρ(C

ν
1 , C

ν
2 ) + d̂lρ(C

ν
2 , C2),

which would be impossible if d̂lρ enjoyed the triangle inequality.

This example shows how it’s possible to have sequences Cν
1 → C1 and

Cν
2 → C2 in cl-sets �=∅(IR

n) such that d̂lρ(C
ν
1 , C

ν
2 ) �→ d̂lρ(C1, C2). Of course

dlρ(C
ν
1 , C

ν
2 ) → dlρ(C1, C2), because this is a consequence of the pseudo-metric

property of dlρ along with the fact that dlρ(C
ν
1 , C1)→ 0 and dlρ(C

ν
2 , C2)→ 0:

dlρ(C1, C2) ≤ dlρ(C1, C
ν
1 ) + dlρ(C

ν
1 , C

ν
2 ) + dlρ(C

ν
2 , C2),

dlρ(C
ν
1 , C

ν
2 ) ≤ dlρ(Cν

1 , C1) + dlρ(C1, C2) + dlρ(C2, C
ν
2 ).
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In short, dlρ is better behaved than d̂lρ, therefore more convenient for

a number of technical purposes. This doesn’t mean, however, that d̂lρ may

be ignored. The important virtue of the d̂lρ family of distance expressions is
their direct tie to the set inclusions in 4.10, which are the solid basis for most
geometric thinking about set convergence. Luckily it’s easy to work with the
two families side by side, making use of the following properties.

4.37 Proposition (distance estimates). The distance expressions dlρ(C1, C2) and

d̂lρ(C1, C2) (for nonempty, closed sets C1 and C2 in IRn) are nondecreasing
functions of ρ on IR+, and dlρ(C1, C2) depends continuously on ρ. One has

d̂lρ(C1, C2) ≤ dlρ(C1, C2) ≤ d̂lρ′(C1, C2)(a)

for ρ′ ≥ 2ρ+max
{
dC1

(0), dC2
(0)

}
,

d̂lρ(C1, C2) = dlρ(C1, C2) = dlρ0(C1, C2)(b)

for ρ ≥ ρ0 if C1 ∪ C2 ⊂ ρ0IB,
dlρ(C1, C2) ≤ max

{
dC1

(0), dC2
(0)

}
+ ρ,(c) ∣∣dlρ(C1, C2)− dlρ0

(C1, C2)
∣∣ ≤ 2|ρ− ρ0| for any ρ0 ≥ 0.(d)

If C1 and C2 are convex, 2ρ can be replaced by ρ in (a). If they also contain
0, then ρ′ can be taken to be ρ in (a), so that

d̂lρ(C1, C2) = dlρ(C1, C2) for all ρ ≥ 0.

Proof. The monotonicity of dlρ(C1, C2) and d̂lρ(C1, C2) in ρ is evident from
the formulas in 4(11). To verify the continuity of dlρ(C1, C2) with respect to ρ
we argue from the fact that

∣∣dC1
(x′) − dC1

(x)
∣∣ ≤ |x′ − x|, cf. 4(3). We obtain

for the function ϕ(x) :=
∣∣dC1

(x)− dC2
(x)

∣∣ that∣∣ϕ(x′)− ϕ(x)∣∣ ≤ ∣∣[dC1
(x′)− dC2

(x′)]− [dC1
(x)− dC2

(x)]
∣∣

≤ ∣∣dC1
(x′)− dC1

(x)
∣∣+ ∣∣dC2

(x′)− dC2
(x)

∣∣ ≤ 2|x′ − x|.
Since for any x′inρIB there exists x ∈ ρ0IB with |x′ − x| ≤ |ρ − ρ0|, this gives
us in 4(11) that, for any ρ0 ≥ 0,

dlρ(C1, C2) = max
|x′|≤ρ

ϕ(x′) ≤ max
|x|≤ρ0

ϕ(x) + 2|ρ− ρ0| = dlρ0
(C1, C2) + 2|ρ− ρ0|,

so we have not just continuity but also the stronger property claimed in (d).

The inequalities in (a) are immediate from the implications in 4.34(a)(b).
The special feature in the convex case is covered by the last statement of 4.34.
The equalities in (b) come from the fact that when both C1 and C2 are within
ρ0IB, the inclusions C1∩ρIB ⊂ C2+ηIB and C2∩ρIB ⊂ C1+ηIB are equivalent
for all ρ ≥ ρ0 to C1 ⊂ C2 + ηIB and C2 ⊂ C1 + ηIB, which by 4.34(c) imply
|dC1

− dC2
| ≤ η everywhere. We get (c) from observing that every x ∈ ρIB has

by the triangle inequality both dC1
(x) ≤ dC1

(0) + ρ and dC2
(x) ≤ dC2

(0) + ρ,
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and therefore
∣∣dC1

(x)− dC2
(x)

∣∣ ≤ max
{
dC1

(0), dC2
(0)

}
+ ρ.

Note that 4.37(a) yields for d̂lρ a triangle inequality of sorts: for all ρ ≥ 0,

d̂lρ(C1, C2) ≤ d̂lρ′(C1, C)+ d̂lρ′(C,C2) for ρ
′ = 2ρ+max{dC1

(0), dC2
(0), dC(0)}.

The estimates in 4.37 could be extended to the corresponding distance
expressions based on balls IB(x̄, ρ) instead of balls ρIB = IB(0, ρ), but rather
than pursuing the details of this we can merely think of applying the estimates
as they stand to the translates C1 − x̄ and C2 − x̄ in place of C1 and C2.

ρ
ρ

)(d ρ C , C1 2l

1

^ )(d ρ C , C1 2l

Fig. 4–12. Set distance expressions as functions of ρ when C1 and C2 are bounded.

4.38 Corollary (Pompeiu-Hausdorff distance as a limit). When ρ → ∞, both

dlρ(C,D) and d̂lρ(C,D) tend to the Pompeiu-Hausdorff distance dl∞(C,D):

dl∞(C,D) = lim
ρ→∞ dlρ(C,D) = lim

ρ→∞ d̂lρ(C,D).

Proof. This is evident from 4.13 and the inequalities in 4.37(a).

The properties of Pompeiu-Hausdorff distance in 4.38 are supplemented in
the case of convex sets by the following fact about truncations, which quantifies
the convergence result in 4.16.

4.39 Proposition (distance between convex truncations). For nonempty, closed,
convex sets C1 and C2, let ρ0 := max{dC1

(0), dC2
(0)}. Then

d̂lρ(C1, C2) ≤ dl∞
(
C1 ∩ ρIB, C2 ∩ ρIB

) ≤ 4d̂lρ(C1, C2) for ρ > 2ρ0.

Proof. The first inequality is obvious because C2 ∩ ρIB ⊂ C1 ∩ ρIB + εIB
implies C2 ∩ ρIB ⊂ C1 + εIB. To get the second inequality it’s enough to show
that if ρ > 2ρ0 and C2 ∩ ρIB ⊂ C1 + εIB, then C2 ∩ ρIB ⊂ C1 ∩ ρIB + 4εIB.

Take arbitrary x2 ∈ C2∩ρIB. On the basis of our assumptions there exists
x1 ∈ C1 with |x2 − x1| ≤ ε along with x0 ∈ C1 with |x0| ≤ ρ0. For τ ∈ [0, 1]
and xτ := (1− τ)x0 + τx1, a point lying in C1 by convexity, we estimate

|xτ | ≤ (1− τ)|x0|+ τ |x1| ≤ (1− τ)ρ0 + τ(|x2|+ ε) ≤ ρ0 + τ [ρ− ρ0 + ε].

Thus, xτ ∈ C1∩ρIB when ρ0+τ [ρ−ρ0+ε] ≤ ρ, which is equivalent to τ ∈ [0, τ̄ ]
for τ̄ := (ρ− ρ0)/(ρ− ρ0 + ε). Let x̄1 := xτ̄ . We have
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d(x2, C1 ∩ ρIB) ≤ |x2 − x̄1| ≤ |x2 − x1|+ |x1 − x̄1|
≤ ε+ (1− τ̄(|x0|+ |x1|) ≤ ε+ (1− τ̄)(ρ0 + ρ+ ε)

= 2ε

[
1 +

ρ0
ρ− ρ0 + ε

]
≤ 2ε

[
1 +

ρ0
ρ− ρ0

]
≤ 4ε.

This being true for arbitrary x2 ∈ C2 ∩ ρIB, the claimed inclusion is valid.

A sequence {Cν}ν∈IN is called (equi-) bounded if there’s a bounded set B
such that Cν ⊂ B for all ν. Otherwise it’s unbounded , but it’s eventually
bounded as long as there’s an index set N ∈ N∞ such that the tail subsequence
{Cν}ν∈N is bounded. Thus, not only must a bounded sequence consist of
bounded sets, the boundedness must be ‘uniform’. For any set X ⊂ IRn we’ll
use the notation

cl-sets(X) := the space of all closed subsets of X,

cl-sets �=∅(X) := the space of all nonempty, closed subsets of X.

The following facts amplify the assertions in 4.13.

4.40 Exercise (properties of Pompeiu-Hausdorff distance).

(a) For a bounded sequence {Cν}ν∈IN in cl-sets �=∅(IR
n) and a closed set C,

one has Cν → C if and only if dl∞(Cν, C)→ 0.

(b) For an unbounded sequence {Cν}ν∈IN in cl-sets �=∅(IR
n), it is impossible

to have dl∞(Cν, C) → 0 without having (Cν)∞ = C∞ for all ν in some index
set N ∈ N∞. Indeed, dl∞(C1, C2) =∞ when C∞

1 �= C∞
2 .

(c) Relative to cl-sets �=∅(X) for any nonempty, bounded subset X of IRn,
the distance dl∞(C1, C2) gives a metric.

Guide. In (a), choose ρ large enough that
⋃

ν∈IN Cν ⊂ ρIB and utilize the last
part of 4.37(b). Derive (b) by arguing that the inclusion C1 ⊂ C2+ηIB implies
through 3.12 that C∞

1 ⊂ C∞
2 . Part (c) follows from 4.38 and the observation

that sets C1, C2 ∈ cl-sets(X) are distinct if and only if dl∞(C1, C2) �= 0.

I∗. Hyperspace Metrics

To obtain a metric that fully characterizes convergence in cl-sets �=∅(IR
n), we

have to look elsewhere than the Pompeiu-Hausdorff distance, which, as just
confirmed, only works for the subspaces cl-sets �=∅(X) of cl-sets�=∅(IR

n) that
correspond to bounded sets X ⊂ IRn. Such a metric can be derived in many
ways from the family of pseudo-metrics dlρ, but a convenient expression that
eventually will be seen to enjoy some especially attractive properties is

dl(C,D) :=

∫ ∞

0

dlρ(C,D)e−ρdρ. 4(12)

This will be called the (integrated) set distance between C and D. Note that
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dl(C,D) ≤ dl∞(C,D), 4(13)

because dlρ(C,D) ≤ dl∞(C,D) for all ρ, while
∫∞
0
e−ρdρ = 1.

4.41 Lemma (estimates for the integrated set distance). For any nonempty,
closed subsets C1 and C2 of IRn and any ρ ∈ IR+, one has

(a) dl(C1, C2) ≥ (1− e−ρ)
∣∣dC1

(0)− dC2
(0)

∣∣+ e−ρdlρ(C1, C2),

(b) dl(C1, C2) ≤ (1− e−ρ)dlρ(C1, C2) + e−ρ
(
max

{
dC1

(0), dC2
(0)

}
+ ρ+ 1

)
,

(c)
∣∣dC1

(0)− dC2
(0)

∣∣ ≤ dl(C1, C2) ≤ max
{
dC1

(0), dC2
(0)

}
+ 1.

Proof. We write

dl(C1, C2) =

∫ ρ

0

dlτ (C1, C2)e
−τdτ +

∫ ∞

ρ

dlτ (C1, C2)e
−τdτ

and note from the monotonicity of dlρ(C1, C2) in ρ (cf. 4.37) that

dl0(C1, C2)

∫ ρ

0

e−τdτ ≤
∫ ρ

0

dlτ (C1, C2)e
−τdτ ≤ dlρ(C1, C2)

∫ ρ

0

e−τdτ,

dlρ(C1, C2)

∫ ∞

ρ

e−τdτ ≤
∫ ∞

ρ

dlτ (C1, C2)e
−τdτ

≤
∫ ∞

ρ

[
max{dC1

(0), dC2
(0)}+ τ

]
e−τdτ,

where the last inequality comes from 4.37(c). The lower estimates calculate
out to the inequality in (a), and the upper estimates to the one in (b).

In (c), the inequality on the left comes from the limit as ρ↗∞ in (a),
where the term e−ρdlρ(C1, C2) tends to 0 because of 4.37(c). The inequality on
the right comes from taking ρ = 0 in (b).

4.42 Theorem (metric description of set convergence). The expression dl gives
a metric on cl-sets �=∅(IR

n) which characterizes ordinary set convergence:

Cν → C ⇐⇒ dl(Cν, C)→ 0.

Furthermore,
(
cl-sets �=∅(IR

n), dl
)
is a complete metric space in which a sequence

{Cν}ν∈IN escapes to the horizon if and only if for some set C in this space (and
then for every C) one has dl(Cν, C)→∞.

Proof. We get dl(C1, C2) ≥ 0, dl(C1, C2) = dl(C2, C1), and the triangle
inequality dl(C1, C2) ≤ dl(C1, C) + dl(C,C2) from the corresponding prop-
erties of the pseudo-metrics dlρ(C1, C2). The estimate in 4.41(c) gives us
dl(C1, C2) < ∞. Since for closed sets C1 and C2 the distance functions dC1

and dC2
are continuous and vanish only on these sets, respectively, we have∣∣dC1

(x)−dC2
(x)

∣∣ positive on some open set unless C1 = C2. Thus dl(C1, C2) > 0
unless C1 = C2. This proves that dl is a metric.

It’s clear from the estimates in 4.41(a) and (b) that dl(Cν, C) → 0 if and
only if dlρ(C

ν, C) → 0 for every ρ ≥ 0. In view of Theorem 4.36, we know



140 4. Set Convergence

therefore that the metric dl on cl-sets �=∅(IR
n) characterizes set convergence.

From 4.42, a sequence {Cν} in cl-sets�=∅(IR
n) escapes to the horizon if and

only if it eventually misses every ball ρIB, or equivalently, has dCν (0) → ∞.
Since by taking ρ = 0 in the inequalities in 4.41(a)(b) one has∣∣dCν (0)− dC(0)

∣∣ ≤ dl(Cν, C) ≤ max
{
dCν (0), dC(0)

}
+ 1,

the sequence escapes to the horizon if and only if dl(Cν, C) → ∞ for every
C, or for just one C. Because a Cauchy sequence {Cν}ν∈IN in particular has
the property that, for any fixed ν0, the distance sequence {dl(Cν, Cν0)}ν∈IN

is bounded, it can’t have any subsequence escaping to the horizon. Hence
by the compactness property in 4.18, every Cauchy sequence in cl-sets �=∅(IR

n)
has a subsequence converging to an element of cl-sets �=∅(IR

n), this element
necessarily then being the actual limit of the sequence. Therefore, the metric
space

(
cl-sets �=∅(IR

n), dl
)
is complete.

4.43 Corollary (local compactness in metric spaces of sets). The metric space(
cl-sets�=∅(IR

n), dl
)
has the property that for every one of its elements C0 and

every r > 0 the ball
{
C
∣∣ dl(C,C0) ≤ r

}
is compact.

Proof. This is a consequence of the compactness in 4.18 and the criterion in
4.42 for escape to the horizon.

4.44 Example (distances between cones). For closed cones K1, K2 ⊂ IRn, the
Pompeiu-Hausdorff distance is always dl∞(K1, K2) = ∞ unless K1 = K2,
whereas the integrated set distance is the ρ-distance for ρ = 1: one has

dl(K1, K2) = dl1(K1, K2) = d̂l1(K1, K2) = dl∞
(
K1 ∩ IB,K2 ∩ IB

) ≤ 1,

and on the other hand

dlρ(K1, K2) = d̂lρ(K1, K2) = ρdl(K1, K2) for all ρ ≥ 0.

In the metric space
(
cl-sets �=∅(IR

n), dl
)
, the set of all closed cones is compact.

Detail. If K1 �⊂ K2, there must be a ray R ⊂ K1 such that R �⊂ K2. Then
R �⊂ K2 + ηIB for all η ∈ IR+, so that d(K1, K2) =∞. Likewise this has to be
true when K2 �⊂ K1. Thus, dl∞(K1, K2) =∞ unless K1 = K2.

Because the equivalence at the end of Lemma 4.34 always holds for cones,
regardless of convexity, we have d̂lρ(K1, K2) = dlρ(K1, K2) for all ρ ≥ 0. It’s
clear also in the cone case that dlρ(K1, K2) = ρdl1(K1, K2). Then dl(K1, K2) =
dl1(K1, K1) by definition 4(12), inasmuch as

∫∞
0
ρe−ρdρ = 1.

We have d̂l1(K1, K2) ≤ 1 because K1∩IB ⊂ K2+IB and K2∩IB ⊂ K1+IB

when K1 and K2 contain 0. The equation d̂l1(K1, K2) = dl∞
(
K1 ∩ IB,K2 ∩ IB

)
holds on the basis of the definitions of these quantities, since

(K + ηIB) ∩ IB ⊂ [K ∩ IB] + ηIB for any closed cone K.

The latter comes from the observation that the projection of any point of IB on
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a ray R belongs to R ∩ IB, which implies that any point of IB within distance
η of K is also within distance η of K ∩ IB.

To round out the discussion we record an approximation fact and use it
to establish the separability of our metric space of sets.

4.45 Proposition (separability and approximation by finite sets). Every closed
set C in IRn can be expressed as the limit of a sequence of sets Cν , each of
which consists of just finitely many points.

In fact, the points can be chosen to have rational coordinates. Thus, the
countable collection consisting of all finite sets of rational points in IRn is dense
in the metric space

(
cl-sets �=∅(IR

n), dl
)
, which therefore is separable.

Proof. Because the collection of subsets of IRn consisting of all finite sets whose
points have rational coordinates is a countable collection, it can be indexed as
a single sequence {Cν}ν∈IN . We need only show for an arbitrary set C in
cl-sets �=∅(IR

n) that C is a cluster point of this sequence.
For each μ ∈ IN the set C + μ−1IB is closed through the fact that IB is

compact (cf. 3.12). Thus C + μ−1IB, like C, belongs to cl-sets �=∅(IR
n). The

nested sequence {C + μ−1IB}μ∈IN is decreasing and has C as its intersection,
so C + μ−1IB → C (cf. 4.3(b)). It will suffice therefore to show for arbitrary
μ ∈ IN that C + μ−1IB is a cluster point of {Cν}ν∈IN , since by diagonalization
the same will then be true for C itself.

To get an index set Nμ ∈ N#
∞ such that Cν −→

Nμ C+μ−1IB, we can simply
choose Nμ to consist of the indices ν such that Cν ⊂ C + μ−1IB. This choice
trivially ensures that lim supν∈Nμ Cν ⊂ C + μ−1IB, but also, because points
with rational coordinates are dense in C + μ−1IB (this set being the closure of
the union of all open balls of radius μ−1 centered at points of C), it ensures
that lim infν∈Nμ Cν ⊃ C+μ−1IB. Hence we do in this way have limν∈Nμ Cν =
C + μ−1IB, as required.

Cosmic set convergence can likewise be quantified in terms of a metric.
This can be accomplished through the identification of subsets of csm IRn with
cones in IRn+1 in the ray space model for csm IRn. Distances between such
cones can be measured with the set metric dl already developed.

When a subset of csm IRn is designated by C ∪ dirK (with C,K ⊂ IRn,
K a cone), the corresponding cone in the ray space model is

pos(C,−1) ∪ (K, 0) =
{
λ(x,−1) ∣∣λ ≥ 0, x ∈ C} ∪ {

(x, 0)
∣∣x ∈ K}

.

Accordingly, we define the cosmic set metric dlcsm by

dlcsm
(
C1 ∪ dirK1, C2 ∪ dirK2

)
:= dl

(
pos(C1,−1) ∪ (K1, 0), pos(C2,−1) ∪ (K2, 0)

) 4(14)

for subsets C1 ∪ dirK1 and C2 ∪ dirK2 of csm IRn. Through the formulas
in 4.44 for dl as applied to cones, this cosmic distance between C1 ∪ dirK1

and C2 ∪ dirK2 can alternatively be expressed in other ways. For instance,



142 4. Set Convergence

it’s the Pompeiu-Hausdorff distance dl∞(B1, B2) between the subsets B1 and
B2 of IRn+1 obtained by intersecting the unit ball of IRn+1 with the cones
pos(C1,−1) ∪ (K1, 0) and pos(C2,−1) ∪ (K2, 0). No matter how the distance
is expressed, we get at once a characterization of set convergence in csm IRn.

4.46 Theorem (metric description of cosmic set convergence). On the space
cl-sets(csm IRn), dlcsm is a metric that characterizes cosmic set convergence:

Cν∪ dirKν →c C ∪ dirK ⇐⇒ dlcsm
(
Cν∪ dirKν, C ∪ dirK

)→ 0.

The metric space
(
cl-sets(csm IRn), dlcsm

)
is separable and compact.

Proof. Because cosmic set convergence is equivalent by definition to the ordi-
nary set convergence of the corresponding cones in the ray space model, this is
immediate from Theorem 4.36 as invoked for cones in IRn+1. The separability
and compactness are seen from 4.45 and 4.18.

A restriction to nonempty subsets of csm IRn isn’t needed, because the
definition of dlcsm in 4(14) uses dl only for cones, and cones always contain the
origin. But of course, in the topology of cosmic set convergence, the empty set
is an isolated element; it isn’t the limit of any sequence of nonempty sets, since
any sequence of points in csm IRn has a cluster point (cf. 3.2).

The metric dlcsm can be applied in particular to subsets C1 and C2 of IRn

(with K1 = K2 = {0}, dirK1 = dirK2 = ∅). One has

dlcsm(C1, C2) = dl
(
pos(C1,−1), pos(C2,−1)

)
= dl

(
cl pos(C1,−1), cl pos(C2,−1)

)
= dlcsm

(
clC1 ∪ dirC∞

1 , clC2 ∪ dirC∞
2

)
,

4(15)

since the closure of the cone representing a set C ⊂ IRn in the ray space model
for csm IRn is, by definition, the cone representing clC∪dirC∞ (see 3.4). This
yields a characterization of total set convergence in IRn.

4.47 Corollary (metric description of total set convergence). On the space
cl-sets(IRn), dlcsm is a metric that characterizes total set convergence:

Cν→t C ⇐⇒ dlcsm
(
Cν, C)→ 0.

The metric space
(
cl-sets(IRn), dlcsm

)
is locally compact and separable, and its

completion is
(
cl-sets(csm IRn), dlcsm

)
; it forms an open set within the latter.

Proof. All this is clear from Theorem 4.46 and the definition of total conver-
gence in 4.23. The claims of local compactness and openness rest on the fact
that, with respect to cosmic convergence, the space cl-sets(hzn IRn) is a closed
subset of cl-sets(csm IRn). (Sequences of direction points can converge only to
direction points.)

The cosmic set metric dlcsm can be interpreted as arising from a special
non-Euclidean metric for measuring distances between points of IRn itself. This
comes out as follows.
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4.48 Exercise (cosmic metric properties). Let θ
(
(x, α), (y, β)

)
denote the angle

between two nonzero vectors (x, α) and (y, β) in IRn × IR, and let

s
(
(x, α), (y, β)

)
:=

{
sin θ

(
(x, α), (y, β)

)
if θ

(
(x, α), (y, β)

)
< π/2,

1 if θ
(
(x, α), (y, β)

) ≥ π/2.
Define

dcsm(x, y) := s
(
(x,−1), (y,−1)) for x, y ∈ IRn. 4(16)

Then dcsm is a metric on IRn such that the completion of the space
(
IRn, dcsm

)
is the space

(
csm IRn, dcsm

)
with dcsm extended by

dcsm(x, dir y) = s
(
(x,−1), (y, 0)),

dcsm(dirx, dir y) = s
(
(x, 0), (y, 0)

)
.

4(17)

This point metric dcsm on csm IRn is compatible with the set metric dlcsm on
cl-sets(csm IRn) in the sense that

dcsm(x, y) = dlcsm
({x}, {y}),

dcsm(x, dir y) = dlcsm
({x}, {dir y}),

dcsm(dirx, dir y) = dlcsm
({dirx}, {dir y}),

4(18)

while on the other hand, dlcsm on cl-sets �=∅(csm IRn) is the Pompeiu-Hausdorff
distance generated by dcsm: in denoting by dcsm(x, C∪dirK) the distance with
respect to dcsm from a point x ∈ IRn to a subset C ∪ dirK of csm IRn, one has

dlcsm
(
C1∪ dirK1, C2 ∪ dirK2

)
= sup

x∈IRn

∣∣dcsm(x, C1 ∪ dirK1)− dcsm(x, C2 ∪ dirK2)
∣∣. 4(19)

Guide. Start by going backwards from the formulas in 4(18); in other words,
begin with the fact that, for points x, y ∈ IRn, dlcsm({x}, {y}) is by definition
4(14) equal to dl(pos(x,−1), pos(y,−1)). Argue through 4.44 that this has the
value dl∞(Bx, By), where Bx = IB∩pos(x,−1) and By = IB∩pos(y,−1), which
calculates out to s((x,−1), (y,−1)). That provides the foundation for getting
everything else. The supremum in 4(19) is adequately taken over IRn instead
of over general elements of csm IRn because the expression being maximized
has a unique continuous extension to csm IRn.
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Commentary

Up to the mid 1970s, the study of set convergence was carried out almost exclusively
by topologists. A key article by Michael [1951] and the book by Nadler [1978] high-
light their concerns: the description and analysis of a topology compatible with set
convergence on the hyperspace cl-sets(IRn), or more generally on cl-sets(X) where
X is an arbitrary topological space. Ever-expanding applications nowadays to op-
timization problems, random sets, economics, and other topics, have rekindled the
interest in the subject and have refocused the research; the book by Beer [1993] and
the survey articles of Sonntag and Zălinescu [1991] and Lucchetti and Torre [1994]
reflect this shift in emphasis.

The concepts of inner and outer limits for a sequence of sets are due to the French
mathematician-politician Painlevé, who introduced them in 1902 in his lectures on
analysis at the University of Paris; set convergence was defined as the equality of these
two limits. Hausdorff [1927] and Kuratowski [1933] popularized such convergence
by including it in their books, and that’s how Kuratowski’s name ended up to be
associated with it.

In calling the two kinds of set limits ‘inner’ and ‘outer’, we depart from the
terms ‘lower’ and ‘upper’, which until now have commonly been used. Our terminol-
ogy carries over in Chapter 5 to ‘inner semicontinuity’ and ‘outer semicontinuity’ of
set-valued mappings, in contrast to ‘lower semicontinuity’ and ‘upper semicontinu-
ity’. The reasons why we have felt the need for such a change are twofold. ‘Inner’
and ‘outer’ are geometrically more accurate and reflect the nature of the concepts,
whereas ‘lower’ and ‘upper’, words suggesting possible spatial relationships other than
inclusion, can be misleading. More importantly, however, this switch helps later in
getting around a serious difficulty with what ‘upper semicontinuity’ has come to mean
in the literature of set-valued mappings. That term is now incompatible with the no-
tion of continuity naturally demanded in the many applications where boundedness
of the sets and sequences of interest isn’t assured. We are obliged to abandon ‘upper
semicontinuity’ and use different words for the concept that we require. ‘Outer semi-
continuity’ fits, and as long as we are passing from upper to outer it makes sense to
pass at the same time from lower to inner, although that wouldn’t strictly be neces-
sary. This will be explained more fully in Chapter 5; see the Commentary for that
chapter and the discussion in the text itself around Figure 5–7.

Probably because set convergence hasn’t been covered in the standard texts
on topology and hasn’t therefore achieved wide familiarity, despite having been on
the scene for a long time, researchers have often turned to convergence with re-
spect to the Pompeiu-Hausdorff distance as a substitute, even when that might
be inappropriate. In terms of the excess of a set C over another set D given by
e(C,D) := sup{d(x,D)

∣∣ x ∈ C}, Pompeiu [1905], a student of Painlevé, defined the
distance between C and D, when they are nonempty, by e(C,D) + e(D,C). Haus-
dorff [1927] converted this to max{e(C,D), e(D,C)}, a distance expression inducing
the same convergence. Our equivalent way of defining this distance in 4.13 has the
advantage of pointing to the modifications that quantify set convergence in general.

The hit-and-miss criteria in Theorem 4.5 originated with the description by Fell
[1962] of the hyperspace topology associated with set convergence. Wijsman [1966]
and Holmes [1966] were responsible for the characterization of set convergence as
pointwise convergence of distance functions (cf. Corollary 4.7); the extension to gap
functions (cf. 4(4)) comes from Beer and Lucchetti [1993]. The observation that con-
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vex sets converge if and only if their projection mappings converge pointwise is due
to Sonntag [1976] (see also Attouch [1984]), but the statement in 4.9 about the con-
vergence of the projections of arbitrary sequences of sets is new. The approximation
results involving ε-fattening of sets (in Theorem 4.10 and Corollary 4.11) were first
formulated by Salinetti and Wets [1981]. In an arbitrary metric space, each of these
characterizations leads to a different notion of convergence that has abundantly been
explored in the literature; see e.g. Constantini, Levi and Zieminska [1993], Beer [1993]
and Sonntag and Zălinescu [1991].

Still other convergence notions for sets in IRn aren’t equivalent to Painlevé-
Kuratowski convergence but have significance for certain applications. One of these,
like convergence with respect to the Pompeiu-Hausdorff distance, is more restric-
tive: Cν converges to C in the sense of Fisher [1981] when C ⊂ lim inf Cν and
e(Cν, C) → 0 (the latter referring to the ‘excess’ defined above). Another notion
is convergence in the sense of Vietoris [1921] when C = lim infν C

ν and for every
closed set F ⊂ IRn with C ∩ F = ∅ there exists N ∈ N∞ such that Cν ∩ F = ∅
for all ν ∈ N , i.e., when in the hit-and-miss criterion in Theorem 4.5 about missing
compact sets has been switched to missing closed sets. Other such notions aren’t
comparable to Painlevé-Kuratowski convergence at all. An example is ‘rough’ con-
vergence, which was introduced to analyze the convergence of probability measures
(Lucchetti, Salinetti and Wets [1994]) and of packings and tilings (Wicks [1994]); see
Lucchetti, Torre and Wets [1993]. A sequence of sets Cν converges roughly to C when
C = lim supν Cν and clD ⊃ lim supν Dν , where D = IRn \C and Dν = IRn \Cν .

The observation in 4.3 about monotone sequences can be found in Mosco [1969],
at least for convex sets. The criterion in Corollary 4.12 for the connectedness of a
limit set can be traced back to Janiszewski, as recorded by Choquet [1947]. The
convexity of the inner limit associated with a collection of convex sets (Proposition
4.15) is part of the folklore; the generalization in 4.17 to star-shaped sets is due to
Beer and Klee [1987]. The use of truncations to quantify the convergence of convex
sets, as in 4.16, comes from Salinetti and Wets [1979]. The assertion in 4.15, that a
compact set contained in the interior of the inner limit of a sequence must also be
contained in the interior of the approaching sets, can essentially be found in Robert
[1974], but the proof furnished here is new.

Theorem 4.18 on the compactness of the hyperspace cl-sets(IRn) has a long his-
tory starting with Zoretti [1909], another student of Painlevé, who proved a version
of this fact for a bounded sequence of continua in the plane. Developments culmi-
nated in the late 1920s in the version presented here, with proofs provided variously
by Zarankiewicz [1927], Hausdorff [1927], Lubben [1928] and R.L. Moore (1925, un-
published). The cluster description of inner and outer limits (in Proposition 4.19)
can be found in Choquet [1947]. For a sequence of nonempty, convex sets, one can
combine 4.15 with 4.18 to obtain the ‘selection theorem’ of Blaschke [1914]: in IRn,
any bounded sequence {Cν}ν∈IN of such sets has a subsequence converging to some
nonempty, compact, convex set C.

Attempts at ascertaining when set convergence is preserved under various oper-
ations (as in 4.27 and 4.30) have furnished the chief motivation for our introduction
of horizon and cosmic limits with their associated cosmic metric. Partial results along
these lines were reported in Rockafellar and Wets [1992], but the full properties of
such limits are brought out here for the first time along with the fundamental role
they play in variational analysis. The concept of ‘total’ convergence and its quantifi-
cation in 4.46 are new as well. The horizon limit formula in 4.21(e) was discovered
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by M. Dong (unpublished).
For sequences of convex sets, McLinden and Bergstrom [1981] obtained forerun-

ners of Theorem 4.27 and Example 4.28. Our introduction of total convergence bears
fruit in enabling us to go beyond convexity in this context. The convergence criteria
for the sums of sets in 4.29 are new, as are the total convergence aspects of 4.30 and
4.31. New too is Theorem 4.32 about the convergence of convex systems, at least
in the way it’s formulated here, but it could essentially be derived from results in
McLinden and Bergstrom [1981] about sequences of convex functions; see also Azé
and Penot [1990].

The metrizability of cl-sets(IRn) in the topology of set convergence has long been
known on the general principles of metric space theory. Here we have specifically
introduced the metric dl on cl-sets�=∅(IR

n) in 4.42, constructing it from the pseudo-
metrics dlρ. One of the benefits of this choice, through the cone properties in 4.44
(newly reported here), is the ease with which we are able to go on to provide metric
characterizations of cosmic set convergence and total set convergence in 4.46 and 4.47.

x y
0

nIR

Sn N

xs ys

Fig. 4–13. Stereographic images of x and y in IRn on a sphere in IRn+1.

An alternative way of quantifying ordinary set convergence would be to use the
stereographic Pompeiu-Hausdorff metric mentioned in Rockafellar and Wets [1984]. It
relies on measuring the distance between two sets by means of the Pompeiu-Hausdorff
distance, but bases the latter not on the Euclidean distance d(x, y) = |x− y| between
points x and y in IRn but on their stereographic distance ds(x, y) = |xs − ys|, where
xs and ys are the stereographic images of x and y on Sn, the n-dimensional sphere
of radius 1 in IRn+1 with center at (0, . . . , 0, 1), as indicated in Figure 4–13 in terms
of the ‘north pole’ N of Sn. (When determining the distance between two subsets
of IRn in this manner, N is automatically added to the corresponding image subsets
of Sn; thus in particular, the empty set corresponds to {N}, and its stereographic
distance to other sets is finite.) This metric isn’t convenient operationally, however,
and by its association with the one-point compactification of IRn it deviates from the
cosmic framework we are keen on maintaining.

The use of d̂lρ to measure the distance between sets was proposed by Walkup
and Wets [1967] for convex cones and by Mosco [1969] for convex sets in general.
However, it was not until Attouch and Wets [1991] that these distance expressions
where studied in depth, and not merely for convex sets. The pseudo-metrics dlρ
come from the specialization to indicator functions of pseudo-metrics introduced in
Attouch and Wets [1986] to measure the distance between (arbitrary) functions. The
investigation of the relationship between d̂lρ and dlρ and of the ‘uniformities’ that
they induce was carried out in Attouch, Lucchetti and Wets [1991].
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The inequalities in Lemma 4.34 are slightly sharper than the ones in those papers,
and the same holds for Proposition 4.37. The much smaller value for ρ′ in the convex
case in 4.37(a) is recorded here for the first time. The particular expression used
in 4(12) for the metric dl on cl-sets�=∅(IR

n) is new, as are the resulting inequalities
in Lemma 4.41. So too is the recognition that Pompeiu-Hausdorff distance is the
common limit of d̂lρ and dlρ. The distance estimate for truncated convex sets in 4.39
comes from a lemma of Loewen and Rockafellar [1994] sharpening an earlier one of
Clarke [1983].

The local compactness of the metric space (cl-sets�=∅(IR
n), dl) in 4.43 is mentioned

in Fell [1962]. The separability property in 4.45 can be traced back to Kuratowski
[1933]. The ‘constructive’ proof of it provided here is inspired by a related result for
set-valued mappings of Salinetti and Wets [1981].
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The concept of a variable set is of great importance. Abstractly we can think
of two spaces X and U and the assignment to each x ∈ X of a set S(x) ⊂ U ,
i.e., an element of the space

sets(U) := collection of all subsets of U .

It is natural to speak then of a set-valued mapping S, but in so doing we must
be careful to interpret the terminology in the manner most favorable for our
purposes. A variable set can often be viewed with advantage as generalizing
a variable point, especially in situations where the set might often have only
one element. It is preferable therefore to identify as the graph of S a subset of
X × U , namely

gphS :=
{
(x, u)

∣∣u ∈ S(x)},
rather than a subset of X × sets(U) as might literally seem to be dictated
by the words ‘set-valued mapping’. To emphasize this we write S : X →→ U
instead of S : X → sets(U). The emphasis could further be conveyed when
deemed necessary by speaking of S as a multifunction or correspondence, but
the simpler language of set-valuedness will be used in what follows.

Obviously S is fully described by gphS, and every set G ⊂ X × U is the
graph of a uniquely determined set-valued mapping S : X →→ U :

S(x) =
{
u
∣∣ (x, u) ∈ G}, G = gphS.

It will be useful to work with this pairing as an extension of the familiar one
between functions from X to U and their graphs in X × U , and even to think
of functions as special cases of set-valued mappings. In effect, a mapping
S : X → U and the associated mapping from X to singletons {u} in sets(U)
are to be regarded as the same mathematical object seen from two different
angles.

More than one interpretation will therefore be possible in strict terms when
we speak of a set-valued mapping, but the appropriate meaning will always be
clear from the context. In general we allow ourselves to refer to S : X →→ U just
as a mapping and say that S is empty-valued , single-valued or multivalued at
x according to whether S(x) is the empty set, a singleton, or a set containing
more than one element. The case of S being single-valued everywhere on X is
specified by the notation S : X → U . We say S is compact-valued or convex-
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valued when S(x) is compact or convex, and so forth. (Although ‘mapping’
will have wider reference, ‘function’ will always entail single-valuedness.)

A. Domains, Ranges and Inverses

In line with this broad view, the domain and range of S : X →→ U are taken to
be the sets

domS :=
{
x
∣∣S(x) �= ∅}, rgeS :=

{
u
∣∣∃x with u ∈ S(x)},

which are the images of gphS under the projections (x, u) �→ x and (x, u) �→ u,
see Figure 5–1. The inverse mapping S−1 : U →→ X is defined by S−1(u) :={
x
∣∣u ∈ S(x)}; obviously (S−1)−1 = S. The image of a set C under S is

S(C) :=
⋃

x∈C
S(x) =

{
u
∣∣S−1(u) ∩ C �= ∅},

while the inverse image of a set D is

S−1(D) :=
⋃

u∈D
S−1(u) =

{
x
∣∣S(x) ∩D �= ∅}.

Note that domS−1 = rgeS = S(X), whereas rgeS−1 = domS = S−1(U).

_ 1

gph S

S

u

dom S x

rge S

S(x)

(u)

IRn

IRm

Fig. 5–1. Notational scheme for set-valued mappings.

For the most part we’ll be concerned with the case where X and U are
subsets of finite-dimensional real vector spaces, say IRn and IRm. Notation can
then be streamlined very conveniently because any mapping S : X →→ U is at
the same time a mapping S : IRn →→ IRm. One merely has S(x) = ∅ for x /∈ X .
Note that because we follow the pattern of identifying S with a subset of X×U
as its graph, this is not actually a matter of extending S from X to the rest of
IRn, since gphS is unaffected. We merely choose to regard this graph set as
lying in IRn × IRm rather than just X × U . Images and inverse images under
S stay the same, as do the sets domS and rgeS, but now also

domS = S−1(IRm), rgeS = S(IRn).
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To illustrate some of these ideas, a single-valued mapping F : X → IRm

given on a set X ⊂ IRn can be treated in terms of S : IRn →→ IRm defined by
S(x) = {F (x)} when x ∈ X , but S(x) = ∅ when x /∈ X . Then domS = X .
Although S isn’t multivalued anywhere, the notation S : IRn → IRm wouldn’t
be correct, because S isn’t single-valued except on X ; as an alternative to
introducing S one could think of F itself as a mapping IRn →→ IRm with domF =
X . Anyway, the inverse mapping S−1, which is identical to F−1, may well be
multivalued. The range of this inverse is X .

Important examples of set-valued mappings that we’ve already been deal-
ing with, in addition to the inverses of single-valued mappings, are the projec-
tion mappings PC onto sets C ⊂ IRn and the proximal mappings Pλf associated
with functions f : IRn → IR; cf. 1.20 and 1.22. The study of how the feasible
set and optimal set in a problem of optimization can depend on the problem’s
parameters leads to such mappings too.

5.1 Example (constraint systems). Consider a set X ⊂ IRn and a mapping
F : X → IRm, F (x) =

(
f1(x), . . . , fm(x)

)
. For each u = (u1, . . . , um) ∈ IRm as

a parameter vector, F−1(u) is the set of all solutions x = (x1, . . . , xn) to the
equation system

fi(x1, . . . , xn) = ui for i = 1, . . . , m with (x1, . . . , xn) = x ∈ X.
For a box D = D1 × · · · ×Dm in IRm, the set F−1(D) consists of all vectors x
satisfying the constraint system

fi(x1, . . . , xn) ∈ Di for i = 1, . . . , m with (x1, . . . , xn) = x ∈ X.

Whenm = n in this example, the number of equations matches the number
of unknowns, and hopes rise that F−1 might be single-valued on its effective
domain, F (X). Beyond the issue of single-valuedness it may be important to
understand ‘continuity’ properties in the dependence of F−1(u) on u. This
may be a concern even when m �= n and the study of solutions lies fully in the
context of a set-valued mapping F−1 : IRm →→ IRn.

5.2 Example (generalized equations and implicit mappings). Beyond an equa-
tion system written as F (x) = ū for a single-valued mapping F , one may wish
to solve a problem of the type

determine x̄ such that S(x̄) 
 ū
for some kind of mapping S : IRn →→ IRm. The desired solution set is then
S−1(ū). Perturbations could be studied in terms of replacing ū by u, with
emphasis on the behavior of S−1(u) when u is near ū. Or, parameter vectors
u could be introduced more broadly. Starting from S : IRn × IRm →→ IRp, the
analysis could target properties of the mapping T : IRm →→ IRn defined by

T (w) =
{
x
∣∣S(x, w) 
 ū}
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and thus concern set-valued analogs of the implicit mapping theorem rather
than of the inverse mapping theorem. As a special case, one could have, for
mappings F : IRn × IRd → IRm and N : IRn →→ IRm,

T (w) =
{
x
∣∣ − F (x, w) ∈ N(x)

}
.

Generalized equations like S(x̄) 
 0 or −F (x̄) ∈ N(x̄), the latter corre-
sponding to S(x) = F (x) +N(x), will later be seen to arise from characteriza-
tions of optimality in problems of constrained minimization (see 6.13 and 10.1).
The implicit mapping T in Example 5.2 suggests the convenience of being able
to treat single-valuedness, multivaluedness and empty-valuedness as properties
that can temporarily be left in the background, if desired, without holding up
the study of other features like continuity.

Set-valued mappings can be combined in a number of ways to get new
mappings. Addition and scalar multiplication are defined by

(S1 + S2)(x) := S1(x) + S2(x), (λS)(x) = λS(x),

where the right sides use Minkowski addition and scalar multiplication of sets
as introduced in Chapter 1; similarly for S1 − S2 and −S. Composition of
S : IRn →→ IRm with T : IRm →→ IRp is defined by

(T ◦S)(x) := T
(
S(x)

)
=

⋃
u∈S(x)

T (u) =
{
w
∣∣S(x) ∩ T−1(w) �= ∅}

to get a mapping T ◦S : IRn →→ IRp. In the case of single-valued S and T , this
reduces to the usual notion of composition. Clearly (T ◦S)−1 = S−1◦T−1.

Many problems of applied mathematics can be solved by computing a fixed
point of a possibly multivalued mapping from IRn into itself, and this generates
interest in continuity and convergence properties of such mappings.

5.3 Example (algorithmic mappings and fixed points). For a mapping S :
IRn →→ IRn, a fixed point is a point x̄ such that x̄ ∈ S(x̄). An approach to
finding such a point x̄ is to generate a sequence {xν}ν∈IN from a starting point
x0 by the rule xν ∈ S(xν−1). This implies that

x1 ∈ S(x0), x2 ∈ (S◦S)(x0), . . . , xν ∈ (S◦ · · · ◦S)(x0).
More generally, a numerical procedure may be built out of a sequence of algo-
rithmic mappings T ν : IRn →→ IRn through the rule xν ∈ T ν(xν−1), where T ν

is some kind of approximation to S at xν−1.

In the framework of Example 5.3, not only are the continuity notions im-
portant, but also the ways in which a sequence of set-valued mappings might
be said to converge to another set-valued mapping. Questions of local approx-
imation, perhaps through some form of generalized differentiation, also pose a
challenge. A central aim of the theory of set-valued mappings is to provide the
concepts and results that support these needs of analysis. Continuity will be
studied here and generalized differentiability in Chapter 8.
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B. Continuity and Semicontinuity

Continuity properties of mappings S : IRn →→ IRm can be developed in terms of
outer and inner limits like those in 4.1:

lim sup
x→x

S(x) : =
⋃

xν→x̄

lim sup
ν→∞

S(xν)

=
{
u
∣∣∣ ∃xν → x̄, ∃uν → u with uν ∈ S(xν)

}
,

lim inf
x→x

S(x) : =
⋂

xν→x̄

lim inf
ν→∞ S(xν)

=
{
u
∣∣∣ ∀xν → x̄, ∃N ∈ N∞, u

ν→
N u with uν ∈ S(xν)

}
.

5(1)

5.4 Definition (continuity and semicontinuity). A set-valued mapping S :
IRn →→ IRm is outer semicontinuous (osc) at x̄ if

lim sup
x→x̄

S(x) ⊂ S(x̄),

or equivalently lim supx→x̄ S(x) = S(x̄), but inner semicontinuous (isc) at x̄ if

lim inf
x→x̄

S(x) ⊃ S(x̄),

or equivalently when S is closed-valued, lim infx→x̄ S(x) = S(x̄). It is called
continuous at x̄ if both conditions hold, i.e., if S(x)→ S(x̄) as x→ x̄.

These terms are invoked relative to X , a subset of IRn containing x̄, when
the properties hold in restriction to convergence x → x̄ with x ∈ X (in which
case the sequences xν → x in the limit formulas are required to lie in X).

The equivalences follow from the fact that the constant sequence xν ≡ x̄ is
among those considered in 5(1). For this reason S(x̄) must be a closed set when
S is outer semicontinuous at x̄, whether in the main sense or merely relative to
some subset X . Note further that when S is inner semicontinuous at a point
x̄ ∈ domS relative to X , there must be a neighborhood V ∈ N(x̄) such that
X ∩ V ⊂ domS. When X = IRn this requires x̄ ∈ int(domS).

Clearly, a single-valued mapping F : X → IRm is continuous in the usual
sense at x̄ relative to X if and only if it is continuous at x̄ relative to X as a
mapping IRn →→ IRm handled under Definition 5.4.

5.5 Example (profile mappings). For a function f : IRn → IR, the epigraphical
profile mapping Ef : IRn →→ IR1, defined by Ef (x) =

{
α ∈ IR ∣∣α ≥ f(x)

}
, has

gphEf = epi f , domEf = dom f , and E−1
f (α) = lev≤α f .

Furthermore, Ef is osc at x̄ if and only if f is lsc at x̄, whereas it is isc at
x̄ if and only if f is usc at x̄. Thus too, Ef is continuous at x̄ if and only if f
is continuous at x̄. On the other hand, the level-set mapping α �→ lev≤α f is
osc everywhere if and only if f is lsc everywhere.
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Analogous properties hold for the hypographical profile mapping Hf :
IRn →→ IR1 with Hf (x) =

{
α ∈ IR ∣∣α ≤ f(x)

}
, gphHf = hypo f .

f

x

IR

nIR

fE (x)

fgph E = epi f

Fig. 5–2. The epigraphical profile mapping associated with a function f .

As a further illustration of the meaning of Definition 5.4, Figure 5–3(a)
displays a mapping that fails to be inner semicontinuous at x despite being
outer semicontinuous at x and in fact continuous at every x′ �= x. In Figure
5–3(b) the mapping S is isc at x but fails to be osc at that point.

(a) (b)

gph S gph S

x x

mIR mIR

nIR nIR

(x, S(x))
(x, S(x))

Fig. 5–3. (a) An osc mapping that fails to be isc at x. (b) An isc mapping.

5.6 Exercise (criteria for semicontinuity at a point). Consider a mapping S :
IRn →→ IRm, a set X ⊂ IRn, and any point x̄ ∈ X .

(a) S is osc at x̄ relative to X if and only if for every u /∈ S(x̄) there are
neighborhoods W ∈ N (u) and V ∈ N (x̄) such that X ∩ V ∩ S−1(W ) = ∅.

(b) S is isc at x̄ relative toX if and only if for every u ∈ S(x̄) andW ∈ N (u)
there is a neighborhood V ∈ N (x̄) such that X ∩ V ⊂ S−1(W ).

(c) S is osc at x̄ relative toX if and only if xν ∈ X , xν → x̄ and S(xν)→ D
imply D ⊂ S(x̄).

(d) S is isc at x̄ relative to X if and only if xν ∈ X , xν → x̄ and S(xν)→ D
imply D ⊃ S(x̄).

Guide. For (a) and (b) use the hit-and-miss criteria for set convergence in
Theorem 4.5. For (c) and (d) appeal to the cluster description of inner and
outer limits in Proposition 4.19.
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5.7 Theorem (characterizations of semicontinuity). For S : IRn →→ IRm,

(a) S is osc (everywhere) if and only if gphS is closed in IRn× IRm; more-
over, S is osc if and only if S−1 is osc;

(b) when S closed-valued, S is osc relative to a set X ⊂ IRn if and only if
S−1(B) is closed relative to X for every compact set B ⊂ IRm;

(c) S is isc relative to a set X ⊂ IRn if and only if S−1(O) is open relative
to X for every open set O ⊂ IRm.

Proof. The claims in (a) are obvious from the definition of outer semicontinu-
ity. Every sequence in a compact set B ⊂ IRm has a convergent subsequence,
and on the other hand, a set consisting of a convergent sequence and its limit
is a compact set. Therefore, the image condition in (b) is equivalent to the
condition that whenever uν → ū, xν ∈ S−1(uν) and xν → x̄ with xν ∈ X and
x̄ ∈ X , one has x̄ ∈ S−1(ū). Since xν ∈ S−1(uν) is the same as uν ∈ S(xν),
this is precisely the condition for S to be osc relative to X .

Failure of the condition in (c) means the existence of an open set O and
a sequence xν → x̄ in X such that x̄ ∈ S−1(O) but xν /∈ S−1(O); in other
words, S(x̄) ∩ O �= ∅ yet S(xν) ∩ O = ∅ for all ν. This property says that
lim infν S(x

ν) �⊃ S(x̄). Thus, the condition in (c) fails if and only if S fails to
be isc relative to X at some point x̄ ∈ X .

Although gphS is closed when S is osc, and S is closed-valued in that
case (the sets S(x) are all closed), the sets domS and rgeS don’t have to be
closed then. For example, the set-valued mapping S : IR1 →→ IR1 defined by

gphS =
{
(x, u) ∈ IR2

∣∣x �= 0, u ≥ 1/x2
}

is osc but has domS = IR1 \ {0} and rgeS = (0,∞), neither of which is closed.

5.8 Example (feasible-set mappings). Suppose T : IRd →→ IRn is defined relative
to a set W ⊂ IRd by T (w) = ∅ for w /∈W , but otherwise

T (w) =
{
x ∈ X ∣∣ fi(x, w) ≤ 0 for i ∈ I1 and fi(x, w) = 0 for i ∈ I2

}
,

where X is a closed subset of IRn and each fi is a continuous real-valued
function on X ×W . (Here W could be all of IRd, and X all of IRn.)

If W is closed, then T is osc. Even if W is not closed, T is osc at any
point w̄ ∈ intW . Moreover domT is the set of vectors w ∈ W for which the
constraints in x that define T (w) are consistent.

Detail. When W is closed, gph T is closed—because it is the intersec-
tion of X × W with the various sets

{
(x, w)

∣∣ fi(x, w) ≤ 0
}

for i ∈ I1 and{
(x, w)

∣∣ fi(x, w) = 0
}
for i ∈ I2, which are closed by the continuity of the fi’s.

This is why T is osc then. The assertion when W isn’t itself closed comes from
replacing W by a closed neighborhood of w̄ within W .

It’s useful to observe that outer semicontinuity is a constructive property in
the sense that it can be created by passing, if necessary, from a given mapping
S : IRn →→ IRm to the mapping clS : IRn →→ IRm defined by
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gph(clS) := cl(gphS). 5(2)

This mapping is called the closure of S, or its osc hull, and it has the formula

(clS)(x) = lim sup
x′→x

S(x′) for all x. 5(3)

Inner semicontinuity of a given mapping is typically harder to verify than
outer semicontinuity, and it isn’t constructive in such an easy sense. (The
mapping defined as in 5(3), but with liminf on the right, isn’t necessarily isc.)
But an effective calculus of ‘strict’ continuity, a Lipschitzian property of map-
pings introduced in Chapter 9 which entails continuity and in particular inner
semicontinuity, will be developed in Chapter 10. For now, we content ourselves
with special criteria for inner semicontinuity that depend on convexity.

As already noted, a mapping S : IRn →→ IRm is called convex-valued when
S(x) is a convex set for all x. A stronger property, implying this, is of interest
as well: S is called graph-convex when the set gphS is convex in IRn× IRm, cf.
Figure 5–4, in which case domS and rgeS are convex too. Graph-convexity
of S is equivalent to having

S
(
(1− τ)x0 + τx1

) ⊃ (1− τ)S(x0) + τS(x1) for τ ∈ (0, 1). 5(4)

5.9 Theorem (inner semicontinuity from convexity). Consider a mapping S :
IRn →→ IRm and a point x̄ ∈ IRn.

(a) If S is convex-valued and intS(x̄) �= ∅, then a necessary and sufficient
condition for S to be isc relative to domS at x̄ is that for all u ∈ intS(x̄) there
exists W ∈ N (x̄, u) such that W ∩ (domS × IRm) ⊂ gphS; in particular, S is
isc at x̄ if and only if (x̄, u) ∈ int(gphS) for every u ∈ intS(x̄).

(b) If S is graph-convex and x̄ ∈ int(domS), then S is isc at x̄.

(c) If S is isc at x̄, then so is the convex hull mapping T : x �→ conS(x).

int S(x)

x

gph S

nIR

mIR

Fig. 5–4. Inner semicontinuity through graph-convexity.

Proof. In (a), the assumption that there exists (V × U) ∈ N (x̄)×N (ū) such
that (V ∩ domS)× U ⊂ gphS implies that every sequence {xν}ν∈IN ⊂ domS
converging to x̄ will eventually enter and stay in V ∩ domS, and for those xν

one can find uν ∈ U ⊂ S(xν) converging to ū. This clearly yields the inner
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semicontinuity of S relative to domS. For the converse, suppose that S is
isc relative to domS at x̄ and let B be a compact neighborhood of ū within
intS(x̄). For any sequence xν → x̄ in domS, we eventually have B ⊂ intS(xν)
by 4.15. It follows that for some neighborhood V ∈ N (x̄), one has B ⊂ intS(x)
for all x ∈ V ∩ domS. Then V × B is a neighborhood of (x̄, ū) such that
(V ×B ∩ domS × IRn) ⊂ gphS.

In (b), denote the convex set gphS by G and the linear mapping (x, u) �→
x by L. To say that S(x) depends inner semicontinuously on x is to say
that L−1(x) ∩ G has this property. But that’s true by 4.32(c) at any point
x̄ ∈ int(domS), because the convex sets {x̄} and L(G) = domS can’t be
separated.

If ū ∈ T (x̄) = conS(x̄), then ū =
∑m

k=0 λ
kuk with λk ≥ 0,

∑m
k=0 λ

k = 1,
and uk ∈ S(x̄) (2.27). Inner semicontinuity of S means that when xν → x̄, one
can find ukν → uk such that ukν ∈ S(xν). The sequence uν =

∑m
k=0 λ

kukν con-
verges to ū and for all ν, uν ∈ S(xν). This implies that T (x̄) ⊂ lim infν T (x

ν)
for all xν → x, i.e., T is isc at x̄ as claimed in (c).

Automatic continuity properties of graph-convex mappings that go farther
than the one in 5.9(b) will be developed in Chapter 9 (see 9.33, 9.34, 9.35).

5.10 Example (parameterized convex constraints). Suppose

T (w) =
{
x
∣∣ fi(x, w) ≤ 0 for i = 1, . . . , m

}
for finite, continuous functions fi on IR

n × IRd such that fi(x, w) is convex in
x for each w. If for w̄ there is a point x̄ such that fi(x̄, w̄) < 0 for i = 1, . . . , m,
then T is continuous not only at w̄ but at every w in some neighborhood of w̄.

Detail. Let f(x, w) = max
{
f1(x, w), . . . , fm(x, w)

}
. Then f is continuous in

(x, w) (by 1.26(c)) and convex in x (by 2.9(b)), with lev≤0 f = gphT . The
level set lev≤0 f is closed in IRn × IRd, hence T is osc by 5.7(a). For each w,
T (w) is the level set lev≤0 f( · , w) in IRn, which is convex (by 2.7). For x̄ and
w̄ as postulated we have f(x̄, w̄) < 0, and then by continuity f(x̄, w) < 0 for
all w in some open set O containing w̄. According to 2.34 this implies

intT (w) =
{
x
∣∣ f(x, w) < 0

} �= ∅ for all w ∈ O.
For any w̃ ∈ O and any x̃ ∈ intT (w̃), the continuity of f and the fact that
f(x̃, w̃) < 0 yield a neighborhoodW ⊂ O×intT (w̃) of (x̃, w̃) which is contained
in gph T and such that f < 0 on W . Then certainly x̃ belongs to the inner
limit of T (w) as w → w̃. This inner limit, which is a closed set, therefore
includes intT (w̃), so it also includes cl

(
intT (w̃)

)
, which is T (w̃) by Theorem

2.33 because T (w̃) is a closed, convex set and intT (w̃) �= ∅. This tells us that
T is isc at w̃.

5.11 Proposition (continuity of distances). For a closed-valued mapping S :
IRn →→ IRm and a point x̄ in a set X ⊂ IRn,
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(a) S is osc at x̄ relative to X if and only if for every u ∈ IRm the function
x �→ d

(
u, S(x)

)
is lsc at x̄ relative to X .

(b) S is isc at x̄ relative to X if and only if for every u ∈ IRm the function
u �→ d

(
u, S(x)

)
is usc at x̄ relative to X .

(c) S is continuous at x̄ relative to X if and only if for every u ∈ IRm the
function x �→ d

(
u, S(x)

)
is continuous at x̄ relative to X .

Proof. This is immediate from the criteria for set convergence in 4.7.

5.12 Proposition (uniformity of approximation in semicontinuity). For a closed-
valued mapping S : IRn →→ IRm and a point x̄ in a set X ⊂ IRn:

(a) S is osc at x̄ relative to X if and only if for every ρ > 0 and ε > 0 there
is a neighborhood V ∈ N (x̄) such that

S(x) ∩ ρIB ⊂ S(x̄) + εIB for all x ∈ X ∩ V.
(b) S is isc at x̄ relative to X if and only if for every ρ > 0 and ε > 0 there

is a neighborhood V ∈ N (x̄) such that

S(x̄) ∩ ρIB ⊂ S(x) + εIB for all x ∈ X ∩ V.
Proof. This just adapts of 4.10 to the language of set-valued mappings.

5.13 Exercise (uniform continuity). Consider a closed-valued mapping S :
IRn →→ IRm and a compact set X ⊂ domS. If S is continuous relative to
X , then for any ρ > 0 and ε > 0 there exists δ > 0 such that

S(x′) ∩ ρIB ⊂ S(x) + εIB for all x′, x ∈ X with |x′ − x| ≤ δ.
Guide. Apply 5.12(a) and 5.12(b) simultaneously at each point x̄ of X to get
an open neighborhood of that point for which both of the inclusions in 5.12
hold simultaneously. Invoking compactness, cover B by finitely many such
neighborhoods. Choose δ small enough that for every closed ball IB(x̃, δ) with
x̃ ∈ X , the set IB(x̃, δ) ∩ X must lie within at least one of these covering
neighborhoods.

Both 5.12 and 5.13 obviously continue to hold when the balls ρIB are
replaced by the collection of all bounded sets B ⊂ IRm. Likewise, the balls εIB
can be replaced by the collection of all neighborhoods U of the origin in IRm.

C. Local Boundedness

A continuous single-valued mapping carries bounded sets into bounded sets. In
understanding the connections between continuity and boundedness properties
of potentially multivalued mappings, the following concept is the key.

5.14 Definition (local boundedness). A mapping S : IRn →→ IRm is locally
bounded at a point x̄ ∈ IRn if for some neighborhood V ∈ N (x̄) the set
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S(V ) ⊂ IRm is bounded. It is called locally bounded on IRn if this holds
at every x̄ ∈ IRn. It is bounded on IRn if rgeS is a bounded subset of IRm.

Local boundedness at a point x̄ requires S(x̄) to be a bounded set, but
more, namely that for all x in some neighborhood V of x̄, the sets S(x) all lie
within a single bounded set B, cf. Figure 5–5. This property can equally well
be stated as follows: there exist δ > 0 and ρ > 0 such that if |x − x̄| ≤ δ and
u ∈ S(x), then |u| ≤ ρ. In the notation for closed Euclidean balls this means
that S

(
IB(x̄, δ)

) ⊂ IB(0, ρ).
In particular, S is locally bounded at any point x̄ /∈ cl (domS). This fits

trivially with the definition, because for such a point x̄ there is a neighborhood
V ∈ N (x̄) that misses domS and therefore has S(V ) = ∅. (The empty set is,
of course, regarded as bounded.)

S(V)

graph S

IR
V

x

n

IRm

Fig. 5–5. Local boundedness.

5.15 Proposition (boundedness of images). A mapping S : IRn →→ IRm is locally
bounded if and only if S(B) is bounded for every bounded set B. This is
equivalent to the property that whenever uν ∈ S(xν) and the sequence {xν}ν∈IN

is bounded, then the sequence {uν}ν∈IN is bounded.

Proof. The condition is sufficient, since for any point x we can select a bounded
neighborhood V ∈ N (x) and conclude that S(V ) is bounded. To show that it
is necessary, consider any bounded set B ⊂ IRn, and for each x ∈ clB use the
local boundedness to select an open Vx ∈ N (x) such that S(Vx) is bounded.
The set clB is compact, so it is covered by a finite collection of the sets Vx,
say Vx1

, . . . , Vxk
. Denote the union of these by V . Then S(B) ⊂ S(V ) =

S(Vx1
) ∪ . . . ∪ S(Vxk

), where the set on the right, being the union of a finite
collection of bounded sets, is bounded. Thus S(B) is bounded. The sequential
version of the condition is apparent.

5.16 Exercise (local boundedness of inverses). The inverse S−1 of a mapping
S : IRn →→ IRm is locally bounded if and only if

|xν | → ∞, uν ∈ S(xν) =⇒ |uν | → ∞.
It should be remembered in 5.16 that the condition holds—vacuously—

when there are no sequences {xν}ν∈IN and {uν}ν∈IN with uν ∈ S(xν) such
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that |xν | → ∞. This is the case where the set domS = rgeS−1 is bounded, so
S−1 is a bounded mapping, not just locally bounded.

5.17 Example (level boundedness as local boundedness).

(a) For a function f : IRn → IR, the mapping α �→ lev≤α f is locally
bounded if and only if f is level-bounded.

(b) For a function f : IRn × IRm → IR, one has f(x, u) level-bounded in
x locally uniformly in u if and only if, for each α ∈ IR, the mapping u �→{
x
∣∣ f(x, u) ≤ α

}
is locally bounded. The mapping (u, α) �→ {

x
∣∣ f(x, u) ≤ α

}
is then locally bounded too.

S

S(x)

x nIR x

8S (x)

S8

n
IR

IRm
mIR

Fig. 5–6. A mapping S and the associated horizon mapping S∞.

A useful criterion for the local boundedness of S : IRn →→ IRm can be stated
in terms of the horizon mapping S∞ : IRn →→ IRm, which is specified by

gphS∞ := (gphS)∞. 5(5)

This graphical definition means that

S∞(x) =
{
u = limν λ

νuν
∣∣uν ∈ S(xν), λνxν → x, λν ↘ 0

}
. 5(6)

Note that since the graph of S∞ is a closed cone in IRn × IRm, S∞ is osc with
0 ∈ S∞(0). Also, S∞(λx) = λS∞(x) for λ > 0; in other words, S∞ is positively
homogeneous. If S is graph-convex, so is S∞. Clearly (S−1)∞ = (S∞)−1.

When S is a linear mapping L, one has S∞ = L because the set gphS =
gphL is a linear subspace of IRn × IRm and thus is its own horizon cone. An
affine mapping S(x) = L(x) + b has S∞ = L.

5.18 Theorem (horizon criterion for local boundedness). A sufficient condition
for a mapping S : IRn →→ IRm to be locally bounded is S∞(0) = {0}, and then
the horizon mapping S∞ is locally bounded as well.

When S is graph-convex and osc, this criterion is fulfilled if there exists a
point x̄ such that S(x̄) is nonempty and bounded.

Proof. If S is not locally bounded at a point x̄, there exist by 5.15 sequences
xν → x̄ and uν ∈ S(xν) with 0 < |uν | → ∞. Then the sequence of points
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(xν , uν) in gphS is unbounded, but for λν = 1/|uν | the sequence of points
λν(xν , uν) is bounded and has a cluster point (0, u) with |u| = 1. Then (0, u) ∈
(gphS)∞ and 0 �= u ∈ S∞(0), so the condition is violated.

Because (gphS)∞ is a closed cone, we have ((gphS)∞)∞ = (gphS)∞ and
consequently (S∞)∞ = S∞. Thus, when S∞(0) = {0}, the mapping T = S∞

has T∞(0) = {0} and, by the argument already given, is locally bounded.

When S is graph-convex and osc, gphS is convex and closed. Then for any
pair (x̄, ū) ∈ gphS, a vector u ∈ S∞(0) if and only if (x̄, ū) + τ(0, u) ∈ gphS
for all τ ≥ 0, or in other words, ū+ τu ∈ S(x̄) for all τ ≥ 0 (cf. 3.6). This can
only hold for u = 0 when S(x̄) is bounded.

Theorem 5.18 opens the way to establishing the local boundedness of a
mapping S by applying to gphS the horizon cone formulas in Chapter 3.
The fact that the condition isn’t necessary for S to be locally bounded, merely
sufficient, is seen from examples like S : IR→ IR with S(u) = u2. This mapping
is locally bounded, yet S∞(0) = [0,∞). The condition in 5.18 is helpful anyway
because of the convenient calculus that can be built around it.

5.19 Theorem (outer semicontinuity under local boundedness). Suppose that
S : IRn →→ IRm is locally bounded at the point x̄. Then the following condition
is equivalent to S being osc at x̄: the set S(x̄) is closed, and for every open set
O ⊃ S(x̄) there is a neighborhood V ∈ N (x̄) such that S(V ) ⊂ O.

Proof. Suppose S is osc at x̄; then S(x̄) is closed. Consider any open set O ⊃
S(x̄). If there were no V ∈ N (x̄) such that S(V ) ⊂ O, a sequence xν → x̄ would
exist with S(xν) �⊂ O. Then for each ν we could choose uν ∈ S(xν) \O and
get a sequence that’s bounded, by virtue of the local boundedness assumption
on S, cf. 5.14, yet lies entirely in the complement of O, which is closed. This
sequence would have a cluster point ū, likewise in the complement of O and
not, therefore, in S(x̄). Thus, for some index set N ∈ N#

∞ we would have
xν→N x̄, uν→N ū, uν ∈ S(xν) but ū /∈ S(x̄), in contradiction of the supposed
outer semicontinuity of S at x̄. Hence the condition is necessary.

For the sufficiency, assume that the proposed condition holds. Consider
arbitrary sequences xν → x̄ and uν → ū with uν ∈ S(xν). We must verify
that ū ∈ S(x̄). If this were not the case, then, since S(x̄) is closed, there would
be a closed ball IB(ū, δ) having empty intersection with S(x̄). Let O be the
complement of this ball. Then O is an open set which includes S(x̄) and is
such that eventually uν lies outside of O, in contradiction to the assumption
that S(xν) ⊂ O once xν comes within a certain neighborhood V ∈ N (x̄).

5.20 Corollary (continuity of single-valued mappings). For any single-valued
mapping F : IRn → IRm, viewed as a special case of a set-valued mapping, the
following properties are equivalent:

(a) F is continuous at x̄;

(b) F is osc at x̄ and locally bounded at x̄;

(c) F is isc at x̄.
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A single-valued mapping F : IRn → IRm that isn’t continuous at a point x̄
can be osc at x̄ as a set-valued mapping without being locally bounded there.
This is illustrated by the case of F : IR1 → IR1 defined by F (0) = 0 but
F (x) = 1/x for x �= 0. Local boundedness fails at x̄ = 0.

The neighborhood property in 5.19 need not hold for a set-valued mapping
S for which S(x) may be unbounded, even if S is continuous. That’s just as well,
because the property is incompatible with intuitive notions of an unbounded
set varying continuously with parameters, despite its formal appeal. This is
evident in Figure 5–7, which depicts a ray rotating at a uniform rate about the
origin in IR2. The ray is S(t), and we consider what happens to it as t → t0.
A particular choice of open set O ⊃ S(t0) is indicated. No matter how near
t is to t0, as long as t �= t0, the set S(t) is never included in O. Thus, if we
were to demand that the neighborhood property in 5.19 be fulfilled as part of a
general definition of continuity for set-valued mappings, unbounded as well as
bounded, we would be unable to say that the rotating ray moves ‘continuously’,
which would be a highly unsatisfactory state of affairs. The ray does rotate
continuously in the sense of Definition 5.4.

O

S(t)

IR

IR 0S(t )

Fig. 5–7. A rotating ray.

The appropriately weaker version of the neighborhood property in 5.19
that corresponds precisely to outer semicontinuity is easily obtained through
consideration of truncations of S, i.e., mappings of the form

S∩B : x �→ S(x) ∩B.
Clearly S is osc if and only if all its truncations S∩B for compact sets B are
osc; hence S is osc if and only if all such truncations (which themselves are
locally bounded mappings) satisfy the neighborhood property in question.

Theorem 5.19 helps to clarify the extent to which continuity can be char-
acterized using the Pompeiu-Hausdorff distance dl∞(C,D) between sets C and
D, as defined in 4.13. The fact that a bounded sequence of nonempty, closed
sets Cν converges to a nonempty, closed set C if and only if dl∞(Cν , C) → 0
(cf. 4.40) gives the following.

5.21 Corollary (continuity of locally bounded mappings). Let S : IRn →→ IRm
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be locally bounded at x̄ with S(x) nonempty and closed for all x in some
neighborhood of x̄. Then S is continuous at x̄ if and only if the Pompeiu-
Hausdorff distance dl∞

(
S(x), S(x̄)

)
tends to 0 as x→ x̄.

When local boundedness is absent, Pompeiu-Hausdorff distance is no guide
to continuity, since one can have S(x)→ S(x̄) while dl∞

(
S(x), S(x̄)

)→∞, even
in some cases where S(x) is nonempty and compact for all x; cf. 4.13. To get
a distance description of continuity under all circumstances, one has to appeal
to a metric such as dl

(
S(x), S(x̄)

)
; cf. 4.36. Alternatively, one can work with

the family of pseudo-metrics dlρ and their estimates d̂lρ as in 4(11); cf. 4.35.

Local boundedness of a mapping S, like outer semicontinuity, can be con-
sidered relative to a set X by replacing the neighborhood V in Definition 5.14
by V ∩X . Such local boundedness at a point x̄ ∈ X is nothing more than the
ordinary local boundedness of the mapping S

∣∣
X

that ‘restricts’ S to X ,

S
∣∣
X
(x) :=

{
S(x) if x ∈ X ,
∅ if x /∈ X ,

which can also be viewed as an inverse truncation: S
∣∣
X

=
(
S−1
∩X

)−1
. All

the results that have been stated about local boundedness, in particular 5.19
and 5.20, carry over to such relativization in the obvious manner, through
application to S

∣∣
X

in place of S. This is useful in situations like the following.

5.22 Example (optimal-set mappings). Suppose P (u) := argminx f(x, u) for a
proper, lsc function f : IRn × IRm → IR with f(x, u) level-bounded in x locally
uniformly in u. Let p(u) := infx f(x, u), and consider a set U ⊂ dom p.

The mapping P : IRm →→ IRn is locally bounded relative to U if p is locally
bounded from above relative to U . It is osc relative to U in addition, if p is
actually continuous relative to U .

In particular, P is continuous relative to U at any point ū ∈ U where it is
single-valued and p is continuous relative to U .

Detail. This restates part of 1.17 in the terminology now available.

5.23 Example (proximal mappings and projections).

(a) For any nonempty set C ⊂ IRn, the projection mapping PC is every-
where osc and locally bounded.

(b) For any proper, lsc function f : IRn → IR that is proximally bounded
with threshold λf , and any λ ∈ (0, λf ), the proximal mapping Pλf is every-
where osc and locally bounded.

Detail. This specializes 5.22 to the mappings in 1.20 and 1.22; cf. 1.25.

5.24 Exercise (continuity of perturbed mappings). Suppose S = S0 + T for
mappings S0, T : IRn →→ IRm, and let x̄ be a point where T is continuous and
locally bounded. If S0 is osc, isc, or continuous at x̄, then that property holds
also for S at x̄.
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In particular, if S : IRn × IRm has the form S(x) = C + F (x) for a closed
set C ⊂ IRm and a continuous mapping F : IRn → IRm, then S is continuous.

The outer semicontinuity of a mapping S : IRn →→ IRm doesn’t entail
necessarily that S(C) and S−1(D) are closed sets when C and D are closed,
as we’ve already seen in the case of S(IRn) and S−1(IRm). Other assumptions
have to be added for such conclusions, and again local boundedness has a role.

5.25 Theorem (closedness of images). Let S : IRn →→ IRm be osc, C a closed
subset of IRn, and D a closed subset of IRm. Then,

(a) S(C) is closed if C is compact or S−1 is locally bounded (implying that
rgeS is closed).

(b) S−1(D) is closed if D is compact or S is locally bounded (implying that
domS is closed).

Proof. In (b), the first assertion applies 5.7(b) with X = IRn. For the sec-
ond assertion, suppose S is locally bounded as well as osc, and consider any
closed set D ⊂ IRm; we wish to verify that S−1(D) is closed. It’s enough to
demonstrate that S−1(D) is locally closed everywhere, or equivalently, that
S−1(D) ∩ B is closed for every compact set B ⊂ IRn. But S−1(D) ∩ B is
the image of (gphS) ∩ (B × D) under the projection (x, u) �→ x. The set
(gphS) ∩ (B × D) is closed because gphS, B and D are all closed, and it
is bounded because it’s included in B × S(B), which is bounded (by 5.15);
hence it is compact. The image of a compact set under a continuous map-
ping is compact, so we conclude that S−1(D) ∩B is compact, hence closed, as
required.

Now (a) follows by symmetry, since the outer semicontinuity of S is equiv-
alent to that of S−1, cf. 5.7(a).

5.26 Exercise (horizon criterion for a closed image). Let S : IRn →→ IRm be osc.

(a) S(C) is closed when C is closed and (S∞)−1(0) ∩ C∞ = {0} (as is true
if (S∞)−1(0) = {0} or if C∞ = {0}). Then S(C)∞ ⊂ S∞(C∞).

(b) S−1(D) is closed when D is closed and S∞(0)∩D∞ = {0} (as is true if
S∞(0) = {0} or if D∞ = {0}). Then S−1(D)∞ ⊂ (S∞)−1(D∞).

Guide. By 5.7(a), it suffices to verify (b). The closedness of S−1(D) can be
established by showing that the mapping SD : u �→ S(u)∩D is locally bounded
when the horizon assumption is fulfilled. This yields S∞

D (0) = {0}.
A counterexample to the inclusion S(C)∞ ⊂ S∞(C∞) holding without

some extra assumption is furnished by the single-valued mapping S : IR1 → IR1

with S(u) =
√|u| and the set C = [0,∞). A case in which S(C)∞ ⊂ S∞(C∞)

but S(C)∞ �= S∞(C∞) is encountered in the mapping S : IR1 → IR1 with
S(u) = u sinu and the set C =

{
0,±π,±2π, . . .}.
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D. Total Continuity

The notion of continuity in Definition 5.4 for set-valued mappings S is powerful
and apt for many purposes, and it makes topological sense in corresponding
to the continuity of the single-valued mapping which assigns to each point x
a set S(x) as an element of a space of sets, this ‘hyperspace’ being endowed
with the topology induced by Painlevé-Kuratowski convergence (as developed
near the end of Chapter 4). Yet this notion of continuity has shortcomings as
well. Figure 5–8 depicts a mapping S : IR1 →→ IR1 which is continuous at 0
according to 5.4, despite the appearance of a feature looking very much like a
‘discontinuity’. Here S(x) = {1 + x−1, 1} for x �= 0, while S(0) = {1}, so that
S(x) does tend to S(0) as x tends to 0, just as continuity requires. Note that
S isn’t locally bounded at 0.

This example clashes with our geometric intuition because convergence of
unbounded sequences to direction points isn’t taken into account by Definition
5.4. If we think of the sets S(x) as lying in the one-dimensional cosmic space
csm IR1, identified with IR in letting ∞ ↔ dir 1 and −∞ ↔ dir(−1), we see
that S(x)→c {1,∞} as x tends to 0 from the right, whereas S(x)→c {1,−∞} as
x tends to 0 from the left. These cosmic limits differ from each other and from
S(0) = {1}, and that’s the source of our feeling of ‘discontinuity’, even though
S(x) → S(0) from both sides in the Painlevé-Kuratowski context. Intuitively,
therefore, we find it hard in some situations to accept the version of continuity
dictated by ordinary set convergence and may wish to have at our disposal an
alternative version that utilizes cosmic limits.

x IR

IR

Sgph

Fig. 5–8. An everywhere continuous set-valued mapping: S(x) → S(0) as x → 0.

Such thinking leads us to introduce continuity concepts that appeal to the
framework of mappings S : IRn →→ csm IRm in order to quantify the behavior of
unbounded sequences of elements uν ∈ S(xν) in terms of convergence to points
of hzn IRm. Hardly any additional effort is needed, beyond a straightforward
translation of the conditions in Definition 5.4 along the same lines that were
followed for the corresponding extension of set convergence in Chapter 4.
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Thus, cosmic continuity at x̄ ∈ IRn for a mapping S : IRn →→ csm IRm

is taken to mean that S(xν)→c S(x̄) whenever xν → x̄; similarly for cosmic
outer and inner semicontinuity. Cosmic outer semicontinuity at every point
x̄ corresponds to gphS being closed as a subset of IRn × csm IRm. The defi-
nition of ‘subgradients’ in Chapter 8 will draw on the notion of cosmic outer
semicontinuity (cf. 8.7), and the following fact will then be helpful. Here we
employ horizon limits in the same extended sense that was introduced in 5(1)
for ordinary set limits.

5.27 Proposition (cosmic semicontinuity). A mapping S : IRn →→ csm IRm,
written as S(x) = C(x) ∪ dirK(x) with C(x) a set in IRm and K(x) a cone in
IRm, is cosmically outer semicontinuous at x̄ if and only if

C(x̄) ⊃ lim sup
x→x̄

C(x), K(x̄) ⊃ lim sup
x→x̄

∞C(x) ∪ lim sup
x→x̄

K(x),

whereas the corresponding condition for cosmic inner semicontinuity is

C(x̄) ⊂ lim inf
x→x̄

C(x), K(x̄) ⊂ lim inf
x→x̄

∞ C(x) ∪ lim inf
x→x̄

K(x).

Proof. This is obvious from 4.20.

Note that the mapping in Figure 5–8 isn’t cosmically osc at 0, much less
cosmically continuous there, although it’s continuous at 0 in the ordinary, non-
cosmic sense, as already observed. This highlights very well the distinction
between ordinary and cosmic continuity and the reasons why, in some situa-
tions, it might be desirable to insist on the latter. Actually, for most purposes
it’s not necessary to pass to the full cosmic setting, because the concept of total
convergence introduced in 4.23 can serve the same ends in IRn itself.

5.28 Definition (total continuity). A mapping S : IRn →→ IRm is said to be
totally continuous at x̄ if S(x)→t S(x̄) whenever x→ x̄, or equivalently if

lim
x→x̄

S(x) = S(x̄), lim
x→x̄

∞ S(x) = S(x̄)∞.

It is totally outer semicontinuous at x̄ if at least

lim sup
x→x̄

S(x) ⊂ S(x̄), lim sup
x→x̄

∞ S(x) ⊂ S(x̄)∞.

Total inner semicontinuity at a point x̄ ∈ domS could likewise be defined
as meaning that

lim inf
x→x̄

S(x) ⊃ S(x̄), lim inf
x→x̄

∞ S(x) ⊃ S(x̄)∞,

but this would be superfluous because the first of these inclusions always entails
the second (cf. 4.21(c)). Total inner semicontinuity therefore wouldn’t be any
stronger than ordinary inner semicontinuity.

5.29 Proposition (criteria for total continuity). A mapping S : IRn →→ IRm is
totally continuous at x̄ if and only if it is continuous at x̄ and has
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lim sup
x→x̄

∞ S(x) ⊂ S(x̄)∞.

Total continuity at x̄ is automatic from continuity when S is convex-valued or
cone-valued on a neighborhood of x̄, or when S is locally bounded at x̄.

Proof. These facts are obvious from 4.24 and 4.25.

5.30 Exercise (images of converging sets). Consider a mapping S : IRn →→ IRm

and sets Cν ⊂ IRn.

(a) If S is isc, one has lim infν S(C
ν) ⊃ S(lim infν C

ν).

(b) If S is osc, one has lim supν S(C
ν) ⊂ S(lim supν C

ν) provided that S−1

is locally bounded, or alternatively that (S∞)−1(0) ∩ lim sup∞
ν C

ν = {0}.
(c) If S is continuous, one has S(Cν)→ S(C) whenever Cν → C and S−1 is

locally bounded, or alternatively, whenever Cν→t C and (S∞)−1(0)∩C∞ = {0}.
(d) If S is totally continuous, one has S(Cν)→t S(C) whenever Cν→t C,

(S∞)−1(0) ∩ C∞ = {0} and (S∞)(C∞) ⊂ S(C)∞.

Guide. Extend the argument for 4.26, also utilizing ideas in 5.26.

Some results about the preservation of continuity when mappings are
added or composed together will be provided in 5.51 and 5.52.

E. Pointwise and Graphical Convergence

The ‘convergence’ of a sequence of mappings can have a number of meanings.
Let’s start with pointwise convergence.

5.31 Definition (pointwise limits of mappings). For a sequence of mappings
Sν : IRn →→ IRm, the pointwise outer limit and the pointwise inner limit are
the mappings p-lim supν S

ν and p-lim infν S
ν defined at each point x by(

p-lim supν S
ν
)
(x) := lim supν S

ν(x),(
p-lim infν S

ν
)
(x) := lim infν S

ν(x).

When the pointwise outer and inner limits agree, the pointwise limit p-limν S
ν

is said to exist; thus, S = p-limν S
ν if and only if S ⊃ p-lim supν S

ν and
S ⊂ p-lim infν S

ν . In this case the notation Sν→p S is also used, and the
mappings Sν are said to converge pointwise to S. Thus,

Sν→p S ⇐⇒ Sν(x)→ S(x) for all x.

Obviously p-lim supν S
ν ⊃ p-lim infν S

ν always. Here we use ‘⊂’ and ‘⊃’
in the sense of the natural ordering among mappings IRn →→ IRm:

S1 ⊂ S2 when gphS1 ⊂ gphS2, S1 ⊃ S2 when gphS1 ⊃ gphS2.

Definition 5.31 focuses on whole mappings, but it’s convenient sometimes to
say Sν converges pointwise to S at a point x̄ when Sν(x̄)→ S(x̄).
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Pointwise convergence of mappings Sν : IRn →→ IRm is an attractive notion
because it reduces in the single-valued case to something very familiar. It has
many important applications, but it only provides one part of the essential
picture of what convergence can signify. For many purposes it’s necessary
instead, or as well, to consider a different kind of convergence, obtained by
applying the theory of set convergence to the sets gphSν in IRn × IRm.

5.32 Definition (graphical limits of mappings). For a sequence of mappings
Sν : IRn →→ IRm, the graphical outer limit , denoted by g-lim supν S

ν , is the
mapping having as its graph the set lim supν

(
gphSν

)
:

gph
(
g-lim supν S

ν
)

= lim supν
(
gphSν

)
,(

g-lim supν S
ν
)
(x) =

{
u
∣∣∃N ∈ N#

∞, x
ν→

N x, uν→N u, uν ∈ Sν(xν)
}
.

The graphical inner limit , denoted by g-lim infν S
ν , is the mapping having as

its graph the set lim infν
(
gphSν

)
:

gph
(
g-lim infν S

ν
)

= lim infν
(
gphSν

)
,(

g-lim infν S
ν
)
(x) =

{
u
∣∣∃N ∈ N∞, x

ν→
N x, uν→N u, uν ∈ Sν(xν)

}
.

If these outer and inner limits agree, the graphical limit g-limν S
ν exists; thus,

S = g-limν S
ν if and only if S ⊃ g-lim supν S

ν and S ⊂ g-lim infν S
ν . In

this case the notation Sν→g S is also used, and the mappings Sν are said to
converge graphically to S. Thus,

Sν→g S ⇐⇒ gphSν → gphS.

The mappings g-lim supν S
ν and g-lim infν S

ν are always osc, and so too
is g-limν S

ν when it exists. This is evident from the fact that their graphs,
as certain set limits, are closed (by 4.4). These limit mappings need not be
isc, however, even when every Sν is isc. But g-lim infν S

ν is graph-convex
when every Sν is graph-convex, and then g-lim infν S

ν is isc on the interior of
dom

(
g-lim infν S

ν
)
by 5.9(b).

5.33 Proposition (graphical limit formulas at a point). For any sequence of
mappings Sν : IRn →→ IRm one has

(
g-liminfν S

ν
)
(x) =

⋃
{xν→x}

lim inf
ν→∞

Sν(xν) = lim
δ ↘ 0

[
lim inf
ν→∞

Sν(x+ δIB)

]
,

(
g-limsupν S

ν
)
(x) =

⋃
{xν→x}

lim sup
ν→∞

Sν(xν) = lim
δ ↘ 0

[
lim sup
ν→∞

Sν(x+ δIB)

]
,

where the unions are taken over all sequences xν → x. Thus, Sν converges
graphically to S if and only if, at each point x̄ ∈ IRn, one has⋃

{xν→x̄}
lim sup
ν→∞

Sν(xν) ⊂ S(x̄) ⊂
⋃

{xν→x̄}
lim inf
ν→∞

Sν(xν). 5(7)
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Proof. Let S = g-limsupν S
ν and S = g-liminfν S

ν . The expressions of S(x)
and S(x) as unions over all sequences xν → x merely restate the formulas in
Definition 5.32.

Because gphS = lim supν gphS
ν , we also have through 4.1 that u ∈ S(x)

if and only if, for all ε > 0 and δ > 0, there exists N ∈ N#
∞ such that IB(x, δ)×

IB(u, ε) meets gphSν for all ν ∈ N , or in other words

(u+ εIB) ∩ Sν(x+ δIB) �= ∅ for all ν ∈ N. 5(8)

This means that u + εIB meets lim supν S
ν(x + δIB) for all ε > 0 and δ > 0.

Since this outer limit set decreases if anything as δ decreases, we conclude that
u ∈ S(x) if and only if u ∈ limδ ↘ 0 lim supν S

ν(x+ δIB).
Similarly, because gphS = lim infν gphS

ν we obtain through 4.1 that
u ∈ S(x) if and only if, for all ε > 0 and δ > 0, there is an index set N ∈ N∞
(instead of N#

∞) such that 5(8) holds. Then u + εIB meets lim infν S
ν(x +

δIB) for all ε > 0 and δ > 0, which is equivalent to the condition that u ∈
limδ ↘ 0 lim infν S

ν(x+ δIB).

The characterization of graphical convergence in 5.33 prompts us to define
graphical convergence of Sν to S at a point x̄ as meaning that 5(7) holds at x̄.
In this sense, Sν converges graphically to S if and only if it does so at every
point. More generally, we say that Sν converges graphically to S relative to
a set X if 5(7), with xν constrained to X , holds for every x̄ ∈ X . For closed
X , this is the same as saying that the restrictions Sν

∣∣
X

converge graphically

to the restriction S
∣∣
X

(this being the mapping that agrees with S on X but is
empty-valued everywhere else).

The expression for graphical outer limits in 5.33 says that(
g-lim supν S

ν
)
(x̄) = lim sup

ν→∞
x→x̄

Sν(x) = lim sup
ν→∞
δ ↘ 0

Sν(x̄+ δIB). 5(9)

The expression for graphical inner limits doesn’t have such a simple bivariate
interpretation, however. For instance, graphical convergence at x̄ is generally
weaker than the assertion that Sν(x̄+ δIB)→ S(x̄) as ν →∞ and δ ↘ 0. The
relationship between this property and graphical convergence of Sν to S will be
clarified later through the discussion of ‘continuous convergence’ of mappings
(see 5.43 and 5.44).

5.34 Exercise (uniformity in graphical convergence). Let S, Sν : IRn →→ IRm.

(a) Suppose the mapping S is closed-valued. Then g-limν S
ν = S if and

only if, for every ε > 0 and ρ > 0, there exists N ∈ N∞ such that

S(x) ∩ ρIB ⊂ Sν(IB(x, ε)) + εIB

Sν(x) ∩ ρIB ⊂ S(IB(x, ε)) + εIB

}
when |x| ≤ ρ and ν ∈ N.

(b) Suppose the mappings Sν are connected-valued (e.g., convex-valued),
S = g-lim supν S

ν , S(x̄) is bounded and lim supx→x̄,ν→∞ d(0, Sν(x)) <∞; this
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last condition is certainly satisfied when S = g limν S
ν and S(x̄) �= ∅. Then,

there exist N ∈ N∞, V ∈ N (x̄) and a bounded set B such that

S(x) ⊂ B and Sν(x) ⊂ B for all x ∈ V, ν ∈ N.
Guide. Derive (a) from the uniformity of approximation in set convergence
in 4.10. Note incidentally that the balls ρIB could be replaced by arbitrary
bounded sets B ⊂ IRm, while the balls εIB could be replaced by arbitrary
neighborhoods U of the origin in IRm.

For (b) rely on the formula for the graphical outer limit in 5(9) and then
appeal to 4.12.

5.35 Example (graphical convergence of projection mappings). For closed sets
Cν , C ⊂ IRn, one has PCν→g PC if and only if Cν → C.

Detail. The case where C = ∅, gphPC = ∅, is trivial, so attention can
be concentrated on the case where C is nonempty and domPC = IRn; then
either side of the proposed equivalence entails the nonemptiness of Cν for all
ν sufficiently large. We may as well assume Cν �= ∅ for all ν.

Invoking the characterization of set convergence in 4.9, we see, with a
minor extension of the argument developed there, that the convergence of Cν

to C is equivalent to having{
lim supν d(0, C

ν) <∞,
lim supν PCν (xν) ⊂ PC(x) when xν → x,

5(12)

the latter being the same as g-lim supν PCν ⊂ PC . From knowing not only that
g-lim supν PCν ⊂ PC but also g-lim infν PCν ⊃ PC , we readily conclude 5(12),
since the convergence of points (xν , x̄ν) ∈ gphPCν to (x, x̄) ∈ gphPC implies
that d(0, Cν) ≤ |x̄ν | → |x̄| <∞.

Conversely, suppose 5(12) holds and consider any x0 and x̄0 ∈ PC(x0). We
must verify that (x0, x̄0) ∈ lim infν gphPCν . The fact that x̄0 ∈ PC(x0) implies
for arbitrary ε ∈ (0, 1) that for xε = (1 − ε)x0 + εx̄0 that PC(xε) = {x̄0}.
For each ν, choose any xν ∈ PCν (xε). On the basis of 5(12), the sequence
{xν}ν∈IN is bounded and has all its cluster points in PC(xε); hence it has
x̄0 as its only cluster point. Thus the points (xε, x

ν) ∈ gphPCν converge to
(xε, x̄0) ∈ gphPC , so that (xε, x̄0) ∈ lim infν gphPCν . This being true for
arbitrary ε > 0, we must have (x0, x̄0) ∈ lim infν gphPCν .

An important property of graphical limits, which isn’t enjoyed by pointwise
limits, is their stability under taking inverses. The geometry of the definition
yields at once that

Sν→g S ⇐⇒ (Sν)−1→g S−1, 5(10)

and similarly for outer and inner limits.
Another special feature of graphical limits is the possibility always of se-

lecting graphically convergent subsequences. To state this property, we use
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the terminology that a sequence of mappings Sν : IRn →→ IRm escapes to the
horizon if for every choice of bounded sets C ⊂ IRn and D ⊂ IRm, an index set
N ∈ N∞ exists such that

Sν(x) ∩D = ∅ for all ν ∈ N when x ∈ C.
5.36 Theorem (extraction of graphically convergent subsequences). A sequence
of mappings Sν : IRn →→ IRm either escapes to the horizon or has a subsequence
converging graphically to a mapping S : IRn →→ IRm with domS �= ∅.
Proof. This is evident from 4.18, the corresponding compactness result for set
convergence, as applied to the sequence of sets gphSν in IRn × IRm.

Graphical convergence doesn’t generally imply pointwise convergence, and
pointwise convergence doesn’t generally imply graphical convergence. A se-
quence of mappings Sν can even be such that both its graphical limit and its
pointwise limit exist, but the two are different! An example of this phenomenon
is displayed in Figure 5–9. Nevertheless, certain basic relations between graph-
ical and pointwise convergence follow from 5.33 and the definitions:

p-liminfν S
ν ⊂

{
g-liminfν S

ν

p-limsupν S
ν

}
⊂ g-limsupν S

ν . 5(11)

In particular, it’s always true that p-limνS
ν ⊂ g-limνS

ν when both limits exist.

0

00

Sν

g- lim Sν
ν

0

S 1

0

Sν + 1

p - lim Sν
ν

Fig. 5–9. Possible distinctness of pointwise and graphical limits.

Later we’ll arrive at a complete answer to the question of what circum-
stances induce graphical convergence and pointwise convergence to be the same,
cf. Theorem 5.40. More important for now is the question of what features of
graphical convergence make it interesting in circumstances where it doesn’t
agree with pointwise convergence, or where pointwise limits might not even
exist. One such feature, certainly, is the compactness property in 5.36. Others
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are suggested by the ability of graphical convergence to make sense of situa-
tions where a sequence of single-valued mappings might appropriately have a
multivalued limit.

1

-1

x x

g-lim Fν
νF =sinν 1

vx
_

F2

Fig. 5–10. Convergence of rapidly oscillating functions.

For example, in models of phenomena with rapidly oscillating states the
graphical limit of a sequence of single-valued mappings may well be multival-
ued at certain points which represent instability or turbulence. A suggestive
illustration is furnished in Figure 5–10, where F ν(x) = sin(1/νx). In this
case (g-limν F

ν)(0) = [−1, 1], while (g-limν F
ν)(x) = {0} for all x �= 0. For

F ν(x) = sin(νx) instead, (g-limν F
ν)(x) = [−1, 1] for all x.

Probability theory provides other insights into the potential advantages of
working with graphical convergence. Some of these come up in the analysis of
convergence of distribution functions on IR, these being nondecreasing functions
F : IR → IR such that F (x) → 0 as x↘ − ∞, and F (x) → 1 as x → ∞.
Traditionally such functions are normalized by taking them to be continuous
on the right, and the analysis proceeds through attempts to rely on pointwise
convergence in special, restricted ways. But distribution functions have limits
everywhere from the left as well as from the right, and instead of normalizing
them through right continuity, or for that matter left continuity, it’s possible
to identify them with the special mappings S : IR →→ IR obtained by inserting
a vertical interval to fill in the graph whenever there would otherwise be a gap
due to a jump.

1

0

S

1/ν

Sν

IR

Fig. 5–11. Convergence of probability distribution functions with jumps.
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Then, instead of pointwise convergence properties of F ν to F , one can
turn to graphical convergence of Sν to S as the key. This is demonstrated in
Figure 5–11 for the distribution functions

F ν(x) =

{(1
2 − 1

ν

)
+

(1
2 + 1

ν

)
(1− e−(x−ν−1)) for x ≥ ν−1,

0 for x < ν−1,

where the corresponding Sν is single-valued at points x �= ν−1, agreeing there
with F ν(x), but Sν(x) =

[
0, F (x)

]
at x = ν−1. The bounded, osc mappings

Sν converge graphically to the mapping S : IR →→ IR having the single value
1 − 1

2e
−x when x > 0 and the single value 0 when x < 0, but S(0) =

[
0, 12

]
.

This mapping S corresponds to a distribution function F with a jump at 0.
The ways graphical convergence might come up in nonclassical approaches

to differentiation, which will be explored in depth later, can be appreciated
from the case of the convex functions fν : IR→ IR defined by

fν(x) =

{
(ν/2)x2 for x ∈ [−ν−1, ν−1],
|x| − (1/2ν) otherwise.

These converge pointwise to the convex function f(x) = |x|. The derivative
functions (

fν
)′
(x) =

{−1 for x < −ν−1,
νx for −ν−1 ≤ x ≤ ν−1,
1 for x > ν−1

have both a pointwise limit and a graphical limit; both have the single value
1 on the positive axis and the single value −1 on the negative axis, but the
pointwise limit has the value 0 at the origin, whereas the graphical limit has the
interval [−1, 1] there. The graphical limit makes more sense than the pointwise
limit as a possible candidate for a generalized kind of derivative for the limit
function f , and indeed this will eventually fit the pattern adopted.

IR

IR

ν
ν

’gph [g-lim (f )]

vgph (f )’

Fig. 5–12. Graphical convergence of derivatives of convex functions.

The critical role played by graphical convergence stems in large part from
the following theorem, which virtually stands as a characterization of the con-
cept. This role has often been obscured in the past by ad hoc efforts aimed at
skirting issues of multivaluedness.
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5.37 Theorem (approximation of generalized equations). For closed-valued
mappings S, Sν : IRn →→ IRm and vectors ū, ūν ∈ IRm, consider the gener-
alized equation Sν(x) 
 ūν as an approximation to the generalized equation
S(x) 
 ū, the respective solution sets being (Sν)−1(ūν) and S−1(ū), with the
elements of the former referred to as approximate solutions and the elements
of the latter as true solutions.

(a) As long as g-lim supν S
ν ⊂ S, one has for every choice of ūν → ū

that lim supν(S
ν)−1(ūν) ⊂ S−1(ū). Thus, any cluster point of a sequence of

approximate solutions is a true solution.

(b) If g-lim infν S
ν ⊃ S, one has S−1(ū) ⊂ ⋂

ε>0 lim infν (S
ν)−1

(
IB(ū, ε)

)
.

In this case, therefore, every true solution is the limit of approximate solutions
corresponding to some choice of ūν → ū.

(c) When Sν→g S, both conclusions hold.

Proof. In (a) the definition of the graphical outer limit is applied directly.
In (b) the representation of the inner limit in 5.33 is applied to the mappings
(Sν)−1 and S−1.

For the wealth of applications covered by this theorem, see Example 5.2
and the surrounding discussion. In particular the condition S(x) 
 b could be
an equation F (x) = b for a mapping F : IRn → IRm.

F. Equicontinuity of Sequences

In order to understand graphical convergence further, not only in its relation to
pointwise convergence but other convergence concepts for set-valued mappings,
properties of equicontinuity will be helpful.

5.38 Definition (equicontinuity properties). A sequence of set-valued mappings
Sν : IRn →→ IRm is equi-osc at x̄ relative to X (a set containing x̄) if for every
ε > 0 and ρ > 0 there exists V ∈ N (x̄) such that

Sν(x) ∩ ρIB ⊂ Sν(x̄) + εIB for all ν ∈ IN when x ∈ V ∩X.
It is asymptotically equi-osc if, instead of necessarily for all ν ∈ IN , this holds
for all ν in an index set N ∈ N∞ which, like V , can depend on ε and ρ.

On the other hand, a sequence is equi-isc at x̄ relative to X if for every
ε > 0 and ρ > 0 there exists V ∈ N (x̄) such that

Sν(x̄) ∩ ρIB ⊂ Sν(x) + εIB for all ν ∈ IN when x ∈ V ∩X.
It is asymptotically equi-isc if, instead of necessarily for all ν ∈ IN , this holds
for all ν in an index set N ∈ N∞ which, like V , can depend on ε and ρ.

Finally, a sequence of set-valued mappings Sν : IRn →→ IRm is equicon-
tinuous at x̄ relative to X if it is both equi-isc and equi-osc at x̄ relative to
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X . Likewise, it is asymptotically equicontinuous when it is both asymptotically
equi-isc and asymptotically equi-osc.

Any sequence of mappings that is equicontinuous at x̄ is in particular
asymptotically equicontinuous at x̄, of course. But equicontinuity is a consid-
erably more restrictive property. In particular it entails all of the mappings
being continuous, whereas a sequence can be asymptotically equicontinuous at
x̄ without any of the mappings themselves being continuous there. For instance,
the sequence of mappings Sν : IR→ IR defined by

Sν(x) =

⎧⎨
⎩
{1/ν} if x > 0,
[−1/ν, 1/ν] if x = 0,
{−1/ν} if x < 0,

has this character at x̄ = 0. The same can be said about sequences that are
asymptotically equi-osc or asymptotically equi-isc.

5.39 Exercise (equicontinuity of single-valued mappings). A sequence of con-
tinuous single-valued mappings F ν : IRn → IRm is equicontinuous at x̄ if and
only if it is equi-osc at x̄. Moreover, this means that for all ε > 0 and ρ > 0
there exist V ∈ N (x̄) and N ∈ N∞ such that∣∣F ν(x)− F ν(x̄)

∣∣ ≤ ε for all ν ∈ N and x ∈ V having
∣∣F ν(x)

∣∣ ≤ ρ.
The mention of ρ can be dropped when the sequence {F ν}ν∈IN is eventually
locally bounded at x̄, in the sense that there exist V ∈ N (x̄), N ∈ N∞ and a
bounded set B such that F ν(x) ∈ B for all x ∈ V when ν ∈ N .

Similarly, a sequence of single-valued mappings is asymptotically equicon-
tinuous at x̄ if and only if it is asymptotically equi-osc at x̄.

The traditional definition of equicontinuity in the case of single-valued
mappings doesn’t involve ρ along with ε, as in 5.39, but traditional applica-
tions are limited anyway to collections of mappings that are uniformly bounded,
where the ρ feature makes no difference. Thus, 5.39 identifies the correct ex-
tension that equicontinuity should have for collections that aren’t uniformly
bounded. This view is obviously important in maintaining a theory of conti-
nuity of set-valued mappings that specializes appropriately in the single-valued
case, because statements in which a bounded set ρIB enters in the image space
are essential in set convergence.

5.40 Theorem (graphical versus pointwise convergence). If a sequence of closed-
valued mappings Sν : IRn →→ IRm is asymptotically equi-osc at x̄, then

(g-liminfν S
ν)(x̄) = (p-liminfν S

ν)(x̄),

(g-limsupν S
ν)(x̄) = (p-limsupν S

ν)(x̄).

Thus in particular, if the sequence is asymptotically equi-osc everywhere, one
has Sν→g S if and only if Sν→p S.
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More generally for a set X ⊂ IRn and a point x̄ ∈ X , any two of the
following conditions implies the third:

(a) the sequence is asymptotically equi-osc at x̄ relative to X ;

(b) Sν converges graphically to S at x̄ relative to X ;

(c) Sν converges pointwise to S at x̄ relative to X .

Proof. To obtain the first equation it will suffice in view of 5(11) to show that
G := (g-liminfν S

ν)(x̄) ⊂ (p-liminfν S
ν)(x̄). For any ū ∈ G there’s a sequence

(xν , uν) → (x̄, ū) with uν ∈ S(xν). Take ρ > |uν | for all ν and consider any
ε > 0. Equi-outer semicontinuity at x̄ implies the existence of V ∈ N (x̄) and
N0 ∈ N∞ such that Sν(xν) ∩ ρIB ⊂ Sν(x̄) + εIB when xν ∈ V and ν ∈ N0, or
equivalently (since xν → x̄), for all ν ∈ N ⊂ N0 for some index set N ∈ N∞
such that xν ∈ V when ν ∈ N . This means that uν ∈ Sν(x̄)+εIB for all ν ∈ N .
Since such a N ∈ N∞ exists for every ε > 0, we may conclude, from the inner
limit formula in 4(2), that ū ∈ lim infν S

ν(x̄).
The proof of the second equation is identical, except N is taken to belong

to N#
∞ rather than N∞.
For the rest, we can redefine Sν(x) to be empty outside of X if necessary

in order to reduce without loss of generality to the case of X = IRn. Then
the implication (a)+(b) ⇒ (c) and the implication (a)+(c) ⇒ (b) both follow
directly from the identities just established. There remains only to show that
(b)+(c) ⇒ (a). Suppose this isn’t true, i.e., that despite both (b) and (c)
holding the sequence fails to be asymptotically equi-osc at x̄: there exist ε > 0,
ρ > 0, N ∈ N#

∞ and xν→N x̄ such that

Sν(xν) ∩ ρIB �⊂ Sν(x̄) + εIB when ν ∈ N.
In this case, for each ν ∈ N we can choose uν ∈ Sν(xν) with |uν | ≤ ρ but
uν /∈ Sν(x̄) + εIB. The sequence {uν}ν∈N then has a cluster point ū, which
by virtue of (b) must belong to S(x̄). Yet uν + εIB doesn’t meet Sν(x̄), which
converges to S(x̄) under (c). Hence ū /∈ S(x̄), a contradiction.

G. Continuous and Uniform Convergence

Two other concepts of convergence, which are closely related, will further light
up the picture of graphical convergence.

5.41 Definition (continuous and uniform limits of mappings). A sequence of
mappings Sν : IRn →→ IRm is said to converge continuously to a mapping S at
x̄ if Sν(xν) → S(x̄) for all sequences xν → x̄. If this holds at all x̄ ∈ IRn, the
sequence Sν converges continuously to S. It does so relative to a set X ⊂ IRn

if this holds at all x̄ ∈ X when xν ∈ X .

The mappings Sν converge uniformly to S on a subset X if for every ε > 0
and ρ > 0 there exists N ∈ N∞ such that



176 5. Set-Valued Mappings

Sν(x) ∩ ρIB ⊂ S(x) + εIB

S(x) ∩ ρIB ⊂ Sν(x) + εIB

}
for all x ∈ X when ν ∈ N.

The inclusion property for uniform convergence should be compared to
the one automatically present by virtue of Theorem 4.10 when Sν converges to
S pointwise at an individual point x̄: for every ε > 0 and ρ > 0 there exists
N ∈ N∞ such that

Sν(x̄) ∩ ρIB ⊂ S(x̄) + εIB

S(x̄) ∩ ρIB ⊂ Sν(x̄) + εIB

}
when ν ∈ N.

By the same token, continuous convergence of Sν to S at x̄ can be identified
with the condition that for every ε > 0 and ρ > 0 there exists N ∈ N∞ along
with a neighborhood V ∈ N (x̄) such that

Sν(x) ∩ ρIB ⊂ S(x̄) + εIB

S(x̄) ∩ ρIB ⊂ Sν(x) + εIB

}
for all x ∈ V when ν ∈ N.

For continuous convergence relative to X , x must of course be restricted to X .
Another way of looking at these notions is through distance functions.

5.42 Exercise (distance function descriptions of convergence). For mappings
S, Sν : IRn →→ IRm with S closed-valued, one has

(a) Sν converges pointwise to S at a point x̄ if and only if, for each u,
d
(
u, Sν(x̄)

)→ d
(
u, S(x̄)

)
as ν →∞;

(b) Sν converges continuously to S at a point x̄ if and only if, for each u,
d
(
u, Sν(x)

)→ d
(
u, S(x̄)

)
as ν →∞ and x→ x̄;

(c) Sν converges uniformly to S on a set X if and only if, for each u ∈ IRm

and η > 0 the sequence of functions hν(x) = min
{
d
(
u, Sν(x)

)
, η
}
converges

uniformly on X to h(x) = min
{
d
(
u, S(x)

)
, η
}
.

Guide. The relationship between set convergence and pointwise convergence
of distance functions in 4.7 easily yields (a), (b) and the necessity of the func-
tion convergence in (c). For the sufficiency in (c) one has to appeal also to
the continuity of distance functions (in 1.20). The role of η is to handle the
possibility of Sν(x) or S(x) being empty.

It’s easy to extend 5.42(b) to continuous convergence relative to a set X :
simply restrict x to X in taking limits x→ x̄.

Beyond the characterizations of convergence in 5.42, there are others that
can be based on the distance expressions dlρ and d̂lρ introduced in 4(11). In-
deed, the pair of inclusions used above in defining uniform convergence can
be written as d̂lρ

(
Sν(x), S(x)

) ≤ ε, whereas the ones used in defining contin-

uous convergence correspond to having d̂lρ
(
Sν(x), S(x̄)

) ≤ ε. Here dlρ could

substitute for d̂lρ by virtue of the inequalities in 4.55(a), which bracket these
expressions relative to each other as ρ varies.
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Continuous convergence is the ‘pointwise localization of uniform conver-
gence’. This is made precise in the next theorem, which extends to the context
of set-valued mappings some facts that are well known for functions.

5.43 Theorem (continuous versus uniform convergence). For mappings S, Sν :
IRn →→ IRm and a set X ⊂ IRn, the following conditions are equivalent:

(a) Sν converges continuously to S relative to X ;

(b) Sν converges uniformly to S on all compact subsets of X , and S is
continuous relative to X . Here the continuity of S is automatic from the
uniform convergence if each Sν is continuous relative to X and each x ∈ X has
a compact neighborhood relative to X .

In general, whenever Sν converges continuously to S relative to a set X
at x̄ ∈ X and at the same time converges pointwise to S on a neighborhood of
x̄ relative to X , S must be continuous at x̄ relative to X .

Proof. Through 5.42, the entire argument can be translated to the setting
of a bounded sequence of functions hν converging in one way or another to a
function h. Specifically, uniform convergence of Sν to S on X is characterized
in 5.42(c) as meaning that for each u ∈ IRm and ρ ∈ IR+ the sequence of
functions hν defined in 5.42(c) converges uniformly on X to the function h
defined in 5.42(c). On the other hand, continuous convergence of Sν to S at x̄
relative to X is equivalent through 5.42(b) to the property that, again for each
u ∈ IRm and ρ ∈ IR+, h

ν converges continuously to the function h at x̄ relative
to X . Next, S is continuous relative to X at x̄ if and only if, for all u ∈ IRm

and ρ ∈ IR+, the function h in 5.42(c) is continuous at x̄ relative to X . Finally,
Sν converges pointwise to S on a set V ∩X if and only if, in the same context,
hν converges pointwise to h on V ∩X .

Proceeding to the task as translated, we consider h, hν : X → [0, ρ].
Suppose hν converges continuously to h at x̄ relative to X at x̄ and at the
same time pointwise on V ∩X for a neighborhood V ∈ N (x̄). We’ll prove that
h must be continuous at x̄. Consider any ε > 0. By continuous convergence
there exist V ′ ∈ N (x̄) and N ∈ N∞ such that

∣∣hν(x)− h(x̄)∣∣ ≤ ε when x ∈ V ′

and ν ∈ N . Then because hν(x) → h(x) on V ∩X we have
∣∣h(x) − h(x̄)∣∣ ≤ ε

for x ∈ V ′∩V ∩X and ν ∈ N . Since V ′∩V ∈ N (x̄), this establishes the claim.

Suppose now that hν converges continuously to h relative to X . In partic-
ular, hν converges pointwise to h on X , so by the argument just given, h must
be continuous relative to X . Let B be any compact subset of X . We’ll verify
that hν converges uniformly to h on B. If not,

∃ ε > 0, N0 ∈ N#

∞ such that
{
x ∈ B ∣∣ |hν(x)− h(x)| ≥ ε

} �= ∅ for all ν ∈ N0.

Choosing for each ν ∈ N0 an element xν of this set we would get a sequence in
B, which by compactness would have a cluster point x̄ ∈ B. There would be
an index set N ∈ N#

∞ within N0 such that xν→N x̄. Then hν(xν)→N h(x̄) by the
assumed continuous convergence, while also h(xν)→N h(x̄) by the continuity of
h, in contradiction to xν having been selected with

∣∣hν(xν)− h(xν)∣∣ ≥ ε.
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Conversely, suppose now instead that h is continuous relative to X and
that hν converges to h uniformly on every compact subset B of X . We’ll prove
that hν converges continuously to h relative to X . Consider any point x̄ ∈ X
and any sequence xν → x̄ in X . Let B be the compact subset of X consisting
of x̄ and all the points xν . Consider any ε > 0. By the continuity of h relative
to X there exists V ∈ N (x̄) such that∣∣h(x)− h(x̄)∣∣ ≤ ε/2 for all x ∈ V ∩B.
Next, from the uniform convergence, there exists N ∈ N∞ such that∣∣hν(x)− h(x)∣∣ ≤ ε

2
for all x ∈ B when ν ∈ N.

In combination we obtain
∣∣hν(x) − h(x̄)∣∣ ≤ ε for all x ∈ V ∩ B when ν ∈ N ,

which signals continuous convergence on B, hence hν(xν)→ h(x̄).

Finally, suppose that the functions hν are continuous and that they con-
verge uniformly to h on all compact subsets of X , and consider any x̄ ∈ X . We
need to demonstrate that h is continuous at x̄ relative to X , provided that x̄
has a compact neighborhood B relative to X . On such a neighborhood B, the
functions hν converge uniformly to h: for any ε > 0 there’s an index ν̄ ∈ IN
such that

∣∣hν̄(x) − h(x)∣∣ ≤ ε/3 for all x ∈ B. But also by the continuity of

hν̄ relative to X there’s a δ > 0 such that
∣∣hν̄(x)− hν̄(x̄)∣∣ ≤ ε/3 for all x ∈ B

with |x− x̄| ≤ δ. We can choose δ small enough that all the points x ∈ X with
|x− x̄| ≤ δ belong to B. For such points x we then have∣∣h(x)− h(x̄)∣∣ ≤ ∣∣h(x)− hν̄(x)∣∣+ ∣∣hν̄(x)− hν̄(x̄)∣∣+ ∣∣hν̄(x̄)− h(x̄)∣∣

≤ (ε/3) + (ε/3) + (ε/3) = ε.

Since we were able to get this for any ε > 0 by taking δ > 0 sufficiently small,
we conclude that h is continuous at x̄ relative to X .

5.44 Theorem (graphical versus continuous convergence). For mappings S, Sν :
IRn →→ IRm and a set X ⊂ IRn, the following properties at x̄ ∈ X are equivalent:

(a) Sν converges continuously to S at x̄ relative to X ;

(b) Sν converges graphically to S at x̄ relative to X , and the sequence is
asymptotically equicontinuous at x̄ relative to X .

Proof. Suppose first that (a) holds. Obviously this condition implies that Sν

converges both pointwise and graphically to S at x̄ relative to X , and therefore
by 5.40 that the sequence is asymptotically equi-osc relative to X . We must
show that the sequence is also asymptotically equi-isc relative to X . If not,
there would exist ε > 0, ρ > 0, N ∈ N#

∞ and xν→N x̄ in X such that

Sν(x̄) ∩ ρIB �⊂ Sν(xν) + εIB when ν ∈ N.
It would be possible then to choose for each ν ∈ N an element uν ∈ Sν(x̄)
with |uν | ≤ ρ and uν /∈ Sν(xν) + εIB. Such a sequence would have a cluster
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point ū, necessarily in S(x̄) because Sν(x̄)→ S(x̄), yet this is impossible when
uν +εIB doesn’t meet Sν(xν), which also converges to S(x̄). The contradiction
establishes the required equicontinuity.

Now suppose that (b) holds. Consider any sequence xν → x̄ in X . Graphi-
cal convergence yields that lim supν S

ν(xν) ⊂ S(x̄), so the burden of our effort
is to show for arbitrary ū ∈ S(x̄) that ū ∈ lim infν S

ν(xν). Because the se-
quence of mappings is asymptotically equi-osc, we have Sν(x̄)→ S(x̄) by 5.40,
so for indices ν in some set N0 ∈ N∞ we can find uν ∈ Sν(x̄) with uν→N ū.
Take ρ large enough that uν ∈ ρIB for all ν ∈ N . Let ε > 0. Because the
sequence is asymptotically equi-isc, there exist V ∈ N (x̄) and N1 ∈ N∞ with
the property that

Sν(x̄) ∩ ρIB ⊂ Sν(x) + εIB for all x ∈ V when ν ∈ N1.

Then for some N ∈ N∞ with N ⊂ N0 ∩N1 we have uν ∈ Sν(xν) + εIB for all
ν ∈ N . We have shown that for arbitrary ε > 0 there exists N ∈ N∞ with this
property, and therefore through 4(2) that ū ∈ lim infν S

ν(xν).

5.45 Corollary (graphical convergence of single-valued mappings). For single-
valued mappings F, F ν : IRn → IRm, the following conditions are equivalent:

(a) F ν converges continuously to F at x̄;

(b) F ν converges graphically to F at x̄, and the sequence is eventually
locally bounded at x̄, i.e., there exist V ∈ N (x̄), N ∈ N∞ and a bounded set
B such that F ν(x) ∈ B for all x ∈ V when ν ∈ N .

Proof. It’s evident from 5.44 and the definition of continuous convergence
that (a) implies (b). On the other hand, the local boundedness in (b) implies
that every sequence F ν(xν) with xν → x̄ is bounded, while the graphical
convergence in (b) along with the single-valuedness of F ensures that the only
possible cluster point of such a sequence is F (x̄). Hence in (b), F ν(xν)→ F (x̄)
whenever xν → x̄.

5.46 Proposition (graphical convergence from uniform convergence). Consider
Sν , S : IRn →→ IRm and a set X ⊂ IRn.

(a) If the mappings Sν are osc relative to X and converge uniformly to S
on X , then S is osc relative to X and Sν→g S relative to X .

(b) If the mappings Sν are continuous relative to X and converge uniformly
to S on all compact subsets of X , and if each point of X has a compact
neighborhood relative to X (as is true when X is closed or open), then Sν

converges graphically to S relative to X . In particular, this holds when Sν and
S are single-valued on X .

Proof. In (a), let’s begin by verifying that S is osc relative to X . Suppose
limκ→∞(xκ, uκ) = (x̄, ū) with xκ, x̄ ∈ X and uκ ∈ S(xκ). We have to show
that ū ∈ S(x̄). Pick ρ large enough that uκ, ū ∈ int ρIB and fix ε > 0. The
uniform convergence of Sν to S on X gives us the existence of N ∈ N∞ such
that (through the second inclusion in Definition 5.41):
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uκ ∈ S(xκ) ∩ ρIB ⊂ Sν(xκ) + εIB for all κ ∈ IN when ν ∈ N.
Taking the limsup with respect to κ for each fixed ν ∈ N , we get

ū ∈ limsupκ
[
Sν(xκ) + εIB

]
=

[
limsupκ S

ν(xκ)
]
+ εIB ⊂ Sν(x̄) + εIB;

here the equality follows from εIB being compact, while the inclusion follows
from Sν being osc relative toX . Because |ū| < ρ, this allows us to conclude that
d
(
ū, S(x̄)

) ≤ 2ε, since by the first inclusion in Definition 5.41 we necessarily
have, for ν sufficiently large, that Sν(x̄) ∩ ρIB ⊂ S(x̄) + εIB. This implies that
ū ∈ S(x̄), inasmuch as ε > 0 can be chosen arbitrarily small.

To get Sν→g S relative to X , we must show for G := (X × IRm) ∩ gphS
and Gν := (X × IRm) ∩ gphSν that

(X × IRm) ∩ limsupν G
ν ⊂ G ⊂ liminfν G

ν . 5(13)

For the first inclusion, suppose (xν , uν)→ (x̄, ū) with x̄ ∈ X and (xν , uν) ∈ Gν

for all ν in some N0 ∈ N∞. Choose ρ large enough that uν , ū ∈ int ρIB. The
uniform convergence of Sν to S on X yields for any ε > 0 the existence of
N ∈ N∞ such that N ⊂ N0 and (through the first inclusion in Definition 5.41):

uν ∈ Sν(xν) ∩ ρIB ⊂ S(xν) + εIB for all ν ∈ N.
Since S is osc relative to X , as just demonstrated, we obtain on taking limsup
with respect to ν that ū ∈ S(x̄) + εIB, where again lim supν

[
S(xν) + εIB

]
=[

lim supν S(x
ν)
]
+ εIB. The choice of ε > 0 being arbitrary, we get ū ∈ S(x̄),

hence (x̄, ū) ∈ G. Thus, the first inclusion in 5(13) is correct.
For the second inclusion in 5(13), consider any (ū, x̄) ∈ G and any ρ > |ū|.

The uniform convergence provides for any κ ∈ IN a set Nκ ∈ N∞ such that
(through the second inclusion in Definition 5.41):

ū ∈ S(x̄) ∩ ρIB ⊂ Sν(x̄) + (1/κ)IB for all ν ∈ Nκ.

Then d
(
ū, Sν(x̄)

) ≤ 1/κ for ν ∈ Nκ, hence lim supν d
(
ū, Sν(x̄)

)
= 0. It follows

that we can find uν ∈ Sν(x̄) with uν → ū. Setting xν = x̄ for all ν ∈ IN , we
obtain (xν , uν) ∈ Gν with (xν , uν)→ (x̄, ū), as required.

Part (b) is obtained immediately from the combination of Theorem 5.44
with Theorem 5.43.

The next two convergence theorems extend well known facts about single-
valued mappings to the framework of set-valued mappings.

5.47 Theorem (Arzelà-Ascoli, set-valued version). If a sequence of mappings
Sν : IRn →→ IRm is asymptotically equicontinuous relative to a set X , it admits
a subsequence converging uniformly on all compact subsets of X to a mapping
S : IRn →→ IRm that is continuous relative to X .

Proof. This combines 5.44 with the compactness property in 5.36 and the
characterization of continuous convergence in 5.43.
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In the following we write Sν(x)↗S(x) to mean that Sν(x) → S(x) with
Sν(x) ⊂ Sν+1(x) ⊂ · · ·, and similarly we write Sν(x) ↘ S(x) when the opposite
inclusions hold; see 4.3 for such monotone set convergence.

5.48 Theorem (uniform convergence of monotone sequences). Consider set-
valued mappings S, Sν : IRn →→ IRm and a set X ⊂ domS. Suppose either

(a) Sν(x)↗S(x) for all x ∈ X , with S osc and Sν isc relative to X , or

(b) Sν(x) ↘ S(x) for all x ∈ X , with S isc and Sν osc relative to X .

Then S must actually be continuous relative to X , and the mappings Sν must
converge uniformly to S on every compact subset of X .

Proof. It suffices by Theorem 5.43 to demonstrate that, under either of these
hypotheses, Sν converges continuously to S relative to X . For each x ∈ X ,
S(x) has to be closed, and there’s no loss of generality in assuming Sν(x) to
be closed too. The distance characterizations of semicontinuity in 5.11 and
continuous convergence in 5.42(b) then provide a bridge to a simpler context.

For (a), fix any u ∈ IRm and let dν(x) = d
(
u, Sν(x)

)
and d(x) = d

(
u, S(x)

)
.

By assumption we have dν(x) ↘ d(x) for all x ∈ X , with d lsc and dν usc relative
to X . We must show that dν(xν) → d(x̄) whenever xν → x̄ in X . For any
ε > 0 there’s an index ν0 such that dν(x̄) ≤ d(x̄) + ε when ν ≥ ν0. Further,
there’s a neighborhood V of x̄ relative to X such that d(x) ≥ d(x̄) − ε and
dν0(x) ≤ dν0(x̄) + ε when x ∈ V . Next, there’s an index ν1 ≥ ν0 such that
xν ∈ V when ν ≥ ν1. Putting these properties together, we see for ν ≥ ν1
that dν(xν) ≥ d(xν) ≥ d(x̄) − ε, and on the other hand, dν(xν) ≤ dν0(xν) ≤
dν0(x̄) + ε ≤ d(x̄) + 2ε. Hence

∣∣dν(xν)− d(x̄)∣∣ ≤ 2ε when ν ≥ ν1.
For (b), the argument is the same but the inequalities are reversed because,

instead, dν(x)↗d(x) for x ∈ X , with d usc and dν lsc relative to X .

When the mappings S and Sν are assumed to be continuous relative to X
in Theorem 5.48, cases (a) and (b) coalesce, and the conclusion that Sν con-
verges uniformly to S on compact subsets of X is analogous to Dini’s theorem
on the convergence of monotone sequences of continuous real-valued functions.

H∗. Metric Descriptions of Convergence

Continuous convergence and uniform convergence of set-valued mappings can
also be characterized with the metric for set convergence that was developed
in the last part of Chapter 4.

5.49 Proposition (metric version of continuous and uniform convergence).

(a) A sequence of mappings Sν : IRn →→ IRm converges continuously at x̄
to a mapping S if and only if, for all ε > 0, there exist V ∈ N (x̄) and N ∈ N∞
such that, for all x ∈ V and ν ∈ N , one has dl

(
Sν(x), S(x̄)

) ≤ ε.

(b) A sequence of mappings Sν : IRn →→ IRm converges uniformly on a set
X ⊂ IRn to a mapping S if and only if, for all ε > 0, there exist N ∈ N∞ such
that, for all ν ∈ N and x ∈ X , one has dl

(
Sν(x), S(x)

) ≤ ε.
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Proof. We confine ourselves to proving (b); the proof of (a) proceeds on the

same lines. We appeal to estimates in terms of d̂lρ and what they say for dlρ.

From the definition of d̂lρ, it’s immediate that the sequence {Sν}ν∈IN converges
uniformly to S on X if and only if

∀ ε > 0, ∀ ρ ≥ 0, ∃N ∈ N∞ : d̂lρ
(
Sν(x), S(x)

) ≤ ε ∀x ∈ X, ∀ ν ∈ N.

The relationship between d̂lρ and dlρ recorded in 4.37(a) allows us to rewrite
this condition as

∀ ε > 0, ∀ ρ ≥ 0, ∃N ∈ N∞ : dlρ
(
Sν(x), S(x)

) ≤ ε ∀x ∈ X, ∀ ν ∈ N.
It remains to be shown that this latter condition is equivalent to

∀ ε > 0, ∃N ∈ N∞ : dl
(
Sν(x), S(x)

) ≤ ε ∀x ∈ X, ∀ ν ∈ N.

Let’s begin with ‘⇐’; suppose it’s false. Then for some x ∈ X , ε >
0, ρ ≥ 0 and N ∈ N#

∞, we have dlρ
(
Sν(x), S(x)

)
> ε for all ν ∈ N . The

inequality in 4.41(a) implies then that dl
(
Sν(x), S(x)

)
> ε′ = e−ρε for all

ν ∈ N , thus invalidating the assumption that for ε′ there is N ′ ∈ N∞ such that
dl
(
Sν(x), S(x)

) ≤ ε′ for all ν ∈ N ′.
For the ‘⇒’ part we likewise proceed by contradiction. Suppose that

for some x ∈ X , there are ε > 0 and N ∈ N#
∞ such that for all ν ∈ N ,

dl
(
Sν(x), S(x)

)
> ε. The inequality in 4.41(b) for dl implies that, for any

ρ ∈ IR+ and ν ∈ N , we have

(1− e−ρ)dlρ
(
Sν(x), S(x)

)
+ e−ρ(βν + ρ+ 1) ≥ dl(Sν(x), S(x)

)
> ε,

where βν = max
{
d
(
0, Sν(x)

)
, d
(
0, S(x)

)}
. By assumption, dl0

(
Sν(x), S(x)

)
is

arbitrarily small for ν large enough, say less than ε; without loss of generality,
this may be taken to be the case for all ν ∈ N . Then, with β = d

(
0, S(x)

)
,

since βν ≤ β + ε for any ρ ∈ IR+ and all ν ∈ N , we have

dlρ
(
Sν(x), S(x)

)
> ερ :=

ε− e−ρ(β + ε+ ρ+ 1)

1− e−ρ
.

In fixing ρ > 0 arbitrarily and taking ε′ = ερ, it follows that there couldn’t be
an index set N ′ ∈ N∞ such that dlρ

(
Sν(x), S(x)

) ≤ ε′ for all ν ∈ N ′.

Graphical convergence of mappings can be quantified as well. Such conver-
gence is identified with set convergence of graphs, so one can rely on a metric
for set convergence in the space cl-sets �=∅(IR

n × IRm) to secure a metric for
graph convergence in the space

osc-maps �≡∅(IR
n, IRm) :=

{
S : IRn →→ IRm

∣∣S osc, domS �= ∅}.
It’s enough to introduce for any two mappings S, T ∈ osc-maps �≡∅(IR

n, IRm) the
graph distance
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dl(T, S) := dl(gphS, gphT )

along with, for ρ ≥ 0, the expressions

dlρ(T, S) := dlρ(gphS, gphT ), d̂lρ(T, S) := d̂lρ(gphS, gphT ).

All the estimates and relationships involving dl, dlρ and d̂lρ in the context of
set convergence in 4.37–4.45 carry over immediately then to the context of
graphical convergence.

5.50 Theorem (quantification of graphical convergence). The graph distance dl
is a metric on the space osc-maps �≡∅(IR

n, IRm), whereas dlρ is a pseudo-metric

for each ρ ≥ 0 (but d̂lρ is not). They all characterize graphical convergence:

Sν → S ⇐⇒ dl(Sν, S)→ 0

⇐⇒ dlρ(S
ν , S)→ 0 for all ρ greater than some ρ̄

⇐⇒ d̂lρ(S
ν , S)→ 0 for all ρ greater than some ρ̄.

Moreover,
(
osc-maps �≡∅(IR

n, IRm), dl
)
is a separable, complete metric space that

is locally compact.

Proof. This merely translates 4.36, 4.42, 4.43 and 4.45 to the case where the
sets involved are the graphs of osc mappings.

In the quantification of set distances in Chapter 4, it was observed that the
expressions could also be utilized without requiring sets to be closed. Similarly
here, one can invoke dlρ(S, T ) and d̂lρ(S, T ) even when S and T aren’t osc, but

of course these values are the same as dlρ(clS, clT ) and d̂lρ(clS, clT ). In this
sense we can speak of the graph distance between any two elements of

maps(IRn, IRm) := the space of all S : IRn →→ IRm.

For this larger space, however, dl is not a metric but just a pseudo-metric.

Graph-distances can be used to obtain estimates between the solutions of
generalized equations like those in Theorem 5.37, although we won’t take this
up here. For more about solution estimates in that setting, see Theorem 9.43
and its sequel.

I∗. Operations on Mappings

Various operations can be used in constructing set-valued mappings, and ques-
tions arise about the extent to which these operations preserve properties of
continuity and local boundedness. We now look into such matters systemati-
cally. First are some results about sums of mappings, which augment the ones
in 5.24.
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5.51 Proposition (addition of set-valued mappings). Let S1, S2 : IRn →→ IRm.

(a) S1 + S2 is locally bounded if both S1 and S2 are locally bounded.

(b) S1 + S2 is osc if the mappings S1 and S2 are osc and the mapping
(x, y) �→ S1(x)∩

[
y− S2(x)

]
is locally bounded, the latter being true certainly

if either S1 or S2 is locally bounded.

(c) S1 +S2 is totally continuous at x̄ if S1 and S2 are totally continuous at
x̄ with

[
S1(x̄) × S2(x̄)

]∞
= S1(x̄)

∞ × S2(x̄)
∞, and S1(x̄)

∞ ∩ [−S2(x̄)
∞] = {0}.

Both of these conditions are satisfied if either S1 or S2 is locally bounded at x̄,
whereas the first is satisfied if S1(x̄) and S2(x̄) are convex sets.

Proof. In (a), the local boundedness of S1 and S2 is equivalent to having
S1(B) and S2(B) bounded whenever B is bounded (by 5.15). The elementary
fact that (S1 + S2)(B) ⊂ S1(B) + S2(B) then gives us (S1 + S2)(B) bounded
whenever B is bounded.

In (b), the mapping T : (x, y) �→ S1(x) ∩
[
y − S2(x)

]
has domT =

gph(S1 + S2). This mapping is osc: its graph is the intersection of the set{
(x, y, u1)

∣∣ (x, u1) ∈ gphS1

}
with the set

{
(x, y, y − u2)

∣∣ (x, u2) ∈ gphS2

}
,

both being closed since S1 and S2 are osc. When T is also locally bounded,
domT has to be closed, and this means that S1 + S2 is osc.

Similar reasoning establishes that the mapping T in the argument for (a)
is locally bounded when either S1 or S2 is locally bounded, because T (B,B′) ⊂
S1(B) ∩ (

B′ − S2(B)
)
for any bounded sets B ⊂ IRn and B′ ⊂ IRm.

In (c), we simply invoke the result in 4.29 on convergence of sums of sets,
but do so in the context of total continuity in 5.28. Then we make use of the
facts in 3.12 about the closure of a sum of sets.

5.52 Proposition (composition of set-valued mappings). Consider the mapping
T ◦S : IRn →→ IRp for S : IRn →→ IRm and T : IRm →→ IRp.

(a) T ◦S is locally bounded if both S and T are locally bounded.

(b) T ◦S is osc if S and T are osc and the mapping (x, w) �→ S(x)∩T−1(w)
is locally bounded, as is true when either S or T−1 is locally bounded.

(c) T ◦S is continuous if S and T are continuous and S is locally bounded.

(d) T ◦S is continuous at x̄ if S is continuous at x̄ and T is continuous with
T−1 locally bounded, or alternatively, if S it totally continuous at x̄ and T is
continuous with (T∞)−1(0) ∩ S(x̄)∞ = {0}.

(e) T ◦S is totally continuous at x̄ if S is totally continuous at x̄, T is totally
continuous, (T∞)−1(0) ∩ S(x̄)∞ = {0}, and (T∞)

(
S(x̄)∞

) ⊂ T (S(x̄))∞
.

Proof. For (a), we can rely on the criterion in 5.15: If S and T are both locally
bounded, we know for every bounded set B ⊂ IRn that S(B) is bounded in
IRm and therefore that T

(
S(B)

)
= (T ◦S)(B) is bounded in IRp.

For (b), denote the set-valued mapping (x, w) �→ S(x) ∩ T−1(w) by R.
The graph of R is closed, because it consists of all (x, w, u) such that (x, u, w)
belongs to

[
(gphS) × IRp

] ∩ [
IRn × gphT

]
; the latter is closed by the outer

semicontinuity of S and T . Thus, R is osc. Under the assumption that R is
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locally bounded as well, domR is closed by 5.25(a). But domR = gph(T ◦S).
Therefore, T ◦S is osc under this assumption.

Assertions (d) and (e) are immediate from 5.30(c) and (d) and the defini-
tions of continuity and total continuity, while (c) is a special case of the second
version of (d) applied at every point x̄.

As a special case in 5.52, either S or T might be single-valued, of course.
Continuity in the usual sense could then be substituted for continuity or outer
semicontinuity as a set-valued mapping, cf. 5.20.

Other results can similarly be derived from the ones in Chapter 4 on the
calculus of convergent sets. For example, if S(x) = S1(x)∩S2(x) for continuous,
convex-valued mappings S1 and S2, and if x̄ is a point where S1(x̄) and S2(x̄)
can’t be separated, then S is continuous at x̄. This is clear from 4.32(c).

In a similar vein are results about the preservation of continuity of set-
valued mappings under various forms of convergence of mappings.

Let’s now turn to the convergence of images and the preservation of graph-
ical convergence under various operations. The conditions we’ll need involve
restrictions on how sequences of points and sets can escape to the horizon, and
consequently they will draw on the concept of total set convergence (cf. Defini-
tion 4.23). By total graph convergence Sν→t S one means that gphSν→t gphS.
By appealing to horizon limits and to S∞, the horizon mapping associated
with S, this mode of convergence is supplied with a characterization that is
well suited to various manipulations. Namely, it follows from the description
of total set convergence in 4.24 that

Sν→t S ⇐⇒ Sν→g S, limsup∞
ν gphSν ⊂ gphS∞. 5(14)

From the criteria collected in Proposition 4.25, one has that Sν→g S entails
the stronger property Sν→t S whenever the graphs gphSν are convex sets or
cones, or are nondecreasing or uniformly bounded. Moreover, again from the
developments in Chapter 4, one has

Sν
1 →t S1, S

ν
2 →t S2 =⇒ Sν

1 ∪ Sν
2 →t S1 ∪ S2,

and provided that (S1 × S2)
∞ = S∞

1 × S∞
2 ,

Sν
1 →t S1, S

ν
2 →t S2 =⇒ Sν

1 × Sν
2 →t S1 × S2.

It should be noted that total convergence Sν→t S is not ensured by Sν

converging continuously to S. A counterexample is provided by the mappings
Sν : IR1 →→ IR1 defined by Sν(x) = {0, ν} when x = 1/ν but Sν(x) = {0} for all
other x. Taking S(x) = {0} for all x we get Sν(xν)→ S(x) whenever xν → x,
yet it’s not true that gphSν→t gphS.

A series of criteria (4.21–4.28) have already been provided for the preser-
vation of set limits under certain mappings (linear, addition, etc.). We now
consider the images of sets under an arbitrary mapping S : IRn →→ IRm as well
as the images of sets under converging sequences of mappings.
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5.53 Theorem (images of converging mappings). Let S, Sν : IRn →→ IRd be
mappings and C,Cν subsets of IRn.

(a) lim infν S
ν(Cν) ⊃ S(C) whenever lim infν C

ν ⊃ C and Sν converges
continuously to S.

(b) lim supν S
ν(Cν) ⊂ S(C) whenever lim supν C

ν ⊂ C, lim sup∞
ν Cν ⊂

C∞, Sν→t S, and (S∞)−1(0) ∩ C∞ = {0}.
(c) Further, lim sup∞

ν Sν(Cν) ⊂ S(C)∞ if in addition, (S∞)(C∞) ⊂ S(C)∞
and lim sup∞

ν gphSν ⊂ gphS∞.

In particular, Sν(Cν) → S(C) when Sν converges continuously to S,
Cν→t C and (S∞)−1(0) ∩ C∞ = {0}, or when Sν converges both continuously
and totally to S, Cν → C and (S∞)−1(0) = {0}.
Proof. Statement (a) is a direct consequence of the definitions of the inner
limit (in 4.1) and continuous convergence; recall from 5.44 that continuous
convergence of Sν to S implies the continuity of S.

For (b) we need to show that u ∈ S(C) when uν→N u for some N ∈ N#
∞

with uν ∈ Sν(Cν) for all ν ∈ N . Pick xν ∈ (Sν)−1(uν) ∩ Cν . If the sequence
{xν}ν∈N clusters at a point x, then x ∈ C (because C ⊃ lim supν C

ν), and
since Sν→t S one has u ∈ S(x) ⊂ S(C). Otherwise, the xν cluster at a point
in the horizon of IRn, say dirx (with x �= 0). Since (xν , uν) ∈ gphSν , this
would imply that (x, 0) ∈ lim sup∞

ν gphSν ⊂ gphS∞, i.e., x ∈ (S∞)−1(0), but
the assumption (S∞)−1(0) ∪ C∞ = {0} excludes such a possibility.

For (c) one shows that lim sup∞
ν S

ν(Cν) ⊂ S(C)∞ when lim sup∞
ν gphSν ⊂

gphS∞, i.e., u ∈ S(C)∞ whenever uν→N diru for some index set N ∈ N#
∞ with

uν ∈ Sν(Cν) for ν ∈ N . Pick xν ∈ (Sν)−1(uν) ∩ Cν . If the points xν cluster
at x ∈ IRn, then x ∈ C (which includes lim supCν) and since by assumption
lim sup∞

ν gphSν ⊂ gphS∞, it follows that u ∈ S∞(0) ⊂ S∞(C∞) ⊂ S(C)∞.
Otherwise, there exist N0 ⊂ N , N0 ∈ N#

∞, x �= 0 such that xν→N0
dirx; note

that then x ∈ C∞ ⊃ lim sup∞
ν Cν . Since for ν ∈ N0, (x

ν , uν) ⊂ gphSν and
|uν |↗∞, |xν |↗∞, there exists λν ↘ 0, ν ∈ N0 such that λν(xν , uν) clusters at
a point of the type (αx, βu) �= (0, 0) with α ≥ 0, β ≥ 0. If β = 0, then 0 �= x ∈
(S∞)−1(0)∩C∞ and that is ruled out by the assumption that (S∞)−1(0)∩C∞ =
{0}. Thus β > 0, and u ∈ (S∞)(αβ−1x) ⊂ (S∞)(C∞) ⊂ S(C)∞ where the
second inclusion comes from the last assumption in (c).

The two remaining statements are just a rephrasing of the consequences
of (a) and (b) when limits or total limits exists, making use of the properties
of the inner and outer horizon limits recorded in 4.20.

5.54 Exercise (convergence of positive hulls). Let Cν , C ⊂ IRn be such that
Cν→t C with C compact, and 0 /∈ C. Then posCν→t posC.

Guide. Let V be an open neighborhood of 0 such that V ∩ C = ∅. Let
S be the mapping define by S(x) := pos{x} on its domain IRn \V . Observe
that S is continuous relative to domS, and that’s enough to guarantee that
S(Cν) → S(C) under the conditions Cν→t C and C∞ = {0}. Finally, use the



J∗. Generic Continuity and Selections 187

fact that the sets posCν and posC are cones in order to pass from ordinary
convergence to total convergence by the criterion in 4.25(b).

J∗. Generic Continuity and Selections

Semicontinuous mappings are ‘mostly’ continuous. The next theorem makes
this precise. It employs the following terminology. A subset A of a set X ⊂ IRn

is called nowhere dense in X if no point x ∈ X ∩ clA has a neighborhood
V ∈ N (x) with X ∩ V ⊂ clA, or in other words if

intX(clX A) = ∅, where

{
clX denotes closure relative to X ,
intX denotes interior relative to X .

It’s called meager inX if it’s the union of countably many sets that are nowhere
dense in X . Any subset of a meager set is itself meager, inasmuch as any subset
of a nowhere dense set is nowhere dense. Elementary examples of sets A that
are nowhere dense in X are sets the form A = Y \ (intX Y ) for Y ⊂ X with
Y = clX Y , or of the form A = (clX Y ) \Y for Y ⊂ X with Y = intX Y .
It’s known that when X is closed in IRn (e.g., when X = IRn itself), or for
that matter when X is open in IRn, every meager subset A of X has dense
complement: cl[X \A] ⊃ X .

5.55 Theorem (generic continuity from semicontinuity). For S : IRn →→ IRm

closed-valued, if S is osc relative to X ⊂ IRn, or isc relative to X , then the set
of points x ∈ X where S fails to be continuous relative to X is meager in X .

Proof. Let B be the collection of all rational closed balls in IRm (i.e., balls
B = IB(u, ρ) for which ρ and the coordinates of u are rational). This is a
countable collection which suffices in generating neighborhoods in IRm: for
every ū ∈ IRm and W ∈ N (ū) there exists B ∈ B with u ∈ intB and B ⊂W .

Let’s first deal with the case where S is osc relative to X . Let X0 consist
of the points of X where S fails to be isc relative to X . We must demonstrate
that X0 can be covered by a union of countably many nowhere dense subsets
of X . To know that S is isc relative to X at a point x̄ ∈ X , it suffices by 5.6(b)
to know that whenever ū ∈ S(x̄) and B ∈ N (ū) ∩ B, there’s a neighborhood
V ∈ N (x̄) with X ∩ V ⊂ S−1(B). In other words, the points x̄ ∈ X \X0 are
characterized by the property that

∀B ∈ B : x̄ ∈ S−1(intB) =⇒ x̄ ∈ intX
[
S−1(B) ∩X]

.

Thus, each point of X0 belongs to [S−1(intB)∩X ] \ intX [S−1(B)∩X ] for some
B ∈ B. Therefore

X0 ⊂
⋃
B∈B

{
YB \ (intX YB)

}
with YB := S−1(B) ∩X.
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Each of the sets YB \ (intX YB) in this countable union is nowhere dense in X ,
because YB is closed relative to X by 5.7(b).

We turn now to the claim under the alternative assumption that S is isc
relative to X . This time, let X0 consist of the points of X where S is osc
relative to X . Again the task is to demonstrate that X0 can be covered by
a union of countably many nowhere dense subsets of X . For any x̄ ∈ X and
ū /∈ S(x̄), there’s a neighborhood B ∈ N (ū) ∩ B such that B ∩ S(x̄) = ∅; here
we utilize the assumption that S is closed-valued at x̄. Hence in view of 5.6(a),
for S to be osc relative to X at such a point x̄, it’s necessary and sufficient
that, whenever B ∈ B and S(x̄)∩B = ∅, there should exist V ∈ N (x̄) yielding
S(x) ∩ intB = ∅ for all x ∈ X ∩ V . Equivalently, the points x̄ ∈ X \X0 are
characterized by the property that

∀B ∈ B : x̄ /∈ S−1(B) =⇒ x̄ /∈ clX
[
S−1(intB) ∩X]

.

Thus, each point of X0 belongs to clX [S−1(intB)∩X ] \ [S−1(B)∩X ] for some
B ∈ B. Therefore

X0 ⊂
⋃
B∈B

{
(clX YB) \YB

}
with YB := S−1(intB) ∩X.

Each of the sets (clX YB) \YB in this countable union is nowhere dense in X ,
because YB is open relative to X by 5.7(c).

5.56 Corollary (generic continuity of extended-real-valued functions). If a func-
tion f : IRn → IR is lsc relative to X , or usc relative to X , then the set of points
x ∈ X where f fails to be continuous relative to X is meager in X .

Proof. This applies Theorem 5.55 to the profile mappings in 5.5.

The continuity properties we’ve been studying for set-valued mappings
have an interesting connection with selection properties. A selection of S :
IRn →→ IRm is a single-valued mapping s : domS → IRm such that s(x) ∈
S(x) for each x ∈ domS. It’s important for various purposes to know the
circumstances under which there must exist selections s that are continuous
relative to domS.

Set-valued mappings that are merely osc can’t be expected to admit con-
tinuous selections, but if a mapping S : IRn →→ IRm is isc at x̄ relative to
domS, there exists for each ū ∈ S(x̄) a selection s : domS → IRm such that s
is continuous at x̄ relative to domS and s(x̄) = ū. This follows from the
observation through 5.11(b) that lim supx→x̄ d

(
ū, S(x)

) ≤ d
(
ū, S(x̄)

)
= 0;

for each x ∈ domS one can choose s(x) to be any point u of S(x) with
|u − ū| ≤ d

(
ū, S(x)

)
+ |x − x̄|. However, it doesn’t follow from S being isc

on a neighborhood of x̄ that a selection s can be found that is continuous on a
neighborhood of x̄. Something more must usually be demanded of S besides a
continuity property in order to get selections that are continuous at more than
just a single point. The ‘something’ is convex-valuedness.
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The picture is much simpler when the mapping is continuous rather than
just isc, so we look at that case first.

5.57 Example (projections as continuous selections). Let S : IRn →→ IRm be
continuous relative to domS and convex-valued. For each u ∈ IRm define
su : IRn → IRm by taking su(x) to be the projection PS(x)(u) of u on S(x).
Then su is a selection of S that is continuous relative to domS.

Furthermore, for any choice of U ⊂ IRm such that clU ⊃ rgeS the family
of continuous selections {su}u∈U fully determines S, in the sense that

S(x) = cl
{
su(x)

∣∣u ∈ U}
for every x ∈ domS.

Detail. The continuity of S relative to domS ensures that S is closed-valued.
Thus S(x) is a nonempty, closed, convex set for each x ∈ domS, and the
projection mapping PS(x) is accordingly single-valued and continuous (cf. 2.25);
in fact PS(x)(u) depends continuously on x for each u (cf. 4.9). In other words,
su(x) is a well defined, uniquely determined element of S(x), and the mapping
su is continuous. If clU ⊃ rgeS, there exists for each x ∈ domS and ū ∈ S(x)
a sequence of points uν ∈ U with uν → ū, and for this we have suν (x)→ sū(x)
by the continuity of PS(x)(u) with respect to u. This yields the closure formula
claimed for S(x).

s

S

Fig. 5–13. A continuous selection s from an isc mapping S.

Let’s note in 5.57 that U could be taken to be all of IRm, and then actually
S(x) =

{
su(x)

∣∣u ∈ U}
, since su(x) = u when u ∈ S(x). On the other hand, U

could be taken to be any countable, dense subset of IRn (such as the set of all
vectors with rational coordinates), and we would then have a countable family
of continuous selections that fully determines S.

The main theorem on continuous selections asserts the existence of such a
countable family even when the continuity of S is relaxed to inner semicontinu-
ity, as long as domS exhibits σ-compactness. Recall that a set X is σ-compact
if it can be expressed as a countable union of compact sets, and note that in
IRn all closed sets and all open sets are σ-compact.

5.58 Theorem (Michael representations of isc mappings). Suppose the mapping
S : IRn →→ IRm is isc relative to domS as well as closed-convex-valued, and that
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domS is σ-compact. Then S has a continuous selection and in fact admits a
Michael representation: there exists a countable collection {si}i∈I of selections
si for S that are continuous relative to domS and such that

S(x) = cl
{
si(x)

∣∣ i ∈ I} for every x ∈ domS.

Proof. Part 1. Let’s begin by showing that if X is a compact set such that
intS(x) �= ∅ for all x ∈ X , then there is a continuous mapping s : X → IRm

with s(x) ∈ intS(x) for all x ∈ X . For each x ∈ X choose any ux ∈ intS(x). By
Theorem 5.9(a) there’s an open neighborhood Vx of x such that ux ∈ intS(x′)
for all x′ ∈ Vx ∩ domS. The family {Vx}x∈X is an open covering of X , so by
the compactness of X , one can extract a finite subcovering, say {Vi}i∈I with I
finite. Associated with each Vi is a point ui such that

ui ∈ intS(x) for all x ∈ Vi ∩ domS.

Define on X the functions θi(x) := min
{
1, d(x,X \Vi)

}
, which are continuous

(since distance functions are continuous, see 1.20). Let θ(x) :=
∑

i∈I θi(x) > 0
and λi(x) := θi(x)/θ(x), noting that these expressions are continuous relative
to x ∈ X with λi(x) ≥ 0 and

∑
i∈I λi(x) = 1. Then take

s(x) :=
∑
i∈I

λi(x)ui for all x ∈ X.

Since λi(x) = 0 when x /∈ Vi, only points ui ∈ intS(x) play a role in the sum
defining s(x). Hence s(x) ∈ intS(x) by the convexity of intS(x) (which comes
from 2.33).

Part 2. Next we argue that for any compact set X ⊂ domS and any η > 0,
it’s possible to find a continuous mapping s : X → IRm with d(s(x), S(x)) < η
for all x ∈ domS. We apply Part 1 to the mapping Sη : X →→ IRm defined by
Sη(x) := S(x) + ηIB. To see that Sη fits the assumptions there, note that it’s
closed-convex-valued (by 3.12 and 2.23) with intSη(x) �= ∅ for all x ∈ X (by
2.45(b)). Moreover Sη is isc relative to X by virtue of 5.24.

Part 3. We pass now to the higher challenge of showing that for any
compact set X ⊂ domS there’s a continuous mapping s : X → IRm with
s(x) ∈ S(x) for all x ∈ X . From Part 2 with η = 1, we first get a continuous
mapping s0 with d(s0(x), S(x)) < 1 for all x ∈ X . This initializes the following
‘algorithm’. Having obtained a continuous mapping sν with d(sν(x), S(x)) <
2−ν for all x ∈ X , form the convex-valued mapping Sν : X →→ IRm by

Sν(x) := S(x) ∩ [
sν(x) + 2−νIB

]
and observe that it is isc relative to domSν = X by 4.32 (and 5.24). Applying
Part 2, get a continuous mapping sν+1 : X → IRm with the property that
d(sν+1(x), Sν(x)) < 2−(ν+1) for all x ∈ X . Then in particular

d(sν+1(x), S(x)) < 2−(ν+1) for all x ∈ X,
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but also d(sν+1(x), sν(x)) < 2−(ν+1) + 2−ν < 2−(ν−1). By induction, one gets

d(sν+κ(x), sν(x)) < 2−(ν+κ−2) + · · ·+ 2−(ν+1) + 2−ν + 2−(ν−1) < 2−(ν−2),

so that for each x ∈ X the sequence
{
sν(x)

}
ν∈IN

has the Cauchy property.

For each x the limit of this sequence exists; denote it by s(x). It follows from
d(sν+1(x), S(x)) < 2−(ν+1) that s(x) ∈ S(x). Since the convergence of the
functions sν is uniform on X , the limit function s is also continuous (cf. 5.43).

Part 4. To pass from the case in Part 3 where X is compact to the case
where X is merely σ-compact, so that we can take X = domS, we note that
the argument in Part 1 yields in the more general setting a countable (instead
of finite) index set I giving a locally finite covering of X by open sets Vi: each
x belongs to only finitely many of these sets Vi, so that in the sums defining
λi(x) and s(x) only finitely many nonzero terms are involved.

Part 5. So far we have established the existence of at least one continuous
selection s for S, but we must go on now to the existence of a Michael represen-
tation for S. Let Q/ stand for the rational numbers and Q/ + for the nonnegative
rational numbers. Let

Q :=
{
(u, ρ) ∈ Q/ n ×Q/ +

∣∣ (rgeS) ∩ int IB(u, ρ) �= ∅}.
For any (u, ρ) the set S−1(int IB(u, ρ)) is open relative to domS (cf. 5.7(c)),
hence σ-compact because domS is σ-compact. For each (u, ρ) ∈ Q, the
mapping Su,ρ : IRn →→ IRm with Su,ρ(x) := cl

[
S(x) ∩ int IB(u, ρ)

]
, has

domSu,ρ = S−1(int IB(u, ρ)), and it is isc relative to this set (by 4.32(c)).
Also, Su,ρ is convex-valued (by 2.9, 2.40). Hence by Part 4 it has a continuous
selection su,ρ : S−1(int IB(u, ρ)) �→ IRm.

Let ZZ denote the integers. For each k ∈ IN and (u, ρ) ∈ Q let Ck
u,ρ be the

union of all the balls of the form

B ⊂ S−1(int IB(u, ρ)) with B = IB
(1
k
x,

( 1

2k
− 1

(2k)2

))
for some x ∈ ZZn.

Observe that Ck
u,ρ is closed and

⋃∞
k=1 C

k
u,ρ = S−1(int IB(u, ρ)). For each k ∈ IN

and (u, ρ) ∈ Q the mapping Sk
u,ρ : IRn →→ IRm defined by

Sk
u,ρ =

{ {su,ρ(x)} if x ∈ Ck
u,ρ,

S(x) otherwise,

is isc relative to the set domSk
u,ρ = domS (because the set domS \Ck

u,ρ is

open relative to domS). Also, Sk
u,ρ is convex-valued. Again by Part 4, we get

the existence of a continuous selection: sku,ρ : domS → IRm. In particular, sku,ρ
is a continuous selection for S itself.

This countable collection of continuous selections {sku,ρ}(u,ρ)∈Q, k∈IN fur-
nishes a Michael representation of S. To establish this, we have to show that

cl
{
sku,ρ(x)

∣∣ (u, ρ) ∈ Q, k ∈ IN}
= S(x).
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This will follow from the construction of the selections. It suffices to demon-
strate that for any given ε > 0 and ū ∈ S(x̄) there exists (u, ρ) with
|ū− sku,ρ(x̄)| < ε. But one can always find u ∈ Q/ n and ρ ∈ Q/ + with ρ < ε such
that ū ∈ S(x̄) ∩ int IB(u, ρ) and then pick k sufficiently large that x̄ belongs to
Ck

u,ρ. In that case sku,ρ(x̄) has the desired property.

5.59 Corollary (extensions of continuous selections). Suppose S : IRn →→ IRm is
isc relative to domS as well as convex-valued, and that domS is σ-compact.
Let s̄ be a continuous selection for S relative to a closed set X ⊂ domS (i.e.,
s̄(x) ∈ S(x) for x ∈ X , and s̄ is continuous relative to X). Then there exists
a continuous selection s for S that agrees with s̄ on X (i.e., s(x) ∈ S(x) for
x ∈ domS with s(x) = s̄(x) if x ∈ X , and s is continuous relative to domS).

Proof. Define S(x) = {s̄(x)} for x ∈ X but S(x) = S(x) otherwise. Then
domS = domS, and the requirements are met for applying Theorem 5.58 to
S. Any continuous selection s for S has the properties demanded.

Commentary

Vasilesco [1925], a student of Lebesgue, initiated the study of the topological prop-
erties of set-valued mappings, but he only looked at the special case of mappings
S : IR →→ IR with bounded values. His definitions of continuity and semicontinuity
were based on expressions akin to what we now call Pompeiu-Hausdorff distance. For
his continuous mappings he obtained results on continuous extensions, a theorem on
approximate covering by piecewise linear functions, an implicit function theorem and,
by relying on what he termed quasi-uniform continuity, a generalization of Arzelá’s
theorem on the continuity of the pointwise limit of a sequence of continuous mappings.
It was not until the early 1930s that notions of continuity and semicontinuity were
systematically investigated for mappings S : IRn →→ IRm, or more generally from one
metric space into another. The way was led by Bouligand [1932a], [1933], Kuratowski
[1932], [1933], and Blanc [1933].

Advances in the 1940s and 1950s paralleled those in the theory of set convergence
because of the close relationship to limits of sequences of sets. This period also
produced some fundamental results that make essential use of semicontinuity at more
than just one point. In this category are the fixed point theorem of Kakutani [1941],
the genericity theorem of Kuratowski [1932] and Fort [1951], and the selection theorem
of Michael [1956]. The book by Berge [1959] was instrumental in disseminating the
theory to a wide range of potential users. More recently the books of Klein and
Thompson [1984] and Aubin and Frankowska [1990] have helped in furthering access.

With burgeoning applications in optimal control theory (Filippov [1959]), statis-
tics (Kudo [1954], Richter [1963]), and mathematical economics (Debreu [1967],
Hildenbrand [1974]), the 1960s saw the development of a measurability and integra-
tion theory for set-valued mappings (for expositions see Castaing and Valadier [1977]
and our Chapter 14), which in turn stimulated additional interest in continuity and
semicontinuity in such mappings as a special case. The theory of maximal monotone
operators (Minty [1962], Brezis [1973], Browder [1976]), manifested in particular by
subgradient mappings associated with convex functions (Rockafellar [1970d]), as will
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be taken up in Chapter 12, focused further attention on multivaluedness and also the
concept of local boundedness (Rockafellar [1969b]). Strong incentive came too from
the study of differential inclusions (Ważewski [1961a] [1962], Filippov [1967], Olech
[1968], Aubin and Cellina [1984], Aubin [1991]).

Convergence theory for set-valued mappings originated in the 1970s, the moti-
vation arising mostly from approximation questions in dynamical systems and partial
differential equations (Brezis [1973], Sbordone [1974], Spagnolo [1976], Attouch [1977],
De Giorgi [1977]), stochastic optimization (Salinetti and Wets [1981]), and classical
approximation theory (Deutsch and Kenderov [1983], Sendov [1990]).

The terminology of ‘inner’ and ‘outer’ semicontinuity, instead of ‘lower’ and
‘upper’, has been forced on us by the fact that the prevailing definition of ‘upper
semicontinuity’ in the literature is out of step with developments in set convergence
and the scope of applications that must be handled, now that mappings S with
unbounded range and even unbounded value sets S(x) are so important. In the way
the subject has widely come to be understood, S is upper semicontinuous at x̄ if
S(x̄) is closed and for each open set O with S(x̄) ⊂ O the set {x |S(x) ⊂ O } is a
neighborhood of x̄. On the other hand, S is lower semicontinuous at x̄ if S(x̄) is
closed and for each open set O with S(x̄) ∩ O �= ∅ the set {x |S(x) ∩ O �= ∅ } is a
neighborhood of x̄. These definitions have the mathematically appealing feature that
upper semicontinuity everywhere corresponds to S−1(C) being closed whenever C is
closed, whereas lower semicontinuity everywhere corresponds to S−1(O) being open
whenever O is open. Lower semicontinuity agrees with our inner semicontinuity (cf.
5.7(c)), but upper semicontinuity differs from our outer semicontinuity (cf. 5.7(b))
and is seriously troublesome in its narrowness.

When the framework is one of mappings into compact spaces, as authors pri-
marily concerned with abstract topology have especially found attractive, upper
semicontinuity is indeed equivalent to outer semicontinuity (cf. Theorem 5.19), but
beyond that, in situations where S isn’t locally bounded, it’s easy to find ex-
amples where S fails to meet the test of upper semicontinuity at x̄ even though
S(x̄) = lim supx→x̄ S(x). In consequence, if one goes on to define continuity as
the combination of upper and lower semicontinuity, one ends up with a notion that
doesn’t correspond to having S(x) → S(x̄) as x → x̄, and thus is at odds with what
continuity really ought to mean in many applications, as we have explained in the
text around Figure 5–7. In applications to functional analysis the mismatch can be
even more bizarre; for instance in an infinite-dimensional Hilbert space the mapping
that associates with each point x the closed ball of radius 1 around x fails to be
upper semicontinuous even though it’s ‘Lipschitz continuous’ (in the usual sense of
that term—see 9.26); see cf. p. 28 of Yuan [1999].

The literature is replete with ad hoc remedies for this difficulty, which often
confuse and mislead the hurried, and sometimes the not-so-hurried, reader. For ex-
ample, what we call outer semicontinuous mappings were called ‘closed’ by Berge
[1959], but upper semicontinuous by Choquet [1969], whereas those that Berge refers
to as upper semicontinuous were called upper semicontinuous ‘in the strong sense’
by Choquet. Although closedness is descriptive as a global property of a graph, it
doesn’t work very well as a term for signaling that S(x̄) = lim supx→x̄ S(x) at an
individual point x̄. More recent authors, such as Klein and Thompson [1984], and
Aubin and Frankowska [1990], have reflected the terminology of Berge. Choquet’s
usage, however, is that of Bouligand, who in his pioneering efforts did define upper
semicontinuity instead by set convergence and specifically thought of it in that way
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when dealing with unboundedness; cf. Bouligand [1935, p. 12], for instance. Yet in
contrast to Bouligand, Choquet didn’t take ‘continuity’ to be the combination of
Bouligand’s upper semicontinuity with lower semicontinuity, but that of upper semi-
continuity ‘in the strong sense’ with lower semicontinuity. This idea of ‘continuity’
does have topological content—it corresponds to the topology developed for general
spaces of sets by Vietoris (see the Commentary for Chapter 4)—but, again, it’s based
on pure-mathematical considerations which have somehow gotten divorced from the
kinds of examples that should have served as a guide.

Despite the historical justification, the tide can no longer be turned in the mean-
ing of ‘upper semicontinuity’, yet the concept of ‘continuity’ is too crucial for applica-
tions to be left in the poorly usable form that rests on such an unfortunately restrictive
property. We adopt the position that continuity of S at x̄ must be identified with
having both S(x̄) = lim supx→x̄ S(x) and S(x̄) = lim infx→x̄ S(x). To maintain this
while trying to keep conflicts with other terminology at bay, we speak of the two
equations in this formulation as signaling outer semicontinuity and inner semiconti-
nuity. There is the side benefit then too from the fact that ‘outer’ and ‘inner’ better
convey the attendant geometry; cf. Figure 5–3. For clarity in contrasting this osc+isc
notion of continuity in the Bouligand sense with the restrictive usc+lsc notion, it’s
appropriate to refer to the latter as Vietoris-Berge continuity .

The diverse descriptions of semicontinuity listed between 5.7 and 5.12 are essen-
tially classical, except for those in Propositions 5.11 and 5.12, which follow directly
from related characterizations of set convergence. Theorem 5.7(a), that closed graphs
characterize osc mappings, appears in Choquet [1969]. Theorem 5.7(c), that a map-
ping is isc if and only if the inverse images of open sets are open, is already in Ku-
ratowski [1932]. Dantzig, Folkman and Shapiro [1967] and Walkup and Wets [1968]
in the case of linear constraints, and Walkup and Wets [1969b] and Evans and Gould
[1970] in the case of nonlinear constraints, were probably among the first to rely on
the properties of feasible-set mappings (Example 5.8) to obtain stability results for
the solutions of optimization problems; cf. also Hogan [1973]. The fact that certain
convexity properties yield inner semicontinuity comes from Rockafellar [1971b] in the
case of convex-valued mappings (Theorem 5.9(a)). The fact that inner semicontinuity
is preserved when taking convex hulls can be traced to Michael [1951].

Proposition 5.15 and Theorem 5.18 are new, as is the concept of an horizon
mapping 5(6). The characterization of outer semicontinuity under local boundedness
in Theorem 5.19 was of course the basis for the definition of upper semicontinuity
in the period when the study of set-valued mappings was confined to mappings into
compact spaces. A substantial part of the statements in Example 5.22 can be found
in Berge [1959]. Theorem 5.25 is new, at least in this formulation. All the results
5.27–5.30 dealing with cosmic or total (semi)continuity appear here for the first time.

The systematic study of pointwise convergence of set-valued mappings was initi-
ated in the context of measurable mappings, Salinetti and Wets [1981]. The origin of
graphical convergence, a more important convergence concept for variational analysis,
is more diffuse. One could trace it to a definition for the convergence of elliptic dif-
ferential operators in terms of their resolvants (Kato [1966]). But it was not until the
work of Spagnolo [1976], Attouch [1977], De Giorgi [1977] and Moreau [1978] that its
pivotal importance was fully recognized. The expressions for graphical convergence
at a point in Proposition 5.33 are new, as are those in 5.34(a); the uniformity result in
5.34(b) for connected-valued mappings stems from Bagh and Wets [1996]. Theorem
5.37 has not been stated explicitly in the literature, but, except possibly for 5.37(b),
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has been part of the folklore.
The concept of equi-outer semicontinuity, as well as the results that follow,

up to the generalized Arzelá-Ascoli Theorem 5.47, were developed in the process
of writing this book; extensions of these results to mappings defined on a topological
space and whose values are subsets of an arbitrary metric space appear in Bagh and
Wets [1996]. Dolecki [1982] introduced a notion related to equi-osc, which he called
quasi equi-semicontinuity. His definition, however, works well only when dealing with
collections of mappings that all have their ranges contained within a fixed bounded set.
Kowalczyk [1994] defines equi-isc, which he calls lower equicontinuity and introduces
a notion related to equi-osc and, even more closely to Dolecki’s quasi equicontinuity,
which he calls upper equicontinuity. It refers to upper semicontinuity, as defined
above, which lead to Vietoris-Berge continuity. Equicontinuity in Kowalczyk’s sense
is the combination of equi-isc and upper equicontinuity.

Hahn [1932] came up with the notion of continuous convergence for real-valued
functions. Del Prete, Dolecki and Lignola [1986] proposed a definition of continu-
ous convergence for set-valued mappings, but in the context of mappings that are
continuous in the Vietoris-Berge sense, discussed above, and this resulted in a more
restrictive condition. The definition of uniform convergence in 5.41 is equivalent to
that in Salinetti and Wets [1981]. The fact in 5.48 that a decreasing sequence of map-
pings converges uniformly on compact sets is an extension of a result of Del Prete
and Lignola [1983].

The use of set distances between graphs as a measure of the distance between
mappings goes back to Attouch and Wets [1991]. Theorem 5.50 renders the implica-
tions more explicit.

The results in 5.51–5.52 about the preservation of semicontinuity under various
operations are new, as are those about the images of converging mappings in 5.53–
5.54.

The generic continuity result in Theorem 5.55 is new in its applicability to ar-
bitrary semicontinuous mappings S from a set X ⊂ IRn into IRm. Kuratowski [1932]
and Fort [1951] established such properties for mappings into compact spaces, but in-
voking those results in this context would require assuming that S is locally bounded.

Theorem 5.58, on the existence of Michael representations (dense covering of
isc mappings by continuous selections), is due to Michael [1956], [1959]; our proof is
essentially the one found in Aubin and Cellina [1984]. Example 5.57, finding selections
by projection, is already mentioned in Ekeland and Valadier [1971]. For osc mappings
S, Olech [1968] and Cellina [1969] were the first to obtain approximate continuous
selections. Olech was concerned with a continuous selection that is close in a pointwise
sense, whereas Cellina focused on a selection that is close in the graphical sense, of
which the more inclusive version that follows is due to Beer [1983]: Let S : IRn →→ IRm

be osc, convex-valued and with rgeS bounded. Then for all ε > 0 there exists a
continuous function s : domS → IRm such that d(gph s, gphS) < ε.
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In the study of ‘variations’, constraints can present a major complication. Be-
fore the effects of variations can be ascertained it may be necessary to determine
the directions in which something can be varied at all. This may be difficult,
whether the variations are aimed at tests of optimality or stability, or arise in
trying to understand the consequences of perturbations in the data parameters
on which a mathematical model might depend.

In maximizing or minimizing a function over a set C ⊂ IRn, for instance,
properties of the boundary of C can be crucial in characterizing a solution.
When C is specified by a system of constraints such as inequalities, however, the
boundary may have all kinds of curvilinear facets, edges and corners. Standard
methods of geometric analysis can’t cope with such a lack of smoothness except
in simple cases where the pieces making up the boundary of C are neatly laid
out and can be dealt with one by one.

An approach to geometry is needed through which the main variational
properties of a set C can be identified, characterized and placed in a coordinated
framework despite the possibility of boundary complications. Such an approach
can be worked out in terms of associating with each point of C certain cones of
tangent vectors and normal vectors, which generalize the tangent and normal
subspaces in classical differential geometry. Several such cones come into play,
but they fit into a tight pattern which eventually emerges in Figure 6–17. The
central developments in this chapter, and the basic choices made in terminology
and notation, are aimed at spotlighting this pattern and making it easy to
appreciate and remember.

A. Tangent Cones

A primitive notion of variation at a point x̄ ∈ IRn is that of taking a vector
w �= 0 and replacing x̄ by x̄+ τw for small values of τ . Directional derivatives
are often defined relative to such variations, for example. When constraints are
present, however, straight-line variations of this sort might not be permitted. It
may be hard even to know which ‘curves’, if any, might serve as feasible paths
of variation away from x̄. But sequences that converge to x̄ without violating
the constraints can be viewed as representing modes of variation in reverse,
and the concept of direction can still then be utilized.
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w

xν

x
_

Fig. 6–1. Convergence to a point from a particular direction.

A sequence xν → x̄ is said to converge from the direction dirw if for
some sequence of scalars τν ↘ 0 the vectors [xν − x̄]/τν converge to w. Here
the direction dirw of a vector w �= 0 has the formal meaning assigned at the
beginning of Chapter 3 and is independent of the scaling of w. An idea closely
related to such directional convergence is that of w being the right derivative

ξ′
+
(0) := lim

τ ↘ 0

ξ(τ)− ξ(0)
τ

of a vector-valued function ξ : [0, ε]→ IRn with ξ(0) = x̄. In this case w is the
limit of [ξ(τν)− x̄]/τν for every choice of a sequence τν ↘ 0 in [0, ε].

In considering these notions relative to a set C, it will be useful to have
the notation

xν→C x̄ ⇐⇒ xν → x̄ with xν ∈ C. 6(1)

6.1 Definition (tangent vectors and geometric derivability). A vector w ∈ IRn

is tangent to a set C ⊂ IRn at a point x̄ ∈ C, written w ∈ TC(x̄), if
[xν − x̄]/τν → w for some xν→C x̄, τν ↘ 0, 6(2)

or in other words if dirw is a direction from which some sequence in C converges
to x̄, or if w = 0. Such a tangent vector w is derivable if there actually exists
ξ : [0, ε] → C with ε > 0, ξ(0) = x̄ and ξ′+(0) = w. The set C is geometrically
derivable at x̄ if every tangent vector w to C at x̄ is derivable.

The tangent vectors to a relatively nice set C at a point x̄ are illustrated
in Figure 6–2. These vectors form a cone, namely the one representing the
subset of hzn IRn that consists of the directions from which sequences in C
can converge to x̄. In this example C is geometrically derivable at x̄. But
tangent vectors aren’t always derivable, even though the condition involving
a function ξ : [0, ε] → C places no assumptions of continuity, not to speak of
differentiability, on ξ except at 0. An example of this will be furnished shortly.

6.2 Proposition (tangent cone properties). At any point x̄ of a set C ⊂ IRn, the
set TC(x̄) of all tangent vectors is a closed cone expressible as an outer limit:

TC(x̄) = lim sup
τ ↘ 0

τ−1(C − x̄). 6(3)

The subset of TC(x̄) consisting of the derivable tangent vectors is given by the
corresponding inner limit (i.e., with lim inf in place of lim sup) and is a closed
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cone as well. Thus, C is geometrically derivable at x̄ if and only if the sets
[C − x̄]/τ actually converge as τ ↘ 0, so that the formula for TC(x̄) can be
written as a full limit.

C

x
_

C

_
T (x)

Fig. 6–2. A tangent cone.

We’ll refer to TC(x̄) as the tangent cone to C at x̄. The set of derivable
tangent vectors forms the derivable cone to C at x̄, but we’ll have less need to
consider it independently and therefore won’t introduce notation for it here.

The geometric derivability of C at x̄ is, by 6.2, a property of local approx-
imation. Think of x̄+(C− x̄)/τ as the image of C under the one-to-one trans-
formation Lτ : x �→ x̄ + τ−1(x − x̄), which amounts to a global magnification
around x̄ by the factor τ−1. As τ ↘ 0 the scale blows up, but the progressively
magnified images Lτ (C) = x̄+ (C − x̄)/τ may anyway converge to something.
If so, that limit set must be x̄+ TC(x̄), and C is then geometrically derivable
at x̄, cf. Figure 6–3.

0

_
T (x)
C

1_
τ(C-x)

_

(C-x)
_

Fig. 6–3. Geometric derivability: local approximation through infinite magnification.

The convergence theory in Chapter 4 can be applied to glean a great
amount of information about this mode of tangential approximation. For exam-
ple, the uniformity result in 4.10 tells us that when C is geometrically derivable
at x̄ there exists for every ρ > 0 and ε > 0 a τ̄ > 0 such that, for all τ ∈ (0, τ̄):

τ−1(C − x̄) ∩ ρIB ⊂ TC(x̄) + εIB, TC(x̄) ∩ ρIB ⊂ τ−1(C − x̄) + εIB.

Here the first inclusion would hold on the basis of the definition of TC(x̄) as
an outer limit, but the second inclusion is crucial to geometric derivability as
combining the outer limit with the corresponding inner limit.
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It’s easy to obtain examples from this of how a set C can fail to be geo-
metrically derivable. Such an example is shown in Figure 6–4, where C is the
closed subset of IR2 consisting of x̄ = (0, 0) and all the points x = (x1, x2)
with x1 �= 0 and x2 = x1 sin(log x1). The tangent cone TC(x̄) clearly con-
sists of all w = (w1, w2) with |w2| ≤ |w1|, but the derivable cone consists
of just w = (0, 0); no nonzero tangent vector w is a derivable tangent vec-
tor. This is true because, no matter what the ‘scale of magnification’, the set
[C − x̄]/τ = τ−1C will always have the same wavy appearance and therefore
can’t ever satisfy the conditions of uniform approximation just given.

C

x
_

Fig. 6–4. An example where geometric derivability fails.

B. Normal Cones and Clarke Regularity

A natural counterpart to ‘tangency’ is ‘normality’, which we develop next.
Following traditional patterns, we’ll denote by o

(|x− x̄|) for x ∈ C a term with

the property that o
(|x− x̄|)/|x− x̄| → 0 when x→C x̄ with x �= x̄.

6.3 Definition (normal vectors). Let C ⊂ IRn and x̄ ∈ C. A vector v is normal

to C at x̄ in the regular sense, or a regular normal, written v ∈ N̂C(x̄), if〈
v, x− x̄〉 ≤ o

(|x− x̄|) for x ∈ C. 6(4)

It is normal to C at x̄ in the general sense, or simply a normal vector, written
v ∈ NC(x̄), if there are sequences xν→C x̄ and vν → v with vν ∈ N̂C(x

ν).

6.4 Definition (Clarke regularity of sets). A set C ⊂ IRn is regular at one of
its points x̄ in the sense of Clarke if it is locally closed at x̄ and every normal
vector to C at x̄ is a regular normal vector, i.e., NC(x̄) = N̂C(x̄).

Note that normal vectors can be of any length, and indeed the zero vector
is technically regarded as a regular normal to C at every point x̄ ∈ C. The ‘o’
inequality in 6(4) means that
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lim sup
x→C x̄
x�=x̄

〈
v, x− x̄〉∣∣x− x̄∣∣ ≤ 0, 6(5)

since this is equivalent to asserting that max
{
0, 〈v, x− x̄〉} is a term o

(|x− x̄|).
6.5 Proposition (normal cone properties). At any point x̄ of a set C ⊂ IRn, the

set NC(x̄) of all normal vectors is a closed cone, and so too is the set N̂C(x̄) of
all regular normal vectors, which in addition is convex and characterized by

v ∈ N̂C(x̄) ⇐⇒ 〈
v, w

〉 ≤ 0 for all w ∈ TC(x̄). 6(6)

Furthermore,
NC(x̄) = lim sup

x→C x̄
N̂C(x) ⊃ N̂C(x̄). 6(7)

Proof. The fact that NC(x̄) and N̂C(x̄) contain 0 has already been noted.
Obviously, when either set contains v it also contains λv for any λ ≥ 0. Thus,
both sets are cones. The closedness of NC(x̄) is immediate from 6(7), which

merely restates the definition of NC(x̄). The closedness and convexity of N̂C(x̄)

will follow from establishing 6(6), since that relation expresses N̂C(x̄) as the
intersection of a family of closed half-spaces

{
v
∣∣ 〈v, w〉 ≤ 0

}
.

First we’ll verify the implication ‘⇒’ in 6(6). Consider any v ∈ N̂C(x̄) and
w ∈ TC(x̄). By the definition of tangency there exist sequences xν→C x̄ and
τν ↘ 0 such that the vectors wν = [xν−x̄]/τν converge to w. Because v satisfies
6(4) we have 〈v, wν〉 ≤ o(|τνwν |)/τν → 0 and consequently 〈v, w〉 ≤ 0.

For the implication ‘⇐’ in 6(6), suppose v /∈ N̂C(x̄), so that 6(4) doesn’t
hold. From the equivalence of 6(4) with 6(5), there must be a sequence xν→C x̄
with xν �= x̄ such that

lim inf
ν→∞

〈
v, xν − x̄〉∣∣xν − x̄∣∣ > 0.

Let wν = [xν − x̄]/|xν − x̄| so that lim infν〈v, wν〉 > 0 with |wν | = 1. Passing
to a subsequence if necessary, we can suppose that wν converges to a vector w.
Then 〈v, w〉 > 0, but also w ∈ TC(x̄) because w is the limit of [xν − x̄]/τν with
τν = |xν − x̄| ↘ 0. Thus, the condition on the right of 6(6) fails for v.

C

x
_

N (x) = N (x)
^_ _

C C

Fig. 6–5. Normal vectors: a simple case.
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We call NC(x̄) the normal cone to C at x̄ and N̂C(x̄) the cone of regular
normals, or the regular normal cone.

Some possibilities are shown in Figure 6–5, where as in Figure 6–2 the cone
associated with a point x̄ is displayed under the ‘floating vector’ convention as
emanating from x̄ instead of from the origin, as would be required if their
elements were being interpreted as ‘position vectors’. When x̄ is any point on
a curved boundary of the set C, the two cones NC(x̄) and N̂C(x̄) reduce to a ray
which corresponds to the outward normal direction indicated classically. When
x̄ is an outward corner point at the bottom of C, the two cones still coincide but
constitute more than just a ray; a multiplicity of normal directions is present.
Interior points x̄ of C have NC(x̄) = N̂C(x̄) = {0}; there aren’t any normal
directions at such points.

At all points of the set C in Figure 6–5 considered so far, C is regular, so
only one cone is exhibited. But C isn’t regular at the ‘inward corner point’ of C.
There N̂C(x̄) = {0}, whileNC(x̄) is comprised of two rays. This phenomenon is
shown in more detail in Figure 6–6, again at an ‘inward corner point’ x̄ where
two solitary rays appear. The directions of these two rays arise as limits in
hzn IRn of the regular normal directions at neighboring boundary points, and
the angle between them depends on the angle at which the boundary segments
meet. In the extreme case of an inward cusp, the two rays would have opposite
directions and the normal cone would be a full line.

C
x
_

N (x)
C

_

N (x) = {0}C

_^

Fig. 6–6. An absence of Clarke regularity.

Nonetheless, in all these cases C is geometrically derivable at x̄ despite the
absence of regularity. Derivability therefore isn’t equivalent to regularity, but
we’ll see later (in 6.30) that it’s a sure consequence of such regularity.

The picture in Figure 6–6 illustrates how normal vectors in the general
sense can, in peculiar situations for certain sets C, actually point into a part of
C. This possibility causes some linguistic discomfort over ‘normality’, but the
cone of such limiting normal vectors comes to dominate technically in formulas
and proofs, so there are compelling advantages in reserving the simplest name
and notation for it. The limit process in Definition 6.3 is essential, for instance,
in achieving closedness properties like the following. Many key results would
fail if we tried to make do with regular normal vectors alone.
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6.6 Proposition (limits of normal vectors). If xν→C x̄, vν ∈ NC(x
ν) and vν → v,

then v ∈ NC(x̄). In other words, the set-valued mapping NC : x �→ NC(x) is
outer semicontinuous at x̄ relative to C.

Proof. The set
{
(x, v)

∣∣ v ∈ NC(x)
}
is by definition the closure in C × IRn of{

(x, v)
∣∣ v ∈ N̂C(x)

}
. Hence it is closed relative to C × IRn.

In harmony with the general theory of set-valued mappings, it’s convenient
to think of NC and N̂C not just as mappings on C but of type IRn →→ IRn with

NC(x̄) = N̂C(x̄) := ∅ when x̄ /∈ C. 6(8)

Then C = domNC = dom N̂C , and one has

NC(x̄) = lim sup
x→x̄

N̂C(x) for all x̄ ∈ IRn when C is closed.

Equivalently gphNC = cl(gph N̂C) in IRn × IRn, or NC = cl N̂C in the sense
of the closure or osc hull of a mapping (cf. 5(2)), as long as C is closed.

C. Smooth Manifolds and Convex Sets

The concepts of normal vector and tangent vector are of course invariant under
changes of coordinates, whether linear or nonlinear. The effects of such a
change can be expressed by way of a smooth (i.e., continuously differentiable)
mapping F and its Jacobian at a point x̄, which we denote by ∇F (x̄). In terms
of F (x) =

(
f1(x), . . . , fm(x)

)
for x = (x1, . . . , xn) the Jacobian is the matrix

∇F (x) :=

[
∂fi
∂xj

(x)

]m,n

i,j=1

∈ IRm×n.

The expansion F (x) = F (x̄) + ∇F (x̄)(x − x̄) + o
(|x − x̄|) summarizes the

m coordinate expansions fi(x) = fi(x̄) + 〈∇fi(x̄), x − x̄〉 + o
(|x − x̄|). The

transpose matrix ∇F (x̄)∗ has the gradients ∇fi(x̄) as its columns, so that

∇F (x̄)∗y = y1∇f1(x̄) + · · ·+ ym∇fm(x̄) for y = (y1, . . . , ym). 6(9)

6.7 Exercise (change of coordinates). Let C = F−1(D) ⊂ IRn for a smooth
mapping F : IRn → IRm and a set D ⊂ IRm, and suppose ∇F (x̄) has full rank
m at a point x̄ ∈ C with image ū = F (x̄) ∈ D. Then

TC(x̄) =
{
w
∣∣∇F (x̄)w ∈ TD(ū)

}
,

NC(x̄) =
{∇F (x̄)∗y ∣∣ y ∈ ND(ū)

}
,

N̂C(x̄) =
{∇F (x̄)∗y ∣∣ y ∈ N̂D(ū)

}
.

Guide. Consider first the case wherem = n. Use the inverse mapping theorem
to show that only a smooth change of local coordinates is involved, and this
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doesn’t affect the normals and tangents in question except for their coordinate
expression. Next tackle the case of m < n by choosing a1, . . . , an−m to be
a basis for the (n − m)-dimensional subspace

{
w ∈ IRn

∣∣∇F (x̄)w = 0
}
, and

defining F0 : IRn → IRm × IRn−m by F0(x) :=
(
F (x), 〈a1, x〉, . . . , 〈an−m, x〉

)
.

Then C = F−1
0 (D0) for D0 = D × IRn−m. The n× n matrix ∇F0(x̄) has rank

n, so the earlier argument can be applied.

C

x
_

_
T (x)C

_
N (x)C

Fig. 6–7. Tangent and normal subspaces for a smooth manifold.

On the basis of this fact it’s easy to verify that the general tangent and
normal cones defined here reduce in the case of a smooth manifold in IRn to
the tangent and normal spaces associated with such a manifold in classical
differential geometry.

6.8 Example (tangents and normals to smooth manifolds). Let C be a d-
dimensional smooth manifold in IRn around the point x̄ ∈ C, in the sense
that C can be represented relative to an open neighborhood O ∈ N (x̄) as the
set of solutions to F (x) = 0, where F : O → IRm is a smooth (i.e., C1) mapping
with ∇F (x̄) of full rank m, where m = n− d. Then C is regular at x̄ as well
as geometrically derivable at x̄, and the tangent and normal cones to C at x̄
are linear subspaces orthogonally complementary to each other, namely

TC(x̄) =
{
w ∈ IRn

∣∣∇F (x̄)w = 0
}
,

NC(x̄) =
{
v = ∇F (x̄)∗y ∣∣ y ∈ IRm

}
.

Detail. Locally we have C = F−1(0), so the formulas and the regularity follow
from 6.7 with D = {0}.

Another important case illustrating both Clarke regularity and geometric
derivability is that of a convex subset of IRn, which we take up next.

6.9 Theorem (tangents and normals to convex sets). A convex set C ⊂ IRn is
geometrically derivable at any point x̄ ∈ C, with
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NC(x̄) = N̂C(x̄) =
{
v
∣∣∣ 〈v, x− x̄〉 ≤ 0 for all x ∈ C

}
,

TC(x̄) = cl
{
w
∣∣∣ ∃λ > 0 with x̄+ λw ∈ C

}
,

intTC(x̄) =
{
w
∣∣∣ ∃λ > 0 with x̄+ λw ∈ intC

}
.

Furthermore, C is regular at x̄ as long as C is locally closed at x̄.

Proof. Let K =
{
w
∣∣∃λ > 0 with x̄ + λw ∈ C

}
. Because C includes for

any of its points the entire line segment joining that point with x̄, the vectors
in K are precisely the ones expressible as positive scalar multiples of vectors
x − x̄ for x ∈ C. Thus, they are derivable tangent vectors. Not only do we
have K ⊂ TC(x̄) but also TC(x̄) ⊂ clK by Definition 6.1, so TC(x̄) = clK and

C is geometrically derivable at x̄. The relationship between TC(x̄) and N̂C(x̄)

in 6.5 then gives us N̂C(x̄) =
{
v
∣∣ 〈v, w〉 ≤ 0 for all w ∈ K}

, and this is the

same as the formula for N̂C(x̄) claimed in the theorem.
Consider now a vector v ∈ NC(x̄). Fix any x ∈ C. By Definition 6.3 there

are sequences vν → v and xν→C x̄ with vν ∈ N̂C(x
ν). According to the formula

just established we have 〈vν , x − xν〉 ≤ 0, hence in the limit, 〈v, x − x̄〉 ≤ 0.

This is true for arbitrary x ∈ C, so it follows that x ∈ N̂C(x̄). The inclusion

NC(x̄) ⊃ N̂C(x̄) holds always, so we have NC(x̄) = N̂C(x̄).
To deal with intTC(x̄), let K0 =

{
w
∣∣ ∃λ > 0 with x̄ + λw ∈ intC

}
.

Obviously K0 is a open subset of K, but also K ⊂ clK0 when K0 �= ∅, because
C ⊂ cl(intC) when intC �= ∅, hence K0 = intK = int(clK); cf. 2.33. Since
clK = TC(x̄), we conclude that K0 = intTC(x̄).

C

N (x )C 1

T (x )C 1

x1

x2
N (x )C 2

T (x )C 2

Fig. 6–8. Variational geometry of a convex set.

The normal cone formula in 6.9 relates to the notion of a supporting half-
space to a convex set C at a point x̄ ∈ C, this being a closed half-space H ⊃ C
having x̄ on its boundary. The formula says that NC(x̄) consists of (0 and) all
the vectors v �= 0 normal to such half-spaces.

6.10 Example (tangents and normals to boxes). Suppose C = C1 × · · · × Cn,
where each Cj is a closed interval in IR (not necessarily bounded, perhaps just
consisting of a single number). Then C is regular and geometrically derivable
at every one of its points x̄ = (x̄1, . . . , x̄n). Its tangent cones have the form
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TC(x̄) = TC1
(x̄1)× · · · × TCn

(x̄n), where

TCj
(x̄j) =

⎧⎪⎨
⎪⎩

(−∞, 0] if x̄j is (only) the right endpoint of Cj ,
[0,∞) if x̄j is (only) the left endpoint of Cj ,
(−∞,∞) if x̄j is an interior point of Cj ,
[0, 0] if Cj is a one-point interval,

while its normal cones have the form

NC(x̄) = NC1
(x̄1)× · · · ×NCn

(x̄n), where

NCj
(x̄j) =

⎧⎪⎨
⎪⎩

[0,∞) if x̄j is (only) the right endpoint of Cj ,
(−∞, 0] if x̄j is (only) the left endpoint of Cj ,
[0, 0] if x̄j is an interior point of Cj ,
(−∞,∞) if Cj is a one-point interval.

Detail. In particular, C is a closed convex set. The formulas in Theorem
6.9 relative to a tangent vector w = (w1, . . . , wm) or a normal vector v =
(v1, . . . , vn) translate directly into the indicated requirements on the signs of
the components wj and vj .

D. Optimality and Lagrange Multipliers

The nonzero regular normals to any set C at one of its points x̄ can always
be interpreted as the normals to the ‘curvilinear supporting half-spaces’ to C
at x̄. This description is provided by the following characterization of regular
normals. It echoes the geometry in the convex case, where ‘linear’ supporting
half-spaces were seen to suffice.

6.11 Theorem (gradient characterization of regular normals). A vector v is a
regular normal to C at x̄ if and only if there is a function h that achieves a
local maximum relative to C at x̄ and is differentiable there with ∇h(x̄) = v.
In fact h can be taken to be smooth on IRn and such that its global maximum
relative to C is achieved uniquely at x̄.

C

_
v = h(x)

Δ

x
_

Fig. 6–9. Regular normals as gradients.

Proof. Sufficiency: If h has a local maximum on C at x̄ and is differentiable
there with ∇h(x̄) = v, we have h(x̄) ≥ h(x) = h(x̄) + 〈v, x − x̄〉 + o(|x − x̄|)
locally for x ∈ C. Then 〈v, x− x̄〉+o(|x− x̄|) ≤ 0 for x ∈ C, so that v ∈ N̂C(x̄).
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Necessity: If v ∈ N̂C(x̄), the expression

θ0(r) := sup
{〈v, x− x̄〉 ∣∣x ∈ C, |x− x̄| ≤ r} ≤ r|v|

is nondecreasing on [0,∞) with 0 = θ0(0) ≤ θ0(r) ≤ o(r). The function
h0(x) = 〈v, x− x̄〉−θ0

(|x− x̄|) is therefore differentiable at x̄ with ∇h0(x̄) = v
and h0(x) ≤ 0 = h0(x̄) for x ∈ C. It has its global maximum over C at x̄.

Although h0 is known only to be differentiable at x̄, there exists, as will be
demonstrated next, an everywhere continuously differentiable function h with
∇h(x̄) = ∇h0(x̄) = v and h(x̄) = h0(x̄), but h(x) < h0(x) for all x �= x̄ in
C, so that h achieves its maximum over C uniquely at x̄. This will finish the
proof. We’ll produce h in the form h(x) := 〈v, x− x̄〉−θ(|x− x̄|) for a suitable
function θ on [0,∞). It will suffice to construct θ in such a way that θ(0) = 0,
θ(r) > θ0(r) for r > 0, and θ is continuously differentiable on (0,∞) with
θ′(r) → 0 as r ↘ 0 and θ(r)/r → 0 as r ↘ 0. Since θ(0) = 0, the latter means
that at 0 the right derivative of θ exists and equals 0; then certainly θ(r)→ 0
as r ↘ 0.

As a first step, define θ1 by θ1(r) := (1/r)
∫ 2r

r
θ0(s)ds for r > 0, θ1(0) = 0.

The integral is well defined despite the possible discontinuities of θ0, because
θ0 is nondecreasing, a property implying further that θ0 has right and left
limits θ0(r+) and θ0(r−) at any r ∈ (0,∞). The integrand in the definition of
θ1(r) is bounded below on (r, 2r) by θ0(r+) and above by θ0(2r−), so we have
θ0(r+) ≤ θ1(r) ≤ θ0(2r−) for all r ∈ (0,∞). Also, θ1(r) = (1/r)

[
ϕ(2r)−ϕ(r)]

for the function ϕ(r) :=
∫ r

0
θ0(s)ds, which is continuous on (0,∞) with right

derivative ϕ′
+
(r) = θ0(r+) and left derivative ϕ′

−(r) = θ0(r−). Hence θ1 is
continuous on (0,∞) with right derivative (1/r)

[
2θ0(2r+)−θ0(r+)−θ1(r)] and

left derivative (1/r)
[
2θ0(2r−)− θ0(r−)− θ1(r)], both of which are nonnegative

(because θ0(r+) ≤ θ1(r) ≤ θ0(2r−) and θ0 is nondecreasing); consequently θ1 is
nondecreasing. These derivatives and θ1(r) itself approach 0 as r ↘ 0. Because
θ0(r+)/r ≤ θ1(r)/r ≤ θ0(2r−)/r, we have θ1(r)/r → 0 as r ↘ 0. Thus, θ1 has
the crucial properties of θ0 but in addition is continuous on [0,∞) with left and
right derivatives, which agree at points r such that θ0 is continuous at both r
and 2r, and which are themselves continuous at such points r.

Next define θ2(r) := (1/r)
∫ 2r

r
θ1(s)ds for r > 0, θ2(0) = 0. We have

θ2 ≥ θ1, hence θ2 ≥ θ0. By the reasoning just given, θ2 inherits from θ1 the
crucial properties of θ0, but in addition, because of the continuity of θ1, θ2
is continuously differentiable on (0,∞) with θ′2(r) → 0 as r ↘ 0. Finally, take
θ(r) = θ2(r) + r2. This function meets all requirements.

Although a general normal vector v ∈ NC(x̄) that isn’t regular can’t always
be described in the manner of Theorem 6.11 and Figure 6–9 as the gradient
of a function maximized relative to C at x̄, it can be viewed as arising from
a sequence of ‘nearby’ situations of such character, since by definition it’s a
limit of regular normals, each corresponding to a maximum of some smooth
function. Obviously out of such considerations, the limits in Definition 6.3 are
indispensable in building up a theory that will eventually be able to take on
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the issues of what happens when optimization problems are perturbed. This
view of what normality signifies is the source of many applications.

The next theorem provides a fundamental connection between variational
geometry and optimality conditions more generally.

6.12 Theorem (basic first-order conditions for optimality). Consider a problem
of minimizing a differentiable function f0 over a set C ⊂ IRn. A necessary
condition for x̄ to be locally optimal is〈∇f0(x̄), w〉 ≥ 0 for all w ∈ TC(x̄), 6(10)

which is the same as −∇f0(x̄) ∈ N̂C(x̄) and implies

−∇f0(x̄) ∈ NC(x̄), or ∇f0(x̄) +NC(x̄) � 0. 6(11)

When C is convex, these tangent and normal cone conditions are equivalent
and can be written also in the form〈∇f0(x̄), x− x̄〉 ≥ 0 for all x ∈ C, 6(12)

which means that the linearized function l(x) := f0(x̄)+〈∇f0(x̄), x−x̄〉 achieves
its minimum over C at x̄. When f0 too is convex, the equivalent conditions are
sufficient for x̄ to be globally optimal.

Proof. Local optimality of x̄ means that f0(x) − f0(x̄) ≥ 0 for all x in a
neighborhood of x̄ in C. But f0(x) − f0(x̄) = 〈∇f0(x̄), x − x̄〉 + o

(|x − x̄|).
Therefore, 〈−∇f0(x̄), x− x̄〉 ≤ o

(|x− x̄|) for x ∈ C, which by definition is the

condition −∇f0(x̄) ∈ N̂C(x̄). This condition is equivalent by 6.5 to 6(10) and

implies 6(11) because NC(x̄) ⊃ N̂C(x̄). In the convex case, 6(10) and 6(11) are
equivalent to 6(12) through Theorem 6.9. The sufficiency for global optimality
comes then from the inequality f0(x) ≥ f0(x̄) + 〈∇f0(x̄), x− x̄〉 in 2.14.

The normal cone condition 6(11) will later be seen to be equivalent to the
tangent cone condition 6(10) not just in the convex case but whenever C is
regular at x̄ (cf. 6.29). It’s typically the most versatile first-order expression of
optimality because of its easy modes of specialization and the powerful calculus
that can be built around it. When x̄ ∈ intC, it reduces to Fermat’s rule, the
classical requirement that ∇f0(x̄) = 0, inasmuch as NC(x̄) = {0}. In general,
it reflects the nature of the boundary of C near x̄, as it should.

For a smooth manifold as in 6.8 and Figure 6–7, we see from 6(11) that
∇f0(x̄) must satisfy an orthogonality condition at any point where f0 has a
local minimum. For a convex set C, the necessary condition takes the form
of requiring −∇f0(x̄) to be normal to a supporting half-space to C at x̄, as
observed through the equivalent statement 6(12). For a box as in 6.10, it comes
down to sign restrictions on the components (∂f0/∂xj)(x̄) of ∇f0(x̄).

The first-order conditions in Theorem 6.12 fit into a broader picture in
which the gradient mapping ∇f0 is replaced by any mapping F : C → IRn.
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This format has rich applications beyond the characterization of a minimum
relative to C, for instance in descriptions of ‘equilibrium’.

6.13 Example (variational inequalities and complementarity). For any set C ⊂
IRn and any mapping F : C → IRn, the relation

F (x̄) +NC(x̄) � 0

is the variational condition for C and F , the vector x̄ ∈ C being a solution.
When C is convex, it is also called the variational inequality for C and F ,
because it can be written equivalently in the form

x̄ ∈ C, 〈
F (x̄), x− x̄〉 ≥ 0 for all x ∈ C,

and interpreted as saying that the linear function l(x) = 〈F (x̄), x〉 achieves its
minimum over C at x̄. In the special case where C = IRn

+
it is known as the

complementarity condition for the mapping F , because it comes out as

x̄j ≥ 0, v̄j ≥ 0, x̄j v̄j = 0 for j = 1, . . . n, where

v̄ = F (x̄), x̄ = (x̄1, . . . , x̄n), v̄ = (v̄1, . . . , v̄n),

which can be summarized vectorially by the notation 0 ≤ x̄ ⊥ F (x̄) ≥ 0.

Detail. The reduction in the convex case is seen from 6.9. When C = IRn
+

the condition that v̄ +NC(x̄) � 0 says that −v̄j ∈ NIR+
(x̄j) for j = 1, . . . n, cf.

6.10. This requires v̄j = 0 when x̄j > 0 but merely v̄j ≥ 0 when x̄j = 0.

For F = ∇f0 the complementarity condition in 6.13 is the first-order
optimality condition of Theorem 6.12 for the minimization of f0 over IRn

+.

Theorem 6.12 leads to a broad theory of Lagrange multipliers. The most
classical case of Lagrange multipliers, for minimization subject to smooth equal-
ity constraints only, is already at hand in the combination of condition 6(11)
with the formula for NC(x̄) in Example 6.8, where C is specified by the con-
straints fi(x) = 0, i = 1, . . . , m. If the gradients of the constraint functions
are linearly independent at x̄, a local minimum of f0 at x̄ relative to these
constraints entails the existence of a vector ȳ = (ȳ1, . . . , ȳm) ∈ IRm such that

∇f0(x̄) + ȳ1∇f1(x̄) + · · ·+ ȳm∇fm(x̄) = 0,

cf. 6(9). The next theorem extends the normal cone formula in Example 6.8
to constraint systems that are far more general, and in so doing it gives rise to
much wider results involving multipliers ȳi.

6.14 Theorem (normal cones to sets with constraint structure). Let

C =
{
x ∈ X ∣∣F (x) ∈ D}

for closed sets X ⊂ IRn and D ⊂ IRm and a C1 mapping F : IRn → IRm,
written componentwise as F (x) =

(
f1(x), . . . , fm(x)

)
. At any x̄ ∈ C one has
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N̂C(x̄) ⊃
{∑m

i=1
yi∇fi(x̄) + z

∣∣∣ y ∈ N̂D

(
F (x̄)

)
, z ∈ N̂X(x̄)

}
,

where y = (y1, . . . , ym). On the other hand, one has

NC(x̄) ⊂
{∑m

i=1
yi∇fi(x̄) + z

∣∣∣ y ∈ ND

(
F (x̄)

)
, z ∈ NX(x̄)

}
at any x̄ ∈ C satisfying the constraint qualification that{

the only vector y ∈ ND

(
F (x̄)

)
for which

−
∑m

i=1
yi∇fi(x̄) ∈ NX(x̄) is y = (0, . . . , 0).

If in addition to this constraint qualification the set X is regular at x̄ and D is
regular at F (x̄), then C is regular at x̄ and

NC(x̄) =
{∑m

i=1
yi∇fi(x̄) + z

∣∣∣ y ∈ ND

(
F (x̄)

)
, z ∈ NX(x̄)

}
.

Proof. For simplicity we can assume that X is compact, and hence that
C is compact, since the analysis is local and wouldn’t be affected if X were
replaced by its intersection with some ball IB(x̄, δ). Likewise we can assume D
is compact, since nothing would be lost by intersecting D with a ball IB(F (x̄), ε)
and taking δ small enough that |F (x)− F (x̄)| < ε when |x− x̄| ≤ δ.

We’ll first verify the inclusion for N̂C(x̄). The notation in 6(9) will be

convenient. Suppose v = ∇F (x̄)∗y + z with y ∈ N̂D(x̄) and z ∈ N̂X(x̄). We
have

〈
y, F (x)− F (x̄)〉 ≤ o(F (x)− F (x̄)) when F (x) ∈ D, where

F (x)− F (x̄) = ∇F (x̄)(x− x̄) + o
(|x− x̄|).

Therefore
〈
y,∇F (x̄)(x− x̄)〉 ≤ o(|x− x̄|) when F (x) ∈ D, the inner product on

the left being the same as 〈∇F (x̄)∗y, x−x̄〉, i.e., 〈v−z, x−x̄〉. At the same time
we have 〈z, x− x̄〉 ≤ o(|x− x̄|) when x ∈ X , so we get 〈v, x− x̄〉 ≤ o(|x− x̄|)
for x ∈ C and conclude that v ∈ N̂C(x̄).

For the sake of deriving the inclusion for NC(x̄), assume from now on that
the constraint qualification holds at x̄. It must also hold at all points x ∈ C in
some neighborhood of x̄ relative to C, for otherwise we could contradict it by
considering a sequence xν→C x̄ that yields −∇F (xν)∗yν ∈ NX(xν) for nonzero
vectors yν ∈ ND(F (xν)); such a sequence can be normalized to |yν| = 1, and
then by selecting any cluster point y we would get −∇F (x̄)∗y ∈ NX(x̄) through
6.6, yet |y| = 1.

Next, as a transitory step, we demonstrate that the inclusion claimed for
NC(x̄) holds for N̂C(x̄). Let v ∈ N̂C(x̄). By Theorem 6.11 there’s a smooth
function h on IRn such that argmaxC h = {x̄}, ∇h(x̄) = v. We take any
sequence of values τν ↘ 0 and analyze for each ν the problem of minimizing
over X ×D the C1 function

ϕν(x, u) := −h(x) + 1

2τν
∣∣F (x)− u∣∣2.
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Through our arrangement that X and D are compact, the minimum is attained
at some point (xν , uν) (not necessarily unique). Moreover (xν , uν)→ (x̄, F (x̄));
cf. 1.21. The optimality condition in Theorem 6.12 gives us

−∇xϕ
ν(xν , uν) =: zν ∈ NX(xν), −∇uϕ

ν(xν , uν) =: yν ∈ ND(uν),

inasmuch as argminx∈X ϕν(x, uν) = {xν} and argminu∈D ϕ
ν(xν , u) = {uν}.

Differentiating ϕν in u, we see that yν = [F (xν) − uν ]/τν . Differentiating ϕν

next in x, we get

zν = ∇h(xν)−∇F (xν)∗yν with ∇F (xν)→ ∇F (x̄), ∇h(xν)→ v.

By passing to subsequences, we can reduce to having the sequence of vectors
yν ∈ ND(uν) either convergent to some y or such that λνyν → y �= 0 for a
choice of scalars λν ↘ 0. In both cases we have y ∈ ND

(
F (x̄)

)
by 6.6, because

ND(uν) is a cone and uν → F (x̄).

If yν → y, we have at the same time that zν → z := v − ∇F (x̄)∗y with
z ∈ NX(x̄), again by virtue of 6.6. This yields the desired representation
v = ∇F (x̄)∗y+ z. On the other hand, if λνyν → y �= 0, λν ↘ 0, we obtain from
λνzν = λν∇h(xν) − ∇F (xν)∗λνyν that λνzν → z := −∇F (x̄)∗y, z ∈ NX(x̄),
which produces a representation 0 = ∇F (x̄)∗y+ z of the sort forbidden by the
constraint qualification. Therefore, only the first case is viable.

This demonstrates that N̂C(x̄) ⊂ S(x̄), where we now denote by S(x) for
any x ∈ C the set of all vectors of the form ∇F (x)∗y + z with y ∈ ND(F (x))
and z ∈ NX(x). The argument has depended on our assumption that the
constraint qualification is satisfied at x̄, but we’ve observed that it’s satisfied
then for all x in a neighborhood of x̄ relative to C. Hence we’ve actually
proved that N̂C(x) ⊂ S(x) for all x in such a neighborhood. In order to get

NC(x̄) ⊂ S(x̄), we can therefore use the fact that NC(x̄) = lim supx→x̄ N̂C(x)
to reduce the task to verifying that S is osc at x̄ relative to C.

Let xν→C x̄ and vν → v with vν ∈ S(xν), so that vν = ∇F (xν)∗yν + zν

with yν ∈ ND(F (xν)) and zν ∈ NX(xν). We can revert once more to two cases:
either (yν, zν)→ (y, z) or λν(yν , zν)→ (y, z) �= (0, 0) for some sequence λν ↘ 0.
In the first case we obtain in the limit that v = ∇F (x̄)∗y+z with y ∈ ND(F (x̄))
and z ∈ NX(x̄) by 6.6, hence v ∈ S(x̄) as desired. But the second case is
impossible, because it would give us λνvν = ∇F (xν)∗λνyν + λνzν and in the
limit 0 = ∇F (x̄)∗y + z in contradiction to the constraint qualification. This
confirms that NC(x̄) ⊂ S(x̄).

All that remains is the theorem’s assertion when X is regular at x̄ and
D is regular at F (x̄). Then N̂D

(
F (x̄)

)
= ND

(
F (x̄)

)
and N̂X(x̄) = NX(x̄), so

the inclusions already developed for N̂C(x̄) and NC(x̄), along with the general

inclusion N̂C(x̄) ⊂ NC(x̄), imply that these cones coincide and equal S(x̄).
Since C is closed (because X and D are closed and F is continuous), this tells
us also that C is regular at x̄.

A result for tangent cones, parallel to Theorem 6.14, will emerge in 6.31.
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It’s notable that the normal vector representation for smooth manifolds in
Example 6.8 is established independently by 6.14 as the case of D = {0}. This
is interesting technically because it sidesteps the usual appeal to the classical
inverse mapping theorem through a change of coordinates as in 6.7, which was
the justification of Example 6.8 that we resorted to earlier.

The case of Theorem 6.14 where C is defined by inequalities fi(x) ≤ 0
for i = 1, . . . , m corresponds to D = IRn

− and is shown in Figure 6–10. Then
NC(x̄) is the convex cone generated by the gradients ∇fi(x̄) of the constraints
that are active at x̄.

C
x
_

_
N (x)C

Δf (x)
_

i

Fig. 6–10. Normals to a set defined by inequality constraints.

This idea carries forward to situations where fi is constrained to lie in a
closed interval Di, which may place an upper bound, a lower bound, or both
on fi(x), or represent an equality constraint when Di is a one-point interval.
Then D is a general box, and when the normal vector representation formula
in 6.10 is combined with the optimality condition 6(11) we obtain a powerful
Lagrange multiplier rule.

6.15 Corollary (Lagrange multipliers). Consider the problem

minimize f0(x) subject to x ∈ X and fi(x) ∈ Di for i = 1, . . . , m,

where X is a closed set in IRn, Di is a closed interval in IR, and the functions fi
are of class C1. Let x̄ be locally optimal, and suppose the following constraint
qualification holds at x̄: no vector y = (y1, . . . , ym) �= (0, . . . , 0) satisfies

−[y1∇f1(x̄) + · · ·+ ym∇fm(x̄)] ∈ NX(x̄)

and meets the sign restrictions that⎧⎪⎨
⎪⎩
yi = 0 if fi(x̄) lies in the interior of Di,
yi ≥ 0 if fi(x̄) is (only) the right endpoint of Di,
yi ≤ 0 if fi(x̄) is (only) the left endpoint of Di,
yi free if Di is a one-point interval.

Then there is a vector ȳ = (ȳ1, . . . , ȳm) meeting these sign restrictions with

−[∇f0(x̄) + ȳ1∇f1(x̄) + · · ·+ ȳm∇f(x̄)] ∈ NX(x̄).
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Proof. This is the case of 6.14 with D = D1 × · · · ×Dm, as applied to 6(11).
For normal vectors to boxes, see 6.10.

The four cases of sign restriction in this Lagrange multiplier rule corre-
spond to the constraint fi(x) ∈ Di being inactive, upper active, lower active,
or doubly active—an equality constraint. When X = IRn, the cone NX(x̄)
reduces to {0} and the gradient relations turn into simple equations. When X
is a box, on the other hand, these relations take the form of sign restrictions
on the partial derivatives of these gradient combinations, cf. 6.10.

E. Proximal Normals and Polarity

The basic optimality condition in Theorem 6.12 is useful not only as a foun-
dation for such multiplier rules but for theoretical purposes. This is illustrated
in the following analysis of a special kind of normal vector.

C

x
_

v

_
τx+ v

Fig. 6–11. Proximal normals from nearest-point projections.

6.16 Example (proximal normals). Consider a set C ⊂ IRn and its projection
mapping PC (which assigns to each x ∈ IRn the point, or points, of C nearest
to x). For any x ∈ IRn,

x̄ ∈ PC(x) =⇒ x− x̄ ∈ N̂C(x̄), so λ(x− x̄) ∈ N̂C(x̄) for all λ ≥ 0.

Any such vector v = λ(x − x̄) is called a proximal normal to C at x̄. The
proximal normals to C at x̄ are thus the vectors v such that x̄ ∈ PC(x̄ + τv)
for some τ > 0. Then actually PC(x̄+ τ ′v) = {x̄} for every τ ′ ∈ (0, τ).

Detail. For any point x̃ ∈ IRn, we have PC(x̃) = argminx∈C f0(x) with f0(x) =
1
2 |x− x̃|2, ∇f0(x) = x− x̃. Hence by 6.12, x̄ ∈ PC(x̃) implies x̃− x̄ ∈ N̂C(x̄).
Here we apply these relationships to cases where x̃ = x̄+ τv, see Figure 6–11.
It’s elementary from the triangle inequality that when x̄ is one of the points of
C nearest to x̃, then for all intermediate points x on the line segment joining
x̃ with x̄, the unique nearest point of C to x is x̄.

In essence, a vector v �= 0 is a proximal normal to C at x̄ when v points from
x̄ toward the center of a closed ball that touches C only at x̄. This condition is
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more restrictive than one characterizing regular normals in Theorem 6.11 and
amounts to the existence of ε > 0 such that〈

v, x− x̄〉 ≤ ε|x− x̄|2 for all x ∈ C.
6.17 Proposition (proximality of normals to convex sets). For a convex set C,
every normal vector is a proximal normal vector. The normal cone mapping
NC and the projection mapping PC are thus related by

NC = P−1
C − I, PC = (I +NC)

−1.

Proof. For any vector v ∈ NC(x̄), the convex function f(x) = 1
2

∣∣x− (x̄+ v)
∣∣2

has gradient ∇f(x̄) = −v and thus satisfies the first-order optimality condition
−∇f(x̄) ∈ NC(x̄). When C is convex, this condition is not only necessary by
6.12 for x̄ to minimize f over C but sufficient, so that we have v ∈ NC(x̄) if
and only if x̄ ∈ PC(x̄+v), in fact PC(x̄+v) = {x̄} because f is strictly convex.
Hence every normal is a proximal normal, and the graph of PC consists of the
pairs (z, x) such that z − x ∈ NC(x), or equivalently z ∈ (I + NC)(x). This
means that PC = (I +NC)

−1, or equivalently NC = P−1
C − I.

For a nonconvex set C, there can be regular normals that aren’t proximal
normals, even when C is defined by smooth inequalities. This is illustrated by

C =
{
x = (x1, x2) ∈ IR2

∣∣x2 ≥ x
3/5
1 , x2 ≥ 0

}
,

where the vector v = (1, 0) is a regular normal vector at x̄ = (0, 0) but no point
of

{
x̄+ τv

∣∣ τ > 0
}
projects onto x̄, cf. Figure 6–12(a).

The proximal normals at x̄ always form a cone, and this cone is convex;
these facts are evident from the description of proximal normals just provided.
But in contrast to the cone of regular normals the cone of proximal normals
needn’t be closed—as Figure 6–12(a) likewise makes clear. Nor is it true that
the closure of the cone of proximal normals always equals the cone of regular
normals, as seen from the similar example in Figure 6–12(b), where only the
zero vector is a proximal normal at x̄.

x1
x1x

_
x
_

x2 x2

(a) (b)

x = x2 1
3/5 x = x2 1

3/5

Fig. 6–12. Regular normals versus proximal normals.
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6.18 Exercise (approximation of normals). Let C be a closed subset of IRn, and
let x̄ ∈ C and v̄ ∈ NC(x̄).

(a) For any ε > 0 there exist x ∈ IB(x̄, ε)∩C and v ∈ IB(v̄, ε)∩NC(x) such
that v is a proximal normal to C at x.

(b) For any sequence of closed sets Cν �= ∅ such that lim supν C
ν = C there

is a subsequence {Cν}ν∈N (the index set N ∈ N#
∞ being identifiable with IN

itself when actually Cν → C) along with points xν ∈ Cν and proximal normals
vν ∈ NCν (xν) such that xν→N x̄ and vν→N v̄. Thus in particular, in terms of
graphical convergence of normal cone mappings, one has

NC ⊂ g-lim supν NCν .

Guide. In (a), argue from Definition 6.3 that it suffices to treat the case where
v̄ is a regular normal with |v̄| = 1. For a sequence of values εν ↘ 0 consider
the points x̃ν := x̄ + εν v̄ and show that their projections PC(x̃

ν) yield points
xν → x̄ with proximal normals vν → v̄.

In (b) it suffices through a diagonalization argument based on (a) to con-
sider the case where v̄ is a proximal normal to C at x̄: for some τ > 0 one
has x̄ ∈ PC(x̄+ τ v̄). By virtue of 4.19 there’s an index set N ∈ N#

∞ such that
x̄ ∈ limν∈N Cν =: D. Argue that x̄ ∈ PD(x̄+ τ v̄) and invoke the fact in 5.35
that correspondingly g-limν∈N PCν = PD in order to generate the required
sequences of elements xν and vν .

An example where the graphical convergence inclusion in 6.18(b) is strict
is furnished in IR2 by taking C to be the horizontal axis and Cν to be the
graph of x2 = ν−1 sin(νx1). At each point x̄ = (x̄1, 0) of C, the cone NC(x̄) is
{0} × IR, whereas the cone

[
g-lim supν NCν

]
(x̄) is all of IR2. Here, by the way,

every normal to Cν or C is a proximal normal.

6.19 Exercise (characterization of boundary points). For a closed set C ⊂ IRn,
a point x̄ ∈ C is a boundary point if and only if there is a vector v �= 0 in
NC(x̄). On the other hand, x̄ ∈ intC if and only if NC(x̄) is just the zero cone.
For nonclosed C, one has NC(x̄) ⊂ NclC(x̄).

Guide. Argue that a boundary point x̄ can be approached by a sequence of
points x̃ν /∈ C, and the projections of those points on C yield proximal normals
of length 1 at points arbitrarily close to x̄.

This characterization of boundary and interior points has an important
consequence for closed convex sets, whose nonzero normals correspond to sup-
porting half-spaces.

6.20 Theorem (envelope representation of convex sets). A nonempty, closed,
convex set in IRn is the intersection of its supporting half-spaces. Thus, a set
C is closed and convex if and only if C is the intersection of a collection of
closed half-spaces, or equivalently, the set of solutions to some system of linear
inequality constraints. Such a set is regular at every point. (Here IRn is the
intersection of the empty collection of closed half-spaces.)
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For a closed, convex cone, all supporting half-spaces have the origin as a
boundary point. On the other hand the intersection of any collection of closed
half-spaces having the origin as a boundary point is a closed, convex cone.

C

Fig. 6–13. A closed, convex set as the intersection of its supporting half-spaces.

Proof. If C is the intersection of a collection of closed half-spaces, each of
those being itself a closed, convex set expressible by a single linear inequality,
then certainly C is closed and convex. On the other hand, if C is a closed,
convex set, and x̃ is any point not in C, any point x̄ ∈ PC(x̃) (at least one of
which exists, cf. 1.20) gives a proximal normal v = x̃ − x̄ �= 0 to C at x̄ as in
6.16. The half-space H =

{
x
∣∣ 〈v, x − x̄〉 ≤ 0

}
then supports C at x̄ (cf. 6.9),

but it doesn’t contain x̃, because 〈v, x̃− x̄〉 = |v|2 > 0.
When C is a cone, any half-space

{
x
∣∣ 〈a, x〉 ≤ α

} ⊃ C must have α ≥ 0

(because 0 ∈ C), and then also
{
x
∣∣ 〈a, x〉 ≤ 0

} ⊃ C (because otherwise for
some x ∈ C and large λ > 0 we would have 〈a, λx〉 > α despite λx ∈ C).

K

K*

0

Fig. 6–14. Convex cones polar to each other.

The envelope representation of convex cones in Theorem 6.20 expresses
a form of duality which will be important in understanding the relationships
between tangent vectors and normal vectors, especially in connection with reg-
ularity. For any cone K ⊂ IRn, the polar of K is defined to be the cone

K∗ :=
{
v
∣∣ 〈v, w〉 ≤ 0 for all w ∈ K}

. 6(14)

The bipolar is the cone K∗∗ = (K∗)∗. Whenever K1 ⊂ K2, one has K∗
1 ⊃ K∗

2

and K∗∗
1 ⊂ K∗∗

2 .
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6.21 Corollary (polarity correspondence). For a cone K ⊂ IRn, the polar cone
K∗ is closed and convex, and K∗∗ = cl(conK). Thus, in the class of all closed,
convex cones the correspondence K ↔ K∗ is one-to-one, with K∗∗ = K.

Proof. By definition, K∗ is the intersection of a collection of closed half-spaces
H having 0 ∈ bdryH, namely all those of the form H =

{
v
∣∣ 〈v, w〉 ≤ 0

}
with

w ∈ K. Hence it is a closed, convex cone. But K∗∗ is the intersection of all the
half-spaces

{
w
∣∣ 〈v, w〉 ≤ 0

}
that include K, or equivalently, include cl(conK).

This intersection equals cl(conK) by Theorem 6.20.

6.22 Exercise (pointedness and polarity). A convex cone K has nonempty in-
terior if and only if its polar cone K∗ is pointed. In fact

w ∈ intK ⇐⇒ 〈
v, w

〉
< 0 for all nonzero v ∈ K∗.

Here if K = K∗
0 for some closed cone K0, not necessarily convex, one can

replace K∗ by K0 in each instance.

Guide. Argue that a convex set containing 0 has empty interior if and only if
it lies in a hyperplane through the origin (e.g., utilize the existence of simplex
neighborhoods, cf. 2.28(e)). Argue next that a closed, convex cone fails to be
pointed if and only if it includes some line through the origin (cf. 3.7 and 3.13).
Then use the fact that at boundary points of clK a supporting hyperplane
exists (cf. 2.33—or 6.19, 6.9). For a closed cone K0 such that K∗ = cl(conK0),
the pointedness of K∗ is equivalent to that of K0 (cf. 3.15).

The polar of the nonnegative orthant IRn
+
is the nonpositive orthant IRn

−,
and vice versa. The zero cone {0} and the full cone IRn likewise furnish an
example of cones that are polar to each other. The polar of a ray

{
τw

∣∣ τ > 0
}
,

where w �= 0, is the half-space
{
v
∣∣ 〈v, w〉 ≤ 0

}
.

6.23 Example (orthogonal subspaces). Orthogonality of subspaces is a special
case of polarity of cones: for a linear subspace M of IRn, one has

M∗ =M⊥ =
{
v
∣∣ 〈v, w〉 = 0 for all w ∈M}

, M∗∗ =M⊥⊥ =M.

According to this, the relationship in 6.8 and Figure 6–7 between tangents
and normals to a smooth manifold fits the context of cones that are polar to
each other. But so too does the relationship in 6.9 and Figure 6–8 between
tangents and normals to a convex set.

6.24 Example (polarity of normals and tangents to convex sets). For any convex
set C ⊂ IRn (closed or not), and any point x̄ ∈ C, the cones NC(x̄) and TC(x̄)
are polar to each other. Moreover, NC(x̄) is pointed if and only if intC �= ∅.
Detail. This is seen from 6.9.

In particular from 6.24, the polar relationship holds between NC(x̄) and
TC(x̄) when C is a box. Then the cones in question are themselves boxes
(typically unbounded) as described in 6.10.
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F. Tangent-Normal Relations

How far does polarity go in general in describing the connections between
normal vectors and tangent vectors? In the pursuit of this question, another
concept of tangent vector, more special in character, will be valuable for its
remarkable properties and eventually its close tie to Clarke regularity.

6.25 Definition (regular tangent vectors). A vector w ∈ IRn is tangent to C at
a point x̄ ∈ C in the regular sense, or a regular tangent vector , indicated by
w ∈ T̂C(x̄), if for every sequence τν ↘ 0 and every sequence x̄ν→C x̄ there is a
sequence xν→C x̄ with (xν − x̄ν)/τν → w. In other words,

T̂C(x̄) := lim inf
x→C x̄
τ ↘ 0

C − x
τ

. 6(15)

Often T̂C(x̄) coincides with the cone TC(x̄) of tangent vectors in the general
sense of Definition 6.1, but not always. Insights are provided by Figure 6–15.
The two kinds of tangent vector are the same at all points of the set C in that
figure except at the ‘inward corner’. There the regular tangent vectors form a
convex cone smaller than the general tangent cone, which isn’t convex.

C

x
_

T (x)C

_

T̂ (x)C

_

Fig. 6–15. Tangent cones in the regular and general sense.

The parallel between this discrepancy in Figure 6–15 and the one in Figure
6–6 for normal cones to the same set is no accident. It will emerge in 6.29 that
when C is locally closed at x̄, not only does regularity correspond to every
normal vector at x̄ being a regular normal vector, but equally well to every
tangent vector there being a regular tangent vector. This, of course, is the
ultimate reason for calling this type of tangent vector ‘regular’.

6.26 Theorem (regular tangent cone properties). For C ⊂ IRn and x̄ ∈ C, every
regular tangent vector w ∈ T̂C(x̄) is in particular a derivable tangent vector,

and T̂C(x̄) is a closed, convex cone with T̂C(x̄) ⊂ TC(x̄).
When C is locally closed at x̄, one has w ∈ T̂C(x̄) if and only if, for every

sequence x̄ν→C x̄, there are vectors wν ∈ TC(x̄ν) such that wν → w. Thus,
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T̂C(x̄) = lim inf
x→C x̄

TC(x). 6(16)

Proof. From the definition it’s clear that T̂C(x̄) contains 0 and for any w all

positive multiples λw. Hence T̂C(x̄) is a cone. As an inner limit, it’s closed.

Every w ∈ T̂C(x̄) can in particular be expressed as a limit of the form in
Definition 6.25 with x̄ν ≡ x̄ for any sequence of values τν ↘ 0, so it’s a derivable
tangent vector (cf. Definition 6.1). Thus also, T̂C(x̄) ⊂ TC(x̄) (cf. 6.2).

Inasmuch as T̂C(x̄) is a cone, we can establish its convexity by demon-

strating for arbitrary w0 and w1 in T̂C(x̄) that w0 + w1 ∈ T̂C(x̄) (cf. 3.7).

Consider sequences x̄ν→C x̄ and τν ↘ 0. To prove that w0 + w1 ∈ T̂C(x̄) we
need to show there is a sequence xν→C x̄ such that (xν − x̄ν)/τν → w0 + w1.

We know there exist, by the assumption that w0 ∈ T̂C(x̄), points x̃ν→C x̄ with

(x̃ν − x̄ν)/τν → w0. Then, since w1 ∈ T̂C(x̄), there exist points xν→C x̄ with
(xν − x̃ν)/τν → w1. It follows that (x

ν − x̄ν)/τν → w0 + w1, as desired.

Suppose now that C is locally closed at x̄. Replacing C by C ∩ V for a
closed neighborhood V ∈ N (x̄), we can reduce the verification of 6(16) to the
case where C is closed. Let K(x̄) stand for the set given by the ‘lim inf’ on
the right side of 6(16). Our goal is to demonstrate that w �∈ K(x̄) if and only

if w �∈ T̂C(x̄). The definition of K(x̄) means that

w �∈ K(x̄) ⇐⇒ ∃ε > 0, x̃ν→C x̄, with d
(
w, TC(x̃

ν)
) ≥ ε, 6(17)

while the limit formula 6(15) for T̂C(x̄) says that

w �∈ T̂C(x̄) ⇐⇒
{
∃ ε > 0, x̄ν→C x̄, τ̄ν ↘ 0

with
(
x̄ν + τ̄νIB(w, ε)

) ∩ C = ∅. 6(18)

If w �∈ K(x̄), we get from 6(17) the existence of ε̃ > 0 and points x̃ν→C x̄ with
IB(w, ε̃)∩TC(x̃ν) = ∅. Then for some τ̃ν > 0 we have IB(w, ε̃)∩τ−1(C−x̃ν) = ∅
for all τ ∈ (0, τ̃ν], which means

(
x̃ν + τIB(w, ε̃)

)∩C = ∅. Selecting τν ∈ (0, τ̃ν]

in such a way that τν ↘ 0, we conclude through 6(18) that w �∈ T̂C(x̄).
If we start instead by supposing w �∈ T̂C(x̄), we have x̄ν and τ̄ν as in 6(18).

The task is to demonstrate from this the existence of a sequence of points x̃ν

as in 6(17). For this purpose it will suffice to prove the following fact in simpler
notation: under the assumption that x̂ is a point of the closed set C such that
for some ε > 0 and τ̄ > 0 the ball x̂ + τ̄ IB(w, ε) doesn’t meet C, there exists
x̃ ∈ C ∩ IB(

x̂, τ̄(|w|+ ε)
)
such that d

(
w, TC(x̃)

) ≥ ε.
The set of all τ ∈ [0, τ̄ ] such that the ball IB(x̂+ τw, τε) = x̂+ τIB(w, ε)

meets C is closed, and by assumption it does not contain τ̄ . Let τ̂ be the
highest number it does contain; then 0 ≤ τ̂ < τ̄ . The set

D := x̂+ [τ̂ , τ̄ ]IB(w, ε) =
⋃{

x̂+ τ(w + εIB)
∣∣ τ ∈ [τ̂ , τ̄ ]

}
(see Figure 6–16) then meets C, although intD doesn’t; D is compact and
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convex in IRn. Let x̃ ∈ C∩D and τ̃ = τ̄ − τ̂ > 0. Suppose therefore that τ̃ > 0.
From the definition of D, |x̃− x̂| ≤ τ̄(|w|+ ε). For arbitrary ε̃ ∈ (0, ε) we prove
now that (x̃+

(
0, τ̃ ]IB(w, ε̃)

)∩C = ∅, so that IB(w, ε̃)∩ τ−1(C − x̃) = ∅ for all
τ ∈ (0, τ̃ ]. This will establish that d

(
w, TC(x̃)

) ≥ ε.
D

C

w

T (x)
C

~

x~

τε
_

x>

τ >x+ w>

x+ wτ
_>

Fig. 6–16. Perturbation argument.

By its selection, x̃ belongs to the ball x̂ + τ̂ IB(w, ε) and consequently
τ̂ ε ≥ |x̃− (x̂+ τ̂w)| = |(x̃+ τ̃w) − (x̂+ τ̄w)|. The ball of radius τ̄ ε− τ̂ ε = τ̃ ε
around x̃+ τ̃w lies therefore in the ball (x̂+ τ̄w)+ τ̄ εIB = x̂+ τ̄ IB(w, ε) within
D. The ball (x̃+ τ̃w) + τ̃ ε̃IB = x̃+ τ̃ IB(w, ε̃) lies accordingly in intD. By the
convexity of D, so then do all the line segments joining points of this ball with
x̃, except for x̃ itself (cf. 2.33). Thus,

(
x̃+ (0, τ̃ ]IB(w, ε̃)

) ∩ C = ∅.
It might be imagined from 6.26 that the mapping T̂C : x �→ T̂C(x) can be

counted on to be isc relative to C. But that may fail to be true. For example, if
C is the subset of IR3 formed by the union of the graph of x3 = x1x2 with that
of x3 = −x1x2, the cone T̂C(x̄) at any point x̄ on the x1-axis or the x2-axis,
except at the origin, is a line, but at the origin it’s a plane.

The regular tangent cone at the inner corner point in Figure 6–15 is the
polar of the normal cone at that point in Figure 6–6. We’ll show that this
relationship always holds when C is locally closed at the point in question.
The estimate in part (b) of the next proposition will be crucial in this.

6.27 Proposition (normals to tangent cones). Consider a set C ⊂ IRn and a
point x̄ ∈ C where C is locally closed. For the cone T = TC(x̄), one has

(a) NT (0) =
⋃

w∈T NT (w) ⊂ NC(x̄);

(b) for any vector w /∈ T there is a vector v̄ ∈ NC(x̄) with |v̄| = 1 such that
dT (w) = 〈v̄, w〉; thus in particular,

min
v∈NC(x̄)∩IB

〈
v, w

〉 ≤ dT (w) ≤ max
v∈NC(x̄)∩IB

〈
v, w

〉
for all w.

Proof. In (a), note first that because T is a cone one has NT (w) = NT (λw) for
all λ > 0. This implies that NT (w) ⊂ NT (0), since lim supν NT (w

ν) ⊂ NT (0)
when wν→

T 0. Thus, the equation for NT (0) is correct.
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Consider now any vector v ∈ NT (0). Since T = lim supτ ↘ 0[C − x̄]/τ ,
there exists on the basis of 6.18(b) a sequence τν ↘ 0 along with points wν ∈
T ν := [C − x̄]/τν and vectors vν ∈ NT ν (wν) such that wν → 0 and vν → v.
But NT ν (wν) = NC(x

ν) for xν = x̄+ τνwν → x̄. Hence actually v ∈ NC(x̄) by
the limit property in 6.6. This proves (a).

In (b), choose w̄ in the projection PT (w). Then |w−w̄| = dT (w) > 0, while
w− w̄ is a proximal normal to T at w̄; in particular, w− w̄ ∈ NT (w̄). Because
τw̄ ∈ T for all τ ≥ 0, the minimum of ϕ(τ) := |w−τw̄|2 over such τ is attained
at τ = 1, so 0 = ϕ′(0) = −2〈w− w̄, w̄〉. Let v := (w− w̄)/|w− w̄|. Then |v| = 1
and 〈v, w̄〉 = 0, so that 〈v, w〉 = 〈v, w − w̄〉 = |w − w̄| = dT (w). Furthermore
v ∈ NT (w̄), which implies by (a) that v ∈ NC(x̄). This establishes the first
assertion of (b) and shows that the double inequality holds when w /∈ T . It
holds trivially though when w ∈ T , since NC(x̄) ∩ IB contains v = 0.

6.28 Theorem (tangent-normal polarity). For C ⊂ IRn and x̄ ∈ C,
(a) N̂C(x̄) = TC(x̄)

∗ always,

(b) T̂C(x̄) = NC(x̄)
∗ as long as C is locally closed at x̄.

Proof. The first polarity relation merely restates 6(6). For the second polarity
relation under the assumption of local closedness, we begin by considering any
w ∈ T̂C(x̄) and v ∈ NC(x̄). The definition of NC(x̄) gives us sequences x̄

ν→
C x̄

and vν → v with vν ∈ N̂C(x̄
ν). According to 6(16) we can then find a sequence

wν → w with wν ∈ TC(x̄ν). We have 〈vν , wν〉 ≤ 0 by the first polarity relation,

so in the limit we get 〈v, w〉 ≤ 0. Thus, every w ∈ T̂C(x̄) satisfies 〈v, w〉 ≤ 0

for all v ∈ NC(x̄), and the inclusion T̂C(x̄) ⊂ NC(x̄)
∗ is valid.

Suppose now that w �∈ T̂C(x̄). We must show that also w �∈ NC(x̄)
∗, or

in other words, that for some v ∈ NC(x̄) one has 〈v, w〉 > 0. The condition

w �∈ T̂C(x̄) is equivalent through 6(16) to the existence of x̄ν→C x̄ and ε > 0
such that d(w, TC(x̄

ν)) ≥ ε. The tangent-normal relation in 6.27(b) suffices to
finish the proof, because it can be applied to x̄ν (where C is locally closed as
well, once ν is sufficiently high) and then yields vectors vν ∈ NC(x̄

ν)∩ IB with
〈vν , w〉 ≥ ε. Any cluster point v of such a sequence belongs to NC(x̄) by 6.6
and satisfies 〈v, w〉 ≥ ε.
6.29 Corollary (characterizations of Clarke regularity). At any x̄ ∈ C where C
is locally closed, the following are equivalent and mean that C is regular at x̄:

(a) NC(x̄) = N̂C(x̄), i.e., all normal vectors at x̄ are regular;

(b) TC(x̄) = T̂C(x̄), i.e., all tangent vectors at x̄ are regular;

(c) NC(x̄) =
{
v
∣∣ 〈v, w〉 ≤ 0 for all w ∈ TC(x̄)

}
= TC(x̄)

∗,
(d) TC(x̄) =

{
w
∣∣ 〈v, w〉 ≤ 0 for all v ∈ NC(x̄)

}
= NC(x̄)

∗,
(e) 〈v, w〉 ≤ 0 for all w ∈ TC(x̄) and v ∈ NC(x̄),

(f) the mapping N̂C is osc at x̄ relative to C,

(g) the mapping TC is isc at x̄ relative to C.

Proof. Property (a) is what we have defined regularity to be (in the presence

of local closedness). Theorem 6.28, along with the basic inclusions N̂C(x̄) ⊂
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NC(x̄) and T̂C(x̄) ⊂ TC(x̄) in 6.5 and 6.26, yields at once the equivalence of
(b), (c), (d), and (e). Here we make use of the basic facts about polarity in
6.21. The equivalence of (f) with (a) holds by the limit formula in 6.5, while
that of (g) with (b) holds by limit formula in 6.26.

6.30 Corollary (consequences of Clarke regularity). If C is regular at x̄, the
cones TC(x̄) and NC(x̄) are convex and polar to each other. Furthermore, C is
geometrically derivable at x̄.

Proof. The convexity comes from the polarity relations, cf. 6.21, while the
geometric derivability comes from 6.29(b) and the fact that regular tangent
vectors are derivable, cf. 6.26.

The ‘inward corner point’ in Figure 6–15 illustrates how a set can be
geometrically derivable at a point without being regular there, and how the
tangent cone in that case need not be convex.

The basic relationships between tangents and normals that have been es-
tablished so far in the case of C locally closed at x̄ are shown in Figure 6–17.
When C is regular at x̄, the left and right sides of the diagram join up.

TC
lim inf

−→ T̂C convex

↓ ∗ ↑ ∗
convex N̂C

lim sup

−→ NC

Fig. 6–17. Diagram of tangent and normal cone relationships for closed sets.

The polarity results enable us to state a tangent cone counterpart to the
normal cone result in Theorem 6.14.

6.31 Theorem (tangent cones to sets with constraint structure). Let

C =
{
x ∈ X ∣∣F (x) ∈ D}

for closed sets X ⊂ IRn and D ⊂ IRm and a C1 mapping F : IRn → IRm. At
any x̄ ∈ C one has

TC(x̄) ⊂
{
w ∈ TX(x̄)

∣∣∣∇F (x̄)w ∈ TD(
F (x̄)

)}
.

If the constraint qualification in Theorem 6.14 is satisfied at x̄, one also has

T̂C(x̄) ⊃
{
w ∈ T̂X(x̄)

∣∣∣∇F (x̄)w ∈ T̂D(
F (x̄)

)}
.
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If in addition X is regular at x̄ and D is regular at F (x̄), then

TC(x̄) = T̂C(x̄) =
{
w ∈ TX(x̄)

∣∣∣∇F (x̄)w ∈ TD(
F (x̄)

)}
.

Proof. The first inclusion is elementary from the definitions, while the second
follows from the normal cone inclusion in Theorem 6.14 by the polarity relation
in 6.28(b). In the regular case the relations give equations, as seen in 6.29.

A regular tangent counterpart to the tangent cone formula within 6.7 can
also be stated.

6.32 Exercise (regular tangents under a change of coordinates). Let C =
F−1(D) ⊂ IRn for a smooth mapping F : IRn → IRm and a set D ⊂ IRm.
Let x̄ ∈ C, ū = F (x̄) ∈ D, and suppose ∇F (x̄) has full rank m. Then

T̂C(x̄) =
{
w
∣∣∇F (x̄)w ∈ T̂D(ū)

}
.

Guide. See Exercise 6.7.

G∗. Recession Properties

Exploration of the following auxiliary notion related to tangency will bring to
light other important connections between tangents and normals.

6.33 Definition (recession vectors). A vector w is a local recession vector for a
set C ⊂ IRn at a point x̄ ∈ C, written w ∈ RC(x̄), if for some neighborhood
V ∈ N (x̄) and ε > 0 one has x+ τw ∈ C for all x ∈ C ∩ V and τ ∈ [0, ε]. It is
a global recession vector for C if actually x+ τw ∈ C for all x ∈ C and τ ≥ 0.

Roughly, a local recession vector w �= 0 for C at x̄ has the property that if
C is translated by a sufficiently small amount in the direction of w, it locally
‘recedes within itself’ around x̄. A global recession vector w translates C into
itself entirely: C + τw ⊂ C for all τ ≥ 0.

6.34 Exercise (recession cones and convexity).

(a) The set RC(x̄) of all local recession vectors to C at x̄ is a convex cone

lying within T̂C(x̄). In fact, when W = con{w1, . . . , wr} with wk ∈ RC(x̄)
there exist V ∈ N (x̄) and ε > 0 such that

x+ τW ⊂ C for all x ∈ C ∩ V and τ ∈ [0, ε].

(b) If C is closed, the set of global recession vectors to C is
⋂

x∈C RC(x),
and this cone is not only convex but closed.

(c) If C is convex, the global recession cone
⋂

x∈C RC(x) lies in C∞, and
when C is also closed this inclusion is an equation.

Guide. In (a), rely on the definition of RC(x̄). In (b), verify one direction by
arguing that if a half-line

{
x̄ + τw

∣∣ τ ≥ 0
}
from x̄ ∈ C doesn’t fully lie in C,

it must emerge at a point x̃, and then w /∈ RC(x̃). In (c), draw on 3.6.
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C

wε

x
_

Fig. 6–18. A local recession vector.

6.35 Proposition (recession vectors from tangents and normals). Let x̄ be a
point of C ⊂ IRn where C is locally closed. Then w ∈ RC(x̄) if and only
if there is an open neighborhood V ∈ N (x̄) for which one of the following
conditions holds, all these conditions being equivalent to each other:

(a) w ∈ TC(x) for all x ∈ C ∩ V ;

(b) w ∈ T̂C(x) for all x ∈ C ∩ V ;

(c) 〈v, w〉 ≤ 0 for all v ∈ NC(x) when x ∈ C ∩ V ;

(d) 〈v, w〉 ≤ 0 for all v ∈ N̂C(x) when x ∈ C ∩ V .

Proof. If w ∈ RC(x̄) we have from Definition 6.33 that (a) holds for an open
neighborhood V . Theorem 6.26 ensures the equivalence of (a) with (b) for any

open set V , since T̂C(x) ⊂ TC(x), while the equivalence of (b) with (c) is clear
from 6.28. The equivalence of (c) with (d) is immediate from the fact that

NC(x̄) is the outer limit of N̂C(x̄) as x→C x̄, cf. 6.5. To complete the claims
of equivalence, we suppose w /∈ RC(x̄) and prove that (c) doesn’t hold for any
V ∈ N (x̄). Replacing C by a local portion at x̄ if necessary, we can assume in
this that C is closed. Also, there is no loss of generality in taking |w| = 1.

Because w /∈ RC(x̄), we know that for every neighborhood V of x̄ and
every ε > 0 we can find a point x̂ ∈ C ∩ V and a value τ ∈ (0, ε] such that
x̂+ τw /∈ C. The closed set C ∩ {

x̂+ τw
∣∣ 0 ≤ τ ≤ ε

}
then contains a point x̃

with the property that x̃+ τw /∈ C for all τ in some interval (0, δ). Thus, there
are points x̃ ∈ C arbitrarily near to x̄ that have this property. It will suffice
to show that for such a point x̃ there is an arbitrarily close point x̃′ of C for
which a vector v ∈ NC(x̃

′) satisfies 〈v, w〉 > 0.
Let A be the matrix of the projection mapping from IRn onto the (n− 1)-

dimensional subspace orthogonal to w; thus, Ax = x − 〈x, w〉w. The line
L :=

{
x̃+ τw

∣∣ −∞ < τ <∞}
consists of the points x satisfying A(x− x̃) = 0,

the corresponding τ coordinate of such a point being l(x) := 〈x − x̃, w〉. Let
B be a compact neighborhood of x̃ with the property that the points x̃ + τw
belonging to B all have τ < δ. The assumption that the points x̃ + τw with
τ ∈ (0, δ) all lie outside of C translates under this notation into the assertion
that the problem

minimize f(x) := −l(x) + δC∩B(x) subject to A(x− x̃) = 0

has x = x̃ as its unique optimal solution. For a sequence of positive penalty
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coefficients rν →∞ consider the relaxed problems

minimize fν(x) := f(x) + 1
2r

ν |A(x− x̃)|2 over x ∈ IRn.

Each of these problems has a least one optimal solution xν , because f is lsc
with dom f = C ∩B, which is compact. We have xν → x̃ by 1.21. Eventually
xν ∈ intB, and once this occurs xν is a point at which the function hν(x) =
l(x)− 1

2r
ν |A(x− x̃)|2 achieves a local maximum relative to C. Then ∇hν(xν) ∈

N̂C(x
ν) by 6.12. We need only verify that the vector vν := ∇hν(xν), which in

particular lies in NC(x
ν), satisfies 〈vν , w〉 > 0. We calculate vν = ∇l(xν) −

rνA∗A(xν − x̃), with ∇l(xν) = w and A∗A = A2 = A because A is the
matrix of an orthogonal projection (hence self-adjoint and idempotent). Thus
vν = w − A(xν − x̃), where A(xν − x̃) belongs to the subspace orthogonal to
w, and therefore 〈vν , w〉 = 〈w,w〉 = 1.

6.36 Theorem (interior tangents and recession). At a point x̄ ∈ C where C is
locally closed, the following conditions on a vector w̄ are equivalent:

(a) w̄ ∈ int T̂C(x̄),

(b) w̄ ∈ intRC(x̄),

(c) there is a neighborhood W ∈ N (w̄) along with V ∈ N (x̄) and ε > 0
such that x+ τW ⊂ C for all x ∈ C ∩ V and τ ∈ [0, ε],

(d) there exists V ∈ N (x̄) such that 〈v, w̄〉 < 0 for all v ∈ NC(x) with
|v| = 1 when x ∈ C ∩ V ,

(e) 〈v, w̄〉 < 0 for all v ∈ NC(x̄) with |v| = 1.

Such a w̄ exists if and only if NC(x̄) is pointed, and then T̂C(x̄) = clRC(x̄).

Proof. We have (c) ⇔ (b) by 6.34(a), since every neighborhood of w̄ includes
a neighborhood of the formW = con{w1, . . . , wr}, cf. 2.28(e). Obviously (b)⇒
(a) because RC(x̄) ⊂ T̂C(x̄). On the other hand, (a) ⇔ (e) by 6.22, where the
existence of such a vector w̄ is identified also with the pointedness of NC(x̄).
We have (e) ⇔ (d) by the outer semicontinuity of the mapping NC in 6.6.
Hence through the characterization in 6.35(c), (e) implies in particular that
w̄ ∈ RC(x̄). But the set of vectors w̄ satisfying (e) for fixed x̄ is open. Thus,
(e) actually implies (b), and the pattern of equivalences is complete.

A convex set is the closure of its interior when that’s nonempty, so from
intRC(x̄) = int T̂C(x̄) �= ∅ we get clRC(x̄) = cl T̂C(x̄) = T̂C(x̄).

Along with other uses, Theorem 6.36 can assist in determining the regular
tangent cone T̂C(x̄) geometrically. Often the local recession cone RC(x̄) is
evident from the geometry of C around x̄ and has nonempty interior, and in
that event T̂C(x̄) is simply the closure of RC(x̄). In Figure 6–15, for instance,
it’s easy to see what RC(x̄) is at every point x̄ ∈ C, and always intRC(x̄) �= ∅.

Theorem 6.36 also reveals that the set limits involved in forming tangent
cones have an internal uniform approximation property like the one for convex
set limits in 4.15, even though the difference quotients in these limits aren’t
necessarily convex sets.
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6.37 Corollary (internal approximation in tangent limits). Let C be locally

closed at x̄ ∈ C, and let B be any compact subset of int T̂C(x̄) (or of intTC(x̄)
if C is regular at x̄). Then there exist ε > 0 and V ∈ N (x̄) such that

τ−1(C − x) ⊃ B for all τ ∈ (0, ε) when x ∈ C ∩ V,
and hence in particular TC(x) ⊃ B for all x ∈ C ∩ V .

Proof. Each point w̄ of B enjoys the property in 6.36(c) for some W ∈ N (w̄),
V ∈ N (x̄) and ε > 0. Since B is compact, it can be covered by finitely many
such neighborhoods Wk with associated Vk and εk, k = 1, . . . , m. The desired
property holds then for V = V1 ∩ · · · ∩ Vm and ε = min{ε1, . . . , εm}.

H∗. Irregularity and Convexification

The picture of normals and tangents in the case of sets that aren’t Clarke
regular can be completed through convexification. The convexified normal and
tangent cones to C at x̄ are defined by

NC(x̄) = cl conNC(x̄), TC(x̄) = cl conTC(x̄). 6(19)

6.38 Exercise (convexified normal and tangent cones). Let C be a closed subset
of IRn, and let x̄ ∈ C.

(a) The cones NC(x̄) and T̂C(x̄) are polar to each other:

NC(x̄) = T̂C(x̄)
∗, T̂C(x̄) = NC(x̄)

∗.

When NC(x̄) is pointed, or equivalently T̂C(x̄) has nonempty interior, a vector
v belongs to NC(x̄) if and only if it can be expressed as a sum v1 + · · ·+ vr of
vectors vk ∈ NC(x̄), with r ≤ n.

(b) The cones TC(x̄) and N̂C(x̄) are polar to each other:

TC(x̄) = N̂C(x̄)
∗, N̂C(x̄) = TC(x̄)

∗.

When TC(x̄) is pointed, or equivalently N̂C(x̄) has nonempty interior, a vector
w belongs to TC(x̄) if and only if it can be expressed as a sum w1 + · · ·+ wr

of vectors wk ∈ TC(x̄), with r ≤ n.
Guide. Combine the relations in 6.26 with the facts about polarity in 6.21,
6.24, and convex hulls of cones 3.15.

The fundamental constraint qualification in terms of normal cones has
a counterpart in terms of tangent cones, which however is a more stringent
assumption in the absence of Clarke regularity.

6.39 Exercise (constraint qualification in tangent cone form). Let x̄ ∈ C ={
x ∈ X ∣∣F (x) ∈ D}

for a C1 mapping F : IRn → IRm and closed sets X ⊂ IRn

and D ⊂ IRm. For x̄ to satisfy the constraint qualification of 6.14, namely that
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{
the only vector y ∈ ND

(
F (x̄)

)
for which

−
∑m

i=1
yi∇fi(x̄) ∈ NX(x̄) is y = (0, . . . , 0),

any of the following conditions, which are equivalent to each other, is sufficient;
they are necessary as well when X is regular at x̄ and D is regular at F (x̄):

(a) T̂D
(
F (x̄)

)−∇F (x̄)T̂X(x̄) = IRm;

(b) the only vector y ⊥ T̂D
(
F (x̄)

)
with ∇F (x̄)∗y ⊥ T̂X(x̄) is y = 0, but

there is a vector w̃ ∈ rint T̂X(x̄) with ∇F (x̄)w̃ ∈ rint T̂D
(
F (x̄)

)
;

(c) for the convexified normal cones NX(x̄) and ND

(
F (x̄)

)
,⎧⎨

⎩
the only vector y ∈ ND

(
F (x̄)

)
for which

−
∑m

i=1
yi∇fi(x̄) ∈ NX(x̄) is y = (0, . . . , 0).

Guide. First verify that (c) is sufficient for the constraint qualification, and
that it is necessary when the regularity properties hold. Next, in order to
obtain the equivalence of (c) with (a), let K = T̂D(F (x̄))−∇F (x̄)T̂X(x̄). Show

that K∗ consists of the vectors y ∈ T̂D(F (x̄))∗ such that −∇F (x̄)∗y ∈ T̂X(x̄)∗.
Apply 6.38, noting along the way that if a convex set has IRm as its closure, it
must in fact be IRm (cf. 2.33). For the equivalence of (a) with (b), argue that
K = IRm if and only if 0 ∈ rintK but there’s no vector y �= 0 such that y ⊥ K.
Use 2.44 and 2.45 to see that rintK = rint T̂D(F (x̄))−∇F (x̄) rint T̂X(x̄).

An example where the normal cone constraint qualification in 6.14 is sat-
isfied, but the tangent cone constraint qualification in 6.39(a) [or (b)] isn’t, is
obtained with F (x) ≡ x when X is the heart-shaped set in Figures 6–6 and
6–15, x̄ is the inward corner point of X , and D is the closed half-plane consist-
ing of the horizontal line through x̄ and all points below it. The normal cone
version is generally more robust, therefore, than the tangent cone version.

This example also illustrates, by the way, the value of working mainly
with the possibly nonconvex normal cone NC(x̄) in Definition 6.3 instead of
the convexified coneNC(x̄). While convexification may be desirable or essential
for some applications, it should usually be invoked only in the final stages of a
development, or some degree of robustness may be lost.

When X = IRn in 6.39, while D is regular at x̄ (as when D is convex),
the tangent cone constraint qualification in version (b) comes out simply as
requiring the existence of a vector w̃ with ∇F (x̄)w̃ ∈ rintTD

(
F (x̄)

)
, yet the

nonexistence of a nonzero vector y ⊥ TD
(
F (x̄)

)
with ∇F (x̄)∗y = 0. The

classical case is the following one.

6.40 Example (Mangasarian-Fromovitz constraint qualification). For smooth
functions fi : IR

n → IR, i = 1, . . . , m, let

C =
{
x ∈ IRn

∣∣ fi(x) ≤ 0 for i ∈ [1, s], fi(x) = 0 for i ∈ [s+ 1, m]
}
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and view this as C =
{
x ∈ X ∣∣F (x) ∈ D}

with X = IRn, F = (f1, . . . , fm),

and D =
{
(u1, . . . , um)

∣∣ui ≤ 0 for i ∈ [1, s], ui = 0 for i ∈ [s+ 1, m]
}
.

The constraint qualifications in 6.14 and 6.39(a)(b)(c) are equivalent then
to the stipulation that the gradients ∇fi(x̄) for i ∈ [s + 1, m] are linearly
independent and there exists w̃ satisfying{〈∇fi(x̄), w̃〉 < 0 for all indices i ∈ [1, s] with fi(x̄) = 0,〈∇fi(x̄), w̃〉 = 0 for all indices i ∈ [s+ 1, r].

Detail. This is based on the foregoing remarks. The vector ∇F (x̄)w̃ has
components 〈∇fi(x̄), w̃〉. On the other hand, TD

(
F (x̄)

)
consists of the vectors

(u1, . . . , um) such that ui ≤ 0 for i ∈ [1, s] with fi(x̄) = 0, but ui = 0 for
i ∈ [s+1, m], and rintTD

(
F (x̄)

)
is the same except with strict inequalities.

I∗. Other Formulas

In addition to the formulas for normal cones in 6.14 and the ones for tangent
cones in 6.31 (see also 6.7 and 6.32), there are other rules that can sometimes
be used to determine normals and tangents.

6.41 Proposition (tangents and normals to product sets). With IRn expressed
as IRn1 × · · ·× IRnm , write x ∈ IRn as (x1, . . . , xm) with components xi ∈ IRni .
If C = C1 × · · · × Cm for closed sets Ci ∈ IRni , then at any x̄ = (x̄1, . . . , x̄m)
with x̄i ∈ Ci one has

NC(x̄) = NC1
(x̄1)× · · · ×NCm

(x̄m),

N̂C(x̄) = N̂C1
(x̄1)× · · · × N̂Cm

(x̄m),

TC(x̄) ⊂ TC1
(x̄1)× · · · × TCm

(x̄m),

T̂C(x̄) = T̂C1
(x̄1)× · · · × T̂Cm

(x̄m).

Furthermore, C is regular at x̄ if and only if each Ci is regular at x̄i. In the
regular case the inclusion for TC(x̄) becomes an equation like the others.

Proof. The formula for N̂C(x̄) is immediate from the description of regular
normals in 6.11. Noting that xν→C x̄ if and only if xνi →C x̄i for each i, we obtain
the formula for NC(x̄) as well. The truth of the regularity assertion is then
obvious. The inclusion for TC(x̄) is an elementary consequence of Definition

6.1, while the equation for T̂C(x̄) follows by the second polarity relation in 6.28

from the equation for NC(x̄). Because TC(x̄) = T̂C(x̄) when C is regular at x̄,
the inclusion for TC(x̄) is an equation in that case.

An example where the inclusion for TC(x̄) in 6.41 is strict is encountered
for C = C1 × C2 ⊂ IR × IR with C1 = C2 := {0} ∪ {

2−k
∣∣ k ∈ IN}

. At x̄ =
(x̄1, x̄2) = (0, 0) every vector w = (w1, w2) with positive coordinates belongs
to TC1

(x̄1)×TC2
(x̄2), but such a vector belongs to TC(x̄) if and only if there is
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a choice of τν ↘ 0 and exponents kν and lν with (2−kν

, 2−lν )/τν) → (w1, w2).
That can’t hold unless w1/w2 happens to be an integral power of 2. Of course,

the polar of the formula for N̂C(x̄) in 6.41 provides anyway that

conTC(x̄) = conTC1
(x̄1)× · · · × conTCm

(x̄m).

6.42 Theorem (tangents and normals to intersections). Let C = C1 ∩ · · · ∩Cm

for closed sets Ci ⊂ IRn, and let x̄ ∈ C. Then
TC(x̄) ⊂ TC1

(x̄) ∩ · · · ∩ TCm
(x̄),

N̂C(x̄) ⊃ N̂C1
(x̄) + · · ·+ N̂Cm

(x̄).

Under the condition that the only combination of vectors vi ∈ NCi
(x̄) with

v1 + · · ·+ vm = 0 is vi = 0 for all i (this being satisfied for m = 2 when C1 and
C2 are convex and cannot be separated), one also has

T̂C(x̄) ⊃ T̂C1
(x̄) ∩ · · · ∩ T̂Cm

(x̄),

NC(x̄) ⊂ NC1
(x̄) + · · ·+NCm

(x̄).

If in addition every Ci is regular at x̄, then C is regular at x̄ and

TC(x̄) = TC1
(x̄) ∩ · · · ∩ TCm

(x̄),

NC(x̄) = NC1
(x̄) + · · ·+NCm

(x̄).

Proof. This applies Theorems 6.14 and 6.31 to D := C1 × · · · ×Cm ⊂ (IRn)m

and the mapping F : x �→ (x, . . . , x) ∈ (IRn)m with X = IRn. Normals and
tangents to D are calculated from 6.41.

6.43 Theorem (tangents and normals to image sets). Let D = F (C) for a closed
set C ⊂ IRn and a smooth mapping F : IRn → IRm. At any ū ∈ D one has

TD(ū) ⊃
⋃

x̄∈F−1(ū)∩C

{
∇F (x̄)w

∣∣∣w ∈ TC(x̄)},
N̂D(ū) ⊂

⋂
x̄∈F−1(ū)∩C

{
y
∣∣∣∇F (x̄)∗y ∈ N̂C(x̄)

}
.

If there exists U ∈ N (ū) such that F−1(U) ∩ C is bounded, then also

T̂D(ū) ⊃
⋂

x̄∈F−1(ū)∩C

{
∇F (x̄)w

∣∣∣w ∈ T̂C(x̄)},
ND(ū) ⊂

⋃
x̄∈F−1(ū)∩C

{
y
∣∣∣∇F (x̄)∗y ∈ NC(x̄)

}
,

where the union including ND(ū) is itself a closed cone. When C is convex and
F is linear with F (x) = Ax for a matrix A ∈ IRm×n, one simply has
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TD(ū) = T̂D(ū) = cl
{
Aw

∣∣w ∈ TC(x̄)}
ND(ū) = N̂D(ū) =

{
y
∣∣A∗y ∈ NC(x̄)

}
}

for every x̄ ∈ F−1(ū) ∩ C.

Proof. If y ∈ N̂D(ū), there exists by 6.11 a smooth function h around ū such
that h has a local maximum relative to D at ū, and ∇h(ū) = y. Then for any
point x̄ ∈ F−1(ū)∩C the function k(x) = h

(
F (x)

)
has a local maximum relative

to C at x̄. Since ∇k(x̄) = ∇F (x̄)∗y, we deduce from 6.11 that ∇F (x̄)∗y ∈
N̂C(x̄). This proves the first of the normal cone inclusions. The second then
follows from the limit definition of ND(ū) and the closedness property in 6.6.
The boundedness condition ensures in this that when F (xν) = uν → ū with
xν ∈ C, the sequence {xν}ν∈IN is bounded, thus having a cluster point x̄ ∈ C.
The same argument supports the assertion that the cone on the right in this
second inclusion is closed. Note that it also ensures D is locally closed at ū.

The first of the tangent cone inclusions stems from the recollection that
whenever x̄ ∈ C and w ∈ TC(x̄) there are sequences xν→C x̄ and τν ↘ 0 such
that (xν − x̄)/τν → w. In terms of F (x̄) = ū and F (xν) = uν in D, we then
have (uν − ū)/τν → ∇F (x̄)w, hence ∇F (x̄)w ∈ TD(ū).

For the second of the tangent cone inclusions, consider any vector z̄ be-
longing to all the cones

{∇F (x̄)w ∣∣w ∈ T̂C(x̄)} for x̄ ∈ F−1(ū) ∩ C. We must

show that z̄ ∈ T̂D(ū). Because D is locally closed at ū, we know from formula

6(16) of Theorem 6.26 that T̂D(ū) is the inner limit of TD(u) as u→D ū. Thus
it will suffice to consider an arbitrary sequence uν→D ū and demonstrate the
existence of zν ∈ TD(uν) such that zν → z̄.

Because uν ∈ D, there exist points xν ∈ F−1(uν) ∩ C. Our boundedness
condition makes the sequence {xν} have a cluster point x̄; we can assume
simply that xν → x̄. Then x̄ ∈ F−1(ū) ∩ C and it follows by assumption that

z̄ ∈ {∇F (x̄)w ∣∣w ∈ T̂C(x̄)}. Thus, there exists w̄ ∈ T̂C(x̄) with ∇F (x̄)w̄ = z̄.

Then by the inner limit formula 6(16) of Theorem 6.26 for T̂C(x̄), there are
vectors wν ∈ TC(xν) such that wν → w̄. Let zν = ∇F (xν)wν . We have zν → z̄
by the continuity of ∇F . Moreover the first of the tangent cone inclusions, as
invoked for TD(uν), gives us zν ∈ TD(uν) as required.

When C is convex and F (x) = Ax, so that D is convex, the condition
z ∈ ND(ū) translates through the characterization of normals to convex sets in
6.9 into saying, for any choice of x̄ ∈ C with Ax̄ = ū, that 〈z, Ax − Ax̄〉 ≤ 0
for all x ∈ C. This is identical to having 〈A∗z, x− x̄〉 ≤ 0 for all x ∈ C, which
by 6.9 again means that A∗z ∈ NC(x̄).

The tangent cone formula in the convex case can be derived similarly from
characterization of tangent cones to convex sets in 6.9. For any x̄ ∈ C with
Ax̄ = ū, a vector z has the property that ū + εz ∈ D if and only if there is
a point x ∈ C with the property that z = (Ax − Ax̄)/ε. This corresponds to
having z = Aw for a vector w such that x̄+ εw ∈ C.

Formulas for tangent and normal cones to an inverse image set C =
F−1(D), in the case of a closed set D ⊂ IRm and a smooth mapping
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F : IRn → IRm, are of course furnished already by 6.7 and 6.32 and more
importantly by Theorems 6.14 and 6.31 in the case of X = IRn. In compar-
ing such formulas with the ones in for the ‘forward’ images in Theorem 6.43, a
significant difference is seen. Theorems 6.14 and 6.31 bring in a constraint qual-
ification to produce a pair of inclusions going in the opposite direction from the
elementary ones first obtained, whereas Theorem 6.43 features a second pair
of inclusions having the same direction as the first pair. The earlier results
achieve calculus rules in equation form for the broad class of regular sets, but
6.43 only offers such rules for convex sets, and in quite a special way, useful as
it may be. These two different patterns of formulas will be evident also in the
calculus of subgradients and subderivatives in Chapter 10.

6.44 Exercise (tangents and normals under set addition). Let C = C1+· · ·+Cm

for closed sets Ci ⊂ IRn. Then at any point x̄ ∈ C one has

TC(x̄) ⊃
⋃

x̄1+···+x̄m=x̄
x̄i∈Ci

[
TC1

(x̄i) + · · ·+ TCm
(x̄m)

]
,

N̂C(x̄) ⊂
⋂

x̄1+···+x̄m=x̄
x̄i∈Ci

[
N̂C1

(x̄1) ∩ · · · ∩ N̂Cm
(x̄m)

]
.

If x̄ has a neighborhood V such that the set of (x1, . . . , xm) ∈ C1 × · · · × Cm

with x1 + · · ·+ xm ∈ V is bounded, then

T̂C(x̄) ⊃
⋂

x̄1+···+x̄m=x̄
x̄i∈Ci

[
T̂C1

(x̄i) + · · ·+ T̂Cm
(x̄m)

]
,

NC(x̄) ⊂
⋃

x̄1+···+x̄m=x̄
x̄i∈Ci

[
NC1

(x̄1) ∩ · · · ∩NCm
(x̄m)

]
.

If each Ci is convex, then, for any choice of x̄i ∈ Ci with x̄1 + · · ·+ x̄m = x̄,

TC(x̄) = cl
[
TC1

(x̄i) + · · ·+ TCm
(x̄m)

]
,

NC(x̄) = NC1
(x̄1) ∩ · · · ∩NCm

(x̄m).

Guide. Here C = F
(
C1×· · ·×Cm

)
for F (x1, . . . , xm) = x1+ · · ·+xm. Apply

Theorem 6.43.

The variational geometry of polyhedral sets has special characteristics
worth noting.

6.45 Lemma (polars of polyhedral cones; Farkas). The polar of a cone of form
K =

{
x
∣∣ 〈ai, x〉 ≤ 0 for i = 1, . . . , m

}
is K∗ = con

(
pos{a1, . . . , am}

)
, the cone

consisting of all linear combinations y1a1 + · · ·+ ymam with yi ≥ 0.

Proof. There’s no loss of generality in supposing that ai �= 0 in IRn. Let
J = con

(
pos{a1, . . . , am}

)
. The cone J is polyhedral by 3.52, in particular

closed. It’s elementary that J∗ = K, hence K∗ = J∗∗ = J by 6.20.
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Fig. 6–19. Tangent cones to a polyhedral set.

6.46 Theorem (tangents and normals to polyhedral sets). For a polyhedral set
C ⊂ IRn and any point x̄ ∈ C, the cones TC(x̄) and NC(x̄) are polyhedral.
Indeed, relative to any representation

C =
{
x
∣∣ 〈ai, x〉 ≤ αi for i = 1, . . . , m

}
and the active index set I(x̄) :=

{
i
∣∣ 〈ai, x̄〉 = αi

}
, one has

TC(x̄) =
{
w
∣∣ 〈ai, w〉 ≤ 0 for all i ∈ I(x̄)},

NC(x̄) =
{
y1a1 + · · ·+ ymam

∣∣ yi ≥ 0 for i ∈ I(x̄), yi = 0 for i /∈ I(x̄)}.
Proof. Since tangents and normals are ‘local’, we can suppose that all the
constraints are active at x̄. Then TC(x̄) consists of the vectors w such that
〈ai, w〉 ≤ 0 for i = 1, . . . , m, so TC(x̄) is polyhedral. Since NC(x̄) is the polar
of TC(x̄) by 6.24, it has the description in 6.45 and is polyhedral by 3.52.

6.47 Exercise (exactness of tangent approximations). For a polyhedral set C
and any x̄ ∈ C, there exists V ∈ N (x̄) with C ∩ V =

[
x̄+ TC(x̄)

] ∩ V .

Guide. Use the formula for TC(x̄) that comes out of a description of C by
finitely many linear constraints.

6.48 Exercise (separation of convex cones). Let K1, K2 ⊂ IRn be convex cones.

(a) K1 and K2 can be separated if and only if K1 − K2 �= IRn. This is
equivalent to having K∗

1 ∩ [−K∗
2 ] �= {0}.

(b) K1 and K2 can be separated properly in particular if K1 −K2 �= IRn

and int[K1−K2] �= ∅. This is equivalent to having not only K∗
1 ∩ [−K∗

2 ] �= {0}
but also K∗

1 ∩ [−K∗
2 ] pointed.

(c) When K1 and K2 are closed, they can be separated almost strictly, in
the sense of K1 \ {0} and K2 \ {0} lying in complementary open half-spaces, if
and only if cl[K1−K2] is pointed. This is equivalent to [intK

∗
1 ]∩[− intK∗

2 ] �= ∅,
and it holds if and only if K1 and K2 are pointed and K1 ∩K2 = {0}.
Guide. Rely on 2.39, 3.8, 3.14 and 6.22.
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Finally, we record a curious consequence of the generic continuity result
in Theorem 5.55.

6.49 Proposition (generic continuity of normal-cone mappings). For any set
C ⊂ IRn, the set of points x̄ ∈ bdryC where the mapping NC fails to be
continuous relative to bdryC is meager in bdryC. In particular, the points
where NC is continuous relative to bdryC are dense in bdryC.

Proof. We simply apply 5.55 to the mapping S = NC and the set X = bdryC,
which is closed. It’s known that a meager subset of a closed set X ⊂ IRn has
dense relative complement in X .

Commentary

Tangent and normal cones have been introduced over the years in great variety, and
the names for these objects have evolved in several directions. Rather than displaying
the full spectrum of possibilities, our overriding goal in this chapter has been to
identify and concentrate on a minimal family of such cones which is now known to be
adequate for most applications, at least in a finite-dimensional context. We have kept
notation and terminology as simple and coherent as we could, in the hope that this
would help in making the subject attractive to a broader group of potential users.

It seemed desirable in this respect to tie into the classical pattern of tangent and
normal subspaces to a smooth manifold by bestowing the plainest symbols TC(x̄)
and NC(x̄) and the basic names ‘tangent cone’ and ‘normal cone’ on the objects now
understood to go the farthest in conveying the basic theory. At the same time we
thought it would be good to trace as clearly as possible in notation and terminology
the role of Clarke regularity, a property which has come to be recognized as being
among the most fundamental.

These motives have led us to a new outlook on variational geometry, which
emerges in the scheme of Figure 6–17. To the extent that we have deviated in our
development from the patterns that others have followed, the reason can almost
always be found in our focus on this scheme and the need to present it most clearly
and naturally.

One-sided notions of tangency closely related to the tangent cone TC(x̄) of 6.1
were first developed by Bouligand [1930], [1932b], [1935] and independently by Severi
[1930a], [1930b], [1934], but from a somewhat different point of view. Bouligand
and Severi considered sequences of points xν →

C x̄ in C, with xν �= x̄, such that
the corresponding sequence of half-lines Lν , starting at x̄ and passing through xν ,
converges to some half-line L, likewise starting at x̄. They viewed this as signaling
directional convergence to x̄ with the direction indicated by L and defined the union
of all the half-lines L so obtainable, in Bouligand’s terminology, as the contingent of
C at x̄ which Severi designated as the set of semitangents at x̄. The contingent in
this sense is the set x̄ + TC(x̄), unless x̄ is an isolated point of C, in which case the
contingent is the empty set. These differences with TC(x̄) have been glossed over in
more recent literature, where TC(x̄) has often been called the ‘contingent cone’ to C
at x̄.

In Bouligand’s and Severi’s time, the algebraic notion of a ‘cone’ of vectors
emanating from the origin wasn’t current. It’s clear from their writings that they
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really viewed his contingent as standing for a set of directions, i.e., as being the
subset dirTC(x̄) of hzn IRn in our cosmic framework. To maintain this distinction
and for the general reasons already mentioned, we prefer to speak of TC(x̄) as the
tangent cone, which opens the way to referring to its elements as tangent vectors. This
conforms also to the usage of Hestenes [1966] and other pioneers in the development
of optimality conditions relative to an abstract constraint x ∈ C, as well as to the
language of convex analysis, cf. Rockafellar [1970a].

Cones of a more special sort were invoked in the landmark paper of Kuhn and
Tucker [1951] on Lagrange multipliers, which was later found to have been anticipated
by the unpublished thesis of Karush [1939] (see Kuhn [1976]). There, the only tangent
vectors w considered at x̄ were ones representable as tangent to some smooth curve
proceeding from x̄ into C, at least for a short way. Such tangent vectors are in
particular derivable as defined in 6.1, but derivability doesn’t require the function ξ(τ)
in the definition to be have any property of differentiability for τ > 0. This restricted
class of tangent vectors remains even now the one customarily presented in textbooks
on optimization and made the basis for the development of optimality conditions by
techniques that rely on the standard implicit function theorem of calculus. Such an
approach has many limitations, however, especially in treating abstract constraints.
These can be avoided by working in the broader framework provided here.

The subcone of TC(x̄) consisting of all derivable tangent vectors has been used
to advantage especially by Frankowska in her work in control theory; see the book
of Aubin and Frankowska [1990] for references and further developments. Rather
than studying this cone from a general perspective, we have emphasized the typically
occurring case of ‘geometric derivability’, where it actually coincides with the tangent
cone TC(x̄) and affords a tangential approximation to C at x̄. Such a mode of conical
approximation was first investigated by Chernoff [1954] for the sake of an application
in statistics. He expressed it by distance functions, but a description in terms of set
convergence, like ours, follows at once from the role of distance functions in the theory
of such convergence in Chapter 4 (cf. 4.7). For more on geometric derivability or its
absence, see Jimenez and Novo [2006].

The limit formula we’ve used in defining the regular tangent cone T̂C(x̄) in 6.25
was devised by Rockafellar [1979b], but the importance of this cone was revealed
earlier by Clarke [1973], [1975], who introduced it as the polar of his normal cone
(discussed below), thus in effect taking the relation in 6.28(b) as its definition. The

expression of T̂C(x̄) as the inner limit of the cones TC(x) at neighboring points x ∈ C
was effectively established by Aubin and Clarke [1977]; the idea was pursued by
Cornet in unpublished work and by Penot [1981]. See Treiman [1983a] for a full proof
that works to some extent for Banach spaces too.

The normal cone to a convex set C at a point x̄ was already defined in essence
by Minkowski [1911]. It was treated by Fenchel [1951] in modern cone fashion as
consisting of the outward normals to the supporting half-spaces to C at x̄. The
concept was developed extensively in convex analysis as a geometric companion to
subgradients of convex functions and for its usefulness in expressing conditions of
optimality; cf. Rockafellar [1970a]. This case of normal cones NC(x̄) served as a
prototype for all subsequent explorations of such concepts. The polar relationship
between NC(x̄) and TC(x̄) when C is convex was taken as a role model as well,
although rethinking had to be done later in that respect. The theory of polar cones
in general began with Steinitz [1913-16]; earlier, Minkowski [1911] had developed for
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closed, bounded, convex neighborhoods of the origin the polarity correspondence that
eventually furnished the basis for norms and the topological study of vector spaces
(see 11.19).

The first robust generalization of normal cones beyond convexity was effected by
Clarke [1973], [1975]. His normal cone to a nonconvex (but closed) set C at a point x̄
was defined in stages, starting from a notion of subgradient for Lipschitz continuous
functions and applying it to the distance function dC , but he showed that in the end
his cone could be realized by limits of proximal normals at neighboring points x of C
(although the term ‘proximal normal’ itself didn’t come until later). Thus, Clarke’s
normal cone had the expression

cl con
[
lim sup
x→C x̄

̂̂NC(x)
]
, ̂̂NC(x) := [cone of proximal normals to C at x]. 6(20)

This equals cl conNC(x̄) in the light of our present knowledge that the outer limit in

6(20) would be unchanged if N̂C(x) were substituted for ̂̂NC(x) (see 6.18(a)), which
is a fact due to Kruger and Mordukhovich [1980]. Clarke’s normal cone is identical
therefore to the convexified cone NC(x̄) in 6(19) and 6.38. Indeed, the achievement of
the polarity relation in 6.38(a) was what compelled him to take the closed convex hull.
The operation seemed harmless at the time, because many applications concerned
situations covered by Clarke regularity, where the outer limit itself, NC(x̄), was sure
to be convex anyway. Where convexity wasn’t assured, as in efforts at generalizing
Euler-Lagrange and Hamiltonian equations as necessary conditions for optimality on
the calculus of variations, cf. Clarke [1973], [1983], [1989], it appeared necessary to
add it for technical reasons connected with weak convergence in Lebesgue spaces.

The limit cone in 6(20), unconvexified, was studied for years as the cone of
‘limiting proximal normal vectors’ and a degree of calculus for it was derived, cf.
Rockafellar [1985a] and the works of Clarke already cited. It was viewed however as a
preliminary object, not a centerpiece of the theory as here, in its designation as NC(x̄)
with a broader description through limits of regular normal vectors. Increasingly,
though, the price paid for moving to the convexified cone was becoming apparent,
especially in the parametric analysis of optimal solutions and related attempts at
setting up a second-order theory of generalized differentiation.

A key geometric consideration for that purpose turned out to be the investigation
of graphs of Lipschitz continuous mappings as ‘nonsmooth manifolds’. Rockafellar
[1985b] showed that Clarke’s normal cone at a point of such a manifold of dimen-
sion d in IRn inevitably had to be a linear subspace, moreover one with dimension
greater than n− d unless the manifold was ‘strictly smooth’ at the point in question.
Correspondingly, Clarke’s tangent cone, defined through polarity, had to be a linear
subspace, and its dimension had to be less than d except in the strictly smooth case.
For such sets C, and others representable by them, like the graphs of basic subgrad-
ient mappings (see Chapters 8 and 12), it was hopeless then for variational geometry
to make significant progress unless convexification of normal cones were relinquished.

Meanwhile, the possibility emerged of using the cone of ‘limiting proximal nor-
mals’ directly, without convexification, in the statement and derivation of optimality
conditions. This approach, started by Mordukhovich [1976], required no appeal to
convex analysis at all when just necessary conditions were in question. It contrasted
not only with techniques based on the ideas already described, but also with those
in the school of Dubovitzkii and Miliutin [1965], which relied on selecting convex
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subcones of certain tangent cones and then applying a separation theorem. Instead,
auxiliary optimization problems were introduced in terms of penalties relative to
a sort of approximate separation, and limits were taken. The idea was explored in
depth by Mordukhovich [1980], [1984], [1988], Kruger [1985] and Ioffe [1981a], [1981b],
[1981c], [1984b]. They were able to get around previously perceived obstacles and es-
tablish complementary rules of calculus which opened the door to new configurations
of variational analysis in general.

The regular normal cone N̂C(x̄) as defined in 6.3 has not until now been placed
in such a front-line position in finite-dimensional variational geometry, although it
has been recognized as a serviceable tool. Its advantage over the proximal normal
cone, which likewise is convex and serves equally well in the limit definition of NC(x̄),

is that N̂C(x̄) is always closed. Furthermore, N̂C(x̄) is the polar of TC(x̄), whereas
no useful polarity relation comes along with the proximal normal cone, which needn’t
even have N̂C(x̄) as its closure.

As the polar cone TC(x̄)∗, N̂C(x̄) has played a role for a long time in optimiza-
tion theory; cf. Gould and Tolle [1971], Bazaraa, Gould, and Nashed [1974], Hestenes
[1975], Penot [1978]. The first paper in this list contains (within its proofs) a char-

acterization of N̂C(x̄) as consisting of all vectors v realizable as ∇h(x̄) for a function
h that is differentiable at x̄ and has a local maximum there relative to C. Theorem
6.11 goes well beyond that characterization in constructing h to be a C1 function on
IRn that attains its global maximum over C uniquely at x̄. A result close to this was
stated by Rockafellar [1993a], but the proof was sketchy in some details, which have
been filled in here.

The important property of regularity of C at x̄ developed by Clarke [1973],
[1975] was formulated by him to mean, when C is closed, that the cone TC(x̄) in 6.1
lies in the polar of his normal cone, this being the same as the polar of the ‘cone
of limiting proximal normals’. Since the ‘cone of limiting proximal normals’ is the
same as NC(x̄), we can write Clarke’s defining relation as the inclusion TC(x̄) ⊂
NC(x̄)∗. It’s elementary that this is equivalent to NC(x̄) ⊂ TC(x̄)∗ and therefore,

because TC(x̄)∗ = N̂C(x̄), corresponds to the relation NC(x̄) = N̂C(x̄) taken to be
the definition of Clarke regularity in 6.4 (with the extension that C need only be
closed locally). This way of looking at regularity, adopted first by Mordukhovich,
allows us to portray the regularity of C at x̄ as referring to the case where every
normal vector is regular. Of course, it was precisely for this purpose that we were led
to calling N̂C(x̄) the regular normal cone and its elements regular normal vectors. At

the same time, because NC(x̄)∗ = T̂C(x̄), the Clarke regularity of C at x̄ corresponds

to TC(x̄) = T̂C(x̄) and the case where every tangent vector is regular, as long as we

speak of T̂C(x̄) as the regular tangent cone and its elements as regular tangent vectors
as in 6.25.

Besides underscoring the dual nature of regularity, this pattern is appealing
in the way the two ‘regular’ cones T̂C(x̄) and N̂C(x̄) come out as convex subcones
of the general cones TC(x̄) and NC(x̄). Also, a major advantage for developments
later in the book is that the ‘hat’ notation and terminology of regularity can be
propagated to subderivatives and subgradients, and on to graphical derivatives and
coderivatives, without any conflicts. None of the other ways we tried to capture the
scheme in Figure 6–17 worked out satisfactorily. For instance, ‘bars’ instead of ‘hats’
might suggest closure or taking limits, which would clash with the desired pattern.
Subscripts or superscripts would run into trouble when applied to subgradients, where
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a superscript ∞ is frequently needed, and so forth.

We say all this with full knowledge that departures from names and symbols
which have already achieved a measure of acceptance in the literature are always
controversial, even when made with the best of intentions. Again we point to the
virtual necessity of this move in bringing the scheme in Figure 6–17 to the foreground
of the subject.

Of course, this scheme is finite-dimensional. In infinite-dimensional spaces, the
elements of N̂C(x̄), called ‘Fréchet normals’ because of the parallel between their
defining condition and Fréchet differentiability, are typically more special than those
of TC(x̄)∗, which are often called ‘Dini normals’. Also, the cone T̂C(x̄) need not
coincide with the inner limit of the cones TC(x) as x→

C x̄.

The usefulness of normal cones in characterizing solutions to problems of opti-
mization was the motivation behind much of the work we have already cited in the
theory of tangent and normal cones, but the explicit appearance of such cones in the
very statement of optimality conditions is another matter. That route was first taken
in convex analysis; cf. Rockafellar [1970a]. In parallel, researchers studying problems
in partial differential equations with unilateral constraints came up with the idea of
a ‘variational inequality’, which eventually generated a whole school of mathematics
of its own. It was Stampacchia [1964] who made the initial start, followed up by
Lions and Stampacchia [1965], [1967]. A related subject, growing out of optimality
conditions in linear and quadratic programming, was that of ‘complementarity’. A
combined overview of both subjects is provided by the book of Cottle, Giannessi and
Lions [1980]. But despite the fact, known at least since the late 1960s, that vari-
ational inequalities and complementarity conditions are special convex cases of the
fundamental condition in 6.13 relating a mapping to the normal cones to a set C,
with strong ties to the optimality rule in 6.12, little has been made of this perspec-
tive, although it supplies numerous additional tools of analysis and calculation and
suggests how to proceed in relaxing the convexity of C.

The book of Cottle, Pang and Stone [1992] covers the extensive theory of lin-
ear complementarity problems, while the book of Luo, Pang and Ralph [1996] is a
source for recent developments on variational inequalities as constraints with other
optimization problems.

The normal cone formula in 6.14 can be regarded as a special case of a chain rule
for subdifferentiation which will be developed and discussed later (see 10.6 and 10.49,
as well as the Commentary of Chapter 10). It offers a method of generating Lagrange
multiplier rules which, like the one in 6.15, are more versatile and powerful than the
famous rule of Kuhn and Tucker [1951] (and Karush [1939]). The derivation through
quadratic penalties, from Rockafellar [1993a], resembles that of McShane [1973] but
with key differences in scope and detail. Related ‘chain rule’ formulas for normal
cones as well as for tangent cones, as in 6.31, were developed by Rockafellar [1979b],
[1985a], but in terms of Clarke’s convexified normal cone.

The constraint qualification in 6.14 in normal cone form has partial precedent
in that earlier work (cf. also Rockafellar [1988]), as does the tangent cone form in
6.39(b). In the case of the nonlinear programming problem of 6.15 specialized to
X = IRn, the normal and tangent versions are equivalent and reduce respectively to
the conditions posed by John [1948] and by Mangasarian and Fromovitz [1967] (theirs
being the same as the condition used by Karush [1939] if only inequality constraints
are present); cf. 6.40. For other tangent cone constraint qualifications like 6.39(a)(b),
see Penot [1982] and Robinson [1983].
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In the tradition of convex programming with inequality constraints only (the
special case of X = IRn, D = IRm

− , and convex functions fi as the components of
F ), the constraint qualification of Slater [1950] is equivalent to all these tangent and
normal cone conditions as well. It merely requires the existence of a point x̂ such
that fi(x̂) < 0 for all i. Extensions of Slater’s condition to cover equality constraints
and a convex set X �= IRn can be found in Rockafellar [1970a] (§28).

Recession vectors in the global sense were originally introduced by Rockafellar
[1970a] for convex sets C. In that context, with C closed, there are now the same as
the horizon vectors in C∞. For nonconvex sets C, the ‘recession’ concept splits away
from the ‘horizon’ concept and, as with many extensions beyond convexity, needs to
take on a local character. We have tried to provide the appropriate generalization
in the definition in 6.33 of the recession cone RC(x̄) to C at x̄. The facts about
such cones in 6.35 are new. The identification of the interior of RC(x̄) with that of

T̂C(x̄) in 6.36 was discovered earlier by Rockafellar [1979b], although the ‘recession’
terminology wasn’t used there. The vectors in this interior, characterized by the
property in 6.35(a), were called ‘hypertangents’ in Rockafellar [1981a].

A notation related to local recession was central to the early research of
Dubovitzkii and Miliutin [1965] on necessary conditions in constrained optimization.
At a point x̄ ∈ C they worked with vectors w̄ for which there exist ε > 0 and δ > 0
such that x̄+ τw ∈ C for all τ ∈ [0, ε] and w ∈ IB(w̄, δ). These are ‘interior tangents’
of a sort, but not local recession vectors in our sense because they work only at x̄ and
not also at neighboring points x ∈ C.

The calculus rule in 6.42 for normal cones to an intersection of finitely many
closed sets Ci is one of the crucial contributions of Mordukhovich [1984], [1988], which
helped to propel variational geometry away from convexification. The statement for
convex sets was known much earlier, cf. Rockafellar [1970a], and there were nonconvex
versions, less satisfactory than 6.42, in terms of Clarke’s normal cones NCi

(x̄), cf.
Rockafellar [1979b], [1985a], as well other versions that did apply to the normal cones
NCi

(x̄) but under a more stringent constraint qualification; cf. Ioffe [1981a], [1981c],
[1984b]. (It’s interesting that the pattern of proof adopted early on by Ioffe essentially
passed by way of the constraint qualification now known to be the best, but, as a
sign of the times, he didn’t make this explicit and aimed instead at formulating his
results in parallel with those of others.)

The rule for image sets in 6.43 and its corollary in 6.44 for sums of sets were
established in Rockafellar [1985a].

The graphical limit result in 6.18(b) is new. The characterization of boundary
points in 6.19 comes from Rockafellar [1979b]. The envelope description of convex
sets in 6.20 is classical and goes back to Minkowski [1911]; cf. Rockafellar [1970a] for
more on this and the properties of polyhedral sets in 6.45 and 6.46. The separation
properties of cones in 6.48 are widely known as well.

The facts in 6.27 about normals to tangent cones appear here for the first time,
as does the genericity result in 6.49. The latter illustrates the desirability of the
extension made in 5.55 of earlier work on the generic semicontinuity of set-valued
mappings to the case where such mappings may have unbounded values.
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Familiar notions of convergence for real-valued functions on IRn require a bit
of rethinking before they can be applied to possibly unbounded functions that
might take on∞ and −∞ as values. Even then, they may fall short of meeting
the basic needs in variational analysis.

A serious challenge comes up, for example, in the approximation of prob-
lems of constrained minimization. We’ve seen that a single such problem can
be represented by a single function f : IRn → IR. A sequence of approximating
problems may be envisioned then as a sequence of functions fν : IRn → IR that
converges to f , but what sense of convergence is most appropriate? Clearly,
it ought to be one for which the values inf fν and sets argmin fν behave well
in relation to inf f and argmin f as ν → ∞, but this is a consideration that
didn’t influence convergence definitions of the past. Because of the way ∞ is
employed in variational analysis, the convergence of fν to f has to bring with
it a form of constraint approximation, in geometry or through penalties. This
suggests that some appeal to the theory of set convergence may be helpful in
finding the right approximation framework.

Another challenge is encountered in trying to break free of the limitations
of ‘differentiation’ as usually conceived, which is only in terms of linearizing a
given function locally. For a function f : IRn → IR, linearization at x̄ could
never adequately reflect the local properties of f when x̄ is a boundary point of
dom f , even if sense could be made out of it, but it’s also too narrow an idea
when x̄ lies in the interior of dom f because of the prevalence of ‘nonsmooth-
ness’ in many situations of importance in variational analysis. Convergence
questions are central in differentiation because derivatives are usually defined
through convergence of difference quotient functions. When the difference quo-
tient functions may be discontinuous and extended-real-valued, new issues arise
which require reconsideration of traditional approaches.

Both of these challenges will be taken up here, although the full treatment
of generalized differentiation won’t come until Chapter 8, where the variational
geometry of epigraphs will be studied in detail. Our main tool now will be
the application of set convergence theory to epigraphs. This will provide the
correct notion of function convergence for our purposes. To set the stage so that
comparisons with other notions of convergence can be made, we first discuss
the obvious extension of pointwise convergence of functions to the case where
the functions may have infinite values.
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A. Pointwise Convergence

A sequence of functions fν : IRn → IR is said to converge pointwise to a function
f : IRn → IR at a point x if fν(x)→ f(x), and to converge pointwise on a set
X if this is true at every x ∈ X . In the case of X = IRn, f is said to be the
pointwise limit of the sequence, which is expressed notationally by

f = p-limνf
ν , or fν→p f.

Whether or not a sequence of functions converges pointwise, we can associate
with it a lower pointwise limit function p-lim infν f

ν and an upper pointwise
limit function p-lim supν f

ν , these being functions from IRn to IR defined by

(p-lim infνf
ν)(x) := lim infνf

ν(x),

(p-lim supνf
ν)(x) := lim supνf

ν(x).

Obviously then, fν→p f if and only if p-lim infν f
ν = p-lim supν f

ν = f .
Pointwise convergence, while useful in many ways, is inadequate for such

purposes as setting up approximations of problems of optimization. For one
thing, it fails to preserve lower semicontinuity of functions. The continuous
functions fν(x) = min{1, |x|2ν}, for instance, converge pointwise to the func-
tion f = min{1, δint IB}, which isn’t lsc. More importantly, pointwise conver-
gence relates poorly to ‘max’ and ‘min’. From fν→p f it doesn’t follow that
inf fν → inf f , or that sequences of points xν selected from the sets argmin fν

have all their cluster points in argmin f , i.e., that lim supν argmin fν ⊂
argmin f .

f

argmin f

inf f = 0

argmin f ν+1
argmin fν

f ν
fν+1

-1 = inf fν

1−1 −1 1 −1 1

-1 = inf fν

Fig. 7–1. Pointwise convergent functions with optimal values not converging.

An example of this deficiency of pointwise convergence is displayed in
Figure 7–1. For each ν ∈ IN the function fν on IR1 has dom fν = [−1, 1]. On
this interval, fν(x) is the lowest of the quantities 1−x, 1, and 2ν|x+1/ν| − 1.
Obviously fν is lsc and level-bounded, and it attains its minimum uniquely at
x̄ν := −1/ν, which yields the value −1. We have pointwise convergence of fν

to f , where f(x) = min{1− x, 1} for x ∈ [−1, 1] but f(x) =∞ otherwise. The
limit function f is again lsc and level-bounded, but its infimum is 0, not −1, and
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this is attained uniquely at x̄ = 1, not at the limit point of the sequence {x̄ν}.
Thus, even though p-limνf

ν = f and both limν(inf f
ν) and limν(argmin fν)

exist, we don’t have limν(inf f
ν) = inf f or limν(argmin fν) ⊂ argmin f .

The fault in this example appears to lie in the fact that the functions
fν don’t converge uniformly to f on [−1, 1]. But a satisfactory remedy can’t
be sought in turning away from such a situation and restricting attention to
sequences where uniform convergence is present. That would eliminate the wide
territory of applications where ∞ is a handy device for expressing constraints,
themselves possibly undergoing a kind of convergence which may be reflected
in the functions fν and f not having the same effective domain.

The geometry in this example offers clues about how to proceed in the face
of the difficulty. The source of the trouble can really be seen in what happens
to the epigraphs. The sets epi fν in Figure 7–1 don’t converge to epi f , but
rather to epi f̄ , where f̄ is the lsc, level-bounded function with dom f̄ = [−1, 1]
such that f̄(x) = 1 on [−1, 0), f̄(x) = 1− x on (0, 1] but f̄(0) = −1. Moreover
inf fν → inf f̄ and argmin fν → argmin f̄ . From this perspective it’s apparent
that the functions fν should be thought of as approaching f̄ , not f , as far as
the behavior of inf fν and argmin fν is concerned.

B. Epi-Convergence

The goal now is to build up the theory of such ‘epigraphical’ function conver-
gence as an alternative and adjunct to pointwise convergence. As with point-
wise convergence, it’s convenient to follow a pattern of first introducing lower
and upper limits of a sort. We approach this geometrically and then proceed
to characterize the limits through special formulas which reveal, among other
things, how the notions can be treated more flexibly in terms of fν converging
epigraphically to f ‘at an individual point’.

We start from a simple observation. For a sequence of sets Eν ⊂ IRn+1

that are epigraphs, both the outer limit set lim supν E
ν and the inner limit

set lim infν E
ν are again epigraphs. Indeed, the definitions of outer and inner

limits (in 4.1) make it apparent that if either set contains (x, α), then it also
contains (x, α′) for all α′ ∈ [α,∞). On the other hand, because both limit sets
are closed (cf. 4.4), they intersect the vertical line {x}× IR in a closed interval.
The criteria for being an epigraph are thus fulfilled.

7.1 Definition (lower and upper epi-limits). For any sequence {fν}ν∈IN of func-
tions on IRn, the lower epi-limit e-lim infνf

ν is the function having as its epi-
graph the outer limit of the sequence of sets epi fν :

epi( e-lim infνf
ν) := lim supν(epi f

ν).

The upper epi-limit e-lim supνf
ν is the function having as its epigraph the

inner limit of the sets epi fν :

epi( e-lim supνf
ν) := lim infν(epi f

ν).



B. Epi-Convergence 241

Thus e-lim infν f
ν ≤ e-lim supν f

ν in general. When these two functions coin-
cide, the epi-limit function e-limνf

ν is said to exist: e-limνf
ν := e-lim infνf

ν =
e-lim supνf

ν . In this event the functions fν are said to epi-converge to f , a
condition symbolized by fν→e f . Thus,

fν→e f ⇐⇒ epi fν → epi f.

This definition opens the door to applying set convergence directly to
epigraphs, but because of the effort we’ve already put into applying set conver-
gence to the graphical convergence of set-valued mappings in Chapter 5, it will
often be expedient to use graphical convergence as an intermediary. The key
to this is found in Example 5.5, which associates with a function f : IRn → IR
the epigraphical profile mapping

Ef : x 	→ {α ∈ IR ∣∣α ≥ f(x)}
having gphEf = epi f . Epigraphical limits of sequences of functions fν corre-
spond to graphical limits of sequences of such mappings:

fν→e f ⇐⇒ Efν→g Ef , 7(1)

epi(e-lim infν f
ν) = gph(g-lim supν Efν ),

epi(e-lim supν f
ν) = gph(g-lim infν Efν ).

7(2)

We’ll exploit this relationship repeatedly.
The geometric definition of epi-limits must be supplemented by other ex-

pressions in terms of limits of function values so as to facilitate calculations.

7.2 Proposition (characterization of epi-limits). Let {fν}ν∈IN be any sequence
of functions on IRn, and let x be any point of IRn. Then

(e-lim infνf
ν)(x) = min

{
α ∈ IR ∣∣∃xν → x with lim infν f

ν(xν) = α
}
,

(e-lim supνf
ν)(x) = min

{
α ∈ IR ∣∣ ∃xν → x with lim supν f

ν(xν) = α
}
.

Thus, fν→e f if and only if at each point x one has{
lim infν f

ν(xν) ≥ f(x) for every sequence xν → x,
lim supν f

ν(xν) ≤ f(x) for some sequence xν → x.
7(3)

Proof. From Definition 7.1, a value α ∈ IR satisfies α ≥ (e-lim infνf
ν)(x) if

and only if for some choice of index set N ∈ N#
∞ there exist sequences xν→N x

and αν→
N α with αν ∈ IR, αν ≥ fν(xν). The same then holds with IR in place

of IR, and the first formula is thereby made obvious. The argument for the
second formula is identical, except for having N ∈ N∞ instead of N ∈ N#

∞.

Obviously, 7(3) implies that actually fν(xν) → f(x) for at least one se-
quence xν → x. Cases where this is true with xν ≡ x will be taken up in
7.10. A convexity-dependent criterion for ascertaining when xν → x implies
fν(xν)→ f(x) will come up in 12.36.
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The pair of inequalities in 7(3) is one of the most convenient means of
verifying epi-convergence. To establish the first of the inequalities at a point x
it would suffice to show that whenever an index set N ∈ N#

∞ is such that xν→N x
and at the same time fν(xν)→N α, then f(x) ≤ α. Once that is accomplished,
the verification of the second inequality is equivalent to displaying a sequence
xν→IN x such that actually fν(xν)→ f(x).

7.3 Exercise (alternative epi-limit formulas). For any sequence {fν}ν∈IN of
functions on IRn and any point x in IRn, one has

(e-lim infνf
ν)(x) = sup

V ∈N (x)

sup
N∈N∞

inf
ν∈N

inf
x′∈V

fν(x′)

= lim
δ ↘ 0

[
lim inf
ν→∞

[
inf

x′∈IB(x,δ)

fν(x′)
]]
,

7(4)

(e-lim supνf
ν)(x) = sup

V ∈N (x)

inf
N∈N∞

sup
ν∈N

inf
x′∈V

fν(x′)

= lim
δ ↘ 0

[
lim sup
ν→∞

[
inf

x′∈IB(x,δ)

fν(x′)
]]
.

7(5)

In the light of 7(4), the lower epi-limit of {fν}ν∈IN can be viewed as coming
from an ordinary ‘lim inf’ with respect to convergence in two arguments:

(e-lim infνf
ν)(x) = lim inf

x′→x
ν→∞

fν(x′). 7(6)

The upper epi-limit isn’t similarly reducible, but it can be expressed by a
formula parallel to one for the lower epi-limit in 7(4), namely

(e-lim supνf
ν)(x) = sup

V ∈N (x)

sup
N∈N#

∞

inf
ν∈N

inf
x′∈V

fν(x′). 7(7)

This formula is based on the following duality relation between N∞ and N#
∞ in

representing lower and upper limits of sequences of numbers as defined in 1(4):

inf
N∈N#

∞
sup
ν∈N

αν = sup
N∈N∞

inf
ν∈N

αν =: lim inf
ν→∞

αν ,

sup
N∈N#

∞

inf
ν∈N

αν = inf
N∈N∞

sup
ν∈N

αν =: lim sup
ν→∞

αν .
7(8)

Just as epi-convergence corresponds to convergence of epigraphs, hypo-
convergence corresponds to the convergence of hypographs. There’s little we
need to say about hypo-convergence that isn’t obvious in this respect. The
notation for the upper and lower hypo-limits of {fν}ν∈IN is h-lim supνf

ν and
h-lim infνf

ν . When these equal the same function f , we write f = h-limνf
ν or

fν→h f . In parallel with the criterion in 7.2, we have fν→h f if and only if{
lim infν f

ν(xν) ≥ f(x) for some sequence xν → x,
lim supν f

ν(xν) ≤ f(x) for every sequence xν → x.
7(9)
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The basic fact is that fν hypo-converges to f if and only if −fν epi-converges
to −f . Where epi-convergence leads to lower semicontinuity, hypo-convergence
leads to upper semicontinuity. Where epi-convergence corresponds to graphical
convergence of epigraphical profile mappings, hypo-convergence corresponds to
graphical convergence of hypographical profile mappings

Hf : x 	→ {α ∈ IR ∣∣α ≤ f(x)}.
One has

fν→h f ⇐⇒ Hfν→g Hf .

In practice it’s useful to have an expanded notation which can be brought
in to highlight aspects of epi-convergence and identify the epigraphical variable
that is involved. To this end, we give ourselves the option of writing

lim inf
ν→∞

–epi
x′→x

fν(x′) for (e-lim infνf
ν)(x),

lim sup
ν→∞

–epi
x′→x

fν(x′) for (e-lim supνf
ν)(x).

7(10)

Such notation will eventually help for instance in dealing with convergence of
difference quotients, cf. 7.23.

Definition 7.1 speaks only of epi-limit functions, but the notation on the
left in 7(10) can be taken as referring to what we’ll call the lower and upper
epi-limit values of the sequence {fν}ν∈IN at the point x. These values are
obtainable equivalently from any of the corresponding expressions on the right
sides of the formulas in 7.2 or 7.3, or in 7(6) and 7(7). Accordingly, we’ll say
that the epi-limit of {fν}ν∈IN exists at x if the upper and lower epi-limit values
at x coincide, writing

lim
ν→∞

– epi
x′→x

fν(x′) := lim inf
ν→∞

–epi
x′→x

fν(x′) = lim sup
ν→∞

–epi
x′→x

fν(x′). 7(11)

In other words, the epi-limit exists at x if and only if there is a value α ∈ IR
such that {

lim infν f
ν(xν) ≥ α for every sequence xν → x,

lim supν f
ν(xν) ≤ α for some sequence xν → x.

This approach gives us room to maneuver in exploring convergence prop-
erties locally. We can speak of the functions fν epi-converging at the point
x regardless of whether they may do so at other points. We aren’t required
to worry about the existence of the limit function e-limνf

ν , which might not
be defined on all of IRn in the full sense of Definition 7.1. The condition for
epi-convergence at x comes down to the two properties in 7(3) holding at x.

Through the geometry in Definition 7.1, the theory of set convergence can
be applied to epigraphs to obtain many useful properties of epi-convergence.

7.4 Proposition (properties of epi-limits). The following properties hold for any
sequence {fν}ν∈IN of functions on IRn.
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(a) The functions e-lim infνf
ν and e-lim supνf

ν are lower semicontinuous,
and so too is e-limνf

ν when it exists.

(b) The functions e-lim infνf
ν and e-lim supνf

ν depend only on the se-
quence {cl fν}ν∈IN ; thus, if cl gν = cl fν for all ν, one has both e-lim infν g

ν =
e-lim infνf

ν and e-lim supν g
ν = e-lim supνf

ν .

(c) If the sequence {fν}ν∈IN is nonincreasing (fν ≥ fν+1), then e-limνf
ν

exists and equals cl[infνf
ν ];

(d) If the sequence {fν}ν∈IN is nondecreasing (fν ≤ fν+1), then e-limνf
ν

exists and equals supν [cl f
ν ] (rather than cl[supν f

ν ]).

(e) If fν is positively homogeneous for all ν, then the functions e-lim infνf
ν

and e-lim supνf
ν are positively homogeneous as well.

(f) For subsets Cν and C of IRn, one has C = lim infν C
ν if and only if

δC = e-lim supν δCν , while C = lim supν C
ν if and only if δC = e-lim infν δCν .

(g) If fν
1 ≤ fν ≤ fν

2 with fν
1 →e f and fν

2 →e f , then fν→e f .

(h) If fν→e f , or just f = e-lim infν f
ν , then dom f ⊂ lim supν [dom fν ].

Proof. We merely need to use the connections between function properties
and epigraph properties, in particular 1.6 (lower semicontinuity) together with
the facts about set limits in 4.4 for (a) and (b), 4.3 for (c) and (d), and 4.14
for (e). For (d) we rely also on the result in 1.26 on the lower semicontinuity of
the supremum of a family of lsc functions. The relationships in (f) are obvious.
The implication in (g) applies to epigraphs the sandwich rule in 4.3(c). The
inclusion in (h) comes from the first inclusion in 4.26 as invoked for the mapping
L : (x, α) 	→ x, which carries epigraphs to effective domains.

(a) (b)

C C

f1

fν

f0

f0

fν

f1

Fig. 7–2. Examples of monotone sequences: (a) penalty and (b) barrier functions.

As an illustration of 7.4(d), the Moreau envelopes eλf associated with
an lsc, prox-bounded function f as in 1.22 have eλf→e f as λ↘ 0. This is
apparent from the monotonicity of eλf(x) with respect to λ in 1.25. The
Lasry-Lions double envelopes in 1.46 likewise then have eλ,μf→e f as λ↘ 0 and
μ↘ 0 with 0 < μ < λ, because of the sandwiching eλf ≤ eλ,μf ≤ eλ−μf that
was established in that example. In this case, 7.4(g) is applied.

The inclusion in 7.4(h) can be strict even when fν→e f , as seen in the case
where fν(x) = ν|x| and f(x) = δ{0}.
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The use of penalty or barrier functions as substitutes for constraints, as in
Example 1.3, ordinarily leads to monotone sequences of functions which point-
wise converge to the essential objective function f of the given optimization
problem and therefore epi-converge to f by 7.4(c) and 7.4(d). For instance, let

f(x) =

{
f0(x) if fi(x) ≤ 0 for i = 1, . . .m,
∞ otherwise,

where all the functions fi : IRn → IR are continuous. In the case of penalty
functions, say with

fν(x) = f0(x) +
m∑
i=1

θν
(
fi(x)

)
for θν(t) =

ν

2
max{0, t}2,

the functions fν increase pointwise and epi-converge to f , as illustrated in
Figure 7–2(a). In the case of barrier functions instead, say with

fν(x) = f0(x) +

m∑
i=1

θν(fi(x)) for θν(t) =

{
(−νt)−1 if t < 0,
∞ if t ≥ 0,

the functions fν decrease pointwise and epi-converge to f ; see Figure 7–2(b).
Because epigraphical limits are always lsc and are unaffected by passing to

the lsc-regularizations of the functions in question, as asserted in 7.4(a)(b), the
natural domain for the study of such limits is really the space of all lsc func-
tions on IRn. Indeed, if f isn’t lsc, awkward situations can arise; for instance,
the constant sequence fν ≡ f fails to be such that fν→e f . Nonetheless, in
stating results about epigraphical limits it isn’t convenient to insist always on
restriction of the wording to the case of lsc functions, because such restriction
isn’t obligatory and may appear in some circumstances as imposing the burden
of checking an additional assumption.

Special consideration needs to be given to the concept of a sequence of
functions escaping epigraphically to the horizon in the sense that the sets epi fν

escape to the horizon of IRn+1.

7.5 Exercise (epigraphical escape to the horizon). The following conditions are
equivalent to the sequence {fν}ν∈IN escaping epigraphically to the horizon:

(a) fν→e ∞;

(b) e-lim infνf
ν ≡ ∞;

(c) for every ρ > 0 there is an index set N ∈ N∞ such that fν(x) ≥ ρ for
all x ∈ ρIB when ν ∈ N .

We use this idea of epigraphical escape to the horizon in stating the fun-
damental compactness theorem for epi-convergence.

7.6 Theorem (extraction of epi-convergent subsequences). Every sequence of
functions fν on IRn that does not escape epigraphically to the horizon has a
subsequence epi-converging to a function f ≡ ∞ (possibly taking on −∞).
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Proof. Applying the compactness property of set convergence (in 4.18) to the
space IRn+1, we need only recall that the limit of a sequence of epigraphs is
another epigraph, as explained before Definition 7.1.

Epi-convergence of functions can be characterized in terms of a kind of set
convergence of their level sets.

7.7 Proposition (level sets of epi-convergent functions). For functions fν and
f on IRn, one has:

(a) f ≤ e-lim infν f
ν if and only if lim supν(lev≤ανfν) ⊂ lev≤α f for all

sequences αν → α;

(b) f ≥ e-lim supν f
ν if and only if lim infν(lev≤ανfν) ⊃ lev≤α f for some

sequence αν → α, in which case such a sequence can be chosen with αν ↘ α.

(c) f = e-limν f
ν if and only if both conditions hold.

Proof. Epi-convergence of fν to f has already been seen to be equivalent to
graphical convergence of the profile mappings Efν to Ef . But that is the same
as graphical convergence of the inverses E−1

fν to E−1
f . We have E−1

fν (αν) =

lev≤αν fν and E−1
f (α) = lev≤α f , so the claims here are immediate from the

general graphical limit formulas in 5.33, except for the assertion that for any
α ∈ IR one can produce αν ↘ α such that lim infν(lev≤ανfν

) ⊃ lev≤α f .
We do know that for every x ∈ lev≤α f there’s a sequence α̂ν → α with

points x̂ν ∈ lev≤α̂νf such that x̂ν → x. Although this sequence of values α̂ν

might not meet the prescription, because it depends on the particular x, we’re
able at least to conclude from it the following: for any ε > 0 the index set

Nx,ε :=
{
ν ∈ IN

∣∣∣ IB(x, ε) ∩ lev≤(α+ε) f
ν = ∅

}
belongs to N∞. For any ε > 0 the compact set (lev≤α f)∩ ε−1IB, if not empty,
can be covered by balls IB(x, ε) corresponding to a finite subset X of lev≤α f ,
and then for ν in

⋂
x∈X Nx,ε, which is an index set still belonging to N∞, we

have that the ball IB(x, 2ε) meets lev≤(α+ε) f
ν for all x ∈ (lev≤α f) ∩ ε−1IB.

Therefore, for every ε > 0 the index set

Nε :=
{
ν ∈ IN

∣∣∣ ( lev≤α f
) ∩ ε−1IB ⊂ ( lev≤(α+ε) f

ν
)
+ 2εIB

}
belongs to N∞. Clearly, Nε gets smaller, if anything, as ε decreases.

If the intersection
⋂

ε>0Nε happens actually to be nonempty, it’s an index
set N ∈ N∞, and we have the simple case where lev≤α f ⊂ cl(lev≤β f

ν) for
all ν ∈ N when β > α. Then the desired inclusion holds trivially for any
choice of αν ↘ α. Otherwise, the intersection

⋂
ε>0Nε is empty. In this case let

N :=
⋃

ε>0Nε, and for each ν ∈ N let εν be the smallest value of ε > 0 such
that ν ∈ Nε. Then ε

ν ↘ 0. Taking αν = α+ εν , we have αν ↘ α and(
lev≤α f

) ∩ (εν)−1IB ⊂ (
lev≤ανfν

)
+ 2ενIB for all ν ∈ N.

This gives us the ‘lim inf’ inclusion by the criterion in 4.10(a).
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The second inclusion in 7.7, in combination with the first, tells us that for
each α ∈ IR we have

lev≤ανfν → lev≤α f for at least one sequence αν → α.

The fact that this can’t be claimed for every sequence αν → α, even under
the assumption that αν > α, is illustrated in Figure 7–3, where α = 1 and
the functions fν on IR1 are given by fν(x) := 1+min{x, ν−1x}, while f(x) :=
1 + min{x, 0}. Obviously fν→e f , but we don’t have lev≤1 f

ν → lev≤1 f , the
latter set being all of (−∞,∞). For sequences αν ↘ 1 that converge too rapidly,
for instance with αν = 1 + 1/ν2, we merely have lev≤αν fν → (−∞, 0]. For
slower sequences like αν = 1 + 1/

√
ν, we do get lev≤αν fν → lev≤1 f .

1

f

y y

x x<1_lev f<1_
νlev f

fν

1

Fig. 7–3. Counterexample in the convergence of level sets.

7.8 Exercise (convergence-preserving operations). Let fν and f be functions
on IRn such that fν→e f .

(a) If g : IRn → IR is continuous and finite, then fν + g →e f + g.

(b) If F : IRn → IRn is continuous and bijective, then fν◦F →e f◦F .
(c) If θ : IR → IR is continuous and increasing, and θ is extended to IR by

setting θ(∞) = sup θ and θ(−∞) = inf θ, then θ◦fν→e θ◦f .
(d) If gν(x) = λνfν(x+aν)+αν and g(x) = λf(x+a)+α with λν → λ > 0,

aν → a and αν → α, then gν→e g.

Guide. Rely on the characterization of epi-convergence in 7.2. In (b), recall
that the assumptions on F imply F−1 is continuous too.

In general, epi-convergence neither implies nor is implied by pointwise con-
vergence. The example in Figure 7–4 demonstrates how a sequence of functions
fν can have both an epi-limit and a pointwise limit, but different. The con-
cepts are therefore independent. Much can be said nonetheless about their
relationship. A basic pattern of inequalities among inner and outer limits is
available through comparison between the formulas in 7.2 and 7.3:

e-lim infνf
ν ≤

{
p-lim infνf

ν

e-lim supνf
ν

}
≤ p-lim supνf

ν . 7(12)

In particular, e-limνf
ν ≤ p-limνf

ν when both limits exist. The circumstances
in which e-limνf

ν = p-limνf
ν can be ascertained with the help of a con-
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cept of equi-semicontinuity which we develop for extended-real-valued functions
through their association with profile mappings. Here we utilize the definition
in 5.38 of what it means for a set-valued mapping to be equi-osc.

1/ν 1/(ν+1)

f ν
f

ν+1

e-lim fν
ν

p-lim fν
ν

Fig. 7–4. A sequence having pointwise and epigraphical limits that differ.

7.9 Exercise (equi-semicontinuity properties of sequences). Consider a sequence
of functions fν : IRn → IR, a set X ⊂ IRn, and a point x̄ ∈ X .

(a) The sequence of epigraphical profile mappings Efν is equi-osc at x̄ rel-
ative to X if and only if for every ρ > 0 and ε > 0 there is a δ > 0 with

inf
x∈IB(x̄,δ)∩X

fν(x) ≥ min
{
fν(x̄)− ε, ρ} for all ν ∈ IN.

It is asymptotically equi-osc if, instead of for all ν ∈ IN , this holds for all ν in
an index set N ∈ N∞, which like δ can depend on ρ and ε.

(b) The sequence of hypographical profile mappings Hfν is equi-osc at x̄
relative to X if and only if for every ρ > 0 and ε > 0 there is a δ > 0 with

sup
x∈IB(x̄,δ)∩X

fν(x) ≤ max
{
fν(x̄) + ε,−ρ} for all ν ∈ IN.

It is asymptotically equi-osc if, instead of for all ν ∈ IN , this holds for all ν in
an index set N ∈ N∞, which like δ can depend on ρ and ε.

We define a sequence {fν}ν∈IN to be equi-lsc at x̄ relative to X when the
equivalent properties in 7.9(a) hold, and to be equi-usc when the ones in 7.9(b)
hold. We define it to be equicontinuous when it is both equi-lsc and equi-usc.
The sequence is equi-lsc, equi-usc, or equi-continuous relative to X if these
properties hold at every x̄ in X . In all these instances, the addition of the
qualification asymptotically refers to the asymptotic properties in 7.9, i.e., the
property holding for all ν in an index set N ∈ N∞ rather than for all ν ∈ IN .

As with set-valued mappings, the equicontinuity of a sequence of functions
fν : IRn → IR entails its asymptotic equicontinuity. But equicontinuity is
a much stronger property, implying in particular that all the functions are
continuous at the point in question. A sequence {fν}ν∈IN can be asymptotically
equicontinuous at x̄ in situations where every fν happens to be discontinuous
at x̄, as exemplified at x̄ = 0 by the sequence on IR defined by fν(x) = εν for
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x > 0 but fν(x) = 0 for x ≤ 0, with εν ↘ 0. Similar observations can be made
about the asymptotic lsc and usc properties.

The various properties take a simpler form when the sequence {fν}ν∈IN is
locally bounded at x̄, in the sense that for some ρ ∈ IR+ and neighborhood V
of x̄ one has

∣∣fν(x)
∣∣ ≤ ρ for all ν when x ∈ V . In that case it is equi-lsc at x̄

relative to X if for every ε > 0 there exists δ > 0 with

fν(x) ≥ fν(x̄)− ε for all ν ∈ IN when x ∈ X, |x− x̄| ≤ δ,
and it is equi-usc at x̄ relative to X if for every ε > 0 there exists δ > 0 with

fν(x) ≤ fν(x̄) + ε for all ν ∈ IN when x ∈ X, |x− x̄| ≤ δ.
Also in that case, equicontinuity at x̄ relative to X reduces to the classical
property that for every ε > 0 there exists δ > 0 with∣∣fν(x)− fν(x̄)

∣∣ ≤ ε for all ν ∈ IN when x ∈ X, |x− x̄| ≤ δ.
The asymptotic properties simplify in such a manner as well, moreover with the
sequence only having to be eventually locally bounded at x̄, i.e., such that for
some ρ ∈ IR+, neighborhood V of x̄ and index set N ∈ N∞ one has

∣∣fν(x)
∣∣ ≤ ρ

for all ν ∈ N when x ∈ V . But it is important for many purposes to admit
sequences of extended-real-valued functions that don’t necessarily exhibit such
local boundedness, and for that case the more general formulation of the various
equicontinuity properties is essential.

7.10 Theorem (epi-convergence versus pointwise convergence). Consider any
sequence of lsc functions fν : IRn → IR and a point x̄ ∈ IRn. If the sequence is
asymptotically equi-lsc at x̄, then

(e-lim infνf
ν)(x̄) = (p-lim infνf

ν)(x̄) = lim inf
ν→∞

fν(x̄),

(e-lim supνf
ν)(x̄) = (p-lim supνf

ν)(x̄) = lim sup
ν→∞

fν(x̄).

Thus, if it is asymptotically equi-lsc everywhere, fν→e f if and only if fν→p f .

More generally, relative to an arbitrary set X ⊂ IRn containing x̄, any two
of the following conditions implies the third:

(a) the sequence is asymptotically equi-lsc at x̄ relative to X ;

(b) fν→e f at x̄ relative to X ;

(c) fν→p f at x̄ relative to X .

Proof. This is immediate from the corresponding result for set-valued map-
pings in Theorem 5.40 by virtue of the equivalences in 7.9(a).

For example, a sequence {δCν}ν∈IN of indicator functions of closed sets Cν

converging to C is equi-lsc if and only if for every x ∈ C there exists N ∈ N∞
such that x ∈ Cν for all ν ∈ N .



250 7. Epigraphical Limits

C. Continuous and Uniform Convergence

Epi-convergence has an enlightening connection with continuous convergence.
A sequence of functions fν converges continuously to f if fν(xν)→ f(x) when-
ever xν → x. We speak of fν converging continuously to f at an individual point
x̄ if this holds for sequences xν → x̄, although not necessarily for xν → x = x̄.
Similarly, continuous convergence of fν to f relative to a set X refers to hav-
ing fν(xν) → f(x) whenever xν→X x. Continuous convergence of functions is
consistent under this definition with continuous convergence of mappings as
defined in 5.41 when the functions are regarded as single-valued mappings into
the space IR, but also when the functions are viewed through their associated
epigraphical or hypographical profile mappings: fν converges continuously to
f if and only if Efν converges continuously to Ef , or for that matter if and
only if Hfν converges continuously to Hf .

7.11 Theorem (epi-convergence versus continuous convergence). For a sequence
of functions fν : IRn → IR, the following properties are equivalent at any point
x̄ ∈ X ⊂ IRn:

(a) fν converges continuously to f at x̄ relative to X ;

(b) fν both epi-converges and hypo-converges to f at x̄ relative to X ;

(c) fν epi-converges to f at x̄ relative to X , and the sequence is asymptot-
ically equicontinuous at x̄ relative to X ;

(d) fν hypo-converges to f at x̄ relative to X , and the sequence is asymp-
totically equicontinuous at x̄ relative to X .

When f is finite around x̄ relative to X , these properties are equivalent
to each other and also to the existence of V ∈ N (x̄) such that the sequence of
functions fν is eventually locally bounded on V ∩X and converges graphically
to f relative to V ∩X .

Proof. This is obvious from Theorem 5.44 as applied to the mappings Efν

and Hfν in the light of the equivalences just explained. The assertion about
graphical convergence is based on 5.45.

In the standard analysis of real-valued functions, continuous convergence
is intimately related to uniform convergence. The question of what uniform
convergence ought to signify in the nonstandard context of functions that might
be unbounded and even take on ±∞ requires some reflection, however. For
bounded (and therefore finite-valued) functions fν and f , uniform convergence
of fν to f on a set X requires the existence for each ε > 0 of an index set
N ∈ N∞ such that∣∣fν(x)− f(x)∣∣ ≤ ε for all x ∈ X when ν ∈ N. 7(13)

We’ll refer to this property as uniform convergence in the bounded sense. The
kind of uniformity it invokes isn’t appropriate for functions that aren’t bounded,
not to mention troubles of interpretation for infinite values of f(x) and fν(x).
The notion needs to be extended.
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7.12 Definition (uniform convergence, extended). For any function f : IRn → IR
and any ρ ∈ (0,∞), the ρ-truncation of f is the function f∧ρ defined by

f∧ρ(x) =

⎧⎨
⎩
−ρ if f(x) ∈ [−∞,−ρ),
f(x) if f(x) ∈ [−ρ, ρ],
ρ if f(x) ∈ (ρ,∞].

A sequence of functions fν will be said to converge uniformly to f on a set
X ⊂ IRn if, for every ρ > 0, their truncations fν

∧ρ
converge uniformly to f∧ρ

on X in the bounded sense.

This extended notion of uniform convergence is only novel relative to the
traditional one in cases where f itself is unbounded. As long as f is bounded
on X , it’s obvious (from considering any ρ with |f(x)| < ρ on X) that fν

must eventually be bounded on X as well, so that one simply reverts to the
classical property 7(13). Another way of looking at the extended notion is that
fν converges uniformly to f in the general sense if and only if the functions
gν = arctan fν converge uniformly to g = arctan f in the bounded sense (with
arctan(±∞) = ±π/2). This reflects the fact that the topology of IR can be
identified with that of [−π/2, π/2] under the arctan mapping.

The following proposition provides other perspectives on uniform conver-
gence of functions. It appeals to uniform convergence of set-valued mappings
as defined in 5.41, in particular of profile mappings as in 5.5.

7.13 Proposition (characterizations of uniform convergence). For extended-
real-valued functions fν and f on X ⊂ IRn, the following are equivalent:

(a) the functions fν converge uniformly to f ;

(b) the profile mappings Efν converge uniformly to Ef on X ;

(c) the profile mappings Hfν converge uniformly to Hf on X ;

(d) for each ρ > 0 and ε ∈ (0, ρ) there is an index set N ∈ N∞ such that,
for all ν ∈ N , one has

fν(x)− ε ≤
{
f(x) for x ∈ X with −ρ ≤ f(x) ≤ ρ− ε,
−ρ for x ∈ X with −ρ > f(x),

fν(x) + ε ≥
{
f(x) for x ∈ X with −ρ+ ε ≤ f(x) ≤ ρ,
ρ for x ∈ X with f(x) > ρ.

7(14)

Proof. The equivalence of (a) with (d) is seen at once from the definition of
the truncations. Condition (b) translates directly (through Definition 5.41 as
applied in the special case of Efν and Ef ) into something very close to (d),
where 7(14) is replaced by

fν(x)− ε ≤
{
f(x) for x ∈ X with −ρ ≤ f(x) ≤ ρ,
−ρ for x ∈ X with −ρ > f(x),

fν(x) + ε ≥
{
f(x) for x ∈ X with −ρ+ ε ≤ f(x) ≤ ρ+ ε,
ρ for x ∈ X with f(x) > ρ+ ε.
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The type of convergence described by this variant is the same as that in (d);
thus, (b) is equivalent to (d). Likewise (c) is equivalent to (d), because (d) is
unaffected when the functions in question are multiplied by −1.
7.14 Theorem (continuous versus uniform convergence). A sequence of func-
tions fν : IRn → IR converges continuously to f relative to a set X if and only
if f is continuous relative to X and fν converges uniformly to f on all compact
subsets of X .

In general, whenever fν converges continuously to f relative to a set X at
x̄ ∈ X and at the same time converges pointwise to f on a neighborhood of x̄
relative to X , f must be continuous at x̄ relative to X .

Proof. We apply the corresponding result in 5.43 to the set-valued mappings
Efν and Ef , utilizing the equivalences that have been pointed out.

7.15 Proposition (epi-convergence from uniform convergence). Consider fν , f :
IRn → IR and a set X ⊂ IRn.

(a) If the functions fν are lsc relative to X and converge uniformly to f on
X , then f is lsc relative to X and fν→e f relative to X .

(b) If the functions fν are finite on X , continuous relative to X and con-
verge uniformly to f on X , then f is continuous relative to X and fν both
epi-converges and hypo-converges to f relative to X and thus also converges
graphically to f relative to X .

Proof. In view of 7(2) and 7.13(a), one can translate (a) so that it reads: If
the profile mappings Efν are osc relative to X and converge uniformly to Ef

relative to X , then the profile mapping Ef is osc relative to X and Efν→g Ef

relative to X . This is a special case of Theorem 5.46(a). Part (b) is obtained
then by applying part (a) to f and −f in the light of 7.11.

7.16 Exercise (Arzelà-Ascoli theorem, extended). Consider a sequence of func-
tions fν : IRn → IR and a set X ⊂ IRn.

(a) If the sequence is asymptotically equi-lsc relative to X , it has a subse-
quence converging both pointwise and epigraphically relative to X to some lsc
function f .

(b) If the sequence is asymptotically equi-usc relative to X , it has a subse-
quence converging both pointwise and hypographically relative to X to some
usc function f .

(c) If the sequence is asymptotically equicontinuous relative to X , it has a
subsequence converging uniformly on all compact subsets of X to a function f
that is continuous relative to X .

Guide. Obtain (a) from 7.6 and 7.10. Get (b) by symmetry. Then combine
(a) and (b) to obtain (c) through 7.11 and 7.14.

7.17 Theorem (epi-limits of convex functions). For any sequence {fν}ν∈IN of
convex functions on IRn, the function e-lim supνf

ν is convex, and so too is the
function e-limνf

ν when it exists.
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Moreover, under the assumption that f is a convex, lsc function on IRn

such that dom f has nonempty interior, the following are equivalent:

(a) f = e-limνf
ν ;

(b) there is a dense subset D of IRn such that fν(x)→ f(x) for all x in D;

(c) fν converges uniformly to f on every compact set C that does not
contain a boundary point of dom f .

Proof. The initial claims follow from the corresponding facts about conver-
gence of convex sets (in 4.15) through the epigraphical connections in 2.4 and
Definition 7.1.

For the claimed equivalence under the assumptions on the candidate limit
function f , we observe first that (c)⇒(b), because the set of all points of IRn

that aren’t boundary points of dom f is dense in IRn. This follows from the
line segment principle in 2.33 as applied to the convex set dom f .

We demonstrate next that (a)⇒(c). Any compact set not containing a
boundary point of dom f is the union of a compact set lying within the interior
of dom f and a compact set not meeting the closure of dom f . It suffices to
consider these two cases separately. Suppose first that C lies outside the closure
of dom f . Then f ≡ ∞ on C. For any ρ > 0, the compact set B = C × {ρ} in
IRn+1 does not meet epi f . Invoking the hit-and-miss criterion in 4.5(b) in the
epigraphical framework of Definition 7.1, we see that for all ν in some index set
N ∈ N∞ the set B does not meet epi fν , so that fν(x) ≥ ρ for every x ∈ C.
This gives the uniform convergence to f on C.

Suppose next that C is a subset of int(dom f) but that f is improper. Then
the argument is quite similar. We have f ≡ −∞ on C, and for every ρ > 0 the
set B = C×{−ρ} lies in the interior of epi f . The internal uniformity property
of convergence of convex sets (in 4.15) tells us that for all ν in some index set
N ∈ N∞, the set B lies in the interior of epi fν , implying that fν(x) ≤ −ρ for
all x ∈ C. Again, we see that fν → f uniformly on C.

We address now the case where C is a subset of int(dom f) and f is proper.
Then f is finite and continuous on C (see 2.35). For arbitrary ε > 0 consider
the compact sets

B+ =
{
(x, α) ∈ C × IR ∣∣α = f(x) + ε

}
,

B− =
{
(x, α) ∈ C × IR ∣∣α = f(x)− ε}.

The first lies in int(epi f), while the second lies outside of cl(epi f). According
to the hit-and-miss criterion in 4.5(b), there is an index set N− ∈ N∞ such that
for ν ∈ N− the set B− does not meet epi fν . At the same time, by the internal
uniformity property for convergence of convex sets in 4.15 there is an index set
N+ ∈ N∞ such that for ν ∈ N+ the set B+ lies within epi fν . Then, for all
x ∈ C and ν in the set N := N− ∩N+ ∈ N∞, we have both fν(x) ≥ f(x) − ε
and fν(x) ≤ f(x) + ε. Thus, uniform convergence on C is established again.

Our task now is to show that (b)⇒(a). For this, the compactness principle
in 7.6 will be handy. To conclude that fν→e f , it suffices to verify that if f0 is
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any cluster point of the sequence {fν}ν∈IN in the sense of epi-convergence, then
f0 = f . For such a cluster point f0, which necessarily is a convex function, we
have f0 = e-limν∈N fν for an index set N ∈ N#

∞. From the implication (a)⇒(c)
already proved, the subsequence {fν}ν∈N must converge uniformly to f0 on all
compact sets not meeting the boundary of dom f0. But by assumption, this
subsequence also converges pointwise to f on a dense set D. It follows that f0
and f must agree on a dense subset of IRn. Since both functions are convex
and lsc, this necessitates f0 = f (cf. 2.35).

7.18 Corollary (uniform convergence of finite convex functions). Let fν and f
be finite, convex functions on an open, convex set O ⊂ IRn, and suppose that
fν(x)→ f(x) for all x in some dense subset of O. Then fν converges uniformly
to f on every compact set B ⊂ O.

Proof. We can suppose that O is nonempty and that fν and f have the value
∞ outside of O. Then cl f is a proper, lsc, convex function on IRn which agrees
with f on O and has int(dom cl f) = O (see 2.35). It follows from Theorem 7.17
that fν → cl f , the convergence being uniform with respect to every compact
set that does not meet the boundary of O.

The approximation of a function f by ‘averaging’ provides another example
of how the various convergence relationships can help to pin down the properties
of an approximating sequence of functions fν . Here we recall that a function
f : IRn → IR is locally summable if it is measurable and each point x̄ ∈ IRn has a
neighborhood V such that

∫
V
|f(x)|dx <∞, where dx stands for n-dimensional

Lebesgue measure. (Then actually
∫
B
|f(x)|dx <∞ for any bounded set B.)

7.19 Example (functions mollified by averaging). Let f : IRn → IR be lo-
cally summable, and let C ⊂ IRn consist of the points, if any, where f
is continuous. Consider any bounded mollifier sequence, i.e., a sequence of
bounded, measurable functions ψν ≥ 0 with

∫
IRn ψν(z)dz = 1 such that the

sets Bν =
{
z
∣∣ψν(z) > 0

}
form a bounded sequence converging to {0}. The

corresponding sequence of averaged functions fν : IRn → IR, defined by

fν(x) :=

∫
IRn

f(x− z)ψν(z)dz =

∫
Bν

f(x− z)ψν(z)dz,

then has the following properties.

(a) fν converges continuously to f at every point of C and thus converges
uniformly to f on every compact subset of C.

(b) fν epi-converges to f on IRn if f is lsc and is determined in this respect
by its values on C, or in other words, if

f(x) = lim inf
x′→

C x
f(x′) for all x.

Detail. Consider any point x̄ where f is lsc and any sequence xν → x̄. For
any ε > 0 there exists δ > 0 such that f(x̄)−f(x) ≤ ε when |x− x̄| ≤ 2δ. Next
there exists ν0 such that |xν− x̄| ≤ δ and Bν ⊂ δIB when ν ≥ ν0; for the latter,
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see 4.10(b). Since fν(xν) =
∫
Bν f(x

ν−z)ψν(z)dz and f(x̄) =
∫
Bν f(x̄)ψ

ν(z)dz,
we then have for ν ≥ ν0 that

fν(xν)− f(x̄) ≥
∫
Bν

[
f(xν − z) − f(x̄)]ψν(z)dz ≥ −ε

∫
Bν

ψν(z)dz = −ε.

This demonstrates that lim infν f
ν(xν) ≥ f(x̄). When x̄ ∈ C we can also

argue the opposite inequality to get limν f
ν(xν) = f(x̄). This takes care of

(a), except for an appeal to 7.14 for the relationship between continuous and
uniform convergence. It also takes care of the half of (b) concerned with the
lower epi-limit, since f is everywhere lsc in (b).

The other half of (b) requires, in effect, that gph f ⊂ lim infν gph f
ν .

By assumption, gph f ⊂ cl
{
(x, f(x))

∣∣x ∈ C}. But fν→p f on C by (a), so{
(x, f(x))

∣∣x ∈ C
} ⊂ lim infν

{
(x, fν(x))

∣∣x ∈ C
}
, the latter being a closed

set. Therefore, cl
{
(x, f(x))

∣∣x ∈ C} ⊂ lim infν gph f
ν .

A common way of generating a bounded mollifier sequence that meets the
prescription of Example 7.19 is to start from a compact neighborhood B of the
origin and any continuous function ψ : B → [0,∞] with

∫
B
ψ(x)dx = 1, and to

define ψν(x) to be νnψ(νx) when x ∈ ν−1B, but 0 when x /∈ ν−1B.

D. Generalized Differentiability

Limit notions are essential in any attempt at defining derivatives of functions
more general than those treated classically, and the theory laid out so far in this
chapter has important applications in that way. For the study of f : IRn → IR
at a point x̄ where it’s finite, the key is what happens to the difference quotient
functions Δτf(x̄) : IR

n → IR defined by

Δτf(x̄)(w) :=
f(x̄+ τw)− f(x̄)

τ
for τ = 0 7(15)

as τ tends to 0. Different ideas about derivatives arise from different choices
of a mode of convergence. For pointwise convergence and uniform convergence
there’s a long tradition, but we’re now in the position of being able also to
explore the potential of continuous convergence, graphical convergence and
epi-convergence, moreover in a context of extended-real-valuedness. Further,
we know how to work with these notions point by point, so that derivatives of
various kinds can be developed in terms of limits of the functions Δτf(x̄) at a
particular w without insisting on a corresponding global limit for all w.

For a beginning, let’s look at how the standard concept of differentiability
can be embedded in semidifferentiability, which deals robustly with one-sided
limits of difference quotients. To say that f is differentiable at x̄ is to assert
the existence of a vector v ∈ IRn such that

f(x) = f(x̄) + 〈v, x− x̄〉+ o
(|x− x̄|), 7(16)
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where the ‘o(t)’ notation, as always, indicates a term with the property that

o(t)

t
→ 0 as t→ 0, t = 0.

There can be at most one vector v for which this holds. When it exists, it’s
called the gradient of f at x̄ and denoted by ∇f(x̄). In this case one has

lim
τ→0

f(x̄+ τw)− f(x̄)
τ

=
〈∇f(x̄), w〉, 7(17)

the limit on the left being the directional derivative of f at x̄ for w.
Differentiability isn’t merely equivalent, though, to the existence of all such

directional derivative limits and their linear dependence on w, which would be
tantamount to the pointwise convergence of the functions Δτf(x̄) to a linear
function h as τ → 0. It’s a stronger property requiring a degree of uniformity
in the limits. This is evident from writing 7(16) as

Δτf(x̄)(w) = 〈v, w〉+ o
(|τw|)
τ

for τ = 0, 7(18)

which describes a type of approximation of the difference quotients on the left,
as functions of w, by the linear function h(w) = 〈v, w〉. The functions Δτf(x̄)
must in fact converge uniformly to h on ρIB for any ρ, arbitrarily large.

An easy step toward greater generality in directional derivatives would
be to replace the linear expression on the right side of 7(17) by some other
expression h(w) while at the same time relaxing the limit on the left side from
the two-sided form τ → 0 to the one-sided form τ ↘ 0. This by itself would
have the shortcoming, however, of only furnishing an extension of 7(17) without
capturing the uniformity of approximation embodied in 7(18). For that, one
can aim directly instead at a one-sided extension of 7(18), yet there would
still be the problem that in many applications the difference quotients behave
well in the limit for some w’s but not others. What’s needed is an approach to
directional differentiation that can capture the essence of the desired uniformity
one direction at a time.

7.20 Definition (semiderivatives). Consider f : IRn → IR and a point x̄ with
f(x̄) finite. If the (possibly infinite) limit

lim
τ ↘ 0
w′→w

f(x̄+ τw′)− f(x̄)
τ

7(19)

exists, it is the semiderivative of f at x̄ for w, and f is semidifferentiable at x̄
for w. If this holds for every w, f is semidifferentiable at x̄.

The crucial distinction between semiderivatives and ordinary directional
derivatives, of course, is that the behavior of the difference quotient is tested
not only along the line

{
x̄+ τw

∣∣ τ ∈ IR} or, for the sake of one-sidedness the

half-line
{
x̄+ τw

∣∣ τ ∈ IR+

}
, when w = 0, but on all ‘curves’ emanating from x̄
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in the direction of w. Indeed, to say that the semiderivative limit 7(19) exists
and equals β is to say that whenever xν converges to x̄ from the direction
of w, in the sense that [xν − x̄]/τν → w for some choice of τν ↘ 0, one has[
f(xν)− f(x̄)]/τν → β.

The ability of semiderivatives to work along curves instead of just straight
line segments provides a robustness to this concept which is critical for handling
the situations in variational analysis where movement has to be confined to a
set having curvilinear boundary, or a function has derivative discontinuities
along such a boundary. It’s obvious that if the semiderivative of f at x̄ exists
for w and equals β, the one-sided directional derivative

f ′(x;w) := lim
τ ↘ 0

f(x̄+ τw)− f(x̄)
τ

7(20)

also exists and equals β. But the converse can’t be counted on unless something
more is known about f , ensuring that

[
f(x̄+ τw′)−f(x̄+ τw)]/τ → 0 as τ ↘ 0

while w′ → w. Actually, in many of the circumstances where the existence of
simple one-sided directional derivatives can be established, the more powerful
property of semidifferentiability does turn out to be available automatically.
The identification of such circumstances is one of our aims here.

We won’t introduce a special symbol here for semiderivatives. Instead,
we’ll appeal to the more general notation

df(x̄)(w) := lim inf
τ ↘ 0
w′→w

f(x̄+ τw′)− f(x̄)
τ

, 7(21)

which will be important from Chapter 8 on (see 8.1 and the surrounding dis-
cussion), but can already serve here, a bit ahead of schedule. Clearly the
semiderivative of f at x̄ for w, when it exists, equals df(x̄)(w) in particular.
Semidifferentiability of f at x̄ for w refers to the case where the value in 7(21),
which exists always, can be expressed by ‘lim’ instead of just ‘liminf’. This
value is then given also by the simpler directional derivative limit in 7(20).

7.21 Theorem (characterizations of semidifferentiability). For any function f :
IRn → IR, finite at x̄, the following properties are equivalent and entail f being
continuous at x̄:

(a) f is semidifferentiable at x̄;

(b) as τ ↘ 0, the functions Δτf(x̄) converge continuously to a function h;

(c) as τ ↘ 0, the functions Δτf(x̄) converge uniformly on all bounded sub-
sets of IRn to a continuous function h;

(d) for each ρ > 0 there exists μ > 0 such that the functions Δτf(x̄) with
τ ∈ (0, μ) are equi-bounded on ρIB and, as τ ↘ 0, converge graphically to a
function h as mappings from ρIB to IR;

(e) there is a finite, continuous, positively homogeneous function h with

f(x) = f(x̄) + h(x− x̄) + o
(|x− x̄|).
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Then the semiderivative of f at x̄ for w is finite and depends continuously
and positively homogeneously on w; it is given by h(w) = df(x̄)(w) = f ′(x̄;w).

Proof. We have (a) ⇔ (b) by Definition 7.20 and the meaning of continuous
convergence (explained before 7.11). Then h(w) = df(x̄)(w) as already ob-
served. On the other hand, we have (b) ⇔ (c) by Theorem 7.14. The common
function h in these cases must by (c) be continuous and by (a) be positively ho-
mogeneous with h(0) = 0 (as implied by 7(19), the semiderivative limit); then
h has to be finite everywhere besides. Likewise in (d), h must be finite; the
equivalence of (d) with (b) is seen from the scalar-valued case of 5.45. Putting
x̄+ τw′ in place of x, we can transform the expansion in (e) into

Δτf(x̄)(w
′) = h(w′) +

o
(|τw′|)
τ

for τ = 0. 7(22)

This refers to the existence for each ε > 0 of δ > 0 such that∣∣Δτf(x̄)(w
′)− h(w′)

∣∣ ≤ ε|w′| when 0 < τ |w′| ≤ δ.
When this property is present, the uniform convergence in (c) is at hand. Thus,
(e) implies (c). Conversely, under (c) there exists for any ε > 0 and ρ > 0 a
δ > 0 with ∣∣Δτf(x̄)(w)− h(w)

∣∣ ≤ ε when 0 < τ ≤ δ and |w| ≤ ρ.
Writing a general w ∈ ρIB as θz with |z| = ρ and θ = |w|/ρ ∈ [0, 1], and noting
that

∣∣Δτf(x̄)(w)−h(w)
∣∣/θ = ∣∣Δθτf(x̄)(z)−h(z)

∣∣, we can apply this inequality
to the latter to get∣∣Δτf(x̄)(w)− h(w)

∣∣ ≤ ε
(|w|/ρ) when 0 < τ

(|w|/ρ) ≤ δ.
The fact that for any ε > 0 and ρ > 0 there exists δ > 0 with this property
tells us that 7(22) holds. We conclude that (c) implies (e), and therefore that
(e) can be added to the list of equivalence conditions. Finally, we note that (e)
implies through the continuity of h at 0 the continuity of f at x̄.

7.22 Corollary (differentiability versus semidifferentiability). A function f :
IRn → IR is differentiable at x̄, a point with f(x̄) finite, if and only if f is
semidifferentiable at x̄ and the semiderivative for w depends linearly on w.

Proof. This follows from comparing 7(16), the definition of differentiability,
with 7.21(e) and invoking the equivalence of this with 7.21(a).

When f is semidifferentiable at x̄, its continuity there, as asserted in 7.21,
forces it to be finite on a neighborhood of x̄. Semidifferentiability, unless re-
stricted only to special directions, therefore can’t assist in the study of situa-
tions where, for instance, x̄ is a boundary point of dom f . This limitation in
the theory of generalized differentiation can satisfactorily be avoided by an ap-
proach through epi-convergence instead of continuous convergence and uniform
convergence.
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7.23 Definition (epi-derivatives). Consider f : IRn → IR and a point x̄ with
f(x̄) finite. If the (possibly infinite) limit

lim
τ ↘ 0

– epi
w′→w

f(x̄+ τw′)− f(x̄)
τ

7(23)

exists, or in other words if the epi-limit of the functions Δτf(x̄) as τ ↘ 0 exists
at w, it is the epi-derivative of f at x̄ for w, and f is epi-differentiable at x̄
for w. If this holds for every w, so that the functions Δτf(x̄) epi-converge
on IRn to some function h as τ ↘ 0, f is epi-differentiable at x̄; it is properly
epi-differentiable if the epi-limit function is proper.

The notation in 7(23) has the meaning explained around 7(11) and refers
to a value β with the property that for all sequences τν ↘ 0 one has⎧⎪⎨

⎪⎩
lim infν

f(x̄+ τνwν)− f(x̄)
τν

≥ β for every sequence wν → w,

lim supν
f(x̄+ τνwν)− f(x̄)

τν
≤ β for some sequence wν → w̄.

Then β must coincide with the value df(x̄)(w) in 7(21). Thus, as with
semiderivatives, we aren’t obliged to introduce a special notation for epi-
derivatives but can make do with df(x̄)(w) and the observation that the epi-
differentiability of f at x̄ for w corresponds to requiring the limit that defines
this expression to hold with additional properties.

If f is semidifferentiable at x̄ for w, it’s also epi-differentiable, and from
what we’ve just seen, the epi-derivative equals the semiderivative. But epi-
differentiability is a broader property, not equivalent to semidifferentiability in
general. As a matter of fact, epi-differentiability is the ‘upper’ part of semidif-
ferentiability, in the sense that epi-convergence is the ‘upper’ part of continu-
ous convergence, cf. 7.11. It’s clear through 7.21 that f is semidifferentiable
at x̄ if and only if both f and −f are properly epi-differentiable at x̄. Epi-
differentiability of −f corresponds of course to hypo-differentiability of f , with
an obvious definition.

It should be noted that although the epi-derivative of f at x̄ for w, when it
exists, has the value df(x̄)(w) in particular, it need not have the same value as
the one-sided derivative f ′(x̄;w). A simple example is provided by the indicator
f = δC of C =

{
(x1, x2) ∈ IR2

∣∣x2 = x21
}
. For x̄ = (0, 0) and w = (w1, w2) one

has

df(x̄)(w) =

{
0 if w2 = 0,
∞ if w2 = 0,

f ′(x̄;w) =
{
0 if (w1, w2) = (0, 0),
∞ if (w1, w2) = (0, 0).

This shows very clearly too the deficiencies of taking one-sided directional
derivatives only along rays and it provides further motivation for looking at
the epi-convergence approach.

Epi-differentiability can be interpreted geometrically through the fact that
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epi Δτf(x̄) =
epi f − (x̄, f(x̄))

τ
for any τ > 0. 7(24)

Epi-convergence of difference quotients relates through this to the geometric
concept of derivability in 6.1, but as applied to the set epi f .

7.24 Proposition (geometry of epi-differentiability). A function f : IRn → IR is
epi-differentiable at x̄ if and only if epi f is geometrically derivable at

(
x̄, f(x̄)

)
.

The epi-derivative function, when it exists, has Tepi f
(
x̄, f(x̄)

)
as its epigraph.

Proof. Functions epi-converge on IRn if and only if their epigraphs converge as
subsets of IRn+1. Therefore, in view of 7(24), the functionsΔτf(x̄) epi-converge
to h as τ ↘ 0 if and only if the subsets

[
epi f − (x̄, f(x̄))]/τ converge to epih

as τ ↘ 0. But if these sets converge at all, the limit has to be Tepi f
(
x̄, f(x̄)

)
,

and this means by 6.2 that epi f is geometrically derivable at
(
x̄, f(x̄)

)
.
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Fig. 7–5. Epi-differentiability as an epigraphical tangent cone condition.

The geometric concept of derivability has been seen in 6.30 to follow from
that of Clarke regularity. A related property of regularity has a major role also
in the study of functions.

7.25 Definition (subdifferential regularity). A function f : IRn → IR is called
subdifferentially regular at x̄ if f(x̄) is finite and epi f is Clarke regular at(
x̄, f(x̄)

)
as a subset of IRn × IR.

For short, we’ll often just speak of this property as the ‘regularity’ of f
at x̄. More fully, if needed, it’s subdifferential regularity in the epigraphical
sense. A corresponding property in the hypographical sense is obtained in
replacing epi f by hypo f . The ‘subdifferential’ designation refers ultimately
to the theory of ‘subderivatives’ and ‘subgradients’ in Chapter 8, where this
notion will be especially significant.

7.26 Theorem (derivative consequences of regularity). Let f : IRn → IR be
subdifferentially regular at x̄. Then f is epi-differentiable at x̄, and its epi-
derivative for w, coinciding with df(x̄)(w), depends sublinearly as well as lower
semicontinuously on w.
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Such a function f is semidifferentiable at x̄ if and only if df(x̄)(w) < ∞
for all w. More generally, it is semidifferentiable at x̄ for w if and only if w
belongs to the interior of the cone D =

{
w
∣∣df(x̄)(w) <∞}.

Proof. The first assertion is based on the geometric facts in 6.30 as trans-
lated here to epigraphs through 7.24. Because the function h giving the epi-
derivatives has Tepi f

(
x̄, f(x̄)

)
as its epigraph, it’s sublinear when that cone is

convex (cf. 3.19).
We’ve already observed that h(w) must be df(x̄)(w), so that the set D

in the theorem is domh. The sublinearity of h implies by 2.35 that h is
continuous on int(domh). Hence, when w̄ ∈ int(domh) there exists for any
β ∈ (h(w̄),∞) a δ > 0 such that the compact set B = IB(w̄, δ) × {β} lies

in int(epi h) = intTepi f
(
x̄, f(x̄)

)
. Then by 6.37 and the regularity of epi f at(

x̄, f(x̄)
)
there exists ε > 0 such that

[
epi f−(x̄, f(x̄))]/τ ⊃ B when 0 < τ < ε.

This means by 7(24) that Δτf(x̄)(w) ≤ β for all w ∈ IB(w̄, δ) when 0 < τ < ε.
From the arbitrary choice of β > h(w̄) it follows that

lim sup
τ ↘ 0
w→w̄

Δτf(x̄)(w) ≤ h(w̄).

The opposite inequality for lim inf holds by virtue of epi-differentiability, so
the semiderivative limit in Definition 7.20 exists and equals h(w̄).

When domh is all of IRn, this is true for every vector w̄ ∈ IRn, so f is
semidifferentiable at x̄.

7.27 Example (regularity of convex functions). A proper convex function f :
IRn → IR is subdifferentially regular at any point x̄ ∈ dom f where it is locally
lsc, and it is epi-differentiable at every such point as well. These properties
hold in particular when x̄ ∈ int(dom f), and then f is semidifferentiable at x̄.

Detail. When f is locally lsc at x̄, epi f is locally closed at
(
x̄, f(x̄)

)
(see 1.34).

The convexity of epi f when f is convex (cf. 2.4) then yields the regularity of
epi f at

(
x̄, f(x̄)

)
by 6.9, which is the regularity of f at x̄ by Definition 7.25.

The results in 7.26 now apply along with the fact that f is sure to be lsc
(actually continuous) at points x̄ ∈ int(dom f) (cf. 2.35).

7.28 Example (regularity of max functions). If f(x) = δC(x)+maxi∈I fi(x) for
a set C ⊂ IRn and a finite collection {fi}i∈I of smooth functions fi : IR

n → IR,
then f is subdifferentially regular and epi-differentiable at every point x̄ ∈ C
where C is regular, and f is semidifferentiable at every point x̄ ∈ intC.

Detail. In this case, epi f consists of the points (x, α) ∈ X := C×IR satisfying
the constraints gi(x, α) ≤ 0 for all i ∈ I, where gi(x, α) = fi(x)− α. It follows
from 6.14 that epi f is regular at any of its points (x̄, ᾱ) such that C is regular
at x̄. The remaining assertions then follow from 7.26.

A formula for the epi-derivative function in 7.28 will later be presented in
the wider framework of subderivatives and subgradients; see 8.31. Many exam-
ples of subdifferentially regular functions can be generated from the calculus in
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Chapter 6 as applied to epigraphs, and that topic will be taken up in Chapter
10. Further elaboration of generalized differentiability properties of functions
f in terms of tangent cone properties of epi f will proceed with the theory of
‘subderivatives’ in Chapter 8.

E. Convergence in Minimization

Another prime source of interest in epigraphical limits, besides their use in
local approximations corresponding to epi-differentiation, is their importance
in understanding what happens in a problem of minimization when the data
elements in the problem are varied or approximated in a global sense. A given
problem is represented by a single function f , as explained in Chapter 1, and a
sequence of functions fν that approaches f in some way can therefore be viewed
as representing a sequence of nearby problems that get closer and closer. To
what extent can it be determined that the optimal values inf fν approach inf f ,
and what can be said about the optimal solution sets argmin fν? The result
we state next, while not yet providing full answers to these questions, reveals
why epi-convergence is deeply involved.

7.29 Proposition (characterization of epi-convergence via minimization). For
functions fν and f on IRn with f lsc, one has

(a) e-lim infνf
ν ≥ f if and only if lim infν(infB f

ν) ≥ infB f for every
compact set B ⊂ IRn;

(b) e-lim supνf
ν ≤ f if and only if lim supν(infO f

ν) ≤ infO f for every
open set O ⊂ IRn.

Thus, e-limνf
ν = f if and only if both conditions hold.

Proof. Relying on the geometry in 7.1 to translate the assertions into a geo-
metric context, we apply the hit-and-miss criteria in 4.5 to the epigraphs of the
functions fν and f . We utilize also the fact that instead of taking the usual
balls IB

(
(x, α), δ

)
in IRn+1 when calling on the conditions in 4.5(a′) and (b′),

we can just as well take the cylinders IB+
(
(x, α), δ

)
:= IB(x, δ)× [α− δ, α+ δ],

since IB
(
(x, α), δ

) ⊂ IB+
(
(x, α), δ

) ⊂ √2IB((x, α), δ).
Necessity in (a). The assumption is that lim supν(epi f

ν) ⊂ epi f . Con-
sider any compact set B ⊂ IRn and value α ∈ IR such that infB f > α. The
compact set (B, α) in IRn+1 doesn’t meet epi f , so by the criterion in 4.5(b)
there is an index set N ∈ N∞ such that, for all ν ∈ N , (B, α) doesn’t meet
epi fν either. That implies infB f

ν ≥ α. We conclude that lim infν(infB f
ν)

can’t be less than infB f .

Sufficiency in (a). Consider any cylinder IB+
(
(x, α), δ

)
that doesn’t meet

epi f . Because f is lsc, so that epi f is closed, we have infIB(x,δ) f > α + δ.
Since the ball IB(x, δ) is a compact set in IRn, we have by assumption that
lim infν

(
infIB(x,δ) f

ν
)
> α + δ. Therefore, an index set N ∈ N∞ exists such

that infIB(x,δ) f
ν > α + δ for all ν ∈ N . Then the cylinder IB+

(
(x, α), δ

)
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doesn’t meet epi fν for any ν ∈ N . This proves by the criterion in 4.5(b′) that
lim supν(epi f

ν) ⊂ epi f .
Necessity in (b). The assumption is that lim infν(epi f

ν) ⊃ epi f . Consider
any open set O ⊂ IRn and value α ∈ IR such that infO f < α. The set
O × (−∞, α) is open in IRn+1 and meets epi f . Hence from the condition in
4.5(a) we know there is an index set N ∈ N∞ such that, for all ν ∈ N , this
set meets epi fν , with the consequence that infO f

ν < α. The upper limit of
infO f

ν as ν →∞ therefore can’t exceed infO f
ν .

Sufficiency in (b). Consider any open cylinder of the form int IB+
(
(x, α), δ)

that meets epi f ; this condition means that inf int IB(x,δ) f < α+δ. Our hypoth-
esis yields the existence of an index setN ∈ N∞ such that inf int IB(x,δ) f

ν < α+δ

for all ν ∈ N . Then the set int IB+
(
(x, α), δ

)
meets epi fν for all ν ∈ N . The

criterion in 4.5(a′) tells us on this basis that lim infν(epi f
ν) ⊃ epi f .

argmin fν

-1 = inf f ν

νf

8 8argmin f =(- , )

1/ ν

f = 0=

Fig. 7–6. Epi-convergent convex functions with optimal values not converging.

In general, epi-convergence has to be supplemented by some further con-
dition, if one wishes to guarantee that inf fν → inf f . A simple example
in Figure 7–6, involving only convex functions, illustrates how one may have
fν→e f but inf fν → inf f . The functions fν(x) := max{ν−1x,−1} on IR1

have the property that fν→e f ≡ 0, yet inf fν = −1 for all ν. The trouble
clearly resides in the unbounded level sets, so it won’t be surprising that some
form of ‘level-boundedness’ will eventually be brought into the analysis of this
kind of situation.

As far convergence of optimal solutions is concerned, it would be unrealistic
to aim at finding conditions that guarantee that limν(argmin fν) = argmin f ,
except in cases where argmin f consists of a single point. Rather, we must be
content with the inclusion

limsupν(argmin fν) ⊂ argmin f,

which says that every cluster point x of a sequence {xν}ν∈N with xν optimal
for fν will be optimal for f . An illustration in IR is furnished in Figure 7–7.
Although the functions fν epi-converge to f and even converge pointwise to f
uniformly on all of IR, it isn’t true that every point in argmin f is the limit of
a sequence of points belonging to the sets argmin fν . Observe, though, that
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fν+1
f ν

νargmin f

argmin f

f

Fig. 7–7. Outer limit property in the convergence of optimal solutions.

every point x ∈ argmin f can be expressed as a limit of points xν that are
‘approximately optimal’ for the functions fν .

To state the basic facts about the convergence of optimal values and op-
timal solutions in a manner consonant with these observations, we recall from
Chapter 1 the notion of ε-optimality: the set of points that minimize a function
f to within ε make up the set

ε-argmin f :=
{
x
∣∣ f(x) ≤ inf f + ε

}
.

We begin with a statement that only calls on ‘epigraphical nesting’, a require-
ment substantially weaker than epi-convergence because only the upper epi-
limit is involved. Convergence proofs for algorithmic procedures can often be
obtained as a consequence of epigraphical nesting alone.

7.30 Proposition (epigraphical nesting). If e-lim supν f
ν ≤ f , then

limsupν (inf f
ν) ≤ inf f.

Furthermore, the inclusion

limsupν (ε
ν-argmin fν) ⊂ argmin f

holds for any sequence εν ↘ 0 such that whenever N ∈ N#
∞ and xν→N x with

xν ∈ εν-argmin fν , then fν(xν)→N f(x).

Proof. The first assertion merely specializes 7.29(b) to O = IRn. For the
second assertion, suppose the sequence εν ↘ 0 has the property mentioned; we
have to verify that argmin f contains any x expressible as limν∈N xν for an
index set N ∈ N#

∞ and points xν ∈ εν-argmin fν . Such points xν satisfy
fν(xν) − εν ≤ inf fν , where by assumption also limν∈N fν(xν) = f(x). Then
f(x) ≤ lim supν∈N (inf fν), but we already know that the latter can’t exceed
inf f . Hence f(x) ≤ inf f , so x ∈ argmin f .

7.31 Theorem (inf and argmin). Suppose fν→e f with −∞ < inf f <∞.

(a) inf fν → inf f if and only if there exists for every ε > 0 a compact set
B ⊂ IRn along with an index set N ∈ N∞ such that

infB f
ν ≤ inf fν + ε for all ν ∈ N.
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(b) lim supν(ε-argmin fν) ⊂ ε-argmin f for every ε ≥ 0 and consequently

limsupν(ε
ν-argmin fν) ⊂ argmin f whenever εν ↘ 0.

(c) Under the assumption that inf fν → inf f , there exists a sequence εν ↘ 0
such that εν-argmin fν → argmin f . Conversely, if such a sequence exists, and
if argmin f = ∅, then inf fν → inf f .

Proof. Sufficiency in (a). We already know that lim supν
(
inf fν

) ≤ inf f by
7.30, while on the other hand, the inequality in (a) when combined with the
property in 7.29(a) yields

lim infν
(
inf fν

)
+ ε ≥ lim infν

(
infB f

ν
) ≥ infB f ≥ inf f.

This being true for arbitrary ε, we conclude that limν

(
inf fν

)
= inf f .

Necessity in (a). Since inf fν → inf f by assumption, it is enough to
demonstrate for arbitrary δ > 0 the existence of a compact set B such
that lim supν

(
infB f

ν
) ≤ inf f + δ. Choose any point x such that f(x) ≤

inf f + δ. Because fν→e f , there exists by 7.2 a sequence xν → x such that
lim supν f

ν(xν) ≤ f(x). Let B be any compact set large enough to contain all
the points xν . Then infB f

ν ≤ fν(xν) for all ν, so B has the desired property.
Proof of (b). Fix ε ≥ 0. Let xν ∈ ε-argmin fν . Any cluster point x̄ of the

sequence {xν}ν∈IN has

f(x̄) ≤ lim infν f
ν(xν) ≤ lim supν f

ν(xν)

≤ lim supν(inf f
ν + ε) ≤ inf f + ε,

where the first inequality follows from epi-convergence, and the last via 7.30.
Hence x̄ ∈ ε-argmin f . From this we get lim supν(ε-argmin fν) ⊂ ε-argmin f .
The inclusion lim supν ε

ν-argmin fν ⊂ argmin f follows from the preceding one
because the collection {ε-argmin fν}ε≥0 is nested with respect to inclusion.

Proof of (c). Suppose ᾱν := inf fν → inf f =: ᾱ. By assumption we have
ᾱ ∈ IR; hence for ν large enough, ᾱν is finite. From the convergence of level sets
(in 7.7), we deduce the existence of αν ↘ ᾱ such that lev≤αν fν → lev≤ᾱ f =
argmin f . Simply set εν := αν − ᾱν .

For the converse, suppose there’s a sequence εν ↘ 0 with εν-argmin fν →
argmin f = ∅. For any x ∈ argmin f one can select xν ∈ εν-argmin fν with
xν → x. Then because fν→e f , we obtain

inf f = f(x) ≤ lim infν f
ν(xν) ≤ lim infν(inf f

ν + εν)

≤ lim infν(inf f
ν) ≤ limsupν(inf f

ν) ≤ inf f,

where the last inequality comes from 7.30.

The need for assuming argmin f = ∅ in the converse part of 7.31(c) is
illustrated in Figure 7–8 by the sequence of functions fν on IR1 defined by
fν(x) = 1 + e−x when x = ν, fν(x) = 0 for x = ν. These epi-converge to
f(x) := 1 + e−x, yet argmin fν → argmin f = ∅ while 0 = inf fν → inf f = 1.
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ν ν+1

1f

f f

1 ν ν+1

Fig. 7–8. For any compact set B, inf fν < infB fν for ν large enough.

To provide a practical criterion for verifying the condition in 7.31(a) and
obtaining additional properties of the kind usually demanded in optimization,
we appeal to a simple generalization of the level boundedness concept in 1.8.
We say that a sequence {fν}ν∈IN of functions is eventually level-bounded if for
each α ∈ IR the sequence of sets lev≤α f

ν is eventually bounded.

7.32 Exercise (eventual level boundedness).

(a) The sequence {fν}ν∈IN is eventually level-bounded if there is a level-
bounded function g such that eventually fν ≥ g, or if the sequence of sets
dom fν is eventually bounded.

(b) If the sequence {fν}ν∈IN is eventually level-bounded and fν→e f , then
f is level-bounded, in fact inf-compact.

(c) If fν→e f with f level-bounded, f ≡ ∞, and all the sets lev≤α f
ν are

connected (as for instance when the functions fν are convex), then the sequence
{fν}ν∈IN is eventually level-bounded.

Guide. Get (a) from the definitions and (b) as a corollary of 7.7. In deriving
(c) make use also of 4.12.

Note that the second case in 7.32(a) merely specializes the first case to
a function g having −∞ on a certain bounded set B but ∞ elsewhere. More
generally in connection with the first case in 7.32(a), it may be recalled that
for g to be level-bounded (as defined in 1.8), a sufficient condition is that g be
level-coercive (cf. 3.27). This is true if g∞(w) > 0 for all w = 0 (cf. 3.26), that
being actually equivalent to level boundedness when g is convex (cf. 3.27).

7.33 Theorem (convergence in minimization). Suppose the sequence {fν}ν∈IN

is eventually level-bounded, and fν→e f with fν and f lsc and proper. Then

inf fν → inf f (finite),

while for ν in some index set N ∈ N∞ the sets argmin fν are nonempty and
form a bounded sequence with

lim supν(argmin fν) ⊂ argmin f.

Indeed, for any choice of εν ↘ 0 and xν ∈ εν-argmin fν , the sequence {xν}ν∈IN

is bounded and such that all its cluster points belong to argmin f . If argmin f
consists of a unique point x̄, one must actually have xν → x̄.
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Proof. From 7.29(b) with O = IRn, we have lim supν(inf f
ν) ≤ inf f . Hence

there’s a value α̂ ∈ IR such that inf fν < α̂ for all ν. Then by the definition of
eventual level boundedness there’s an index set N ∈ N∞ along with a compact
set B such that lev≤α̂ f

ν ⊂ B for all ν ∈ N . We have inf fν = infB f
ν for all

ν ∈ N , and this ensures through 7.30 that inf fν → inf f .

We also have argmin fν = argminB f
ν = argmin(f + δB) for all ν ∈ N ,

these sets being nonempty by 1.9. Likewise, argmin f = ∅ because f is inf-
compact by 7.32(b). For εν ↘ 0, we eventually have inf fν + εν < α̂; the sets
εν-argmin fν all lie then in B. The conclusions follow then from 7.31(b).

This convergence theorem can be useful not only directly, but also in tech-
nical constructions, as we now illustrate.

7.34 Example (bounds on converging convex functions). If a sequence of lsc,
proper, convex functions fν : IRn → IR epi-converges to a proper function f ,
there exists ρ ∈ (0,∞) such that

f ≥ −ρ(| · |+ 1) and fν ≥ −ρ(| · |+ 1) for all ν ∈ IN.
Detail. We know that f inherits convexity from the fν ’s (cf. 7.17) and hence
that all these functions are counter-coercive: by 3.26 and 3.27, there are con-
stants ρ̄, ρν ∈ (0,∞) with f ≥ −ρ̄(| · |+1) and fν ≥ −ρν(| · |+1) for all ν ∈ IN .
The issue is whether a single ρ will work uniformly. Raising ρ̄ if necessary,
we can arrange that the function g := f + ρ̄(| · | + 1) is level-bounded. Let
α = inf g (this being finite by 1.9). The convex functions gν := fν + ρ̄(| · |+ 1)
epi-converge to g by 7.8(a), so that inf gν → inf g. Then for some N ∈ N∞ we
have inf gν ≥ α − 1, hence fν ≥ −ρ̄(| · | + 1) + α − 1. Taking ρ larger than
ρ̄− α + 1, ρ̄ and the constants ρν for ν ∈ IN \N , we get the result.

Theorem 7.33 can be applied to the Moreau envelopes in 1.22 in order to
obtain yet another characterization of epi-convergence. For this purpose an
extension of the notion of prox-boundedness in 1.23 is needed.

7.35 Definition (eventually prox-bounded sequences). A sequence {fν}ν∈IN of
functions on IRn is eventually prox-bounded if there exists λ > 0 such that
lim infν eλf

ν(x) > −∞ for some x. The supremum of all such λ is then the
threshold of eventual prox-boundedness of the sequence.

7.36 Exercise (characterization of eventual prox-boundedness). A sequence
{fν}ν∈IN is eventually prox-bounded if and only if there is a quadratic function
q such that fν ≥ q for all ν in some index set N ∈ N∞.

Guide. Appeal to 1.24 and the meaning of an inequality eλf
ν(b) ≥ β.

7.37 Theorem (epi-convergence through Moreau envelopes). For proper, lsc
functions fν and f on IRn, the following are equivalent:

(a) the sequence {fν}ν∈IN is eventually prox-bounded, and fν→e f ;

(b) f is prox-bounded, and eλf
ν→p eλf for all λ in an interval (0, ε), ε > 0.
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Then the pointwise convergence of eλf
ν to eλf for λ > 0 sufficiently small is

uniform on all bounded subsets of IRn, hence yields continuous convergence and
epi-convergence too, and indeed eλνfν converges in all these ways to eλf when-
ever λν → λ ∈ (0, λ̄), where λ̄ is the threshold of eventual prox-boundedness.

If the functions fν and f are convex, then the threshold of eventual prox-
boundedness is λ̄ =∞ and condition (b) can be replaced by

(b′) eλf
ν→p eλf for some λ > 0.

Proof. Under (a), we know that for arbitrary ε ∈ (0, λ̄) there exist b ∈ IRn,
β ∈ IR and N ∈ N∞ such that eεf

ν(b) ≥ β for all ν ∈ N . This means for such ν
that fν(w) ≥ β− (1/2ε)|w− b|2 for all w ∈ IRn. Now consider any x ∈ IRn and
any λ ∈ (0, ε), as well as any sequences xν → x and λν → λ with λν > 0. Let
j(w) = (1/2λ)|w − x|2 and jν(w) = (1/2λν)|w − xν |2. The functions fν + jν

epi-converge to f + j by the criterion in 7.2, inasmuch as jν(wν)→ j(w) when
wν → w. There’s an index set N ′ ∈ N∞ with N ′ ⊂ N along with δ ∈ (λ, ε)
such that λν ∈ (0, δ) when ν ∈ N ′. Then (fν + jν)(w) is bounded below by

β − 1

2ε
|w − b|2 + 1

2δ
|(w − b)− (xν − b)|2

≥ β +
[ 1
2δ
− 1

2ε

]
|w − b|2 − 1

δ

〈
w − b, xν − b〉+ 1

2δ
|xν − b|2

≥ β +
[ε− δ]
2εδ

|w − b|2 − 1

δ
|w − b||xν − b|.

We see that for any upper bound ρ on |xν−b| for ν ∈ N ′ we have fν+jν ≥ h for
h(w) := β+([ε−δ]/2εδ)|w−b|2−(ρ/δ)|w−b|. The function h is level-bounded
because ε > δ > 0. Hence by 7.33 the values inf{fν + jν} =: eλνfν(xν)
converge to inf{f + j} =: eλf(x). From the special case of constant sequences
xν ≡ x and λν ≡ λ we deduce that (b) is true. Also, we see that eλf(x) is
finite, so that f must itself be prox-bounded (cf. Definition 1.23).

In demonstrating that eλνfν(xν) → eλf(x) for general sequences x
ν → x

and λν → λ in (0, ε) we’ve actually shown that the functions eλνfν converge
continuously to eλf . The convergence is then uniform on all bounded sets, cf.
7.14 and 1.25, and it also entails epi-convergence, cf. 7.11. Since ε was selected
arbitrarily from (0, λ̄), this holds whenever λν → λ ∈ (0, λ̄).

Conversely now, suppose (b) holds. The prox-boundedness of f ensures
that eλf is finite for λ > 0 sufficiently small (cf. 1.25). When this property is
combined with pointwise convergence of eλf

ν to eλf , we see that the defini-
tion of eventual prox-boundedness is satisfied for the sequence {fν}ν∈IN . This
sequence can’t escape to the horizon, so all its cluster points g with respect to
epi-convergence are proper as well as lsc.

Let g be any such cluster point, say g = e-limν∈N fν for an index set
N ∈ N#

∞. Applying (a) to the subsequence {fν}ν∈N , which itself is eventually
prox-bounded, we see that the subsequence {eλfν}ν∈N converges pointwise to
eλg for λ > 0 sufficiently small. But we already know it converges to eλf . Hence
eλg = eλf for all λ > 0 sufficiently small. Then g = f by 1.25. From the fact
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that f is the unique cluster point of {fν}ν∈IN with respect to epi-convergence,
we conclude through Theorem 7.6 that fν→e f .

When the functions fν and f are convex, implying that every cluster point
g of {fν}ν∈IN with respect to epi-convergence is convex as well (cf. 7.17), the
argument just given can be strengthened: to conclude that g = f we need only
know that eλg = eλf for some λ > 0 (cf. 3.36). Also in this case, the sequence
of functions fν + jν is eventually level-bounded for every λ > 0 (see 7.32(c)),
so we obtain the convergence of eλf

ν to eλf for every λ > 0.

7.38 Exercise (graphical convergence of proximal mappings). Suppose fν→e f
for proper, lsc functions fν and f on IRn such that the sequence {fν}ν∈IN is
eventually prox-bounded with threshold λ̄. Then

g-lim supν Pλνfν ⊂ Pλf whenever λν → λ ∈ (0, λ̄),

and in this case the sequence of mappings Pλνfν is eventually locally bounded,
in the sense that each point x has a neighborhood V for which the sequence of
sets Pλνfν(V ) is eventually bounded.

Furthermore, g-limν Pλνfν = Pλf when f is convex, or more generally
whenever Pλf is single-valued.

Guide. Adapt the initial argument in the proof of Theorem 7.37, paying
heed to the implications of 7.33 for the sets argmin{fν + jν} =: Pλνfν(xν)
and argmin{f + j} =: Pλf(x) rather than just the values inf{fν + jν} and
inf{f + j}. In the case where f is convex, apply 2.26(a).

Here’s an example showing in the setting of 7.38 that fν→e f doesn’t
always ensure Pλf

ν→g Pλf , regardless of the assumptions of eventual prox-
boundedness. On IR, let f(x) = max{0, 1 − x2} and fν = (1 + εν)f for a
sequence εν ↘ 0. The functions fν converge continuously to f and in particular
epi-converge, and their sequence is prox-bounded with threshold λ̄ = ∞. It’s
easy to verify that for λ = 1/2 one has

Pλf(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x for −∞ < x ≤ −1,
−1 for −1 ≤ x < 0,
[−1, 1] for x = 0,
1 for 0 < x ≤ 1,
x for 1 ≤ x <∞,

and Pλf
ν(x) = Pλf(x) for all x = 0, but Pλf

ν(0) = {−1, 1} = Pλf(0). Thus,
the sequence of mappings Pλf

ν is constant, yet corresponds only to part of
Pλf and therefore doesn’t converge graphically to Pλf .

F. Epi-Continuity of Function-Valued Mappings

Parametric minimization in x of an expression depending on a parameter el-
ement u was viewed in Chapter 1 in the framework of a bivariate expression
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f(x, u), possibly with infinite values. Another valuable perspective is afforded
by parallels with the theory of set-valued mappings, however, and this too
supports many applications of variational analysis.

Along with the concept of a set-valued mapping from a space U to the
space sets(X) consisting of all subsets of X , it’s useful to consider that of a
function-valued mapping from U to the space

fcns(X) := collection of all extended-real-valued functions on X.

Such a mapping, also called a bifunction, assigns to each u ∈ U a function
defined on X that has values in IR. There is obviously a one-to-one cor-
respondence between such mappings U → fcns(X) and bivariate functions
f : X × U → IR: the mapping has the form u 	→ f( · , u), where f( · , u) de-
notes the function that assigns to x the value f(x, u). This correspondence,
whereby many questions concerning parametric dependence can be posed sim-
ply in terms of a single function on a product space, is very convenient, as
already seen, but the mapping viewpoint is interesting as well, because it puts
the spotlight on the ‘dynamic’ qualities of the dependence.

The analogy between function-valued mappings and set-valued mappings
provides a number of insights from the start. Without significant loss of gener-
ality for our purposes here, we can reduce discussion to the case where X = IRn

and U = IRm.
Any set-valued mapping S : IRm →→ IRn can be identified with a special

function-valued mapping from IRm to IRn, namely the one that assigns to each
u ∈ IRm the indicator of the set S(u). In bivariate terms, this indicator mapping
for S corresponds to u 	→ f( · , u) with f : IRn×IRm → IR taken as the indicator
function δgphS. Thus, the bivariate approach to function-valued mappings
parallels the graphical approach to set-valued mappings, which certainly can
be very attractive but isn’t the only good path of analysis.

On the other hand, each function-valued mapping u 	→ f( · , u) from IRm

to fcns(IRn) can be identified with a certain set-valued mapping from IRm to
sets(IRn× IR), namely its epigraphical mapping u 	→ epi f( · , u). This opens up
ways of treating parametric function dependence that are distinctly different
from the classical ones and are tied to the notions of epi-convergence.

7.39 Definition (epi-continuity properties). For f : IRn × IRm → IR, the
function-valued mapping u 	→ f( · , u) is epi-continuous at ū if

f( · , u)→e f( · , ū) as u→ ū,

which means that the set-valued mapping u 	→ epi f( · , u) is continuous at ū.
More generally, it is epi-usc if the mapping u 	→ epi f( · , u) is isc, whereas it is
epi-lsc if this mapping is osc.

7.40 Exercise (epi-continuity versus bivariate continuity). For f : IRn× IRm →
IR, the function-valued mapping u 	→ f( · , u) is epi-usc at ū if and only if, for
every sequence uν → ū and point x̄ ∈ IRn,
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lim sup
ν→∞

f(xν , uν) ≤ f(x̄, ū) for some sequence xν → x̄.

On the other hand, it is epi-lsc at ū if and only if, for every sequence uν → ū
and point x̄ ∈ IRn,

lim inf
ν→∞ f(xν , uν) ≥ f(x̄, ū) for every sequence xν → x̄.

Thus, it is epi-lsc (everywhere) if and only if f is lsc on IRn × IRm. It is epi-
usc if f is usc; but it can also be epi-usc without f necessarily being usc on
IRn × IRm. Likewise, the mapping u 	→ f( · , u) is epi-continuous in particular
if f is continuous, but this condition is only sufficient, not necessary.

As a refinement of the terminology in Definition 7.39, it is sometimes useful
to speak of a function-valued mapping u 	→ f( · , u) as being epi-continuous (or
epi-usc, or epi-lsc) at ū relative to a set U containing ū. This is taken to mean
that the mapping u 	→ epi f( · , u) is continuous (or isc, or osc) at ū relative to
U , in the sense that only sequences uν → ū with uν ∈ U are considered in the
version of 5(1) for this situation. The characterizations in 7.40 carry over to
such restricted continuity similarly.

We now study the application of epi-continuity properties of u 	→ f( · , u)
to parametric minimization. Substantial results were achieved in Theorem 1.17
for the optimal-value function p(u) = infx f(x, u), and we are now prepared for
a more thorough analysis of optimal-set mapping P (u) = argminx f(x, u). For
this purpose, and also in the theory of subgradients in Chapter 8, it will be
valuable to have the notion of sequences of points that not only converge but
do so in a manner that pays attention to making the values of some particular
function converge, even though the function might not be continuous.

With respect to any function p : IRm → IR (the focus in a moment will be
on an optimal-value function p), we’ll say that a sequence of points uν in IRm

converges in the p-attentive sense to ū, written uν→p ū, when not only uν → ū
but p(uν)→ p(u):

u→p ū ⇐⇒ u→ ū with p(u)→ p(ū).

Thus, p-attentive convergence is convergence relative to the topology on IRm

that’s induced by the topology on IRm × IR in associating with each point u
the pair

(
u, p(u)

)
. Of course, it’s the same as ordinary convergence of u to ū

wherever p is continuous.
The continuity concepts introduced for set-valued mappings extend to p-

attentive convergence in obvious ways. In particular, a mapping T : IRm →→ IRn

is osc with respect to p-attentive convergence when the conditions uν→p ū and
xν → x̄ with xν ∈ T (uν) imply x̄ ∈ T (ū).
7.41 Theorem (optimal-set mappings). For f : IRn×IRm → IR proper, lsc, and
such that f(x, u) is level-bounded in x locally uniformly in u, let

p(u) := infx f(x, u), P (u) := argminx f(x, u).
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(a) The mapping P , which is compact-valued with domP = dom p, is osc
with respect to p-attentive convergence →p . Furthermore, it is locally bounded
relative to any set in IRm on which p is bounded from above.

(b) For P to be locally bounded and osc (not just in the p-attentive sense)
relative to a set U ⊂ IRm at a point ū ∈ U with P (ū) = ∅, it suffices to have
p be continuous relative to U at ū. This is true not only under the condition
in Theorem 1.17(c) but also when the function-valued mapping u 	→ f( · , u) is
epi-continuous at ū relative to U . In particular it holds for U = int(domP ) =
int(dom p) when f is convex.

Proof. For uν→p u and xν → x with xν ∈ P (uν) = argminx f(·, uν), one has

f(x, u) ≤ liminfν f(x
ν , uν) ≤ limsupν

[
inf f(·, uν)] = inf f(·, u),

where the first inequality comes from the lower semicontinuity of f , and the
last equality from the p-attentive convergence, i.e., x ∈ P (u). Thus, P is osc
with respect to p-attentive convergence.

If p(u) ≤ α, then P (u) ⊂ lev≤α f(·, u). From this it follows that if p(u) ≤ α
for all u in a set U , then P is locally bounded on U , since for all α ∈ IR, the
mappings u 	→ lev≤α f(·, u) are locally bounded by assumption. This estab-
lishes (a) and also the sufficient condition in the first assertion in (b), inasmuch
as p-attentive convergence uν→p ū is equivalent to ordinary convergence uν → ū
when p is continuous at ū relative to a set containing the sequence in question.

The epi-continuity condition in (b) is sufficient by Theorem 7.33. It holds
when f is convex, because the set-valued mapping u 	→ epi f( · , u) is graph-
convex, hence isc on the interior of its effective domain by Proposition 5.9(b).
A more direct argument is that the convexity of f implies that of p by 2.22(a),
and then p is continuous on int(dom p) by Theorem 2.35.

The sufficient condition in Theorem 1.17(c) for p to be continuous at ū
relative to U is independent of the epi-continuity condition in Theorem 7.41(b);
in general, neither subsumes the other.

7.42 Corollary (fixed constraints). Let P (u) = argminx∈X f0(x, u) for u ∈ U ,
where the sets X ⊂ IRn and U ⊂ IRm are closed and the function f0 : X×U →
IR is continuous. If for each bounded set B ⊂ U and value α ∈ IR the set{
(x, u) ∈ X × B ∣∣ f0(x, u) ≤ α

}
is bounded, then the mapping P : U →→ X is

osc and locally bounded relative to U .

Proof. This corresponds in the theorem to taking f(x, u) to be f0(x, u) when
(x, u) ∈ X ×U but ∞ otherwise. The function p is continuous relative to U by
the criterion in Theorem 1.17(c).

7.43 Corollary (solution mappings in convex minimization). Suppose P (u) =
argminx f(x, u) with f : IRn × IRm → IR proper, lsc, convex, and such that
f∞(x, 0) > 0 for all x = 0. If f(x, u) is strictly convex in x, then P is single-
valued on domP and continuous on int(domP ).
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Proof. Because f is convex, the level-boundedness condition in the theorem
is equivalent to the condition here on f∞, cf. 3.27. The continuity of P , when
single-valued, comes from 5.20.

7.44 Example (projections and proximal mappings).

(a) For any nonempty, closed set C in IRn the projection mapping PC is
osc and locally bounded.

(b) For any proper, lsc function f on IRn that is prox-bounded with thresh-
old λf , and any λ ∈ (0, λf ), the associated proximal mapping Pλf is osc and
locally bounded.

Detail. These statements merely place some of the facts already developed
in 1.20 and 1.25 into the context of Theorem 7.41 and the terminology of set-
valued mappings in Chapter 5.

7.45 Exercise (local minimization). Let f : IRn → IR be proper and lsc, and
for x ∈ IRn and ε ≥ 0 define

p(x, ε) = inf
y∈IB(x,ε)

f(y), P (x, ε) = argmin
y∈IB(x,ε)

f(y).

Then p is lsc and proper, while P is closed-valued and locally bounded, and
the common effective domain of p and P is

D :=
{
(x, ε) ∈ IRn × IR ∣∣ ε ≥ 0, (dom f) ∩ IB(x, ε) = ∅}.

If f is convex, p is continuous on intD and P is osc on intD; moreover

intD =
{
(x, ε) ∈ IRn × IR ∣∣ ε > 0, (dom f) ∩ int IB(x, ε) = ∅}.

If f is continuous everywhere, then (regardless of whether f is convex or not) p
is continuous relative to D and P is osc relative to D; if in addition f is strictly
convex, P is actually single-valued and continuous relative to D.

Guide. Apply Theorem 7.41 to the function g on IRn × IRn × IR defined by
g(y, x, ε) = f(y) + δ

(
y|IB(x, ε)

)
when ε ≥ 0, but g(y, x, ε) = ∞ otherwise.

When f is convex, obtain the convexity of p from 2.22(a). Note that the set
claimed to be intD is open and its closure includes D, and then invoke the
properties of interiors of convex sets in 2.33. In the case where f is continu-
ous everywhere, verify that the epi-continuity condition in Theorem 7.41(b) is
fulfilled. Obtain the consequences of strict convexity from 2.6 and 5.20.

The fact that lower semicontinuity of p is an inadequate basis, in itself, for
concluding the outer semicontinuity of P in Theorem 7.41(b) is demonstrated
by the following example, which is also an eye-opener in other respects. For
u ∈ IR1 let f( · , u) = f0 + δT (u) on IR

2 with f0(x1, x2) := −x1, where in terms
of ϕ(t) := 2t/(1 + t2) one has

T (u) :=
{
(x1, x2)

∣∣x1 ≤ 3, ϕ(x1) + x2 ≤ u, ϕ(x1)− x2 ≤ u
}
.
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Fig. 7–9. A parameterized feasible set.
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Fig. 7–10. Behavior of an optimal-set mapping P = P1 × P2.

The nature of T (u) is indicated in Figure 7–9 for representative choices of u.

Figure 7–10 shows the graph of the associated optimal-set mapping P :
IR2 →→ IR2; it happens to have the form P (u) = P1(u)×P2(u) for mappings P1

and P2 into IR, and the graphs of P1 and P2 suffice for a full description. The
function f is proper and lsc, and f(x, u) is level-bounded in x locally uniformly
in u. For u < −1 there are no feasible solutions to the problem of minimizing
f(x, u) in x and therefore no optimal solutions; P (u) = ∅. For −1 ≤ u < .6
the problem has the unique optimal solution (x1, x2) = (θ(u), 0), where θ(u) =
u/(1+

√
1− u2); the optimal value is then p(u) = −θ(u). For u ≥ .6, however,

the optimal solution set is the nonempty line segment consisting of all the
points (x1, x2) having x1 = 3 and |x2| ≤ u − .6; then p(u) = −3. Although
the function p is discontinuous at u = .6, it’s lsc. Nonetheless, the set-valued
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mapping P fails to be osc at u = .6 relative to the set dom p = [−1,∞). It
may be observed that the function-valued mapping u 	→ f(u, ·) fails to be
epi-continuous at u = .6, as must be the case because otherwise p would be
continuous there by 7.41(b).

G∗. Continuity of Operations

In practice, in order to apply basic criteria as in Theorem 7.41 to optimization
problems represented in terms of minimizing a single extended-real-valued func-
tion on IRn, it’s crucial to have available some results on how epi-convergence
carries through the constructions used in setting up such a representation.
Some elementary operations have already been treated in 7.8, but we now in-
vestigate the matter more closely.

Epi-convergence isn’t always preserved under addition of functions, but
applications where the issue comes up tend to fall into one of the categories
covered by the next couple of results.

7.46 Theorem (epi-convergence under addition). For sequences of functions fν
1

and fν
2 on IRn one has

e-lim infν f
ν
1 + e-lim infν f

ν
2 ≤ e-lim infν(f

ν
1 + fν

2 ).

When fν
1 →e f1 and fν

2 →e f2 with f1 and f2 proper, either one of the following
conditions is sufficient to ensure that fν

1 + fν
2 →e f1 + f2:

(a) fν
1 →p f1 and fν

2 →p f2;

(b) one of the two sequences converges continuously.

Proof. For any x there exists by 7(3) a sequence xν → x with (fν
1 +f

ν
2 )(x

ν)→
[e-lim infν(f

ν
1 + fν

2 )](x). For this sequence we have

limν(f
ν
1 + fν

2 )(x
ν) ≥ lim infν f

ν
1 (x

ν) + lim infν f
ν
2 (x

ν)

≥ e-lim infν f
ν
1 (x) + e-lim infν f

ν
2 (x).

This proves the first claim in the theorem and shows that in order to obtain
epi-convergence of fν

1 + fν
2 in a case where fν

1 →e f1 and fν
2 →e f2 it suffices to

establish for each x the existence of a sequence xν → x with the property that
lim supν(f

ν
1 + fν

2 )(x
ν) ≤ (e-lim supν f

ν
1 + e-lim supν f

ν
2 )(x).

Under the extra assumption in (a) of pointwise convergence, such a se-
quence is obtained by setting xν ≡ x. Under the extra assumption in (b)
instead, say with fν

1 converging continuously to f1, one can choose xν such
that lim supν f

ν
2 (x

ν) ≤ e-lim supν f
ν
2 (x). At least one such sequence exists by

Proposition 7.2.

Note that criterion (b) of Theorem 7.46 covers the case of fν + g →e f + g
encountered earlier in 7.8(a). As an illustration of the requirements in Theorem
7.46 more generally, the functions fν

1 (x) = min
{
0, |νx − 1| − 1

}
and fν

2 (x) =
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fν
1 (−x) both epi-converge to the function f defined by f(x) = 0 when x = 0
and f(0) = −1. Their sum epi-converges to f , not to f + f ; conditions (a) and
(b) of the theorem fail to be satisfied.

A sequence of convex functions that epi-converges to f converges contin-
uously to f except possibly on the boundary of dom f ; cf. 7.17(c). It won’t
be surprising therefore that for convex functions fν

1 →e f1 and fν
2 →e f2, epi-

convergence is preserved under addition except possibly on the boundary of
dom(f1 + f2). We begin with a broader statement for functions of the type:
g◦L+ h where L is a linear mapping.

7.47 Exercise (epi-convergence of sums of convex functions). Suppose fν(x) =
gν
(
Lν(x)

)
+ hν(x) and f(x) = g

(
L(x)

)
+ h(x), where gν and g are convex

functions on IRm, hν and h are convex functions on IRn, and Lν and L are
linear mappings from IRn to IRm such that

e-lim supν g
ν ≤ g, e-lim supν h

ν ≤ h, Lν → L.

If the convex sets dom g and L(domh) cannot be separated, e-lim supν f
ν ≤ f ;

if also gν→e g and hν→e h, then fν→e f . As special cases one has:

(a) gν◦Lν→e g◦L when gν→e g, provided that 0 ∈ int(dom g − rgeL), or
equivalently, that dom g and rgeL cannot be separated.

(b) gν + hν→e g + h when m = n, gν→e g and hν→e h, provided that 0 ∈
int(dom g−domh), or equivalently, that dom g and domh cannot be separated.

Guide. This is essentially an adaptation of Theorem 4.32 to epigraphs. Let

Mν(x, α) := (x, Lν(x), α) for (x, α) ∈ IRn × IR,
Eν :=

{
(x, u, α)

∣∣α ≥ hν(x) + gν(u)
}
,

Cν :=
{
(x, α)

∣∣Mν(x, α) ∈ Eν
}

= epi fν ,

and define E, M and C similarly. To apply 4.32, one needs to show that
lim infν E

ν ⊃ E and that the convex sets E and rgeM can’t be separated, the
condition for that being (0, 0, 0) ∈ int

[
gphL − {(x, u, α) ∣∣α ≥ h(x) + g(u)

}]
,

cf. 2.39. Identify this with having (0, 0) ∈ int
[
gphL − (domh × dom g)

]
and

reduce the latter to saying that the sets gphL and domh × dom g can’t be
separated. Finally, verify that this holds if and only if dom g and L(domh)
can’t be separated.

From the definition of epi-limits (in 7.1) and the corresponding properties
for set convergence, in particular the formulas in 4.31 and 4(7), one has for any
sequence of functions fν and gν that

fν ≤ gν =⇒
{

e-lim infν f
ν ≤ e-lim infν g

ν,

e-lim supν f
ν ≤ e-lim supν g

ν ,
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e-lim infν min
{
fν
1 , f

ν
2

}
= min

{
e-lim infν f

ν
1 , e-lim infν f

ν
2

}
,

e-lim supν min
{
fν
1 , f

ν
2

}
= min

{
e-lim supν f

ν
1 , e-lim supν f

ν
2

}
,

e-lim infν max
{
fν
1 , f

ν
2

} ≥ max
{
e-lim infν f

ν
1 , e-lim infν f

ν
2

}
.

No inequality holds for e-lim supν max
{
f1, f2

}
in general, but for the case of

convex functions the following is available.

7.48 Proposition (epi-convergence of max functions). Let fν
1 , f

ν
2 , f1, and f2 be

convex with f1 ≥ e-lim supν f
ν
1 and f2 ≥ e-lim supν f

ν
2 . Suppose dom f1 and

dom f2 cannot be separated (or equivalently, 0 ∈ int
(
dom f1−dom f2)). Then

e-lim supν max
{
fν
1 , f

ν
2

} ≤ max
{
f1, f2

}
,

so if actually fν
1 →e f1 and fν

2 →e f2, one has max
{
fν
1 , f

ν
2

}
→e max

{
f1, f2

}
.

Proof. This follows directly from the definition of the upper epi-limit (in 7.1),
Proposition 4.32, and the fact that the epigraphs of f1 and f2 can be separated
if and only if dom f1 and dom f2 can be separated.

fνf

ν+1f

Fig. 7–11. A level-bounded epi-limit of functions that aren’t level-bounded.

To what extent can it be said that the ‘inf’ functional f 	→ inf f is con-
tinuous on the space fcns(IRn), supplied with the topology of epi-convergence?
Theorem 7.33 may be interpreted through 7.32(a) as providing this property
relative to subsets of the form

{
f lsc

∣∣ f ≥ g
}
with g level-bounded. It also

says that the set-valued mapping f 	→ argmin f from fcns(IRn) to IRn is osc
relative to such a subset.

Subsets of the form
{
f lsc

∣∣ f ≥ g} always have empty interior with respect
to epi-convergence: given any lsc, level-bounded function f , we can define a
sequence fν→e f consisting of lsc functions that aren’t level-bounded. This is
indicated in Figure 7–11, where fν(x) = f(x) when |x| < ν but fν(xν) = −ν
when |x| ≥ ν. It isn’t possible, therefore, to assert on the basis of 7.33 the epi-
continuity of the ‘inf’ functional at any f with inf f > −∞ when unrestricted
neighborhoods of f are admitted.

The question arises as to whether there is a type of convergence stronger
than epi-convergence with respect to which the ‘inf’ functional does exhibit
continuity at various elements f . To achieve a satisfying answer to this ques-
tion, as well as help elucidate issues related to the epi-continuity of various
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operations, we draw on the notions of cosmic convergence. A better under-
standing of conditions ensuring the level-boundedness needed in 7.33 will be a
useful by-product.

H∗. Total Epi-Convergence

Epi-convergence of a sequence of functions fν on IRn corresponds by definition
to ordinary set convergence of associated sequence of epigraphs in IRn+1. In
parallel one can consider cosmic epi-convergence of fν to f , which is defined
to mean that epi fν→c csm epi f in the sense of the cosmic set convergence
introduced in Chapter 4. Our main tool in working with this notion will be
horizon limits of functions. It’s evident from the definition of the inner and
outer horizon limits of a sequence of sets that if the sets are epigraphs the limits
are epigraphs as well.

2νf
2ν+1f

ν
νlimsup f

ν
ν

f=f

8

liminf f

8

8

Fig. 7–12. Illustration of horizon limits.

7.49 Definition (horizon limits of functions). For any sequence {fν}ν∈IN , the
lower horizon epi-limit, denoted by e-lim inf∞ν f

ν , is the function on IRn having
as epigraph the cone lim sup∞

ν (epi fν):

epi( e-lim inf∞ν f
ν) := lim sup∞

ν (epi fν).

Similarly, the upper horizon epi-limit, denoted by e-lim sup∞
ν f

ν , is the function
on IRn having as epigraph the cone lim inf∞ν (epi fν):

epi( e-lim sup∞
ν f

ν) := lim inf∞ν (epi fν).

When these two functions coincide, the horizon limit function e-lim∞
ν f

ν is said
to exist: e-lim∞

ν f
ν := e-lim inf∞ν f

ν = e-lim sup∞
ν f

ν .

The geometry in this definition can be translated into specific formulas
resembling those in 7.2 and 7.3 in the case of plain epi-limits and proved in
much the same way.
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7.50 Exercise (horizon limit formulas). For any sequence {fν}ν∈IN , one has

(e-lim inf∞ν f
ν)(x) = min{α ∈ IR ∣∣ ∃λνxν → x, λν ↘ 0, lim infν λ

νfν(xν) = α},
(e-lim sup∞

ν f
ν)(x) = min{α ∈ IR ∣∣ ∃λνxν → x, λν ↘ 0, lim supν λ

νfν(xν) = α}.
Furthermore,

(e-lim inf∞ν f
ν)(x) = sup

V ∈N (x)
δ>0

sup
N∈N∞

inf
ν∈N

inf
x′∈V
0<λ<δ

λfν(λ−1x′)

= lim
δ ↘ 0

[
lim inf
ν→∞

[
inf

x′∈IB(x,δ)
0<λ<δ

λfν(λ−1x′)
]]
,

(e-lim sup∞
ν f

ν)(x) = sup
V ∈N (x)

δ>0

inf
N∈N∞

sup
ν∈N

inf
x′∈V
0<λ<δ

λfν(λ−1x′)

= lim
δ ↘ 0

[
lim sup
ν→∞

[
inf

x′∈IB(x,δ)
0<λ<δ

λfν(λ−1x′)
]]
.

Guide. This is parallel to 7.2 and 7.3.

Rather than explore the full ramifications of cosmic epi-convergence using
horizon epi-limits, we concentrate here on the counterpart to the version of
cosmic set convergence that was defined in 4.23 as total set convergence.

7.51 Definition (total epi-convergence). A sequence of functions fν : IRn →
IR totally epi-converges to a function f : IRn → IR, written fν→t f , if the
epigraphs totally converge: epi fν→t epi f .

7.52 Proposition (properties of horizon limits). For a sequence {fν}ν∈IN , the
functions e-lim inf∞ν f

ν and e-lim sup∞
ν fν , as well as e-lim∞

ν fν when it exists,
are lsc and positively homogeneous functions on IRn. One has

e-lim infν(f
ν)∞ ≥ e-lim inf∞ν f

ν , e-lim supν(f
ν)∞ ≥ e-lim sup∞

ν f
ν ,

where the function e-lim sup∞
ν fν is sublinear when the functions fν are convex.

Furthermore, total epi-convergence is characterized by

fν→t f ⇐⇒ fν→e f, e-lim∞
ν f

ν = f∞

⇐⇒ fν→e f, e-lim inf∞ν f
ν ≥ f∞.

Proof. This just translates the horizon limit properties in 4.24 to the epi-
graphical context of 7.49.

A one-dimensional example displayed in Figure 7–12 furnishes some insight
into horizon limits. For ν even, we take fν(x) = min

{ |x|, |x−ν|−1}, while for
ν odd, we take fν(x) = min

{ |x|, |x+ ν| − 1
}
. This sequence of functions epi-

converges to the absolute value function, f(x) = |x|. The lower horizon limit is
given by

(
lim inf∞ν f

ν
)
(x) ≡ 0, as is obvious from the fact that the outer horizon
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limit of the epigraphs is the entire upper half-plane. The upper horizon limit,
however, is given by

(
lim sup∞

ν f
ν
)
(x) = |x|. The oscillation between even and

odd ν destroys the possibility of anything greater. The horizon limit itself
doesn’t exist in this case.

Observe, by the way, that this is another example of misbehavior with
respect to minimization. The individual functions fν are level-bounded, as is
the epi-limit f , but inf fν ≡ −1 compared to inf f = 0, and argmin fν is
either {ν} (for ν odd) or {−ν} (for ν even), compared to argmin f = {0}. Of
course, the sequence isn’t eventually level-bounded, or it would come under the
sway of Theorem 7.33, which forbids this from happening.

Interest in the possible merits of total epi-convergence is fueled by the
fact that in many of the situations frequently encountered, this type of conver-
gence is sure to be present without the need for any assumptions beyond those
guaranteeing ordinary epi-convergence.

7.53 Theorem (automatic cases of total epi-convergence). In the cases that
follow, ordinary epi-convergence fν→e f for functions fν ≡ ∞ and f ≡ ∞
always entails the stronger property of total epi-convergence fν→t f :

(a) the functions fν are convex;

(b) the functions fν are positively homogeneous;

(c) the sequence is nonincreasing (fν+1 ≤ fν).

(d) the sequence is equi-coercive, i.e., there is a coercive function g such
that for all ν one has fν ≥ g.
Proof. Except for (d), these criteria arise from applying the correspond-
ing result for sets (in 4.25) to epigraphs. In the case of (d), we have
e-lim inf∞ν f

ν ≥ g∞, where g∞ is the indicator δ{0} (cf. 3.25). On the other
hand, e-lim sup∞

ν f
ν ≤ e-lim infν(f

ν)∞ by 4.25(d), where (fν)∞ ≤ δ{0} for all
ν. Therefore e-lim∞

ν f
ν = δ{0}. If fν→e f , we necessarily have f ≥ cl g and

therefore also f coercive, f∞ = δ{0}. If follows then that fν→t f .

The content of Theorem 7.53 is especially significant for the approximation
of convex types of optimization problems. For such problems, approximation
in the sense of epi-convergence automatically entails the stronger property of
approximation in the sense of total epi-convergence.

7.54 Theorem (horizon criterion for eventual level-boundedness). A sequence
of proper functions fν : IRn → IR is eventually level-bounded if(

e-liminf∞ν f
ν
)
(x) > 0 for all x = 0.

Thus, it is eventually level-bounded if fν→t f with f proper and level-coercive.

Proof. Let h = e-liminf∞ν f
ν , and suppose that h(x) > 0 for all x = 0. Consider

for each N ∈ N∞ the function gN (x) := infν∈N fν(x), which has the property
that fν ≥ gN for all ν ∈ N . We’ll show that one of these functions gN is
level-bounded, from which it will obviously follow that the sequence {fν}ν∈N

is level-bounded.
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An unbounded level set of gN would have a direction point dir x in its
cosmic closure, and the horizon of epi gN would then contain a point dir(x, 0).
The horizon of epi gN is the horizon of the set EN :=

⋃
ν∈N epi fν and is

a compact subset of hzn IRn+1, as is the set of all direction points of the
form dir(x, 0) in hzn IRn+1. Therefore, if none of the functions gN were level-
bounded there would exist x = 0 such that dir(x, 0) ∈ ⋂N∈N∞ hznEN . This
set is the horizon part of the cosmic limit of epi fν as ν →∞ and is represented
by the cone epi h. Thus, there would exist x = 0 such that h(x) ≤ 0, which has
been excluded.

When fν→t f , the function h coincides with f∞. As long as f is proper,
the condition that h(x) > 0 when x = 0 reduces in that case to the level
coercivity of f ; cf. 3.26(a).

The case of Theorem 7.54 where the functions are convex corresponds to
the criterion for eventual level-boundedness already established in 7.32(c).

7.55 Corollary (continuity of the minimization operation). On the function
space lsc-fcns(IRn) equipped with the topology of total epi-convergence, the
functional f 	→ inf f is continuous at any element f that is proper and level-
coercive, and the mapping f 	→ argmin f is osc at any such element f .

Indeed, the lsc, proper, level-coercive functions on IRn form an open subset
of lsc-fcns(IRn) with respect to total epi-convergence.

Proof. This combines Theorem 7.54 with Theorem 7.33.

Total epi-convergence also enters the picture in handling epi-sums, where
it’s accompanied by a counterpart for functions of the condition used in 4.29
in obtaining the convergence of sums of sets.

7.56 Proposition (convergence of epi-sums). For functions fν
i : IRn → IR, one

has e-lim supν(f
ν
1 · · · fν

m) ≤ e-lim supν f
ν
1 · · · e-lim supν f

ν
m. Also,

(a) fν
1 fν

2 →e f1 f2 when fν
1 →t f1 and fν

2 →t f2, as long as

f∞
1 (x) + f∞

2 (−x) > 0 for all x = 0;

(b) fν
1 · · · fν

m→t f1 · · · fm when fν
i →t fi, the condition holds that∑m

i=1
f∞
i (xi) ≤ 0 =⇒ xi = 0 for all i,

and, in addition, (epi f1 × · · · × epi fm)∞ = epi f∞
1 × · · · × epi f∞

m . The latter is
fulfilled in particular when the functions fi are proper and convex.

Proof. We apply 4.29 to epigraphs after observing that the horizon condition
in (b) is satisfied if and only if there’s no choice of (xi, αi) ∈ epi f∞

i with
(x1, α1) + · · · + (xm, αm) = (0, 0) other than (xi, αi) = (0, 0) for all i. The
assertion in (b) for the case of convex functions comes out of 3.11.

7.57 Exercise (epi-convergence under inf-projection). Consider lsc, proper,
functions f, fν : IRn × IRm → IR and let
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p(u) = infx f(x, u), pν(u) = infx f
ν(x, u).

Suppose that f∞(x, 0) > 0 for all x = 0. Then

fν→t f =⇒ pν→t p.

Thus in particular, one has pν→e p whenever fν→e f and the functions fν are
convex or positively homogeneous, or the sequence {fν}ν∈IN is nondecreasing.

Guide. Apply 4.27 to epigraphs in the context of 1.18. Invoke 7.53. (For a
comparison, see 3.31.)

I∗. Epi-Distances

To quantify the rate at which a sequence of functions fν epi-converges to a
function f , one needs to introduce suitable metrics or distance-like functions
that are able to act in the role of metrics. The foundation has been laid
in Chapter 4, where set convergence was quantified by means of the metric
dl along with the pseudo-metrics dlρ and estimating expressions d̂lρ; cf. 4(11)
and 4(12). That pattern will be extended now to functions by way of their
epigraphs.

Because epi-convergence doesn’t distinguish between a function f and its
lsc regularization cl f , cf. 7.4(b), a full metric space interpretation of epi-
convergence isn’t possible without restricting to lsc functions. In the notation

fcns(IRn) := the space of all f : IRn → IR,

lsc-fcns(IRn) := the space of all lsc f : IRn → IR,

lsc-fcns �≡∞(IRn) := the space of all lsc f : IRn → IR, f ≡ ∞,

7(25)

our concern will be with lsc-fcns(IRn), or indeed lsc-fcns �≡∞(IRn), rather than
fcns(IRn). The exclusion of the constant function f ≡ ∞ is in line with our
focus on cl-sets �=∅(IR

n) instead of cl-sets(IRn) in the metric theory of Chapter
4 and corresponds to the separate emphasis given in 7.5 and 7.6 to sequences
of functions that epi-converge to the horizon.

The basic idea is to measure distances between functions on IRn in terms
of distances between their epigraphs as subsets of IRn+1. For any functions f
and g on IRn that aren’t identically ∞, we define

dl(f, g) := dl(epi f, epi g) 7(26)

and for ρ ≥ 0 also

dlρ(f, g) := dlρ(epi f, epi g), d̂lρ(f, g) := d̂lρ(epi f, epi g). 7(27)

We call dl(f, g) the epi-distance between f and g, and dlρ(f, g) the ρ-epi-

distance; the value d̂lρ(f, g) assists in estimating dlρ(f, g).
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7.58 Theorem (quantification of epi-convergence). For each ρ ≥ 0, dlρ is a

pseudo-metric on the space lsc-fcns �≡∞(IRn), but d̂lρ is not. Both families

{dlρ}ρ≥0 and {d̂lρ}ρ≥0 characterize epi-convergence: for any ρ̄ ∈ IR+, one has

fν→e f ⇐⇒ dlρ(f
ν , f)→ 0 for all ρ ≥ ρ̄

⇐⇒ d̂lρ(f
ν , f)→ 0 for all ρ ≥ ρ̄.

Further, dl is a metric on lsc-fcns �≡∞(IRn) that characterizes epi-convergence:

fν→e f ⇐⇒ dl(fν, f)→ 0.

Indeed,
(
lsc-fcns �≡∞(IRn), dl

)
is a complete metric space in which a sequence

{fν}ν∈IN escapes to the horizon if and only if, for some f0 ∈ lsc-fcns �≡∞(IRn)
(and then for every f0 in this space), one has dl(fν, f0)→∞.

Moreover, this metric space has the property that, for every one of its
elements f0 and every r > 0, the ball

{
f
∣∣ dl(f, f0) ≤ r} is compact.

Proof. Epi-convergence is by definition the set convergence of the epigraphs,
and since the epi-distance between functions in lsc-fcns �≡∞(IRn) is just the set
distances between these epigraphs, the assertions here are just translations of
those of 4.36, 4.42 and 4.43.

Total epi-convergence of functions can be characterized similarly by apply-
ing to epigraphs, as subsets of IRn+1, the cosmic set metric in 4(15) for subsets
of IRn (as subsets also of csm IRn). We define the cosmic epi-distance between
any two functions f, g : IRn → IR by

dlcsm(f, g) : = dlcsm(epi f, epi g)

= dl
(
pos(epi f,−1), pos(epi g,−1) ), 7(28)

where the second equation reflects the fact, extending 4(16), that the cos-
mic distance between epi f and epi g is the same as the set distance between
the cones in IRn+2 that correspond to these sets in the ray space model for
csm IRn+1.

7.59 Theorem (quantification of total epi-convergence). On lsc-fcns �≡∞(IRn),
cosmic epi-distances dlcsm(f, g) provide a metric that characterizes total epi-
convergence:

fν→t f ⇐⇒ dlcsm
(
fν, f)→ 0.

Proof. This comes immediately from 4.47 through definition 7(28).

In working quantitatively with epi-convergence, the following facts can be
brought to bear.

7.60 Exercise (epi-distance estimates). For f1, f2 : IRn → IR not identically∞,

the following properties hold for dl(f1, f2), dlρ(f1, f2) and d̂lρ(f1, f2) in terms
of d1 = depi f1(0, 0) and d2 = depi f2(0, 0):

(a) dlρ(f1, f2) and d̂lρ(f1, f2) are nondecreasing functions of ρ;
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(b) dlρ(f1, f2) depends continuously on ρ;

(c) d̂lρ(f1, f2) ≤ dlρ(f1, f2) ≤ d̂lρ′(f1, f2) when ρ
′ ≥ 2ρ+max{d1, d2};

(d) dlρ(f1, f2) ≤ max{d1, d2}+ ρ;

(e)
∣∣dlρ(f1, f2)− dlρ0

(f1, f2)
∣∣ ≤ 2|ρ− ρ0| for any ρ0 ≥ 0;

(f) dl(f1, f2) ≥ (1− e−ρ)|d1 − d2|+ e−ρdlρ(f1, f2);

(g) dl(f1, f2) ≤ (1− e−ρ)dlρ(f1, f2) + e−ρ
(
max{d1, d2}+ ρ+ 1

)
;

(h) |d1 − d2| ≤ dl(f1, f2) ≤ max{d1, d2}+ 1.

When f1 and f2 are convex, 2ρ can be replaced by ρ in (c). If in addition
f1(0) ≤ 0 and f2(0) ≤ 0, then ρ′ can be taken to be ρ in (c), so that

d̂lρ(f1, f2) = dlρ(f1, f2) for all ρ ≥ 0.

The latter holds even without convexity when f1 and f2 are positively homo-
geneous, and then

d̂lρ(f1, f2) = ρd̂l1(f1, f2), dlρ(f1, f2) = ρdl1(f1, f2).

Guide. Apply 4.37 and 4.41 to the epigraphs of f1 and f2.

The use of these inequalities is facilitated by the following bounds in
terms of an auxiliary value d̂l

+

ρ (f1, f2) that is sometimes easier to develop than

d̂lρ(f1, f2) out of the properties of f1 and f2.

7.61 Proposition (auxiliary epi-distance estimate). For lsc f1, f2 : IRn → IR
not identically ∞, one has

d̂l
+

ρ/
√
2
(f1, f2) ≤ d̂lρ(f1, f2) ≤

√
2 d̂l

+

ρ (f1, f2)

with d̂l
+

ρ (f1, f2) defined as the infimum of all η ≥ 0 such that

min
IB(x,η)

f2 ≤ max
{
f1(x),−ρ

}
+ η

min
IB(x,η)

f1 ≤ max
{
f2(x),−ρ

}
+ η

⎫⎪⎬
⎪⎭ for all x ∈ ρIB. 7(29)

Proof. Distinguish the Euclidean balls in IRn and IRn+1 by IB and IB′, observ-
ing that IB′ ⊂ IB×[−1, 1] ⊂ √2 IB′. By definition, d̂lρ(f1, f2) is the infimum
of all η ≥ 0 such that

(epi f1) ∩ ρIB′ ⊂ (epi f2) + ηIB′,
(epi f2) ∩ ρIB′ ⊂ (epi f1) + ηIB′.

Similarly let θρ(f1, f2) denote the infimum of all η ≥ 0 such that

(epi f1) ∩ ρ(IB×[−1, 1]) ⊂ (epi f2) + η(IB×[−1, 1]),
(epi f2) ∩ ρ(IB×[−1, 1]) ⊂ (epi f1) + η(IB×[−1, 1]). 7(30)

The relations between IB′ and IB×[−1, 1] yield
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θρ/
√
2 (f1, f2) ≤ d̂lρ(f1, f2) ≤

√
2 θρ(f1, f2),

so we need only verify that θρ(f1, f2) = d̂l
+

ρ (f1, f2). Because of the epigraphs
on both sides of the inclusions in 7(30), these inclusions aren’t affected if the
intervals [−1, 1] are replaced in every case by [−1,∞). Hence the inclusions
can be written equivalently as

epi
(
max{f1,−ρ}+ δρIB

) ⊂ (epi f2) + epi(δηIB − η),
epi
(
max{f2,−ρ}+ δρIB

) ⊂ (epi f1) + epi(δηIB − η).
To identify this with 7(29), it remains only to observe through 1.28 that
(epi fi) + epi(δηIB − η) is epi fi,η for the function fi,η := fi (δηIB − η), which
has fi,η(x) = minIB(x,η) fi − η.

7.62 Example (functions satisfying a Lipschitz condition). For i = 1, 2 suppose
fi = f0i+δCi

for a nonempty, closed set Ci ⊂ IRn and a function f0i : IR
n → IR

having for each ρ ∈ IR+ a constant κi(ρ) ∈ IR+ such that

|f0i(x′)− f0i(x)| ≤ κi(ρ)|x′ − x| when x, x′ ∈ ρIB.
Then one has the estimate that

d̂l
+

ρ (f1, f2) ≤ max
ρIB

∣∣f01 − f02∣∣+ [1 + max{κ1(ρ′), κ2(ρ′)}
]
d̂lρ(C1, C2)

whenever 0 < ρ < ρ′ <∞ and d̂lρ(C1, C2) < ρ′ − ρ.

Detail. We first investigate what it means to have minIB(x,η) f2 ≤ f1(x) + η.
This inequality is trivial when x /∈ C1, since the right side is then ∞. Suppose
η ≥ η′ with d̂lρ(C1, C2) < η′ ≤ ρ′ − ρ. Any x ∈ C1 ∩ ρIB belongs then to
C2 + η′IB. For such x we have f1(x) = f01(x) but also

min
x′∈IB(x,η)

f02(x
′) ≤ min

x′∈IB(x,η′)
f02(x

′) ≤ f02(x) + κ2(ρ
′)η′,

and consequently minIB(x,η) f2 ≤ f1(x) + η when η is also at least as large as
−f01(x) + f02(x) + κ2(ρ

′)η′. Obviously f1(x) ≤ max{f1(x),−ρ} always, and
therefore the inequality minIB(x,η) f2 ≤ max{f1(x),−ρ}+η holds for all x ∈ ρIB
when η ≥ maxρIB{f02 − f01}+ κ2(ρ

′)η′ + η′.
Similarly, the inequality minIB(x,η) f1 ≤ max{f2(x),−ρ}+ η holds for all

x ∈ ρIB if η ≥ maxρIB{f01 − f02} + κ1(ρ
′)η′ + η′. Thus, d̂l

+

ρ (f1, f2) ≤ η when

η ≥ maxρIB |f01−f02|+max{κ1(ρ′), κ2(ρ′)}η′+η′ with d̂lρ(C1, C2) < η′ ≤ ρ′−ρ.
The conclusion is successfully reached now by letting both η and η′ tend to their
lower limits.

As the special case of Example 7.62 in which f01 ≡ f02 ≡ 0, one sees that
d̂l

+

ρ (δC1
, δC2

) ≤ d̂lρ(C1, C2) for any ρ > 0. This can also be deduced directly

from the formula for d̂l
+

ρ (δC1
, δC2

), and indeed it holds always with equality.
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J∗. Solution Estimates

Consider two problems of optimization in IRn, represented abstractly by two
functions f and g; the second problem can be thought of as an approximation
or perturbation of the first. The corresponding optimal values are inf f and
inf g while the optimal solution sets are argmin f and argmin g. Is it possible
to give quantitative estimates of the closeness of inf g and argmin g to inf f
and argmin f in terms of an epi-distance estimate of the closeness of g to f?

In principle that might be accomplished on the basis of 7.55 and 7.59
through estimates of dlcsm(f, g), but we’ll focus here on the more accessible

measure of closeness furnished by d̂l
+

ρ (f, g), as defined in 7.61. This requires us
to work with a ball ρIB containing argmin f and to consider the minimization
of g over ρIB instead of over all of IRn.

To motivate the developments, we begin by formulating, in terms of the
notion of a ‘conditioning function’ ψ for f , a result which will emerge as a
consequence of the main theorem. This concerns the case where f has a unique
minimizing point, considered to be known. The point can be identified then
with the origin for the sake of simplifying the perturbation estimates.

7.63 Example (conditioning functions in solution stability). Let f : IRn → IR be
lsc and level-bounded with f(0) = 0 = min f , and suppose f has a conditioning
function ψ at this minimum in the sense that, for some ε > 0, ψ is a continuous,
increasing function on [0, ε] with ψ(0) = 0, such that

f(x) ≥ ψ(|x|) when |x| < ε.

Define Ψ(η) := η + ψ−1(2η), so that Ψ likewise is a continuous, increasing
function on [0, ψ(ε)/2] with Ψ(0) = 0. Fix any ρ ∈ [ε,∞). Then for functions
g : IRn → IR that are lsc and proper,

d̂l
+

ρ (f, g) < min
{
ρ, ψ(ε)/2

}
=⇒

{ |minρIB g| ≤ d̂l+ρ (f, g),
|x| ≤ Ψ(d̂l+ρ (f, g)), ∀x ∈ argminρIB g.

Detail. This specializes Theorem 7.64 (below) to the case where min f = 0
and argmin f = {0}. In the notation of that theorem, one takes ρ̄ = 0; one has
ψ ≤ ψf on [0, ε), so ψ−1

f (2η) ≤ ψ−1(2η) when 2η < ψ(ε). Then Ψf (η) ≤ Ψ(η)
as long as η ≤ ψ(ε)/2.

Figure 7–13 illustrates the notion of a conditioning function ψ for f in two
common situations. When ψ(τ) = γτ for some γ > 0, f must have a ‘kink’
at its minimum as in Figure 7–13(a), whereas if ψ(τ) = γτ2, f can be smooth
there, as in Figure 7–13(b). These two cases will be considered further in 7.65.
In general, of course, the higher the conditioning function ψ the lower (and
therefore better) the associated function Ψ giving the perturbation estimate.

The main theorem on this subject, which follows, removes the special
assumptions about min f and argmin f and works with an intrinsic expression
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Fig. 7–13. Conditioning functions ψ.

of the growth of f away from argmin f . A foundation is thereby provided for
using the ‘conditioning’ concept more broadly.

7.64 Theorem (approximations of optimality). Let f : IRn → IR be lsc, proper
and level-bounded, and let ρ̄ ≥ 0 be large enough that argmin f ⊂ ρ̄IB and
min f ≥ −ρ̄. Fix ρ ∈ (ρ̄,∞). Then for any lsc, proper function g : IRn → IR

close enough to f that d̂l
+

ρ (f, g) < ρ− ρ̄, one has∣∣minρIB g −min f
∣∣ ≤ d̂l

+

ρ (f, g).

Furthermore, in terms of ψf (τ) := min
{
f(x)−min f

∣∣ d(x, argminf) ≥ τ} and

Ψf (η) := η + ψ−1
f (2η), one has

argmin
ρIB

g ⊂ argmin f + Ψf

(
d̂l

+

ρ (f, g)
)
IB.

(Here the function ψf : [0,∞)→ [0,∞] is lsc and nondecreasing with ψf (0) = 0,
but ψf (τ) > 0 when τ > 0; if ψf is not continuous, ψ−1

f (2η) is taken as denoting
the τ ≥ 0 for which lev≤2η ψf = [0, τ ]. The function Ψf is lsc and increasing
on [0,∞) with Ψf (0) = 0, and in addition, Ψf (η) ↘ 0 as η ↘ 0.)

In restricting f and g to be convex and imposing the tighter requirement
that d̂l

+

ρ (f, g) < min
{ 1

2 [ρ − ρ̄], 12ψf (
1
2 [ρ − ρ̄])

}
, one can replace minρIB g and

argmin
ρIB

g in these estimates by min g and argmin g.

Proof. Let η̄ = d̂l
+

ρ (f, g) and consider η ∈ (η̄, ρ− ρ̄). By definition we have

min
IB(x,η)

f ≤ max
{
g(x),−ρ}+ η

min
IB(x,η)

g ≤ max
{
f(x),−ρ}+ η

⎫⎪⎬
⎪⎭ for all x ∈ ρIB. 7(31)

Applying the second of these inequalities to any x̄ ∈ argmin f (so x̄ ∈ ρ̄IB)
and using f(x̄) = min f ≥ −ρ̄ > −ρ, we see that minIB(x̄,η) g ≤ min f + η.
There exists then some x̃ ∈ IB(x̄, η) such that g(x̃) ≤ min f +η. But IB(x̄, η) ⊂
argmin f + ηIB ⊂ ρIB because argmin f ⊂ ρ̄IB and η < ρ − ρ̄. Therefore
g(x̃) ≥ minρIB g and we get
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minρIB g −min f ≤ η. 7(32)

On the other hand, in the first of the inequalities in 7(31) we have
minIB(x,η) f ≥ min f ≥ −ρ̄. Hence minIB(x,η) f − η > −ρ̄ − (ρ − ρ̄) = −ρ
on the left side, so that necessarily max

{
g(x),−ρ} = g(x) on the right

side. This implies that min f ≤ g(x) + η for all x ∈ ρIB and confirms
that minρIB g − min f ≥ −η. In view of 7(32) and the arbitrary choice of
η ∈ (η̄, ρ− ρ̄), we obtain |minρIB g −min f | ≤ η̄, as claimed.

Let A := argmin f ; this set is compact as well as nonempty (cf. 1.9). From
the definition of the function ψf it’s obvious that ψf is nondecreasing with

f(x)−min f ≥ ψf

(
dA(x)

)
for all x. 7(33)

The fact that ψf is lsc can be deduced from Theorem 1.17: we have

ψf (τ) = infx h(x, τ) for h(x, τ) :=

{
f(x)−min f if dA(x) ≥ τ ≥ 0,
∞ otherwise,

the function h being proper and lsc on IRn × IR with h(x, τ) level-bounded in
x locally uniformly in τ (inasmuch as f is level-bounded). The corresponding
properties of the function Ψf are then evident as well.

Recalling that necessarily max
{
g(x),−ρ} = g(x) in the first of the in-

equalities in 7(31), we combine this inequality with the one in 7(33) to get

g(x)−min f + η ≥ min
x′∈IB(x,η)

ψf

(
dA(x

′)
)

for all x ∈ ρIB.

When x ∈ argminρIB g, so that g(x) = minρIB g, the expression on the left is

bounded above by 2η; cf. 7(32) again. Then

2η ≥ min
x′∈IB(x,η)

ψf

(
dA(x

′)
) ≥ ψf

(
min

x′∈IB(x,η)
dA(x

′)
)

= ψf

(
dA+ηIB(x)

)
,

so that dA+ηIB(x) ≤ ψ−1
f (2η). It follows that dA(x) ≤ η + ψ−1

f (2η) = Ψf (η).
Because this holds for any η ∈ (η̄, ρ− ρ̄), we must have dA(x) ≤ Ψf (η̄) as well.
Thus, argminρIB g ⊂ A+ Ψf (η̄)IB.

In the convex case, any local minimum is a global minimum, and we have
minρIB g = min g and argminρIB g = argmin g whenever argminρIB g ⊂ int ρIB.
From the relation between argminρIB g and argmin f , which lies in ρ̄IB, we
see that this holds when, along with η̄ < ρ − ρ̄, we also have Ψf (η̄) < ρ − ρ̄,
or in other words, ψ−1

f (2η̄) < ρ − ρ̄ − η̄. Under the assumption that actually

η̄ < 1
2(ρ− ρ̄), we get this when 2η̄ < ψf (

1
2 [ρ− ρ̄]).

7.65 Corollary (linear and quadratic growth at solution set). Consider f , ρ̄ and
ρ as in Theorem 7.64. Let ε > 0 and γ > 0.

(a) If f(x) − min f ≥ γd(x, argminf) when d(x, argminf) < ε, then for

every lsc, proper function g satisfying d̂l
+

ρ (f, g) < min
{
ρ− ρ̄, γε/2} one has
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d(x, argminf) ≤ (1 + 2/γ)d̂l
+

ρ (f, g) for all x ∈ argminρIB g.

(b) If f(x) −min f ≥ γ d(x, argminf)2 when d(x, argminf) < ε, then for

every lsc, proper function g satisfying d̂l
+

ρ (f, g) < min
{
ρ− ρ̄, γε2/2} one has

d(x, argminf) ≤ d̂l
+

ρ (f, g) + [2d̂l
+

ρ (f, g)/γ]
1/2 for all x ∈ argminρIB g,

where d̂l
+

ρ (f, g) + [2d̂l
+

ρ (f, g)/γ]
1/2 ≤ 2[d̂l

+

ρ (f, g)/γ]
1/2 if also d̂l

+

ρ (f, g) ≤ 1/4γ.

Proof. Both cases involve a continuous, increasing function ψ on [0, ε] with
ψ(0) = 0 such that ψf ≥ ψ on [0, ε). Then, as in the explanation given for
Example 7.63, we have ψ−1

f (2η) ≤ ψ−1(2η) when 2η < ψ(ε), which in the

context of Theorem 7.64 yields Ψf (η) ≤ η + ψ−1(2η) as long as η ≤ ψ(ε)/2.
Case (a) has ψ(ε) = γε and ψ−1(2η) = 2η/γ, whereas case (b) has ψ(ε) =

γε2 and ψ−1(2η) =
√

2η/γ. For the latter we note further that η +
√
2η/γ =

(
√
ηγ +

√
2)
√
η/γ, and that

√
ηγ +

√
2 ≤ 2 when ηγ ≤ (2−√2)2 and hence in

particular when ηγ ≤ (.5)2 = 1/4.

7.66 Example (proximal estimates). Let f : IRn → IR be lsc, proper, and
convex. Fix λ > 0 and any point a ∈ IRn, and suppose ρ̄ is large enough that

eλf(a) ≥ −ρ̄,
∣∣Pλf(a)

∣∣ ≤ ρ̄.

Let ρ > ρ̄ + 8λ and Ψ(η) := η + 2
√
λη. Then for functions g : IRn → IR that

are lsc, proper and convex, one has the estimates∣∣eλg(a)− eλf(a)∣∣ ≤ d̂l
+

ρ (f̄ , ḡ),∣∣Pλg(a)− Pλf(a)
∣∣ ≤ Ψ

(
d̂l

+

ρ (f̄ , ḡ)
)
,

in terms of f̄(x) := f(x) + (1/2λ)|x− a|2 and ḡ(x) := g(x) + (1/2λ)|x− a|2,
as long as these functions are near enough to each other that d̂l

+

ρ (f̄ , ḡ) ≤ 4λ.

Detail. Theorem 7.64 will be applied to f̄ and ḡ, since these functions have
min f̄ = eλf(a), argmin f̄ = Pλf(a), min ḡ = eλg(a) and argmin ḡ = Pλg(a).
For this purpose we have to verify that f̄ satisfies a conditioning inequality of
quadratic type. Noting from the convexity of f that Pλf(a) is a single point
(cf. 2.26), and denoting this point by x̄ for simplicity, we demonstrate that

f̄(x)− f̄(x̄) ≥ 1

2λ
|x− x̄|2 for all x ∈ IRn. 7(34)

It suffices to consider x with f̄(x) and f(x) finite; we have

0 ≤ f̄(x)− f̄(x̄) = f(x)− f(x̄)− 1

λ
〈a− x̄, x− x̄〉+ 1

2λ
|x− x̄|2. 7(35)

Letting ϕ(τ) = f(x̄ + τ [x − x̄]), so that ϕ is finite and convex on [0, 1], we
get for all τ ∈ (0, 1] that ϕ(1)− ϕ(0) ≥ [ϕ(τ)− ϕ(0)]/τ (by Lemma 2.12) and
consequently through the nonnegativity in 7(35) that
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f(x)− f(x̄) ≥ f(x̄+ τ [x− x̄])− f(x̄)
τ

≥ 1

λ
〈a− x̄, x− x̄〉 − τ

2λ
|x− x̄|2.

Because the outer inequality holds for all τ ∈ (0, 1], it also holds for τ = 0.
Hence the expression f(x)− f(x̄) − (1/λ)〈a− x̄, x − x̄〉 in 7(35) is sure to be
nonnegative. In replacing it by 0, we obtain the inequality in 7(34).

On the basis of the conditioning inequality in 7(34), we can apply 7.64 (in
the convex case at the end of this theorem) to f̄ and ḡ with the knowledge that
ψf̄ (τ) ≥ τ2/2λ and thus ψ−1

f̄
(2η) ≤ 2

√
λη. This tells us that

d̂l
+

ρ (f̄ , ḡ) < min

{
ρ− ρ̄
2

,
(ρ− ρ̄)2
16λ

}

=⇒
{∣∣eλg(a)− eλf(a)∣∣ ≤ d̂l

+

ρ (f̄ , ḡ),∣∣Pλg(a)− Pλf(a)
∣∣ ≤ Ψ

(
d̂l

+

ρ (f̄ , ḡ)
)
.

Our choice of ρ has ensured that (ρ − ρ̄)/2 ≤ (ρ − ρ̄)2/16λ, so it’s enough to

require that d̂l
+

ρ (f̄ , ḡ) < (ρ − ρ̄)/2. Since ρ − ρ̄ > 8λ, this holds in particular

when d̂l
+

ρ (f̄ , ḡ) ≤ 4λ.

This kind of application could be carried further by means of estimates
of d̂l

+

ρ (f̄ , ḡ) in terms of the distance d̂l
+

ρ′(f, g) for some ρ′ ≥ ρ. The following
exercise works out a special case.

7.67 Exercise (projection estimates). Let C ⊂ IRn be nonempty, closed and
convex. Fix any point a ∈ IRn and let ρ > |PC(a)|+4 and θ = 1+ |a|+ρ. Then
for nonempty, closed, convex sets D near enough to C that d̂lρ(C,D) < 1/4θ,
one has ∣∣PD(a)− PC(a)

∣∣ ≤ 3

√
θ d̂lρ(C,D).

Guide. Apply 7.66 to f = δC and g = δD with λ = 1
2 and ρ̄ = |PC(a)|. Then

f̄ = δC +q and ḡ = δD+q for q(x) = |x−a|2, and 7.62 can be used to estimate

d̂l
+

ρ (f̄ , ḡ) in terms of d̂l
+

ρ (C,D). Specifically, verify for general ρ > 0 that

|q(x′)− q(x)| ≤ 2(|a|+ ρ)|x′ − x| when x, x′ ∈ ρIB,
and then invoke 7.62 with ρ′ = ρ+ 1

2 in order to establish that

d̂l
+

ρ (f̄ , ḡ) ≤ 2θd̂l
+

ρ (C,D) when d̂l
+

ρ (C,D) < 1
2 .

Work this into the result in 7.66, where Ψ(2θη) = 2(θη +
√
θη). Argue that

2(τ +
√
τ) ≤ 3

√
τ when τ ≤ 1/4.

Alongside of optimal solutions to the problem of minimizing a function
f one can investigate perturbations of ε-optimal solutions; here we refer to
replacing argmin f by the level set

ε– argmin f :=
{
x
∣∣ f(x) ≤ min f + ε

}
, ε > 0.
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For convex functions, a strong result can be obtained. To prepare the way
for it, we first derive an estimate, of interest in its own right, for the distance
between two different level sets of a single convex function.

7.68 Proposition (distances between convex level sets). Let f : IRn → IR be
proper, lsc and convex with argmin f = ∅. Then for α2 > α1 > α0 := min f
and any choice of ρ ≥ ρ0 := d(0, argminf), one has

d̂lρ
(
lev≤α2

f, lev≤α1
f
) ≤ [α2 − α1

α2 − α0

]
(ρ+ ρ0).

Proof. Let μ denote the bound on the right side of this inequality. Since
lev≤α1

f ⊂ lev≤α2
f , we need only show for arbitrary x2 ∈ [lev≤α2

f ]∩ ρIB that
there exists x1 ∈ lev≤α1

f with |x1 − x2| ≤ μ.
Consider x0 ∈ argmin f such that |x0| = ρ0; one has f(x0) = α0. In

IRn+1 the points (x2, α2) and (x0, α0) belong to epi f , so by convexity the
line segment joining them lies in epi f as well. This line segment intersects
the hyperplane H = IRn × {α1} at a point (x1, α1), namely the one given by
x1 = (1 − τ)x2 + τx0 with τ = (α2 − α1)/(α2 − α0). Then x1 ∈ lev≤α1

f and
|x1 − x2| = τ |x0 − x2| ≤ τ(|x2|+ |x0|) ≤ τ(ρ+ ρ0) = μ, as required.

7.69 Theorem (estimates for approximately optimal solutions). Let f and g be
proper, lsc, convex functions on IRn with argmin f and argmin g nonempty.
Let ρ0 be large enough that ρ0IB meets these two sets, and also min f ≥ −ρ0
and min g ≥ −ρ0. Then, with ρ > ρ0, ε > 0 and η̄ = d̂l

+

ρ (f, g),

d̂lρ
(
ε– argmin f, ε– argmin g

) ≤ η̄
(
1 +

2ρ

η̄ + ε/2

)
≤ (1 + 4ρε−1

)
d̂l

+

ρ (f, g).

Proof. First, let’s establish that |min g−min f | ≤ η̄. Let x̄ ∈ argmin f ∩ ρIB.

Since f(x̄) = min f ≥ −ρ0 > −ρ, from the definition of d̂l
+

ρ (f, g) in 7.61, one
has that for any η > η̄

minx∈IB(x̄,η) g(x) ≤ f(x̄) + η.

Hence min g ≤ min f + η. Reversing the roles of f and g, we deduce similarly
that min f ≤ min g + η from which follows: |min g −min f | ≤ η̄.

Again, by the definition of d̂l
+

ρ (f, g), for any x ∈ ε– argmin f ∩ ρIB and
η > η̄, one has

minIB(x,η) g ≤ f(x) + η,

since f(x) ≥ min f ≥ −ρ0 > −ρ. Therefore, there exists x′ with |x′ − x| ≤ η
and g(x′) ≤ f(x) + η. Since x ∈ ε– argmin f , f(x) ≤ min f + ε. Moreover
min f ≤ min g + η̄, as shown earlier, hence g(x′) ≤ min g + ε + 2η, i.e., x′ ∈
(ε+ 2η)– argmin g and consequently,

ε– argmin f ∩ ρIB ⊂ [(ε+ 2η)– argmin g + ηIB
] ∩ ρIB.

Applying Proposition 7.68 now to g with α0 = min g, α1 = min g + ε and
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α2 = min g + ε+ 2η, we obtain the estimates[
(ε+ 2η)– argmin g

] ∩ ρIB
⊂ ε– argmin g +

[
(min g + ε+ 2η)− (min g + ε)

(min g + ε+ 2η)−min g

]
[ρ0 + ρ]IB

⊂ ε– argmin g + η
( 2ρ

η + ε/2

)
IB.

From this inclusion and the earlier one, we deduce

ε– argmin f ∩ ρIB ⊂ ε– argmin g + η
(
1 +

2ρ

η + ε/2

)
.

The same argument works when the roles of f and g are interchanged, and so
d̂lρ
(
ε– argmin f, ε– argmin g

) ≤ η(1 + 2ρ(η + ε/2)−1
)
. The fact that this holds

for every η > η̄ yields the asserted inequalities.

In these estimates as well as the previous ones, it should be borne in mind
that because the epi-distance expressions are centered at the origin it may be
advantageous in some situations to apply the results to certain translates of
the given functions rather than to these functions directly.

Finally, observe that the preceding theorem actually implies the Lipschitz
continuity for the ε– argmin-mappings of convex functions, whereas the results
about the argmin-mappings of arbitrary functions only delivered Hölder-type
continuity, and then under the stated conditioning requirements.

Commentary

The notion of epi-convergence, albeit under the name of infimal convergence, was
introduced by Wijsman [1964], [1966], to bring in focus a fundamental relationship
between the convergence of convex functions and that of their conjugates (as described
later in Theorem 11.34). He was motivated by questions of efficiency and optimality
in the theory of a certain sequential statistical test.

The importance of the connection with conjugate convex functions was so com-
pelling that for many years after Wijsman’s initial contribution epi-convergence was
regarded primarily as a topic in convex analysis, affording tools suitable for deal-
ing with approximations to convex optimization problems. This is reflected in
the work of Mosco [1969] on variational inequalities, of Joly [1973] on topological
structures compatible with epi-convergence, of Salinetti and Wets [1977] on equi-
semicontinuous families of convex functions, of Attouch [1977] on the relationship
between the epi-convergence of convex functions and the graphical convergence of
their subgradient mappings, and of McLinden and Bergstrom [1981] on the preserva-
tion of epi-convergence under various operations performed on convex functions. The
literature in this vein was surveyed to some extent in Wets [1980], where the term
epi-convergence was probably used for the first time.

In the late 70’s the umbilical cord with convexity was cut, and epi-convergence
came to be seen more and more as the natural convergence notion for handling ap-
proximations of nonconvex problems of minimization as well, whether on the global
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or local level. The impetus for the shift arose from difficulties that had to be over-
come in the infinite-dimensional calculus of variations, specifically in making use of
the so-called ‘indirect method’, in which the solution to a given problem is derived
by considering a sequence of approximate Euler equations and studying the limits of
the solutions to those equations. De Giorgi and his students found that the classical
version of the indirect method wasn’t justifiable in application to some of the newer
problems they were interested in. This led them to rediscover epi-convergence from a
different angle; cf. De Giorgi and Franzoni [1975], [1979], Buttazzo [1977], De Giorgi
and Dal Maso [1983]. They called it Γ -convergence in order to distinguish it from
G-convergence, the name used at that time by Italian mathematicians for graphi-
cal convergence, cf. De Giorgi [1977]. The book of Dal Maso [1993] provides a fine
overview of these developments.

In the definitions adopted for ‘Γ -limits’, convexity no longer played a central
role. Soon that was the pattern too in other work on epi-convergence, such as that
of Attouch and Wets [1981], [1983], on approximating nonlinear programming prob-
lems, of Dolecki, Salinetti and Wets [1983] on equi-lower semicontinuity, and in the
quantitative theory developed by Attouch and Wets [1991], [1993a], [1993b] (see also
Azé and Penot [1990] and Attouch, Lucchetti and Wets [1991]).

The 1983 conference in Catania (Italy) on “Multifunctions and Integrands: Sto-
chastic Analysis, Approximation and Optimization” (cf. Salinetti [1984]), and espe-
cially the book by Attouch [1984], which was the first to provide a comprehensive
and systematic exposition of the theory and some of its applications, were instrumen-
tal in popularizing epi-convergence and convincing many people of its significance.
Meanwhile, still other researchers, such as Artstein and Hart [1981] and Kushner
[1984], stumbled independently on the notion in their quest for good forms of ap-
proximation in extremal problems. This spotlighted all the more the inevitability
of epi-convergence occupying a pivotal position, even though Kushner’s analysis, for
instance, dealt only with special situations where epi-convergence and pointwise con-
vergence are available simultaneously to act in tandem. By now, a complete bibli-
ography on epi-convergence would have thousands of entries, reflecting the spread
of techniques based on such theory into numerous areas of mathematics, pure and
applied.

The relation between the set convergence of epigraphs and the sequential char-
acterization in Proposition 7.2 is already implicit in the results of Wijsman, at least
in the convex case. Klee [1964] rendered it explicit in his review of Wijsman’s paper.
The alternative formulas in Exercise 7.3 and the properties in Proposition 7.4 come
from De Giorgi and Franzoni [1979], Attouch and Wets [1983], and Rockafellar and
Wets [1984]. The fact that epi-convergence techniques can be used to obtain general
convergence results for penalty and barrier methods was first pointed out by Attouch
and Wets [1981].

The sequential compactness of the space of lsc functions equipped with the epi-
convergence topology (Theorem 7.6) is inherited at once from the parallel property
for the space of closed sets; arguments of different type were provided by De Giorgi
and Franzoni [1979], and by Dolecki, Salinetti and Wets [1983]. Theorem 7.7 on the
convergence of level sets is taken from Beer, Rockafellar and Wets [1992], with the first
formulas for the level sets of epi-limits appearing in Wets [1981]. The preservation
of epi-convergence under continuous perturbation, as in 7.8(a), was first noted by
Attouch and Sbordone [1980], but there seems to be no explicit record previously of
the other properties listed in 7.8.
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The strategy of using profile mappings to analyze the convergence of sequences of
functions was systematically exploited by Aubin and Frankowska [1990]. Here it leads
to a multitude of results, most of them readily extracted from the corresponding ones
for convergent sequences of mappings when these are taken to be profile mappings.
Theorem 7.10 owes its origin to Dolecki, Salinetti and Wets [1983], while Theorem
7.11 is taken from a paper of Kall [1986] which explores the relationship between epi-
convergence and other, more classical, modes of function convergence. Proposition
7.13, Theorem 7.14 and Proposition 7.15, are new along with the accompanying
Definition 7.12 of uniform convergence for extended real-valued functions; the result
in 7.15(a) is based on an observation of L. Korf (unpublished). The generalization
of the Arzelà-Ascoli Theorem that’s stated in 7.16 can be found in Dolecki, Salinetti
and Wets [1983].

Theorem 7.17 and Corollary 7.18 are built upon long-known facts about the
uniformity of pointwise convergence of convex functions (see Rockafellar [1970a]) and
results of Robert [1974] and Salinetti and Wets [1977] relating epi-convergence to
uniform convergence.

The approximation of functions, in particular discontinuous functions, by aver-
aging through integral convolution with mollifier functions as in 7.19 goes back to
Steklov [1907] and lies at the foundations of the theory of ‘distributions’ as developed
by Sobolev [1963] and Schwartz [1966]. This example comes from Ermoliev, Norkin
and Wets [1995].

Epi-convergence notions as alternatives to pointwise convergence in the definition
of generalized directional derivatives were first embraced in a paper of Rockafellar
[1980]. That work concentrated however on taking an upper epi-limit of difference
quotient functions rather than the full epi-limit, a tactic which leads instead to what
will be studied as ‘regular subderivatives’ in Chapter 8. True epi-derivatives as defined
in 7.23 didn’t receive explicit treatment until their emergence in Rockafellar [1988]
as a marker along the road to second-order theory of the kind that will be discussed
in Chapter 13. Geometric connections with tangent cones such as in 7.24 were clear
from the start, and indeed go back to the origins of convex analysis, but somewhat
surprisingly there was no attention paid until much more recently to the particular
case in which the usual ‘lim sup’ in the tangent cone limit coincides with the ‘lim
inf’, thereby producing the geometric derivability of the epigraph that characterizes
epi-differentiability (Proposition 7.24).

Meanwhile, Aubin [1981], [1984], took up the banner of generalized directional
derivatives defined by the tangent cone Tepi f (x̄, f(x̄)) itself, without regard to the
geometric derivability property of 6.1 as applied to epi f at (x̄, f(x̄)). These are
the ‘subderivatives’ df(x̄)(w) of 7(21), whose theory will come on line in Chapter 8.
(Aubin also pursued this idea with respect to the graphs of vector-valued functions
and set-valued mappings, which likewise will be studied in Chapter 8.) He spoke
of contingent derivatives because of the tangent cone’s connection with Bouligand’s
‘contingent’ cone (cf. the notes to Chapter 6).

Robinson [1987a] addressed the special case where the tangent cone at a point
x̄ to the graph (not epigraph!) of a function, either real-valued or vector-valued,
was itself the graph of a single-valued function—which he termed then the Bouligand
derivative function at x̄. He called this property B-differentiability . It’s equivalent
to semidifferentiability as defined in 7.20 for real-valued functions f ; thus Robinson’s
B-derivatives, when they exist, are identical to the semiderivatives in 7.20. But
semiderivatives make sense with respect to individual vectors w and don’t require
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semidifferentiability/B-differentiability in order to be useful, nor need they always be
finite in value.

Robinson’s primary concern was with Lipschitz continuous functions (cf. Chapter
9), for which such distinctions don’t matter and it’s superfluous even to bother with
directional derivatives other than the one-sided straight-line ones of 7(20). For such
functions he showed that his B-differentiability (semidifferentiability) was equivalent
to the approximation property in 7.21(e), which resembles classical differentiability
except for replacing the usual linear function by a continuous, positively homoge-
neous function. (In contrast, Theorem 7.21 establishes this equivalence without any
assumption of Lipschitz continuity.) In subsequent work of Robinson and his follow-
ers, likewise concentrating on Lipschitz continuous functions, it was this approxima-
tion property that was used as the definition of B-differentiability rather than the
geometric property corresponding to semidifferentiability.

Actually, though, the definition of generalized directional derivatives through
the approximation property in 7.21(e), i.e., through a first-order expansion with a
possibly nonlinear term, has a much older history than this, which can be read in the
survey articles of Averbukh and Smolyanov [1967], [1968] (see also Shapiro [1990]).
In that setting, such generalized differentiability is ‘bounded differentiability’. The
equivalence between 7.21(a) and 7.21(c) thus links semidifferentiability to bounded
differentiability. But that, of course, is a result for IRn which doesn’t carry over to
infinite-dimensional spaces.

The term ‘semidifferentiability’ goes back to Penot [1978]. He formulated this
property in the abstract setting of single-valued mappings from a linear topological
space into another such space furnished with an ordering to which elements ‘∞’
and ‘−∞’ are adjoined in imitation of IR, so that the semiderivative limit could
be defined by requiring a certain limsup to coincide with a liminf. He didn’t look
at semiderivatives vector by vector, as here, or obtain a result like Theorem 7.21.
Use of the term beyond a liminf/limsup context came with Rockafellar [1989b], who
developed the concept for general set-valued mappings (cf. 8.43 and the paragraph
that precedes it).

The regularity notion for functions in 7.25 was introduced by Clarke [1975]. In
the scheme he followed, however, it was first defined in a different manner just for
Lipschitz continuous functions and only later, through the intervention of distance
functions, which themselves are Lipschitz continuous, shown to be equivalent to this
epigraphical property and therefore extendible in terms of that. (The Lipschitzian
version will come up in 9.16.) In that framework he established the subdifferential
regularity of lsc convex functions in 7.27. The epi-differentiability of such functions
follows at once from this, but no explicit notice of it was taken before Rockafellar
[1990b]. The semiderivative properties in 7.27, although verging on various familiar
facts, haven’t previously been crystallized in this form.

The regularity and semidifferentiability result in 7.28 for a max function plus
an indicator specializes facts proved by Rockafellar [1988]. For the case of a finite
max function alone, the question of one-sided directional derivatives—without the
varying direction that distinguishes semiderivatives—was treated by many authors,
with Danskin [1967] and Demyanov and Malozemov [1971] the earliest.

Upper and lower epi-limits in the context of generalized directional derivatives
will be an ever-present theme in Chapter 8.

The characterization of epi-convergence through the convergence of the infima on
open and compact sets (Proposition 7.29) was recorded in Rockafellar andWets [1984],
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and was used by Vervaat [1988] to define a topology on the space of lsc functions that
is compatible with epi-convergence; cf. also Shunmugaraj and Pai [1991]. Proposition
7.30 and the concept of epigraphical nesting are due to Higle and Sen [1995], who
came up with them in devising a convergence theory for algorithmic procedures; cf.
Higle and Sen [1992]. Likewise, Lemaire [1986], Alart and Lemaire [1991], and Polak
[1993], [1997], have relied on the guidelines provided by epi-convergence in designing
algorithmic schemes for certain classes of optimization problems.

The first assertion in Theorem 7.31 is due to Salinetti (unpublished, but reported
in Rockafellar and Wets [1984]), while other assertions stem from Attouch and Wets
[1981]. Robinson [1987b] detailed an application of this theorem, more precisely of
7.31(a), to the case when the set of minimizers of a function f on an open set O is
a ‘complete local minimizing set’, meaning that argminO f = argminclO f . Level-
boundedness was already exploited in Wets [1981] to characterize, as in 7.32, certain
properties of epi-limits. Theorem 7.33 just harvests the additional implications of
level-boundedness in this setting of the convergence of optimal values and optimal
solutions.

The use of Moreau envelopes in studying epi-convergent sequences of functions
was pioneered by Attouch [1977] in the convex case and extended to the nonconvex
case in Attouch and Wets [1983a] and more fully in Poliquin [1992]. Theorem 7.37
and Exercise 7.38, by utilizing the concept of prox-boundedness (Definition 7.36),
slightly refine these earlier results.

One doesn’t have to restrict oneself to Moreau envelopes to obtain convergence
results along the lines of those in Theorem 7.37. Instead of eλf = f (2λ)−1| · |2,
one can work with the Pasch-Hausdorff envelopes f λ−1| · | as defined in 9.11 (cf.
Borwein and Vanderwerff [1993]), or more generally with any p-kernels generating the
envelopes f (pλ)−1| · |p for p ∈ [1,∞) as in Attouch and Wets [1989]. For theoretical
purposes one can even work with still more general kernels (cf. Wets [1980], Fougères
and Truffert [1988]) for the sake of constructing envelopes that will have at least
some of the properties exhibited in Theorem 7.37. A particularly interesting variant
was proposed by Teboulle [1992]; it relies on the Csiszar ϕ-divergence (or generalized
relative entropy).

The translation of epi-convergence to the framework where, instead of a se-
quence of functions one has a family parameterized by an element of IRm, say, leads
naturally, as in Rockafellar and Wets [1984], to the notions of epi-continuity and epi-
semicontinuity. The parametric optimization results in Theorem 7.41 and its Corol-
laries 7.42 and 7.43 are new, under the specific conditions utilized. These results,
their generality not withstanding, don’t cover all the possible twists that have been
explored to date in the abundant literature on parametric optimization, but they do
capture the basic principles. A comprehensive survey of related results, focusing on
the very active German school, can be found in Bank, Guddat, Klatte, Kummer and
Tammer [1982]. For more recent developments see Fiacco and Ishizuka [1990].

The facts presented about the preservation of epi-convergence under various
operations performed on functions are new, except for those in Exercise 7.47, which
essentially come from McLinden and Bergstrom [1981], and for Proposition 7.56 about
what happens to epi-convergence under epi-addition, which weakens the conditions
initially given by Attouch and Wets [1989]. The definitions and results concerning
horizon epi-limits and total epi-convergence are new as well, as is the epi-projection
result in 7.57.

The distance measures {d̂l+ρ }ρ≥0 on lsc-fcns�≡∞(IRn) were introduced by Attouch
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and Wets [1991], [1993a], [1993b], specifically to study the stability of optimal values
and optimal solutions. The expression used in these papers is different from the one
adopted here, which is tuned more directly to functions than their epigraphs, but the
two versions are equivalent as seen from the proof of 7.61. Corresponding pseudo-
metrics {dl+ρ }ρ>0, like dlρ but based on the norm for IRn× IR that is generated by the
cylinder IB × [−1, 1], were developed earlier by Attouch and Wets [1986] as a limit
case of another class of pseudo-metrics, namely

dlλ,ρ(f, g) := sup
|x|≤ρ

∣∣eλf(x)− eλg(x)
∣∣ for λ > 0, ρ ≥ 0.

The relationship between d̂l+ρ and dl+ρ was clarified in Attouch and Wets [1991] and

Attouch, Lucchetti and Wets [1991]. The d̂l+ρ distance estimate in 7.62 for sums of
Lipschitz continuous functions and indicators hasn’t been worked out until now. The
characterization of total epi-convergence in Theorem 7.59 is new as well.

The stability results in 7.63–7.65 and 7.67–7.69 have ancestry in the work of
Attouch and Wets [1993a] but show some improvements and original features, espe-
cially in the case of the fundamental theorem in 7.64. Most notable among these is
the extension of solution estimates and ‘conditioning’ to problems where the ‘argmin’
set might not be a singleton. For proximal mappings, the estimate in 7.66 is the first
to be recorded. In his analysis of the inequalities derived in Theorem 7.69, Georg
Pflug concluded that although the rate coefficient (1+ 4ρε−1) might not be sharp, it
might be so in a ‘practical’ sense, i.e., one could find examples where the convergence
of the ε– argmin is arbitrarily slow and approaches the given rate.



8. Subderivatives and Subgradients

Maximization and minimization are often useful in constructing new functions
and mappings from given ones, but, in contrast to addition and composition,
they commonly fail to preserve smoothness. These operations, and others of
prime interest in variational analysis, fit poorly in the traditional environment
of differential calculus. The conceptual platform for ‘differentiation’ needs to
be enlarged in order to cope with such circumstances.

Notions of semidifferentiability and epi-differentiability have already been
developed in Chapter 7 as a start to this project. The task is carried forward
now in a thorough application of the variational geometry of Chapter 6 to
epigraphs. ‘Subderivatives’ and ‘subgradients’ are introduced as counterparts
to tangent and normal vectors and shown to enjoy various useful relationships.
Alongside of general subderivatives and subgradients, there are ‘regular’ ones
of more special character. These are intimately tied to the regular tangent and
normal vectors of Chapter 6 and show aspects of convexity. The geometric
paradigm of Figure 6–17 finds its reflection in Figure 8–9, which schematizes
the framework in which all these entities hang together.

Subdifferential regularity of f at x̄, as defined in 7.25 through Clarke
regularity of epi f at

(
x̄, f(x̄)

)
, comes to be identified with the property that

the subderivatives of f at x̄ are regular subderivatives and, in parallel, with the
property that all of the subgradients of f at x̄ are regular subgradients, in a
cosmic sense based on the ideas of Chapter 3. This gives direct significance to
the term ‘regular’, beyond its echo from variational geometry. In the presence
of regularity, the subgradients and subderivatives of a function f are completely
dual to each other. The classical duality between gradient vectors and the linear
functions giving directional derivatives is vastly expanded through the one-to-
one correspondence between closed convex sets and the sublinear functions that
describe their supporting half-spaces.

For functions f that aren’t subdifferentially regular, subderivatives and
subgradients can have distinct and independent roles, and some of the duality
must be relinquished. Even then, however, the two kinds of objects tell much
about each other, and their theory has powerful consequences in areas such as
the study of optimality conditions.

After exploring what variational geometry says for epigraphs of functions
f : IRn → IR, we apply it to graphs of mappings S : IRn →→ IRm, substituting
graphical convergence for epi-convergence. This leads to graphical ‘deriva-
tive’ and ‘coderivative’ mappings, which likewise exhibit a far-reaching duality,
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as depicted in Figure 8–12. The fundamental themes of classical differential
analysis thus achieve a robust extension to realms of objects remote from the
mathematics of the past, but recognized now as essential in the analysis of
numerous problems of practical importance.

The study of tangent and normal cones in Chapter 6 was accompanied by
substantial rules of calculus, making it possible to see right away how the results
could be brought down to specific cases and used for instance in strengthening
the theory of Lagrange multipliers. Here, however, we are faced with material
so rich that most such elaborations, although easy with the tools at hand, have
to be postponed. They will be covered in Chapter 10, where they can benefit
too from the subdifferential theory of Lipschitzian properties that will be made
available in Chapter 9.

A. Subderivatives of Functions

‘Semiderivatives’ and ‘epi-derivatives’ of f at x̄ for a vector w̄ have been defined
in 7.20 and 7.23 in terms of certain limits of the difference quotient functions
Δτf(x) : IR

n → IR, where

Δτf(x)(w) :=
f(x+ τw)− f(x)

τ
for τ > 0.

For general purposes, even in the exploration of those concepts, it’s useful to
work with underlying ‘subderivatives’ whose existence is never in doubt.

8.1 Definition (subderivatives). For a function f : IRn → IR and a point x̄ with
f(x̄) finite, the subderivative function df(x̄) : IRn → IR is defined by

df(x̄)(w̄) := lim inf
τ ↘ 0
w→w̄

f(x̄+ τw)− f(x̄)
τ

.

Thus, df(x̄) is the lower epi-limit of the family of functions Δτf(x̄):

df(x̄) := e--lim inf
τ ↘ 0

Δτf(x̄).

The value df(x̄)(w̄) is more specifically the lower subderivative of f at x̄
for w̄. Corresponding upper subderivatives are defined with ‘lim sup’ in place
of ‘lim inf’. (We take the prefix ‘sub’ as indicating a logical order, rather
than a spatial order.) Because the situations in which both upper and lower
subderivatives have to be dealt with simultaneously are relatively infrequent,
we find it better here not to weigh down the notation for subderivatives with
compulsory distinctions, such as writing d−f(x̄) for df(x̄) and d+f(x̄) for its
upper counterpart, although this could well be desirable in some other contexts.
For simplicity in this exposition, we take ‘lower’ for granted and rely on the fact,
when actually needed, that the upper subderivative function can be denoted
by −d(−f)(x̄): it’s evident that
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−d(−f)(x̄)(w̄) = lim sup
τ ↘ 0
w→w̄

f(x̄+ τw)− f(x̄)
τ

.

The notation df(x̄)(w) has already been employed ahead of its time in
descriptions of semidifferentiability in 7.21 and epi-differentiability in 7.26, but
the subderivative function df(x̄) will now be studied for its own sake. As in
Chapter 7, a bridge into the geometry of epi f is provided by the fact that

epi Δτf(x̄) =
epi f − (x̄, f(x̄))

τ
for any τ > 0. 8(1)

(0,0)

f

f

_
epi df(x)

(x,f(x))
_ _

epi fT (x,f(x))
_ _

x
_

Fig. 8–1. Epigraphical interpretation of subderivatives.

8.2 Theorem (subderivatives versus tangents).

(a) For f : IRn → IR and any point x̄ with f(x̄) finite, one has

epi df(x̄) = Tepi f
(
x̄, f(x̄)

)
.

(b) For the indicator δC of a set C ⊂ IRn and any point x̄ ∈ C, one has

dδC(x̄) = δK for K = TC(x̄).

Proof. The first relation is immediate from 8(1), Definition 8.1, and the
formula for Tepi f

(
x̄, f(x̄)

)
as derived from Definition 6.1. The second is obvious

from the definitions as well.

B. Subgradients of Functions

Just as subderivatives express the tangent cone geometry of epigraphs, sub-
gradients will express the normal cone geometry. In developing this idea and
using it as a vehicle for translating the variational geometry of Chapter 6 into
analysis, we’ll sometimes make use of the notion of local lower semicontinuity
of a function f : IRn → IR as defined in 1.33, since that corresponds to local
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closedness of the set epi f (cf. 1.34). We usually won’t wish to assume f is
continuous, so we’ll often appeal to f -attentive convergence in the notation

xν→f x̄ ⇐⇒ xν → x̄ with f(xν)→ f(x̄). 8(2)

8.3 Definition (subgradients). Consider a function f : IRn → IR and a point x̄
with f(x̄) finite. For a vector v ∈ IRn, one says that

(a) v is a regular subgradient of f at x̄, written v ∈ ∂̂f(x̄), if
f(x) ≥ f(x̄) +

〈
v, x− x̄〉+ o

(|x− x̄|); 8(3)

(b) v is a (general) subgradient of f at x̄, written v ∈ ∂f(x̄), if there are

sequences xν→f x̄ and vν ∈ ∂̂f(xν) with vν → v;

(c) v is a horizon subgradient of f at x̄, written v ∈ ∂∞f(x̄), if the same
holds as in (b), except that instead of vν → v one has λνvν → v for some
sequence λν ↘ 0, or in other words, vν → dir v (or v = 0).

The regular subgradient inequality 8(3) in ‘o’ form is shorthand for the
one-sided limit condition

lim inf
x→x̄
x�=x̄

f(x)− f(x̄)− 〈v, x− x̄〉
|x− x̄| ≥ 0. 8(4)

Regular subgradients have immediate appeal but are inadequate in themselves
for a satisfactory theory, in particular for a robust calculus covering all the
properties needed. This is why limits are introduced in Definition 8.3.

The difference between v ∈ ∂f(x̄) and v ∈ ∂∞f(x̄) corresponds to the two
modes of convergence that a sequence of vectors vν can have in the cosmic
setting of Chapter 3. In the notation of ordinary and horizon set limits in
Chapter 4, one has

∂f(x̄) = lim sup
x→f x̄

∂̂f(x), ∂
∞
f(x̄) = lim sup

x→f x̄

∞ ∂̂f(x), 8(5)

cf. 4.1, 4(6), 5(1). This double formula amounts to taking a cosmic outer limit
in the space csm IRn (cf. 4.20 and 5.27):

∂f(x̄) ∪ dir ∂
∞
f(x̄) = c-lim sup

x→f x̄
∂̂f(x). 8(6)

While ∂f(x̄) consists of all ordinary limits of sequences of regular subgradients
vν at points xν that approach x̄ in such a way that f(xν) approaches f(x̄),
dir ∂∞f(x̄) consists of all points of hzn IRn that arise as limits when |vν | → ∞.

8.4 Exercise (regular subgradients from subderivatives). For f : IRn → IR and
any point x̄ with f(x̄) finite, one has

∂̂f(x̄) =
{
v
∣∣ 〈v, w〉 ≤ df(x̄)(w) for all w

}
. 8(7)
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Guide. Deduce this from version 8(4) of the regular subgradient inequality
through a compactness argument based on the definition of df(x̄).

The regular subgradients of f at x̄ can be characterized as the gradients
at x̄ of the smooth functions h ≤ f with h(x̄) = f(x̄), as we prove next. This
is a valuable tool in subgradient theory, because it opens the way to develop-
ing properties of vectors v ∈ ∂̂f(x̄) out of optimality conditions associated in
particular cases with having x̄ ∈ argmin{f − h}.
8.5 Proposition (variational description of regular subgradients). A vector v

belongs to ∂̂f(x̄) if and only if, on some neighborhood of x̄, there is a function
h ≤ f with h(x̄) = f(x̄) such that h is differentiable at x̄ with ∇h(x̄) = v.
Moreover h can be taken to be smooth with h(x) < f(x) for all x �= x̄ near x̄.

Proof. The proof of Theorem 6.11 showed that a term is of type o
(|x − x̄|)

if and only if its absolute value is bounded on some neighborhood of x̄ by a
function k with ∇k(x̄) = 0, and then k can be taken actually to be smooth and
positive away from x̄. Here we let h(x) = 〈v, x− x̄〉 − k(x).
8.6 Theorem (subgradient relationships). For a function f : IRn → IR and a

point x̄ where f is finite, the subgradient sets ∂f(x̄) and ∂̂f(x̄) are closed, with

∂̂f(x̄) convex and ∂̂f(x̄) ⊂ ∂f(x̄). Furthermore, ∂∞f(x̄) and ∂̂f(x̄)∞ are closed

cones, with ∂̂f(x̄)∞ convex and ∂̂f(x̄)∞ ⊂ ∂∞f(x̄).

Proof. The properties of ∂f(x̄) and ∂∞f(x̄) are immediate from Definition 8.3
in the background of the cosmic space csm IRn in Chapter 3 and the associated
notions of set convergence in Chapter 4. The convexity of ∂̂f(x̄) is evident from

the defining inequality 8(3), so the horizon cone ∂̂f(x̄)∞ is closed and convex

(by 3.6). The closedness of ∂̂f(x̄) is apparent from 8.4.

8.7 Proposition (subgradient semicontinuity). For a function f : IRn → IR and
a point x̄ where f is finite, the mappings ∂f and ∂∞f are osc at x̄ with respect
to f -attentive convergence x→f x̄, while the mapping x �→ ∂f(x) ∪ dir ∂∞f(x)
is cosmically osc at x̄ with respect to such convergence.

Proof. This is clear from 8(6) and the meaning of cosmic limits; cf. 5.27.

The subgradients in Definition 8.3 are more specifically lower subgradients.
The opposite inequalities define upper subgradients. Obviously a vector v is
both a regular lower subgradient and a regular upper subgradient of f at x̄ if
and only if f is differentiable at x̄ and v = ∇f(x̄).

Although lower and upper subgradients sometimes need to be considered
simultaneously, this is uncommon in our inherently one-sided context. For
this reason we take ‘lower’ for granted as in the case of subderivatives, and
rather than introducing a more complicated symbolism, prefer here to note
that the various sets of upper subgradients can be identified with −∂̂(−f)(x̄),
−∂(−f)(x̄), and −∂∞(−f)(x̄). A convenient alternative in other contexts is to
write ∂−f(x̄) for lower subgradients and ∂+f(x̄) for upper subgradients.
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epi f
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Fig. 8–2. The role of f -attentive convergence in generating subgradients.

The effect of insisting on xν→f x̄ instead of just xν → x̄ when defining
∂f(x̄) is illustrated in Figure 8–2 for the lsc function f on IR1 given by

f(x) = x2 + x when x ≤ 0, f(x) = 1− x when x > 0.

Here f is (subdifferentially) regular everywhere. We have ∂f(0) = ∂̂f(0) =
[1,∞) and ∂∞f(0) = [0,∞). The requirement that f(xν) → f(0) excludes
sequences xν ↘ 0, which with vν = −1 would have limit v = −1. The role of
f -attentive convergence is thus to ensure that the subgradients at x̄ reflect no
more than the local geometry of epi f around

(
x̄, f(x̄)

)
. This example shows

also how horizon subgradients may arise from what amounts to a kind of local
constraint at x = 0 on the behavior of f .
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f
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f(1) =68 (- , )0 00 0
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f(0) = 06 /
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/

0.5

-0.5

Fig. 8–3. Example of horizon subgradients.

A different sort of example with f is given in Figure 8–3 with

f(x) = 0.6
(|x− 1|1/2 − |x+ 1|1/2)+ x1/3 for x ∈ IR.

In this case f is regular everywhere except −1. We have ∂∞f(1) = ∂∞f(−1) =
(−∞,∞) but ∂∞f(0) = [0,∞); elsewhere, ∂∞f(x) = {0}. Also, ∂f(0) =
∂f(−1) = ∅, whereas ∂f(1) = (−∞,∞).
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8.8 Exercise (subgradients versus gradients).

(a) If f0 is differentiable at x̄, then ∂̂f0(x̄) =
{∇f0(x̄)}, so∇f0(x̄) ∈ ∂f0(x̄).

(b) If f0 is smooth on a neighborhood of x̄, then ∂f0(x̄) = {∇f0(x̄)} and
∂∞f0(x̄) = {0}, so the cosmic set ∂f0(x̄) ∪ dir ∂∞f0(x̄) is a singleton.

(c) If f = g + f0 with g finite at x̄ and f0 smooth on a neighborhood of x̄,

then ∂̂f(x̄) = ∂̂g(x̄)+∇f0(x̄), ∂f(x̄) = ∂g(x̄)+∇f0(x̄), and ∂∞f(x̄) = ∂∞g(x̄).

Guide. These facts follow closely from the definitions. Get the uniqueness in
(a) by demonstrating that if v and v′ satisfy 〈v, x− x̄〉 ≥ 〈v′, x− x̄〉+o(|x− x̄|),
then v = v′. Get the inclusions ‘⊃’ in (c) directly. Then get the inclusions ‘⊂’
by applying this rule to the representation g = f + (−f0).

An example in which f is differentiable at x̄, yet ∂f(x̄) consists of more
than just ∇f(x̄), is the following. Define f : IR1 → IR by

f(x) =

{
x2 sin(1/x) when x �= 0,
0 when x = 0,

and take x̄ = 0. Then f is differentiable everywhere, but the derivative mapping
(viewed here as the ‘gradient’ mapping) is discontinuous at x̄, and f isn’t

regular there. Although ∂̂f(0) = {0}, we have ∂f(0) = [−1, 1], and incidentally
∂∞f(0) = {0}. In substituting x2 sin(1/x2) for x2 sin(1/x), one obtains an

example with ∂̂f(0) = {0}, ∂f(0) = (−∞,∞) and ∂∞f(0) = (−∞,∞).

E = epi f

f(x)
_

v 86(v,0):

_
(v,-1)_ _

(x,f(x))

E

_ _
(x,f(x))N

f(x): v 6

Fig. 8–4. Normals to epigraphs.

Subgradients have important connections to normal vectors through the
variational geometry of epigraphs.

8.9 Theorem (subgradients from epigraphical normals). For f : IRn → IR and
any point x̄ at which f is finite, one has
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∂̂f(x̄) =
{
v
∣∣ (v,−1) ∈ N̂epi f

(
x̄, f(x̄)

)}
,

∂f(x̄) =
{
v
∣∣ (v,−1) ∈ Nepi f

(
x̄, f(x̄)

)}
,

∂
∞
f(x̄) ⊂ {v ∣∣ (v, 0) ∈ Nepi f

(
x̄, f(x̄)

)}
.

The last relationship holds with equality when f is locally lsc at x̄, and then

Nepi f

(
x̄, f(x̄)

)
=
{
λ(v,−1) ∣∣ v ∈ ∂f(x̄), λ > 0

}∪{(v, 0) ∣∣ v ∈ ∂∞
f(x̄)

}
.

On the other hand, whenever ∂̂f(x̄) �= ∅ one has

N̂epi f

(
x̄, f(x̄)

)
=
{
λ(v,−1) ∣∣ v ∈ ∂̂f(x̄), λ > 0

}∪{(v, 0) ∣∣ v ∈ ∂̂f(x̄)∞}.
Proof. Let E = epi f . The formula in 8.4 can be construed as saying that
v ∈ ∂̂f(x̄) if and only if

〈
(v,−1), (w, β)〉 ≤ 0 for all (w, β) ∈ epi df(x̄). Through

8.2(a) and 6.5 this corresponds to (v,−1) ∈ N̂epi f

(
x̄, f(x̄)

)
. The analogous

description of ∂f(x̄) is immediate then from Definition 8.3 and the definition
of normals as limits of regular normals, and so too is the inclusion for ∂∞f(x̄).

We see also through 8.2(a) and 6.5 that (v, 0) ∈ N̂epi f

(
x̄, f(x̄)

)
if and only

if
〈
(v, 0), (w, β)

〉 ≤ 0 for all (w, β) ∈ epi df(x̄), or equivalently, 〈v, w〉 ≤ 0 for

all w ∈ dom df(x̄). In view of 8(7), this is equivalent to having v ∈ ∂̂f(x̄)∞ as

long as ∂̂f(x̄) �= ∅; cf. 3.24. In combination with the description achieved for

∂̂f(x̄) this yields the formula for N̂epi f

(
x̄, f(x̄)

)
.

The equation for ∂f(x̄) and inclusion for ∂∞f(x̄) yield at the same time
the inclusion ‘⊃’ in the formula asserted for Nepi f

(
x̄, f(x̄)

)
. To complete the

proof of the theorem we henceforth assume that f is locally lsc at x̄ and aim
at verifying that whenever (v, 0) ∈ Nepi f

(
x̄, f(x̄)

)
we have v ∈ ∂∞f(x̄). By

definition, any normal (v, 0) can be generated as a limit of regular normals
at nearby points, and by 6.18(a) we can even limit attention to proximal nor-
mals. Any proximal normal to E at a point (x, α) with α > f(x) > −∞ is
obviously a proximal normal to E at

(
x, f(x)

)
as well. Thus any normal (v, 0)

to E at
(
x̄, f(x̄)

)
can be generated as a limit of proximal normals at points(

xν , f(xν)
) → (x̄, f(x̄)), i.e., with xν→f x̄. This can be reduced to two cases:

in the first the proximal normals have the ‘nonhorizontal’ form λν(vν ,−1) with
λν ↘ 0, λνvν → v, whereas in the second they have the ‘horizontal’ form (vν , 0)

with vν → v. In the first case we have vν ∈ ∂̂f(xν) in particular, so that
v ∈ ∂∞f(x̄) by definition. Therefore, only the second case need concern us
further. To handle it, we only have to demonstrate that the vectors vν in this
case belong themselves to ∂∞f(xν), because the result will then follow from the
semicontinuity in 8.7.

The question has come down to this. If (ṽ, 0) is a proximal normal to
E at a point

(
x̃, f(x̃)

)
, is ṽ ∈ ∂∞f(x̃)? In answering this we can harmlessly

restrict to the case where f is lsc on all of IRn with dom f bounded (as can
be arranged on the basis of the local lower semicontinuity of f at x̃ by adding
to f the indicator of some neighborhood of x̃ intersected with some level set
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lev≤α f). To say that (ṽ, 0) is a proximal normal to E at
(
x̃, f(x̃)

)
is to say that

for some ε > 0 there is a closed ball B around
(
x̃, f(x̃)

)
+ε(ṽ, 0) that touches E

only at
(
x̃, f(x̃)

)
. Since we can replace ṽ by any of its positive scalar multiples

without affecting the issue, and can even rescale the whole space as convenience
dictates, we can simplify the investigation to the case where |ṽ| = 1 and the
ball B has radius 1, as depicted in Figure 8–5 with f(x̃) = 0. In terms of the
function

g(x) = θ
(|x− [x̃+ ṽ]|) for θ(t) =

{
−√1− t2 for 0 ≤ t ≤ 1,
∞ for t > 1,

whose graph is the ‘lower surface’ of IB((x̃+ ṽ, 0), 1), we have argmin{f +g} =
{x̃}. Equivalently, (x̃, x̃) is the unique optimal solution to the problem

minimize f(x) + g(u) over (x, u) ∈ IRn × IRn subject to x− u = 0.

epi f

gph g

epi g

B(x,f(x))~ ~

(v,0)~

x~

Fig. 8–5. Setting for the proximal normal argument.

For a sequence of positive penalty values rν ↗∞ consider the approximate
problems

minimize f(x) + g(u) + rν |x− u| over (x, u) ∈ IRn × IRn,

selecting for each an optimal solution (xν , uν), which must exist because of
the boundedness of the effective domain of the function being minimized, this
being dom f × dom g. Here it’s impossible for any ν that xν − uν = 0, for that
would necessitate (xν , uν) = (x̃, x̃) and imply that

f(x̃) + g(u) + rν |x̃− u| ≥ f(x̃) + g(x̃) for all u,

in contradiction to the nature of g. From 1.21 we know, however, that
(xν , uν) → (x̃, x̃) and also that f(xν) → f(x̃) and g(uν) → g(x̃) = 0. We
have

f(x) + g(uν) + rν |x− uν | ≥ f(xν) + g(uν) + rν |xν − uν | for all x,
f(xν) + g(u) + rν |xν − u| ≥ f(xν) + g(uν) + rν |xν − uν | for all u,

so that for the functions hν(x) := f(xν)+rν |xν−uν |−rν |x−uν | and kν(u) :=
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g(xν) + rν |xν − uν | − rν |xν − u| we have

f(x) ≥ hν(x) for all x, f(xν) = hν(xν),

g(u) ≥ kν(u) for all u, g(uν) = kν(uν).

Let vν = ∇hν(xν) = −rν(xν − uν)/|xν − uν |, observing that −vν = ∇kν(uν).
Then vν ∈ ∂̂f(xν) by 8.5, but on the same basis also −vν ∈ ∂̂g(uν), hence
(−vν ,−1) ∈ Nepi g

(
uν , g(uν)

)
so that (−vν ,−1) ∈ NB

(
uν , g(uν)

)
and con-

sequently (−vν , 1) ∈ NB

(
uν ,−g(uν)). Let λν = 1/rν ; then λν ↘ 0 and

(−λνvν , λν) ∈ NB

(
uν ,−g(uν)) with |λνvν | = 1. Since

(
uν ,−g(uν)) → (x̃, 0),

while the unique unit normal to B at (x̃, 0) is (−ṽ, 0), it follows that λνvν → ṽ.

Since vν ∈ ∂̂f(xν) and λν ↘ 0, we conclude that ṽ ∈ ∂∞f(x̃).

The description of the normal cone Nepi f

(
x̄, f(x̄)

)
provided by Theorem

8.9 fits neatly into the ray space model for csm IRn in Chapter 3. It’s the ray
bundle associated with the set ∂f(x̄) ∪ dir ∂∞f(x̄) in csm IRn.

8.10 Corollary (existence of subgradients). Suppose f : IRn → IR is finite and
locally lsc at x̄. Then either ∂f(x̄) �= ∅ or ∂∞f(x̄) contains a vector v �= 0; thus,
the set ∂f(x̄) ∪ dir ∂∞f(x̄) ⊂ csm IRn has to be nonempty. Either way, there

must be a sequence xν→f x̄ with ∂̂f(xν) �= ∅ (and hence ∂f(xν) �= ∅).
Proof. The assumptions imply epi f is locally closed at its boundary point(
x̄, f(x̄)

)
, so the normal cone there can’t be just the zero cone; cf. 6.19. The

claims are evident then from 8.9 and the definitions of ∂f(x̄) and ∂∞f(x̄).

8.11 Corollary (subgradient criterion for subdifferential regularity). For a func-
tion f : IRn → IR and a point x̄ with f(x̄) finite and ∂f(x̄) �= ∅, one has f
regular at x̄ if and only f is locally lsc at x̄ with

∂f(x̄) = ∂̂f(x̄), ∂
∞
f(x̄) = ∂̂f(x̄)∞.

Proof. By 8.9, these conditions mean that epi f is locally closed at
(
x̄, f(x̄)

)
with Nepi f

(
x̄, f(x̄)

)
= N̂epi f

(
x̄, f(x̄)

)
. Those properties are equivalent by 6.29

to the regularity of epi f at
(
x̄, f(x̄)

)
, hence the regularity of f at x̄.

As the proof of Theorem 8.9 reveals, regardless of whether ∂̂f(x̄) �= ∅ the
vectors (v, 0) that are regular normals to epi f at

(
x̄, f(x̄)

)
are always those

such that 〈v, w〉 ≤ 0 for all w with df(x̄)(w) < ∞. Therefore, in defining the
set of regular horizon subgradients to be the polar cone

∂̂∞f(x̄) :=
[
dom df(x̄)

]∗
and substituting this for ∂̂f(x̄)∞ we can obtain for N̂epi f

(
x̄, f(x̄)

)
an alternative

formula to the one in 8.9 that is always valid, and likewise an alternative
criterion for regularity in 8.11 that doesn’t require subgradients to exist. For
most purposes, however, this extension is hardly needed.
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C. Convexity and Optimality

The geometrical insights from the epigraphical framework of Theorem 8.9 are
especially illuminating in the case of convex functions.

8.12 Proposition (subgradients of convex functions). For any proper, convex
function f : IRn → IR and any point x̄ ∈ dom f , one has

∂f(x̄) =
{
v
∣∣∣ f(x) ≥ f(x̄) + 〈v, x− x̄〉 for all x

}
= ∂̂f(x̄),

∂
∞
f(x̄) ⊂

{
v
∣∣∣ 0 ≥ 〈v, x− x̄〉 for all x ∈ dom f

}
= Ndom f (x̄).

The horizon subgradient inclusion is an equation when f is locally lsc at x̄ or
when ∂f(x̄) �= ∅, and in the latter case one also has ∂∞f(x̄) = ∂̂f(x̄)∞.

Proof. The convexity of f implies that of epi f (cf. 2.4), and the normal cone
to epi f at

(
x̄, f(x̄)

)
can be determined therefore from 6.9:

Nepi f

(
x̄, f(x̄)

)
= N̂epi f

(
x̄, f(x̄)

)
=
{
(v, β)

∣∣∣ 〈(v, β), (x, α)− (x̄, f(x̄))
〉 ≤ 0 for all (x, α) ∈ epi f

}
.

We only have to invoke 8.9 and the ray space representation of ∂̂f(x̄)∞.

f

(x,f(x))
_ _

Fig. 8–6. Subgradient inequalities for convex functions.

The subgradient inequality for convex functions in 8.12 extends the gradi-
ent inequality for smooth convex functions in 2.14(b). It sets up a correspon-
dence between subgradients and ‘affine supports’. An affine function l is said to
support a function f : IRn → IR at x̄ if l(x) ≤ f(x) for all x, and l(x̄) = f(x̄).
Proposition 8.12 says that the subgradients of a proper convex function f at
x̄ are the gradients of its affine supports at x̄. On the other hand, nonzero
horizon subgradients are nonzero normals to supporting half-spaces to dom f
at x̄; the converse is true as well if f is lsc or ∂f(x̄) �= ∅.

Subgradients of a convex function f correspond also, through their associ-
ation in 8.9 with normals to the convex set epi f , to supporting half-spaces to
epi f , and this has an important interpretation as well. In IRn × IR the closed
half-spaces fall in three categories: upper, lower , and vertical . The upper ones
are the epigraphs of affine functions, and the lower ones the hypographs; in
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the first case a nonzero normal can be scaled to have the form (a,−1), and
in the second case (a, 1). The vertical ones have the form H × IR for a half-
space H in IRn; their normals take the form (a, 0). Clearly, the affine functions
that support f at x̄ correspond to the upper half-spaces that support epi f at(
x̄, f(x̄)

)
. In other words, the vectors of form (v,−1) with v ∈ ∂f(x̄) charac-

terize such supporting half-spaces. The vectors of form (v, 0) with v ∈ ∂∞f(x̄),
v �= 0, similarly give vertical supporting half-spaces to epi f at

(
x̄, f(x̄)

)
and

characterize such half-spaces completely as long as f is lsc or ∂f(x̄) �= ∅. Of
course, lower half-spaces can’t support or even contain an epigraph.

8.13 Theorem (envelope representation of convex functions). A proper, lsc,
convex function f : IRn → IR is the pointwise supremum of its affine supports;
it has such a support at every point of int(dom f) when int(dom f) �= ∅. Thus,
a function on IRn is proper, lsc and convex, if and only if it is the pointwise
supremum of a nonempty family of affine functions, but is not everywhere ∞.

For a proper, lsc, sublinear function, supporting affine functions must be
linear. On the other hand, the pointwise supremum of any nonempty collection
of linear functions is a proper, lsc, sublinear function.

Proof. When f is proper, lsc and convex, epi f is nonempty, closed and con-
vex and therefore by Theorem 6.20 it is the intersection of its supporting half-
spaces, which exist at all its boundary points (by 6.19). The normals to such
half-spaces are derived from the subgradients of f , as just seen. The normals to
the vertical supporting half-spaces, if any, are limits of the normals to nonver-
tical supporting half-spaces at neighboring points of epi f , because of the way
horizon subgradients arise as limits of ordinary subgradients. The vertical half-
spaces may therefore be omitted without affecting the intersection. Anyway,
a supporting half-space at

(
x̄, f(x̄)

)
can’t be vertical if x̄ ∈ int(dom f). The

nonvertical supporting half-spaces to epi f are the epigraphs of the affine func-
tions that support f . An intersection of epigraphs corresponds to a pointwise
supremum of the functions involved.

The case where f is sublinear corresponds to epi f being a closed, convex
cone; cf. 3.19. Then the representations in 6.20 for cones can be used.

f

Fig. 8–7. A convex lsc function as the pointwise supremum of its affine supports.

The epigraphical connections with variational geometry in Theorem 8.9
are supplemented by connections through indicator functions.
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8.14 Exercise (normal vectors as indicator subgradients). The indicator δC of
a set C ⊂ IRn is regular at x̄ if and only if C is regular at x̄. In general,

∂δC(x̄) = ∂
∞
δC(x̄) = NC(x̄), ∂̂δC(x̄) = ∂̂δC(x̄)

∞ = N̂C(x̄).

Guide. Obtain these relations by applying the definitions to f = δC . Conver-
gence x→f x̄ reduces in this case to x→C x̄.

The fact that the calculus of tangent and normal cones can be viewed
through 8.14 as a special case of the calculus of subderivatives and subgra-
dients is not only interesting for theory but crucial in applications such as
the derivation of optimality conditions, since constraints in a problem of op-
timization are often expressed conveniently by indicator functions. While the
power of this method won’t be seen until Chapter 10, the following extension
of the basic first-order conditions for optimality in Theorem 6.12 will give a
taste of things to come. Where previously the conditions were limited to the
minimization of a smooth function f0 over a set C, now f0 can be very general.

8.15 Theorem (optimality relative to a set). Consider a problem of minimizing
a proper, lsc function f0 : IRn → IR over a closed set C ⊂ IRn. Let x̄ be a
point of C at which the following constraint qualification is fulfilled: the set
∂∞f0(x̄) contains no vector v �= 0 such that −v ∈ NC(x̄). Then for x̄ to be
locally optimal it is necessary that

∂f0(x̄) +NC(x̄) � 0,

which in the case of f0 and C also being regular at x̄ is equivalent to having

df0(x̄)(w) ≥ 0 for all w ∈ TC(x̄).
When f0 and C are convex (hence regular), either condition is sufficient for x̄
to be globally optimal, even if the constraint qualification is not fulfilled.

Proof. Consider in IRn+1 the closed sets D = C × IR, E0 = epi f0, and
E = D ∩ E0, which are convex when f0 and C are convex. To say that f0
has a local minimum over C at x̄ is to say that the function l(x, α) := α
has a local minimum over E at

(
x̄, f0(x̄)

)
; similarly for a global minimum.

The optimality conditions in 6.12 are applicable in this setting, because l is
smooth with ∇l(x̄, f0(x̄)) = (0, 1). To make use of 6.12, we have to know

something about the variational geometry of E at
(
x̄, f0(x̄)

)
, but information

is available through 6.42, which deals with set intersections. According to 6.42
as specialized here, the constraint qualification

(y,−η) ∈ NE0

(
x̄, f0(x̄)

)
−(y,−η) ∈ ND

(
x̄, f0(x̄)

)
}

=⇒ (y,−η) = (0, 0)

guarantees the inclusions
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T̂E
(
x̄, f0(x̄)

) ⊃ T̂D
(
x̄, f0(x̄)

) ∩ T̂E0

(
x̄, f0(x̄)

)
,

NE

(
x̄, f0(x̄)

) ⊂ ND

(
x̄, f0(x̄)

)
+NE0

(
x̄, f0(x̄)

)
.

Also by 6.42, when D and E0 are regular at
(
x̄, f0(x̄)

)
, the opposite inclusions

hold (with T̂ = T ). Having D = C× IR implies TD
(
x̄, f0(x̄)

)
= TC(x̄)× IR and

ND

(
x̄, f0(x̄)

)
= NC(x̄) × {0}, cf. 6.41. Because f0 is locally lsc, TE0

(
x̄, f0(x̄)

)
and NE0

(
x̄, f0(x̄)

)
are known from 8.2(a) and 8.9; (y, 0) ∈ NE0

(
x̄, f0(x̄)

)
means

y ∈ ∂∞f0(x̄). The constraint qualification of 6.42 thus translates to the one in
the theorem, hence

TD
(
x̄, f0(x̄)

) ∩ TE0

(
x̄, f0(x̄)

)
=
[
TC(x̄)× IR

] ∩ [ epi df0(x̄) ],
ND

(
x̄, f0(x̄)

)
+NE0

(
x̄, f0(x̄)

)
=
{
(v′, 0)

∣∣ v′ ∈ NC(x̄)
}
+NE0

(
x̄, f0(x̄)

)
=
{
(v′, 0)

∣∣ v′ ∈ NC(x̄)
}

+
{
λ(v,−1) ∣∣ v ∈ ∂f0(x̄), λ > 0

}∪{(v, 0) ∣∣ v ∈ ∂∞
f0(x̄)

}
.

In light of this, the earlier conditions in 6.12 with respect to minimizing l on E
immediately give the conditions claimed here. In the convex case the sufficiency
can also be seen directly from the characterizations in 6.9 and 8.12.

Theorem 8.15 can be applied to a set C with constraint structure by way of
formulas such as those in 6.14 and 6.31. The earlier result in 6.12 for smooth f0
follows from 8.15 and the regularity of smooth functions (cf. 7.28 and 8.20(a))—
only as long as C is regular at x̄. For general C, however, and f0 semidiffer-
entiable at x̄, the necessity of the tangent condition in 8.15 can be seen at once
from the definitions of TC(x̄) in 6.1 and semidifferentiability in 7.20.

D. Regular Subderivatives

To complete the picture of epigraphical geometry we still need to develop the
subderivative counterpart to the theory of regular tangent cones.

8.16 Definition (regular subderivatives). For f : IRn → IR and a point x̄ with

f(x̄) finite, the regular subderivative function d̂f(x̄) : IRn → IR is defined by

d̂f(x̄) := e--lim sup
τ ↘ 0
x→f x̄

Δτf(x).

The regular subderivative d̂f(x̄)(w) at x̄ for a vector w̄ thus has the formula

d̂f(x̄)(w̄) := lim sup
x→f x̄
τ ↘ 0

–epi
w→w̄

f(x+ τw)− f(x)
τ

= lim
δ ↘ 0

⎛
⎜⎝lim sup

x→f x̄
τ ↘ 0

[
inf

w∈IB(w̄,δ)

f(x+ τw)− f(x)
τ

]⎞⎟⎠ .

8(8)
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The special epi-limit notation in this definition comes from 7(10); see also
7(5). Although formula 8(8) may seem too formidable to be very useful, it’s
rooted deeply in the variational geometry of epigraphs. Other, more elementary
expressions of regular subderivatives will usually be available, as we’ll see in
Theorem 8.22 and all the more in the theory of Lipschitz continuity in Chap-
ter 9 (where regular subderivatives will be prominent in key facts like 9.13,
9.15 and 9.18). Here we’ll especially be interested in regular subderivatives

d̂f(x̄)(w) to the extent that they reflect properties of ∂f(x̄) and can be shown
sometimes to coincide with the subderivatives df(x̄)(w) and thereby furnish a
characterization of subdifferential regularity of f .

8.17 Theorem (regular subderivatives versus regular tangents).

(a) For f : IRn → IR and any point x̄ at which f is lsc and finite, one has

epi d̂f(x̄) = T̂epi f
(
x̄, f(x̄)

)
.

(b) For the indicator δC of a set C ⊂ IRn and any point x̄ ∈ C, one has

d̂δC(x̄) = δK for K = T̂C(x̄).

(0,0)

epi f

epi f

_ _^
T (x,f(x))

epi df(x)
_^

(x,f(x))
_ _

Fig. 8–8. Epigraphical interpretation of regular subderivatives.

Proof. The relation in (a) is almost immediate from 8(1), Definition 8.16, and

the formula for T̂epi f
(
x̄, f(x̄)

)
as derived from Definition 6.25, but its proof

must contend with the discrepancy that

T̂epi f
(
x̄, f(x̄)

)
= lim inf

τ ↘ 0
(x,α)→(x̄,f(x̄))

f(x)≤α∈IR

epi f − (x, α)

τ
,

whereas epi d̂f(x̄) is through 8(1) the possibly larger inner limit set generated in
the same manner but with f(x) = α instead of f(x) ≤ α. The assumption that
f is lsc at x̄, where its value is finite, guarantees whenever (xν , αν)→ (x̄, f(x̄))
with f(xν) ≤ αν (finite) one has f(xν) → f(x̄), so that xν→f x̄. In particular
f(xν) must be finite for all large enough ν, and then
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epi f − (xν , f(xν))
τν

⊂ epi f − (xν , αν)

τν
.

Sequences (xν , αν)→ (x̄, f(x̄)) with f(xν) < αν can therefore be ignored when
generating the inner limit; in restricting αν to equal f(xν), nothing is lost.

The indicator formula claimed in (b) is obvious from the definitions of
regular subderivatives and regular tangents.

8.18 Theorem (subderivative relationships). For f : IRn → IR and any point x̄

with f(x̄) finite, the functions df(x̄) : IRn → IR and d̂f(x̄) : IRn → IR are lsc

and positively homogeneous with d̂f(x̄) ≥ df(x̄). When f is lsc at x̄, d̂f(x̄) is
sublinear. As long as f is locally lsc at x̄, one further has

d̂f(x̄) = e--lim sup
x→f x̄

df(x). 8(9)

Proof. The lower semicontinuity of df(x̄) and d̂f(x̄) is a direct consequence of
these functions being defined by certain epi-limits. The positive homogeneity
comes out of the difference quotients. These properties can also be deduced
from the geometry in 8.2(a) and 8.17(a), but that requires in the case of d̂f(x̄)
the stronger assumption that f is lsc at x̄. Then there is something more:
because T̂epi f

(
x̄, f(x̄)

)
is convex (by 6.26), d̂f(x̄) is not just positively homo-

geneous but convex, hence sublinear. If f is locally lsc at x̄, we can apply the
limit relation in 6.26 to epi f to obtain the additional property that

T̂epi f
(
x̄, f(x̄)

)
= lim inf

(x,α)→(x̄,f(x̄))
f(x)≤α∈IR

Tepi f (x, α).

Here the pairs (x, α) ∈ epi f with α > f(x) can be ignored in generating the
inner limit, for the reasons laid down in the proof of Theorem 8.17. Hence

epi d̂f(x̄) = lim inf
x→f x̄

epidf(x),

which is equivalent to the final formula in the theorem.

8.19 Corollary (subderivative criterion for subdifferential regularity). A func-
tion f : IRn → IR is regular at x̄ if and only if f is both finite and locally lsc at
x̄ and has df(x̄) = d̂f(x̄), this equation being equivalent to

e-lim sup
x→f x̄

df(x) = df(x̄).

Proof. This applies the regularity criteria in 6.29(b) and 6.29(g) to epi f
through the window provided by epi-convergence notation, as in 7(2).

The expression of the regular subderivative function d̂f(x̄) as an upper
epi-limit of neighboring functions df(x) in Theorem 8.18, whenever f is locally
lsc at x̄, has the pointwise meaning that
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d̂f(x̄)(w̄) := lim sup
τ ↘ 0
x→f x̄

–epi
w→w̄

df(x)(w)

= lim
δ ↘ 0

⎛
⎜⎝lim sup

τ ↘ 0
x→f x̄

[
inf

w∈IB(w̄,δ)

df(x)(w)

]⎞⎟⎠ .

When f is regular at x̄, so that d̂f(x̄)(w̄) = df(x̄)(w̄), this formula expresses a
semicontinuity property of subderivatives which can substitute in part for the
continuity of directional derivatives of smooth functions. A stronger manifes-
tation of this property in the presence of Lipschitz continuity will be seen in
Theorem 9.16.

8.20 Exercise (subdifferential regularity from smoothness).

(a) If f is smooth on an open set O, then f is regular on O with

df(x̄)(w) = d̂f(x̄)(w) =
〈∇f(x̄), w〉 for all w.

(b) If f = g + f0 with f0 smooth, then f is regular at x̄ if and only if g is
regular at x̄.

Guide. Get both facts from 8.18 and the definitions.

Convex functions f that are lsc and proper were seen in 7.27 to be regular
and epi-differentiable on dom f , even semidifferentiable on int(dom f). Their
subderivatives have the following properties as well.

8.21 Proposition (subderivatives of convex functions). For a convex function
f : IRn → IR and any point x̄ where f is finite, the limit

h(w) := lim
τ ↘ 0

f(x̄+ τw)− f(x̄)
τ

exists for all w ∈ IRn and defines a sublinear function h : IRn → IR such that
f(x̄+ τw) ≥ f(x̄) + τh(w) for all τ ≥ 0 and all w, and

d̂f(x̄)(w) = df(x̄)(w) = (cl h)(w) for all w.

Here actually (clh)(w) = h(w) for all w in the set

W =
{
w
∣∣∃ τ ≥ 0 with x̄+ τw ∈ int(dom f)

}
= int

(
dom d̂f(x̄)

)
= int

(
dom df(x̄)

)
= int

(
domh

)
.

Proof. The limit defining h(w) exists because the difference quotient is non-
decreasing in τ > 0 by virtue of convexity (cf. 2.12). This monotonicity also
yields the inequality f(x̄+ τw) ≥ f(x̄) + τh(w).

Let K be the convex cone in IRn × IR consisting of the pairs (w, β) such

that
(
x̄, f(x̄)

)
+τ(w, β) ∈ epi f for some τ > 0. By 6.9, the cones T̂epi f

(
x̄, f(x̄)

)
and Tepi f

(
x̄, f(x̄)

)
coincide with clK, and their interiors coincide with
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K0 :=
{
(w, β)

∣∣∃ τ > 0 with (x̄, f(x̄)) + τ(w, β) ∈ int(epi f)
}
.

We have h(w) = inf{β | (w, β) ∈ K}, so cl(epi h) = clK, int(epi h) = K0.

Since cl(epi h) = epi(clh) by definition, we conclude that d̂f(x̄) = df(x̄) = clh;
here we use the geometry in 8.17(a) as extended slightly by the observation,
made in the proof of that theorem, that even if f isn’t lsc at x̄ the inclusion
epi d̂f(x̄) ⊃ T̂epi f

(
x̄, f(x̄)

)
is still valid. Since d̂f(x̄) ≥ df(x̄) by 8.6, the

inclusion in question can’t be strict when T̂epi f
(
x̄, f(x̄)

)
= Tepi f

(
x̄, f(x̄)

)
, as

in this case.
Because h is sublinear, in particular convex, it must agree with cl h on

int(domh) (cf. 2.35). Convexity ensures through 2.34, as applied to h, that
int(domh) is the projection on IRn of int(epi h), which we have seen to be K0.
But also by 2.35, as applied this time to f , the projection on IRn of K0 is W .
This establishes the interiority claims.

Properties of semiderivatives established in 7.26 under the assumption of
regularity, when subderivatives and regular subderivatives agree, carry over to
a rule about regular subderivatives by themselves.

8.22 Theorem (interior formula for regular subderivatives). Let f : IRn → IR
be locally lsc at x̄ with f(x̄) finite. Let O =

{
w̄
∣∣h(w̄) <∞}, where

h(w̄) := lim sup
τ ↘ 0
x→f x̄
w→w̄

f(x+ τw)− f(x)
τ

.

Then int(dom d̂f(x̄)) = O, and d̂f(x̄)(w̄) = h(w̄) for all w̄ ∈ O. As long as

O �= ∅, one has d̂f(x̄)(w̄) =∞ for w̄ /∈ clO, while

d̂f(x̄)(w̄) = lim
τ ↘ 0

h
(
(1− τ)w̄ + τŵ

)
for any w̄ ∈ bdryO, ŵ ∈ O.

Proof. We have h(w̄) < β̄ ∈ IR if and only if there exists ε > 0 such that,
for all w ∈ IB(w̄, ε) and β > β̄ − ε, one has f(x + τw) ≤ f(x) + τβ when
τ ∈ (0, ε), x ∈ IB(x̄, ε), and f(x) ≤ f(x̄) + ε. This means that the pairs
(w, β) ∈ IB(w̄, ε)× [β̄ − ε,∞) have(
x, f(x)

)
+ τ(w, β) ∈ epi f when τ ∈ (0, ε), x ∈ IB(x̄, ε), f(x) ≤ f(x̄) + ε.

Therefore, the condition h(w̄) < β̄ ∈ IR is equivalent to having (w̄, β̄) belong
to the interior of the recession cone Repi f

(
x̄, f(x̄)

)
; cf. Definition 6.33. But

epi f is locally closed at
(
x̄, f(x̄)

)
through our assumption that f is locally lsc

at x̄ (cf. 1.34), so the cones Repi f

(
x̄, f(x̄)

)
and T̂epi f

(
x̄, f(x̄)

)
have the same

interior by 6.36. Moreover T̂epi f
(
x̄, f(x̄)

)
= epi d̂f(x̄) by 8.17(a) with d̂f(x̄) a

convex function by 8.18, so this interior consists of the pairs (w̄, β̄) such that

w̄ ∈ int
(
dom d̂f(x̄)

)
and d̂f(x̄)(w̄) < β̄ ∈ IR. Thus, h(w̄) < β̄ ∈ IR holds if and

only if w̄ ∈ int
(
dom d̂f(x̄)

)
and d̂f(x̄)(w̄) < β̄ ∈ IR. This yields everything
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except the boundary point formula claimed at the end of the theorem. That
comes from the closure property of convex functions in Theorem 2.35.

8.23 Exercise (regular subderivatives from subgradients). For f : IRn → IR and
any point x̄ where f is finite and locally lsc, one has in terms of the polar cone
∂∞f(x̄)∗ =

{
w
∣∣ 〈v, w〉 ≤ 0 for all v ∈ ∂∞f(x̄)

}
that

d̂f(x̄)(w) =

{
sup
{〈v, w〉 ∣∣ v ∈ ∂f(x̄)} when w ∈ ∂∞f(x̄)∗,

∞ when w /∈ ∂∞f(x̄)∗.

Guide. Get this from having T̂epi f
(
x̄, f(x̄)

)
= Nepi f

(
x̄, f(x̄)

)∗
by 6.28 when

epi f is closed at
(
x̄, f(x̄)

)
; cf. 1.33, and the geometry in 8.9 and 8.17(a).

The supremum in the regular subderivative formula in 8.23 need not always
be finite when w ∈ ∂∞f(x̄)∗. For instance, when ∂f(x̄) = ∅ the supremum is

−∞, so that d̂f(x̄)(w) = δK(w) − ∞ for K = ∂∞f(x̄)∗. But the supremum

can also be∞, so that K is not necessarily the same as dom d̂f(x̄), or for that

matter even the closure of dom d̂f(x̄). An example in two dimensions will shed
light on this possibility. Consider at x̄ = (0, 0) the function

f0(x1, x2) :=

⎧⎨
⎩
x22/2|x1| if x1 �= 0,
0 if x1 = 0 and x2 = 0,
∞ for all other x1, x2.

(The epigraph of f0 is the union of two circular convex cones, the axes being
the rays in IR3 in the directions of (1, 0, 1) and (−1, 0, 1); each cone touches
the x1-axis and the x3-axis.) This function is lsc and positively homogeneous,

so that df0(0, 0) is f0 itself. It is easily seen that ∂̂f0(0, 0) = {0, 0}. Away
from the x2-axis, f0 is differentiable with ∇f0(x1, x2) = ±(−x22/2x21, x2/x1),
where the + is taken when x1 > 0 and the − when x1 < 0; at such places,
∂̂f0(x1, x2) = {∇f0(x1, x2)}. Thus, the mapping ∂̂f0 is single-valued every-
where on its effective domain, which is the same as dom f0 and consists of all
points of IR2 except the ones lying on the x2-axis away from the origin. Fur-
thermore, ∂̂f0 is locally bounded at all such points except the origin, where it
is definitely not locally bounded. From Definition 8.3 we get

∂f0(0, 0) =
{
(±t2/2, t) ∣∣ −∞ < t <∞},

∂
∞
f0(0, 0) =

{
(t, 0)

∣∣ −∞ < t <∞}.
The formula in 8.23 then yields d̂f0(0, 0) = δ{(0,0)}, so dom d̂f0(0, 0) = {(0, 0)}.
But the polar cone ∂∞f0(0, 0)

∗ is the x2-axis, not {(0, 0)}.
This example has ∂∞f0(0, 0) = ∂f0(0, 0)

∞, but the inclusion ∂∞f(x̄) ⊃
∂f(x̄)∞ can sometimes be strict when ∂f(x̄) �= ∅, which underscores the essen-
tial role of ∂∞f(x̄) alongside of ∂f(x̄) in the general case of the regular subder-
ivative formula in 8.23. For an illustration of strict inclusion ∂∞f(x̄) ⊃ ∂f(x̄)∞,
again in IR2 with x̄ = (0, 0), consider



E. Support Functions and Subdifferential Duality 317

f1(x1, x2) :=

{−√x1 −√x2 when x1 ≥ 0, x2 ≥ 0,
0 for all other x1, x2.

It’s easy to calculate that df1(0, 0) has the value −∞ on IR2
+

but 0 every-

where else. Furthermore, ∂f1(0, 0) = {(0, 0)} while ∂∞f1(0, 0) = IR2
−. Yet we

have d̂f1(0, 0)(w1, w2) = 0 when (w1, w2) ∈ IR2
+
, and d̂f1(0, 0)(w1, w2) = ∞

otherwise. Knowledge of the set ∂f1(0, 0) alone wouldn’t pin this down.

E. Support Functions and Subdifferential Duality

The tightest connections between subderivatives and subgradients are seen
when f is regular at x̄. These hinge on a duality correspondence that gen-
eralizes the one for polar cones but goes between sets and certain functions.
The support function of a set D ⊂ IRn is the function σD : IRn → IR of D
defined by

σD(w) := sup
v∈D

〈
v, w
〉

=: sup
〈
D,w

〉
. 8(10)

This characterizes the closed half-spaces that include D:

D ⊂ {v ∣∣ 〈v, w〉 ≤ α
} ⇐⇒ σD(w) ≤ α. 8(11)

If D = ∅, one has σD ≡ −∞, but if D �= ∅, one has σD > −∞ and σD(0) = 0.

8.24 Theorem (sublinear functions as support functions). For any set D ⊂ IRn,
the support function σD is sublinear and lsc (proper as well if D �= ∅), and

cl(conD) =
{
v
∣∣ 〈v, w〉 ≤ σD(w) for all w

}
.

On the other hand, for any positively homogeneous function h : IRn → IR, the
set D =

{
v
∣∣ 〈v, w〉 ≤ h(w) for all w

}
is closed and convex, and

σD = cl(conh) as long as D �= ∅,
whereas if D = ∅ the function cl(conh) is improper with no finite values.

Thus, there is a one-to-one correspondence between the nonempty, closed,
convex subsets D of IRn and the proper, lsc, sublinear functions h on IRn:

D ←→ h with h = σD and D =
{
v
∣∣ 〈v, ·〉 ≤ h}.

Under this correspondence the closed, convex cones D∞ and cl(domh) are
polar to each other.

Proof. By definition, σD is the pointwise supremum of the collection of linear
functions 〈v, · 〉 with v ∈ D. Except for the final polarity claim, all the assertions
thus follow from the characterization in Theorem 8.13 of the functions described
by such a pointwise supremum and the identification in Theorem 6.20 of the
sets that are the intersections of families of closed half-spaces. An improper,
lsc, convex function can’t have any finite values (see 2.5).
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For the polarity claim about corresponding D and h, observe from the
expression of D in terms of the inequalities 〈v, w〉 ≤ h(w) for w ∈ domh that,
for any choice of v̄ ∈ D, a vector y has the property

{
v̄ + τy

∣∣ τ ≥ 0
} ⊂ D if

and only if 〈y, w〉 ≤ 0 for all w ∈ domh. But the vectors y with this property
comprise D∞ by 3.6. Therefore, D∞ = (domh)∗ = [cl(domh)]∗. Since domh
is convex when h is sublinear, it follows that cl(domh) = (D∞)∗; cf. 6.21.

8.25 Corollary (subgradients of sublinear functions). Let h be a proper, lsc,
sublinear function on IRn and let D be the unique closed, convex set in IRn

such that h = σD. Then, for any w ∈ domh,

∂h(w) = argmax
v∈D

〈
v, w
〉
=
{
v ∈ D ∣∣w ∈ ND(v)

}
.

Proof. This follows from the description in 8.12 and 8.13 of the subgradients
of a sublinear function as the gradients of its linear supports.

The support function of a singleton set {a} is the linear function 〈a, · 〉; in
particular, σ{0} ≡ 0. In this way the support function correspondence gener-
alizes the traditional duality between elements of IRn and linear functions on
IRn. The support function of IRn is δ{0}, while the support function of ∅ is the
constant function −∞. On the other hand,

σD(w) = max
{〈a1, w〉, . . . , 〈am, w〉} for D = con{a1, . . . , am}.

8.26 Example (vector-max and the canonical simplex). The sublinear function
vecmax(x) = max{x1, . . . , xn} for x = (x1, . . . , xn) is the support function of
the canonical simplex S =

{
v
∣∣ vj ≥ 0,

∑n
j=1 vj = 1

}
in IRn. Denoting by J(x)

the set of indices j with vecmax(x) = xj , one has at any point x̄ that

v ∈∂[vecmax](x̄) ⇐⇒
vj ≥ 0 for j ∈ J(x̄), vj = 0 for j /∈ J(x̄),

∑n

j=1
vj = 1.

On the other hand, ∂∞[vecmax](x̄) = {0} for any x̄.
Detail. This is the case of D = con{e1, . . . , en}, where ej is the vector with
jth component 1 and all other components 0; the convex hull of these vec-
tors consists of all their convex combinations, cf. 2.27. The subgradient for-
mula specializes 8.25. No nonzero horizon subgradients can exist, because
dom(vecmax) = IRn; cf. 8.12.

8.27 Exercise (subgradients of the Euclidean norm). The norm h(x) = |x| on
IRn is the support function of the unit ball IB: |x| = σIB(x) = maxv∈IB

〈
v, x
〉
.

It has ∂∞h(x̄) = {0} for all x̄, and

∂h(x̄) =

{{
x̄/|x̄|} if x̄ �= 0,
IB if x̄ = 0.

In contrast, the function k(x) = −|x|, although positively homogeneous, is not
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sublinear and is not the support function of any set, nor is it regular at 0. It
has ∂∞k(x̄) = {0} for all x̄, and

∂k(x̄) =

{{− x̄/|x̄|} if x̄ �= 0,
bdry IB if x̄ = 0.

8.28 Example (support functions of cones). For any cone K ⊂ IRn, the support
function σK is the indicator δK∗ of the polar cone K∗. Thus, the polarity corre-
spondence among closed, convex cones is imbedded within the correspondence
between nonempty, closed, convex sets and proper, lsc, sublinear functions.

8.29 Proposition (properties expressed by support functions).

(a) A convex set C has intC �= ∅ if and only if there is no vector v �= 0
such that σC(v) = −σC(−v). In general,

intC =
{
x
∣∣ 〈x, v〉 < σC(v) for all v �= 0

}
.

(b) The condition 0 ∈ int(C1−C2) holds for convex sets C1 �= ∅ and C2 �= ∅
if and only if there is no vector v �= 0 such that σC1

(v) ≤ −σC2
(−v).

(c) A convex set C �= ∅ is polyhedral if and only if σC is piecewise linear.

(d) A set C is nonempty and bounded if and only if σC is finite everywhere.

Proof. In (a) there’s no loss of generality in assuming C to be closed, because
C and clC have the same support function and also the same interior (by 2.33).
The case of C = ∅ can be excluded as trivial; it has σC ≡ −∞. For C �= ∅,
let K = epi σC , this being a closed, convex cone in IRn × IR. The condition
that no v �= 0 has σC(v) = −σC(−v) is equivalent to the condition that no
(v, β) �= (0, 0) has both (v, β) ∈ K and −(v, β) ∈ K. Thus, it means that
K is pointed, which is equivalent by 6.22 to intK∗ �= ∅. The polar cone K∗

consists of pairs (x, γ) such that, for all (v, β) ∈ K, one has
〈
(x, γ), (v, β)

〉 ≤ 0,
i.e., 〈x, v〉 + γβ ≤ 0. Clearly this property of (x, γ) requires γ ≤ 0, and by
inspecting the cases γ = −1 and γ = 0 separately we obtain

K∗ =
{
λ(x,−1) ∣∣x ∈ C, λ > 0

} ∪ {(x, 0) ∣∣x ∈ C∞}.
The nonemptiness of intK∗ comes down then to the nonemptiness of intC.
In particular, we have (x̄,−1) ∈ intK∗ if and only if x̄ ∈ intC. But by 6.22,
(x̄,−1) ∈ intK if and only if

〈
(x, γ), (v, β)

〉
< 0 for all (v, β) �= (0, 0) inK. This

means that x̄ ∈ intC if and only if 〈x̄, v〉 < β whenever v �= 0 and β ≥ σC(v),
which is the condition proposed.

In (b) we observe that a vector v �= 0 satisfies σC1
(v) ≤ −σC2

(−v) if
and only if there exists α ∈ IR such that σC1

(v) ≤ α but −σC2
(−v) ≥ α.

Here σC1
(v) is the supremum of 〈v, x〉 over x ∈ C1, whereas −σC2

(−v) is the
infimum of 〈v, x〉 over x ∈ C2. The property thus corresponds to the existence
of a separating hyperplane

{
x
∣∣ 〈v, x〉 = α

}
. We know such a hyperplane exists

if and only if 0 /∈ int(C1 − C2); cf. 2.39.

In (c), if C is nonempty and polyhedral it has a representation as a convex



320 8. Subderivatives and Subgradients

hull in the extended sense of 3.53:

C = con{a1, . . . , am}+ con
(
pos{am+1, . . . , ar}

)
with m ≥ 1.

Then σC is proper and given by σC(v) = max
{〈ai, v〉 ∣∣ i = 1, . . . , m

}
when v

belongs to the polyhedral cone K =
{
v
∣∣ 〈ai, v〉 ≤ 0, i = m+1, . . . , r

}
, whereas

σC(v) =∞ for v /∈ K. In this case σC is piecewise linear by the characterization
in 2.49. Conversely, if σC is proper and has such an expression, C must have the
form described, because this description gives a certain polyhedral set having
σC as its support function, as just seen, and the correspondence between closed,
convex sets and their support functions is one-to-one.

Nonemptiness of a set C is equivalent to σC not taking on the value −∞; of
course, because σC is convex and lsc by 8.24, it can’t take on −∞ without being
the constant −∞ (cf. 2.5). When C is bounded, in addition to being nonempty,
it’s clear that the supremum of 〈v, x〉 over x ∈ C is finite for every x; in other
words, the function σC is finite everywhere. Conversely, when the latter holds,
consider for the vectors ej = (0, . . . , 1, 0 . . .) (with the 1 in jth position) the
finite values βj = σC(e

j) and αj = −σC(−ej). We have C nonempty with
αj ≤ 〈ej , x〉 ≤ βj for j = 1, . . . , n, so C lies in the box [α1, β1]× · · · × [αn, βn],
which is bounded.

df
e−limsup

−→ d̂f convex

↓ ∗ ↑ ∗
convex ∂̂f

c−limsup

−→ ∂f ∪ dir ∂
∞
f

Fig. 8–9. Diagram of subderivative-subgradient relationships for lsc functions.

Just as polarity relates tangent cones with normal cones, the support func-
tion correspondence relates subderivatives with subgradients. The relations in
8.4 and 8.23 already fit in this framework, which is summarized in Figure 8–9.
(Here the * refers schematically to support function duality, not the polar-
ity operation.) The strongest connections are manifested in the presence of
subdifferential regularity.

8.30 Theorem (subderivative-subgradient duality for regular functions). If a
function f : IRn → IR is subdifferentially regular at x̄, one has

∂f(x̄) �= ∅ ⇐⇒ df(x̄)(0) �= −∞,
and under these conditions, which in particular imply that f is properly epi-
differentiable with df(x̄) as the epi-derivative function, one has
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df(x̄)(w) = sup
〈
∂f(x̄), w

〉
= sup

{〈v, w〉 ∣∣ v ∈ ∂f(x̄)},
∂f(x̄) =

{
v
∣∣ 〈v, w〉 ≤ df(x̄)(w) for all w

}
,

with ∂f(x̄) closed and convex, and df(x̄) lsc and sublinear. Also, regardless of
whether ∂f(x̄) �= ∅ or df(x̄)(0) �= −∞, the cones ∂∞f(x̄) and dom df(x̄) are
in the polar relationship

∂
∞
f(x̄) =

[
dom df(x̄)

]∗
, ∂

∞
f(x̄)∗ = cl

[
dom df(x̄)

]
.

Proof. When f is regular at x̄, hence epi-differentiable there by 7.26, the cones
Nepi f

(
x̄, f(x̄)

)
and Tepi f

(
x̄, f(x̄)

)
are polar to each other. Under this polarity,

the normal cone contains only ‘horizontal’ vectors of form (v, 0) if and only if
the tangent cone includes the entire vertical line

{
(0, β)

∣∣β ∈ IR
}
. Through

the epigraphical geometry in 8.2(a), 8.9 and 8.17(a), the first condition means
∂f(x̄) = ∅, whereas the second means df(x̄)(0) = −∞.

When ∂f(x̄) �= ∅ and df(x̄)(0) = 0, so that df(x̄) must be proper (due
to closedness and positive homogeneity), we in particular have ∂∞f(x̄)∗ =[
∂f(x̄)∞

]∗
= cl(domh) for h = σ∂f(x̄) by the polarity relation in 8.23, and

there’s no need in the subderivative formula of that result to make special
provisions for ∂∞f(x̄)∗.

The anomalies noted after 8.23 can’t occur when f is regular, as assured by
Theorem 8.30. In the regular case the subderivative function df(x̄) is precisely
the support function of the subgradient set ∂f(x̄) under the correspondence
between sublinear functions and convex sets in Theorem 8.24. This relationship
provides a natural generalization of the formula df(x̄)(w) =

〈∇f(x̄), w〉 that
holds when f is smooth, since for any vector v the linear function 〈v, · 〉 is the
support function of the singleton set {v}.
8.31 Exercise (elementary max functions). Suppose f = max{f1, . . . , fm} for
a finite collection of smooth functions fi on IR

n. Then with I(x̄) denoting the
set of indices i such that f(x̄) = fi(x̄) one has

∂f(x̄) = con
{∇fi(x̄) ∣∣ i ∈ I(x̄)}, ∂

∞
f(x̄) = {0},

df(x̄)(w) = max
i∈I(x̄)

〈∇fi(x̄), w〉 = max
i∈I(x̄)

dfi(x̄)(w).

Guide. The set E = epi f is specified in IRn+1 by the constraints gi(x, α) ≤ 0
for i = 1, . . . , m, where gi(x, α) = fi(x) − α. Apply 6.14 together with the
geometry in 8.2(a) and 8.9.

The close tie between subderivatives and subgradients in 8.30 is remarkable
because of the wide class of functions for which subdifferential regularity can be
established. Exercise 8.31 furnishes only one illustration, which elaborates on
7.28. A full calculus of regularity will be built up in Chapter 10. In particular,
a corresponding result for the pointwise maximum of an infinite collection of
smooth functions will be obtained there, cf. 10.31.
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F. Calmness

The concept of ‘calmness’ will further illustrate properties of subderivatives
and their connection to subgradients. A function f : IRn → IR is calm at
x̄ from below with modulus κ ∈ IR+ = [0,∞) if f(x̄) is finite and on some
neighborhood V ∈ N (x̄) one has

f(x) ≥ f(x̄)− κ|x− x̄| when x ∈ V. 8(12)

The property of f being calm at x̄ from above is defined analogously; it corre-
sponds to −f being calm at x̄ from below. Finally, f is calm at x̄ if it is calm
both from above and below: for some κ ∈ IR+ and V ∈ N (x̄) one has∣∣f(x)− f(x̄)∣∣ ≤ κ|x− x̄| when x ∈ V. 8(13)

f

_
x

Fig. 8–10. Calmness from below.

8.32 Proposition (calmness from below). A function f : IRn → IR is calm at x̄
from below if and only if df(x̄)(0) = 0, or equivalently, df(x̄)(w) > −∞ for all
w. The infimum κ̄ ∈ IR+ of all the constants κ ∈ IR+ serving as a modulus of
calmness for f at x̄ is expressible by

−κ̄ = min
w∈IB

df(x̄)(w).

As long as f is locally lsc at x̄, one has ∂f(x̄) �= ∅ if and only if d̂f(x̄)(0) = 0,

or equivalently d̂f(x̄)(w) > −∞ for all w �= 0. In particular these properties
hold when f is calm at x̄ in addition to being locally lsc at x̄, and then there
must actually exist v̄ ∈ ∂f(x̄) such that |v̄| = κ̄.

When f is regular at x̄, calmness at x̄ from below is not only sufficient for
having ∂f(x̄) �= ∅ but necessary. Then

κ̄ = d
(
0, ∂f(x̄)

)
.

Proof. Let κ̂ := − inf |w|=1 df(x̄)(w). If f is calm at x̄ from below, so that
8(12) holds for some κ, we clearly have df(x̄)(w) ≥ −κ|w| for all w. Then
κ ≥ κ̂, so that necessarily κ̄ ≥ max{0, κ̂}.

On the other hand, whenever df(x̄)(w) > −∞ for all w �= 0, the lower
semicontinuity of df(x̄) ensures that κ̂ is finite. Consider in that case any finite
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κ > max{0, κ̂}. There can’t exist points xν → x̄ with f(xν) < f(x̄)−κ|xν− x̄|,
for if so we could write xν = x̄ + τνwν with |wν | = 1 and τν ↘ 0, getting[
f(x̄+ τνwν)− f(x̄)]/τν < −κ, and then a cluster point w̄ of {wν}ν∈IN would
yield df(x̄)(w̄) ≤ −κ, which is impossible by the choice of κ relative to κ̂. For
some V ∈ N (x̄), therefore, we have 8(12) and in particular df(x̄)(0) �= −∞,
hence df(x̄)(0) = 0 (cf. 3.19). At the same time we obtain κ ≥ κ̄, hence
max{0, κ̂} ≥ κ̄. It follows that κ̄ = max{0, κ̂}. Moreover, from the definition of
κ̂ and the fact that df(x̄) is lsc and positively homogeneous with df(x̄)(0) = 0,
we see that max{0, κ̂} = −minw∈IB df(x̄)(w).

Our argument has further disclosed that κ̄ is the lowest of the values κ ≥ 0
such that df(x̄) ≥ −κ| · |.

Assume from now on that f is locally lsc at x̄. The formula for d̂f(x̄) in
terms of ∂f(x̄) in 8.23 gives the equivalence between the nonemptiness of ∂f(x̄)

and the properties of d̂f(x̄). Because d̂f(x̄) ≥ df(x̄), calmness from below at
x̄ suffices for such properties to hold.

In the presence now of this calmness, we proceed toward verifying the
existence of v̄ ∈ ∂f(x̄) with |v̄| = κ̄. This is trivial when κ̄ = 0, since in that

case df(x̄)(w) ≥ 0 for all w and we have 0 ∈ ∂̂f(x̄) by 8.4, hence 0 ∈ ∂f(x̄) as
well; we can take v̄ = 0. Supposing therefore that κ̄ > 0, let w̄ be a point that
minimizes df(x̄)(w) subject to w ∈ IB; we have seen that such a point must
exist and have df(x̄)(w̄) = −κ̄, |w̄| = 1.

The ray through (w̄,−κ̄) lies in the cone T := epi df(x̄) = Tepi f
(
x̄, f(x̄)

)
as well as in the convex cone K := − epi(κ̄| · |), whose interior however contains
no points of T . A certain point (0,−μ) on the vertical axis in K has (w̄,−κ̄)
as the point of T nearest to it; the value of μ can be determined from the
condition that (0,−μ)−(w̄,−κ̄) must be orthogonal to (w̄,−κ̄), and this yields
μ = (1 + κ̄2)/κ̄. By 6.27(b) as applied to the set C = epi f at

(
x̄, f(x̄)

)
,

there’s a vector (v, β) ∈ Nepi f

(
x̄, f(x̄)

)
with

∣∣(v, β)∣∣ = 1 such that dT (0,−μ) =〈
(0,−μ), (v, β)〉 = −μβ. We calculate that

dT (0,−μ)2 =
∣∣(0,−μ)− (w̄,−κ̄)∣∣2 = |w̄|2 + |μ− κ̄|2 = 1 + (1/κ̄)2,

so that dT (0,−μ) =
√
1 + κ̄2/κ̄ and consequently

β = −[
√

1 + κ̄2/κ̄]/[(1 + κ̄2)/κ̄] = −1/
√

1 + κ̄2.

On the other hand, from the fact that 1 = |(v, β)|2 = |v|2 + β2 we have
|v| = κ̄/

√
1 + κ̄2. Let v̄ = −v/β. Then |v̄| = κ̄ and (v̄,−1) ∈ Nepi f

(
x̄, f(x̄)

)
,

hence v̄ ∈ ∂f(x̄) by the geometry in Theorem 8.9. This vector v̄ thus meets
the requirements.

When f is regular at x̄, the conclusions so far can be combined, because
df(x̄) = d̂f(x̄). Furthermore, d

(
0, ∂f(x̄)

) ≤ |v̄| = κ̄. To obtain the opposite
inequality, observe that for any v ∈ ∂f(x̄) we have df(x̄) ≥ 〈v, ·〉 by 8.30. Then
minw∈IB df(x̄)(w) ≥ minw∈IB〈v, w〉, where the left side is −κ̄ and the right side
is −|v|. Therefore, d(0, ∂f(x̄)) can’t be less than κ̄.
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G. Graphical Differentiation of Mappings

The application of variational geometry to the epigraph of a function f : IRn →
IR has been a powerful principle in obtaining a theory of generalized differen-
tiation that can be effective even when f is discontinuous or takes on ±∞.
But how should one approach a vector-valued function F : x �→ F (x) =(
f1(x), . . . , fm(x)

)
? Although such a function doesn’t have an epigraph, it

does have a graph in IRn×IRm, and this could be the geometric object to focus
on, as in classical analysis—but with the more general notions of tangent and
normal in Chapter 6.

If this geometric route to differentiation is to be taken, it can just as
well be followed through the much larger territory of set-valued mappings S :
IRn →→ IRm, in which single-valued mappings merely constitute a special case.
This is what we’ll do next.

In dealing with multivaluedness there’s an essential feature which may at
first be disconcerting and needs to be appreciated from the outset. At any
x̄ ∈ domS where S(x̄) isn’t a singleton, there’s a multiplicity of elements
ū ∈ S(x̄), hence a multiplicity of points (x̄, ū) at which to examine the local
geometry of gphS. In consequence, whatever kind of generalized ‘derivative
mapping’ one may wish to introduce graphically, there must be a separate such
mapping at x̄ for each choice of ū ∈ S(x̄). On the other hand, even for single-
valued S, for which this sort of multiplicity is avoided, the single ‘derivative
mapping’ at x̄ could be multivalued.

8.33 Definition (graphical derivatives and coderivatives). Consider a mapping
S : IRn →→ IRm and a point x̄ ∈ domS. The graphical derivative of S at x̄ for
any ū ∈ S(x̄) is the mapping DS(x̄ | ū) : IRn →→ IRm defined by

z ∈ DS(x̄ | ū)(w) ⇐⇒ (w, z) ∈ TgphS(x̄, ū),

whereas the coderivative is the mapping D∗S(x̄ | ū) : IRm →→ IRn defined by

v ∈ D∗S(x̄ | ū)(y) ⇐⇒ (v,−y) ∈ NgphS(x̄, ū).

Here the notation DS(x̄ | ū) and D∗S(x̄ | ū) is simplified to DS(x̄) and D∗S(x̄)
when S is single-valued at x̄, S(x̄) = {ū}. Similarly, and with the same provi-

sion for simplified notation, the regular derivative D̂S(x̄ | ū) : IRn →→ IRm and

the regular coderivative D̂∗S(x̄ | ū) : IRm →→ IRn are defined by

z ∈ D̂S(x̄ | ū)(w) ⇐⇒ (w, z) ∈ T̂gphS(x̄, ū),

v ∈ D̂∗S(x̄ | ū)(y) ⇐⇒ (v,−y) ∈ N̂gphS(x̄, ū).

An initial illustration of graphical differentiation is given in Figure 8–11,
where it must be remembered that the tangent and normal cones are shown
as translated from the origin to (x̄, ū). While DS(x̄ | ū) has TgphS(x̄, ū) as
its graph, it’s not true that D∗S(x̄ | ū) has NgphS(x̄, ū) as its graph—for two
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reasons. First there is the minus sign in the formula for D∗S(x̄ | ū), but second,
this mapping goes from IRm to IRn instead of from IRn to IRm. These changes
foster ‘adjoint’ relationships between graphical derivatives and coderivatives,
as seen in the next example and more generally in 8.40.

_ _
(x,u)

_ _
N (x,u)

G

_ _
T (x,u)

G

G=gph S

(0,0)

w y

z

(0,0)

_ _
gph DS(x|u)

gph D S(x|u)* _ _

v

Fig. 8–11. Graphical differentiation.

Where do graphical derivatives and coderivatives fit in the classical picture
of differentiation? Some understanding can be gained from the case of smooth,
single-valued mappings.

8.34 Example (subdifferentiation of smooth mappings). In the case of a smooth,
single-valued mapping F : IRn → IRm, one has

DF (x̄)(w) = D̂F (x̄)(w) = ∇F (x̄)w for all w ∈ IRn,

D∗F (x̄)(y) = D̂∗F (x̄)(y) = ∇F (x̄)∗y for all y ∈ IRm.

Detail. These facts can be verified in more than one way, but here it is
instructive to view them graphically. The equation F (x) − u = 0 represents
gphF as a smooth manifold in the sense of 6.8. Setting ū = F (x̄), we get

TgphF (x̄, ū) = T̂gphF (x̄, ū) =
{
(w, z)

∣∣∇F (x̄)w − z = 0
}
,

NgphF (x̄, ū) = N̂gphF (x̄, ū) =
{
(v, y)

∣∣ v = −∇F (x̄)∗y},
and the truth of the claims is then evident.

At the opposite extreme, even subgradients and subderivatives can be seen
as arising from graphical differentiation.

8.35 Example (subgradients and subderivatives via profile mappings). For f :
IRn → IR and the profile mapping Ef : x �→ {

α ∈ IR ∣∣ f(x) ≤ α
}
, consider a

point x̄ where f is finite and locally lsc, and let ᾱ = f(x̄) ∈ Ef (x̄). Then
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DEf (x̄ | ᾱ)(w) =
{
β ∈ IR ∣∣ df(x̄)(w) ≤ β},

D̂Ef (x̄ | ᾱ)(w) =
{
β ∈ IR ∣∣ d̂f(x̄)(w) ≤ β},

D∗Ef (x̄ | ᾱ)(λ) =

⎧⎨
⎩
λ∂f(x̄) for λ > 0,
∂∞f(x̄) for λ = 0,
∅ for λ < 0,

D̂∗Ef (x̄ | ᾱ)(λ) =

⎧⎪⎪⎨
⎪⎪⎩
λ∂̂f(x̄) for λ > 0,

∂̂f(x̄)∞ for λ = 0 if ∂̂f(x̄) �= ∅,
{0} for λ = 0 if ∂̂f(x̄) = ∅,
∅ for λ < 0.

Detail. These formulas are immediate from Definition 8.33 in conjunction
with Theorems 8.2(a), 8.9 and 8.17(a).

A function f : IRn → IR can be interpreted either as a special case of a
function f : IRn → IR, to be treated in an epigraphical manner with subgra-
dients and subderivatives as up to now in this chapter, or as a special case of
a mapping from IRn → IR1 that happens to be single-valued, and thus treated
graphically. The second approach, while seemingly more in harmony with tra-
ditional geometric motivations in analysis, encounters technical obstacles in the
circumstance that the main results of variational geometry require closedness
of the set to which they are applied.

For a single-valued mapping, closedness of the graph is tantamount to
continuity when the mapping is locally bounded. Therefore, graphical differ-
entiation isn’t of much use for a real-valued function f unless f is continuous.
It isn’t good for such a wide range of applications as ‘epigraphical differentia-
tion’. Another drawback is that, even for a continuous function f on IRn, the
graphical derivative at x̄ is a possibly multivalued mapping Df(x̄) : IRn →→ IR
and in this respect suffers in comparison to df(x̄), which is single-valued. But
graphical differentiation in this special setting will nevertheless be important
in the study of Lipschitz continuity in Chapter 9.

In the classical framework of 8.34 the derivative and coderivative map-
pings are linear, and each is the adjoint of the other—there is perfect duality
between them. In general, however, derivatives and coderivatives won’t be
linear mappings, yet both will have essential roles to play.

Various expressions for the tangent and normal cones in Definition 8.33
yield other ways of looking at derivatives and coderivatives. For instance, 6(3)
as applied to TgphS(x̄, ū) produces the formula

DS(x̄ | ū)(w̄) = lim sup
τ ↘ 0
w→w̄

S(x̄+ τw)− ū
τ

. 8(14)

The difference quotient isΔτS(x̄ | ū)(w) for the mappingΔτS(x̄ | ū) : IRn →→ IRm

whose graph is
[
gphS − (x̄, ū)

]
/τ , and in terms of graphical limits we have

DS(x̄ | ū) = g-lim sup
τ ↘ 0

ΔτS(x̄ | ū). 8(15)



G. Graphical Differentiation of Mappings 327

If gphS is locally closed at (x̄, ū), we have through 6.26 that

D̂S(x̄ | ū) = g-lim inf
(x,u) −→

gph S
(x̄,ū)

DS(x |u). 8(16)

On the other hand, the definition of the cone N̂gphS(x̄, ū) yields

v ∈ D̂∗S(x̄ | ū)(y) ⇐⇒
〈v, x− x̄〉 ≤ 〈y, u− ū〉+ o

(|(x, u)− (x̄, ū)|) for u ∈ S(x) 8(17)

and the definition of NgphS(x̄, ū) in combination with outer semicontinuity of
normal cone mappings in 6.6 then gives

D∗S(x̄ | ū) = g-lim sup
(x,u) −→

gph S
(x̄,ū)

D̂∗S(x |u)

= g-lim sup
(x,u) −→

gph S
(x̄,ū)

D∗S(x |u).
8(18)

Graphical differentiation behaves very simply in taking inverses of mappings:

z ∈ DS(x̄ | ū)(w) ⇐⇒ w ∈ D(S−1)(ū | x̄)(z),

v ∈ D∗S(x̄ | ū)(y) ⇐⇒ − y ∈ D∗(S−1)(ū | x̄)(−v). 8(19)

When F : IRn → IRm is single-valued, formula 8(14) becomes

DF (x̄)(w̄) = lim sup
τ ↘ 0
w→w̄

F (x̄+ τw)− F (x̄)
τ

(set of cluster points!), 8(20)

since ‘lim sup’ refers here to an outer limit in the sense of set convergence,
but the sets happen to be singletons. Thus, DF (x̄) is a set-valued mapping
in principle, although it can be single-valued in particular situations. Single-
valuedness at w̄ occurs when there is a single cluster point, i.e., when the vector
[F (x̄+ τw)− F (x̄)]/τ approaches a limit as w → w̄ and τ ↘ 0. In general,

z ∈ DF (x̄)(w̄) ⇐⇒
{ ∃wν → w̄, zν → z, τν ↘ 0,

with F (x̄+ τνwν) = F (x̄) + τνzν .
8(21)

When F is continuous, the graphical limits in 8(16) and 8(18) specialize to

D̂F (x̄) = g-lim inf
x→x̄

DF (x), D∗F (x̄) = g-lim sup
x→x̄

D̂∗F (x), 8(22)

where we have

v ∈ D̂∗F (x̄)(y) ⇐⇒〈
v, x− x̄〉 ≤ 〈y, F (x)− F (x̄)〉+ o

(|(x, F (x))− (x̄, F (x̄))|). 8(23)

Such expressions can be analyzed further under assumptions of Lipschitz con-
tinuity on F , and this will be pursued in Chapter 9.
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In order to understand better the nature of graphical derivatives and
coderivatives, we’ll need the concept of a positively homogeneous mapping H
(set-valued in general), as distinguished by the properties

0 ∈ H(0) and H(λw) = λH(w) for all λ > 0 and w. 8(24)

8.36 Proposition (positively homogeneous mappings). ForH : IRn →→ IRm to be
positively homogeneous it is necessary and sufficient that gphH be a cone, and
then both H(0) and domH must be cones as well (possibly with H(0) = {0}
or domH = IRn). Such a mapping is graph-convex if and only if it also has

H(w1 + w2) ⊃ H(w1) +H(w2) for all w1, w2. 8(25)

If it is graph-convex with H(0) = {0} and domH = IRn, it must be a linear
mapping: there must be an (m× n)-matrix A such that H(w) = Aw for all w.

Proof. The connection between positive homogeneity and the cone property
for gphH is obvious, as are the general assertions about domH and H(0). The
inclusion in the graph-convex case comes from the characterization of convex
cones in 3.7. In particular then one has to have H(0) ⊃ H(w) + H(−w) for
all w. When H(0) = {0} and H(w) �= ∅ for every w, this implies that H(w)
is a singleton set for every w. Then it’s not only true that H(λw) = λH(w)
for λ > 0 but also H(−w) = −H(w) and H(w1 +w2) = H(w1) +H(w2). This
means that H is a linear mapping.

A mapping H that is both positively homogeneous and graph-convex is
said to be sublinear . Such a mapping is characterized by the combination of
8(24) and 8(25), or in geometric terms by its graph being a convex cone. An
example from Chapter 5 would be the horizon mapping S∞ for a graph-convex
mapping S.

8.37 Proposition (basic derivative and coderivative properties). For any map-
ping S : IRn →→ IRm and any points x̄ ∈ domS, ū ∈ S(x̄), the mappings

DS(x̄ | ū), D̂S(x̄ | ū), D∗S(x̄ | ū), and D̂∗S(x̄ | ū) are osc and positively homoge-

neous. Also, D̂S(x̄ | ū) and D̂∗S(x̄ | ū) are graph-convex, hence sublinear, with

D̂S(x̄ | ū)(w) ⊂ DS(x̄ | ū)(w), D̂∗S(x̄ | ū)(y) ⊂ D∗S(x̄ | ū)(y).

If gphS is locally closed at (x̄, ū), in particular if S is osc, one has

v ∈ D̂∗S(x̄ | ū)(y) ⇐⇒ 〈
v, w
〉 ≤ 〈y, z〉 when z ∈ DS(x̄ | ū)(w),

z ∈ D̂S(x̄ | ū)(w) ⇐⇒ 〈
v, w
〉 ≤ 〈y, z〉 when v ∈ D∗S(x̄ | ū)(y).

8(26)

Proof. Here we simply restate the facts about normal and tangent cones in
6.2, 6.5 and 6.28, but in a graphical setting using 8.33. When S is osc its graph
is locally closed at (x̄, ū) for any ū ∈ S(x̄).
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DS
g−liminf

−→ D̂S sublinear

↓ ∗+ ↑ ∗−
sublinear D̂∗S

g−limsup

−→ D∗S

Fig. 8–12. Diagram of derivative-coderivative relationships for osc mappings.

The formulas in 8(26) can be understood as generalized ‘adjoint’ relations.
For any positively homogeneous mapping H : IRn →→ IRm the upper adjoint
H∗+ : IRm →→ IRn, always sublinear and osc, is defined by

H∗+
(y) =

{
v
∣∣ 〈v, w〉 ≤ 〈z, y〉 when z ∈ H(w)

}
. 8(27)

The lower adjoint H∗− : IRm →→ IRn, likewise always sublinear and osc, is
defined instead by

H∗−
(y) =

{
v
∣∣ 〈v, w〉 ≥ 〈z, y〉 when z ∈ H(w)

}
. 8(28)

The graphs of these adjoint mappings differ from the polar of the cone gphH
only by sign changes in certain components and would be identical if this polar
cone were a subspace, meaning the same for gphH itself, in which case H is
called a generalized linear mapping. But anyway, even without this special
property it’s evident, when H is sublinear, that (H∗+)∗− = (H∗−)∗+ = clH.

In the upper/lower adjoint notation, the formulas in 8(26) assert that

D̂∗S(x̄ | ū) = DS(x̄ | ū)∗+
, D̂S(x̄ | ū) = D∗S(x̄ | ū)∗−

.

These relationships and the others are schematized in Figure 8–12.

H∗. Proto-Differentiability and Graphical Regularity

For the sake of a more complete duality, the relations in Figure 8–12 can be
strengthened by invoking an appropriate version of Clarke regularity.

8.38 Definition (graphical regularity of mappings). A mapping S : IRn →→ IRm

is graphically regular at x̄ for ū if gphS is Clarke regular at (x̄, ū).

A manifestation of this property is seen in Figure 8–11. Obviously, a map-
ping S is graphically regular at x̄ for ū ∈ S(x̄) if and only if S−1 is graphically
regular at ū for the element x̄ ∈ S−1(ū). Smooth mappings as in 8.34 are
everywhere regular this way, in particular. Indeed, any mapping S such that
gphS can be specified by a system of smooth constraints meeting the basic
constraint qualification in 6.14 is graphically regular (cf. Example 8.42 below).
Also in this category are mappings of the following kind.
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8.39 Example (graphical regularity from graph-convexity). If S : IRn →→ IRm

is graph-convex and osc, then S is graphically regular at every x̄ ∈ domS for
every ū ∈ S(x̄). In particular, linear mappings are graphically regular.

Detail. This applies 6.9.

8.40 Theorem (characterizations of graphically regular mappings). Let ū ∈
S(x̄) for a mapping S : IRn → IRm such that gphS is locally closed at (x̄, ū).
Then the following properties are equivalent and imply that the mappings
DS(x̄ | ū) and D∗S(x̄ | ū) are graph-convex, hence sublinear:

(a) S is graphically regular at x̄ for ū,

(b) 〈v, w〉 ≤ 〈y, z〉 when v ∈ D∗S(x̄ | ū)(y) and z ∈ DS(x̄ | ū)(w),
(c) D∗S(x̄ | ū) = DS(x̄ | ū)∗+,

(d) DS(x̄ | ū) = D∗S(x̄ | ū)∗−,

(e) DS(x̄ | ū) = D̂S(x̄ | ū),
(f) D∗S(x̄ | ū) = D̂∗S(x̄ | ū).

Proof. These relations are immediate from 6.29 through 8.33 and 8.37.

The tight derivative-coderivative relationship in 8.40(c)(d), where both
mappings are osc and sublinear, generalizes the adjoint relationship in the
classical framework of 8.34.

gph F

(0,0)

gph F

(0,0)

(x,u)
_ _

Tgph F (x,u)
_ _

Ngph F (x,u)
_ _

(x,u)
_ _

gph DF(x)
_

(0,0)

(0,0)

* _
gph D F(x)

* _
gph D F(x)

^gph DF(x)={(0,0)}
_^

Fig. 8–13. An absence of graphical regularity.

This duality has many nice consequences, but it doesn’t mark out the
only territory in which derivatives and coderivatives are important. Despite
the examples of graphically regular mappings that have been mentioned, many
mappings of interest typically fail to have this property, for instance single-
valued mappings that aren’t smooth. This is illustrated in Figure 8–13 in
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the one-dimensional case of a piecewise linear mapping at one of the joints in
its graph. Regularity is precluded because the derivative mapping obviously
isn’t graph-convex as would be guaranteed by Theorem 8.40 in that case. In
particular the graphical derivative and coderivative mappings aren’t sublinear
mappings adjoint to each other.

A mapping S : IRn →→ IRm is said to be proto-differentiable at x̄ for an
element ū ∈ S(x̄) if the outer graphical limit in 8(15) is a full limit:

ΔτS(x̄ | ū) →g DS(x̄ | ū) as τ ↘ 0,

or in other words, if in addition to the ‘lim sup’ for DS(x̄ | ū)(w̄) in 8(14) there
exist for each z̄ ∈ DS(x̄ | ū)(w̄) and choice of τν ↘ 0 sequences

wν → w̄ and zν → z̄ with zν ∈ [S(x̄+ τνwν)− ū]/τν .
8.41 Proposition (proto-differentiability). A mapping S : IRn →→ IRm is proto-
differentiable at x̄ for ū ∈ S(x̄) if and only if gphS is geometrically derivable
at (x̄, ū). This is true in particular when S is graphically regular at x̄ for ū.

Whenever S is proto-differentiable at x̄ for ū, its inverse S−1 is proto-
differentiable at ū for x̄.

Proof. These facts are evident from 8.33, 6.2, and 6.30. The geometry of
gphS−1 at (ū, x̄) reflects that of gphS at (x̄, ū).

8.42 Exercise (proto-differentiability of feasible-set mappings). Let S(t) ⊂ IRn

depend on t ∈ IRd through a constraint representation

S(t) =
{
x ∈ X ∣∣F (x, t) ∈ D}

with X ⊂ IRn and D ⊂ IRm closed and F : IRn × IRd → IRm smooth. Suppose
for given t̄ and x̄ ∈ S(t̄) that X is regular at x̄, D is regular at F (x̄, t̄), and the
following condition is satisfied:

y ∈ ND

(
F (x̄, t̄)

)
∇xF (x̄, t̄)

∗y +NX(x̄) � 0

∇tF (x̄, t̄)
∗y = 0

⎫⎪⎬
⎪⎭ =⇒ y = 0.

Then the mapping S : t �→ S(t) is graphically regular at t̄ for x̄, hence also
proto-differentiable at t̄ for x̄, with

DS(t̄ | x̄)(s) =
{
w ∈ TX(x̄)

∣∣∣∇xF (x̄, t̄)w +∇tF (x̄, t̄)s ∈ TD
(
F (x̄, t̄)

)}
,

D∗S(t̄ | x̄)(v) =
{
∇tF (x̄, t̄)

∗y
∣∣∣

y ∈ ND

(
F (x̄, t̄)

)
, v +∇xF (x̄, t̄)

∗y +NX(x̄) � 0
}
.

Guide. The tangents and normals to the set
{
(x, t) ∈ X × IRd

∣∣F (x, t) ∈ D},
a ‘reflection’ of gphS, can be analyzed through 6.14 and 6.31. Use this to get
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the desired graphical derivatives and coderivatives, and invoke 8.41.

The condition assumed in 8.42 is satisfied in particular under the constraint
qualification for the set S(t̄) in 6.14 and 6.31, and it reduces to that when d = m
and the matrix ∇tF (x̄, t̄) is nonsingular. The generally stronger condition
given by the constraint qualification will be seen in 9.50 to yield the following
property, more powerful than proto-differentiability.

For a set-valued mapping S : IRn →→ IRm, a point x̄ ∈ domS and an
element ū ∈ S(x̄), the limit

lim
τ ↘ 0
w→w̄

S(x̄+ τw)− ū
τ

, 8(29)

if it exists, is the semiderivative at x̄ for ū and w̄. If it exists for every vector
w̄ ∈ IRn, then S is semidifferentiable at x̄ for ū.

8.43 Exercise (semidifferentiability of set-valued mappings). For a mapping
S : IRn →→ IRm, any x̄ ∈ domS and ū ∈ S(x̄), the following four properties of a
mapping H : IRn →→ IRm are equivalent and entail having x̄ ∈ int(domS) and
H positively homogeneous and continuous with domH = IRn:

(a) S is semidifferentiable at x̄ for ū, the semiderivative for w being H(w);

(b) as τ ↘ 0, the mappings ΔτS(x̄ | ū) converge continuously to H;

(c) as τ ↘ 0, the mappings ΔτS(x̄ | ū) converge uniformly to H on all
bounded sets, and H is continuous;

(d) S is proto-differentiable at x̄ for ū with DS(x̄ | ū) = H, and there is
a neighborhood W ∈ N (0) such that at each point w ∈ W the mappings
ΔτS(x̄ | ū) are asymptotically equicontinuous as τ ↘ 0.

These properties hold in particular under the following equivalent pair of
conditions, which necessitate S(x̄) = {ū}:

(e) DS(x̄ | ū) = H single-valued, and there exists κ ∈ [0,∞) such that, for
all x in a neighborhood of x̄, one has ∅ �= S(x) ⊂ ū+ κ|x− x̄|IB;

(f) H is single-valued, continuous and positively homogeneous, and for all
x in a neighborhood of x̄ one has

∅ �= S(x) ⊂ ū+H(x− x̄) + o(|x− x̄|)IB.
Guide. This parallels Theorem 7.21 in appealing to the convergence properties
in 5.43 and 5.44. In dealing with (e) and (f), note that in both cases the
assumptions imply the existence of ε > 0, a neighborhood W ∈ N (0) and
a bounded set B, such that ∅ �= ΔτDS(x̄ | ū)(w) ⊂ B when τ ∈ (0, ε) and
w ∈ W . Build an argument around the idea that if a sequence of mappings
Dν is nonempty-valued and uniformly locally bounded on an open set O, and
g-lim supν D

ν ⊂ D for a mapping D that is single-valued on O, then Dν→p D
uniformly on compact subsets of O.

In the case of property 8.43(f) where H is a linear mapping, S is said
to be differentiable at x̄. One should appreciate that this property is defi-
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nitely stronger than just having semidifferentiability with the semiderivatives
behaving linearly. It wouldn’t be appropriate to speak of ‘differentiability’
merely if the equivalent conditions 8.43(a)(b)(c)(d) hold and H happens to be
single-valued and linear. For example, the mapping S : IR →→ IR defined by
S(x) = {0} ∪ S0(x), with S0(x) an arbitrarily chosen subset of IR \ (−1, 1), is
semidifferentiable at x̄ = 0 for ū = 0 and has DS(x̄ | ū) ≡ 0. But S fails to
display the expansion property in 8.43(f) for H ≡ 0.

This example also shows that semidifferentiability of S at x̄ for ū doesn’t
necessarily imply continuity of S at x̄. Semidifferentiability does imply

ū ∈ lim inf
τ ↘ 0
w′→w

ΔτS(x̄ | ū)(w′),

and for single-valued S this comes out as continuity at x̄. Semidifferentiability
of single-valued mappings will be pursued further in 9.25.

The ‘growth condition’ on S in 8.43(e) will later, in 9(30) with ū replaced
by S(x̄) not necessarily a singleton, come under the heading of ‘calmness’ of
set-valued mappings.

8.44 Exercise (subdifferentiation of derivatives).

(a) Suppose S : IRn →→ IRm is osc at x̄, and let ū ∈ S(x̄). Then for the
mapping H = DS(x̄ | ū) and any w̄ ∈ domH and z̄ ∈ H(w̄) one has

D∗H(w̄ | z̄)(y) ⊂ D∗H(0 |0)(y) ⊂ D∗S(x̄ | ū)(y) for all y.

(b) Suppose f : IRn → IR is finite and locally lsc at x̄. Then for the function
h = df(x̄) and any w̄ ∈ domh one has

∂h(w̄) ⊂ ∂h(0) ⊂ ∂f(x̄), ∂
∞
h(w̄) ⊂ ∂

∞
h(0) ⊂ ∂

∞
f(x̄).

Guide. In (a) invoke 6.27(a) relative to the definition of H in 8.33. In (b)
apply (a) through 8.35—or argue directly from 6.27(a) again in terms of the
epigraphical geometry in 8.2(a), 8.9 and 8.17(a).

I∗. Proximal Subgradients

Proximal normals have been seen to be useful in some situations as a special
case of regular normals, and there is a counterpart for subgradients.

8.45 Definition (proximal subgradients). A vector v is called a proximal sub-
gradient of a function f : IRn → IR at x̄, a point where f(x̄) is finite, if there
exist ρ > 0 and δ > 0 such that

f(x) ≥ f(x̄) + 〈v, x− x̄〉 − 1
2ρ|x− x̄|2 when |x− x̄| ≤ δ. 8(30)

The existence of a proximal subgradient at x̄ corresponds to the existence
of a ‘local quadratic support’ to f at x̄. This relates to the proximal points
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and proximal hulls in Example 1.44, which concern a global version of the
quadratic support property. It’s easy to see that when f is prox-bounded the
local inequality in 8(30) can be made to hold globally through an increase in ρ
if necessary (cf. 8.46(f) below).

8.46 Proposition (characterizations of proximal subgradients).

(a) A vector v is a proximal subgradient to f at x̄ if and only if (v,−1) is
a proximal normal to epi f at

(
x̄, f(x̄)

)
.

(b) A vector v is a proximal subgradient of δC at x̄ if and only if v is a
proximal normal to C at x̄.

(c) A vector v is a proximal subgradient of f at x̄ if and only if on some
neighborhood of x̄ there is a C2 function h ≤ f with h(x̄) = f(x̄), ∇h(x̄) = v.

(d) A vector v is a proximal normal to C at x̄ if and only if on some
neighborhood of x̄ there is a C2 function h with ∇h(x̄) = v such that h has a
local maximum on C at x̄.

(e) The proximal subgradients of f at x̄ form a convex subset of ∂̂f(x̄).

(f) As long as f is prox-bounded, the points at which f has a proximal
subgradient are the points that are λ-proximal for some λ > 0, i.e., belong to⋃

λ>0 rgePλf . Indeed, if x ∈ Pλf(w) the vector v = λ−1[w − x] is a proximal
subgradient at x and satisfies

f(x′) ≥ f(x) + 〈v, x′ − x〉 − 1
2λ

−1|x′ − x|2 for all x′ ∈ IRn.

f

(v,-1)

(x,f(x))
_ _

Fig. 8–14. Proximal subgradients generated from quadratic supports.

Proof. We start with (c), for which the necessity is clear from the defining
condition 8(30). To prove the sufficiency, consider such h on IB(x̄, δ) and let

ρ := − min
|x−x̄|≤δ
|w|=1

〈
w,∇2h(x)w

〉
.

For any w with |w| = 1 the function ϕ(τ) := h(x̄+τw) has ϕ(0) = f(x̄), ϕ′(0) =
〈v, w〉 and ϕ′′(τ) =

〈
w,∇2h(x̄+ τw)w

〉 ≥ −ρ, so ϕ(τ) ≥ ϕ(0) + ϕ′(0)τ − 1
2ρτ

2

for 0 ≤ τ ≤ δ. Thus h(x) ≥ h(x̄) + 〈v, x − x̄〉 − 1
2ρ|x− x̄|2 when |x− x̄| ≤ δ.

Since f(x) ≥ h(x) for x ∈ IB(x̄, δ) and f(x̄) = h(x̄), we conclude that v is a
proximal subgradient to f at x̄.

We work next on (b) and (d) simultaneously. If v is a proximal subgradient
of δC at x̄, there exist ρ > 0 and δ > 0 such that 8(30) holds for f = δC . Then
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in terms of ε := 1/ρ we have 2ε
〈
v, x−x̄〉 ≤ |x−x̄|2 when x ∈ C and |x−x̄| ≤ δ.

Since 〈v, x− x̄〉 ≤ |x− x̄||v|, when |x− x̄| ≥ δ, we get for τ := min
{
ε, δ/2|v|}

that 2τ
〈
v, x− x̄〉 ≤ |x− x̄|2 for all x ∈ C, so

0 ≤ |x− x̄|2 − 2τ
〈
v, x− x̄〉 = ∣∣x− (x̄+ τv)

∣∣2 − τ2|v|2 for all x ∈ C. 8(31)

But this means x̄ ∈ PC(x̄ + τv); thus v is a proximal normal to C at x̄. On
the other hand, if the latter is true, so that 8(31) holds for a certain τ > 0, the

C2 function h(x) := −(1/2τ)∣∣x− (x̄+ τv)
∣∣2 achieves its maximum over C at x̄,

and ∇h(x̄) = v. Then v satisfies the condition in (d). But in turn, if v satisfies
that condition for any C2 function h, we have for h0(x) := h(x) − h(x̄) that
δC(x) ≥ h0(x) for all x in a neighborhood of x̄, while δC(x̄) = h0(x̄), and then
from (c), as applied to δC and h0, we conclude that v is a proximal subgradient
of δC at x̄. This establishes both (b) and (d).

Turning to the proof of (a), we observe that if v is a proximal subgradient
of f at x̄, so that 8(30) holds for some ρ > 0 and δ > 0, the C2 function
h(x, α) := f(x̄)+〈v, x−x̄〉− 1

2ρ|x−x̄|2−α achieves a local maximum over epi f
at
(
x̄, f(x̄)

)
, and ∇h(x̄, f(x̄)) = (v,−1). Then (v,−1) is a proximal normal to

epi f at
(
x̄, f(x̄)

)
through the equivalence already established in (d), as applied

to epi f . Conversely, if (v,−1) is a proximal normal to epi f at
(
x̄, f(x̄)

)
there

exists τ > 0 such that the ball of radius τ around
(
x̄, f(x̄)

)
+ τ(v,−1) touches

epi f only at
(
x̄, f(x̄)

)
(cf. 6.16). The upper surface of this ball is the graph

of a C2 function h ≤ f , defined on a neighborhood of x̄, with h(x̄) = f(x̄) and
∇h(x̄) = v. If follows then from (c) that v is a proximal subgradient of f at x̄.

The convexity property in (e) is elementary. As for the claims in (f), we
can suppose f �≡ ∞. Prox-boundedness implies then that f is proper and the
envelope function eλf is finite for λ in an interval (0, λf ); cf. 1.24. Then for
any x̄ we have f(x) ≥ eλf(x̄) − (1/2λ)|x − x̄|2 for all x. If in addition v is a
proximal subgradient at x̄, so that 8(30) holds, we can get the global inequality

f(x) ≥ f(x̄) + 〈v, x− x̄〉 − 1

2λ̄
|x− x̄|2 for all x

by taking λ̄ > 0 small enough that λ̄−1 > ρ and f(x̄) + |v|τ − (1/2λ̄2)τ2 ≤
eλf(x̄)− (1/2λ)τ2 for all τ ≥ δ, which is always possible. Setting w = x̄+ λ̄v,
so v = λ̄−1[w− x̄], we can construe this global inequality as saying that f(x̄)+
(1/2λ̄)|x̄−w|2 ≤ f(x)+(1/2λ̄)|x−w|2 for all x, or in other words, x̄ ∈ Pλ̄f(w).

Conversely, if x̄ ∈ Pλf(w), λ > 0, we have f(x̄) + (1/2λ)|x̄−w|2 ≤ f(x)+
(1/2λ)|x−w|2 for all x, the value f(x̄) being finite. In terms of v = λ−1[w− x̄]
this takes the form f(x) ≥ f(x̄) + 〈v, x− x̄〉 − (1/2λ)|x− x̄|2 and says that v
is a proximal subgradient at x̄.

8.47 Corollary (approximation of subgradients). Let f be lsc, proper, and finite
at x̄, and let v̄ ∈ ∂f(x̄) and v̄′ ∈ ∂∞f(x̄).

(a) For any δ > 0 there exist x ∈ IB(x̄, δ) ∩ dom f with |f(x) − f(x̄)| ≤ δ
and a proximal subgradient v ∈ ∂f(x) such that v ∈ IB(v̄, δ). Likewise, there
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exist x′ ∈ IB(x̄, δ) ∩ dom f with |f(x′)− f(x̄)| ≤ δ and a proximal subgradient
v′ ∈ ∂f(x′) such that λv′ ∈ IB(v̄, δ) for some λ ∈ (0, δ).

(b) For any sequence of lsc, proper, functions fν with e-lim infν f
ν = f ,

there is a subsequence {fν}ν∈N (for N ∈ N#
∞) and points xν→N x̄ with

fν(xν)→N f(x̄) having proximal subgradients vν ∈ ∂fν(xν) such that vν→N v̄.

Likewise, there exist x′ν→N x̄ with fν(x′ν)→N f(x̄) having proximal sub-
gradients v′ν ∈ ∂fν(x′ν) such that λνv′ν→N v̄′ for some choice of λν ↘ 0.

In each case the index set N can be taken in N∞ if actually fν→e f .

Proof. Part (a) follows from 8.46(a) and the geometry in 8.9 by making use
of the approximation in 6.18(a). Part (b) follows similarly from 6.18(b).

Another way of generating subgradients v ∈ ∂f(x̄) or v ∈ ∂∞f(x̄) as lim-
its, this time from sequences of nearby ‘ε-regular subgradients’, will be seen in
10.46. For convex functions a much stronger result than 8.47(b) will be avail-
able in 12.35: when such functions epi-converge, their subgradient mappings
converge graphically.

8.48 Exercise (approximation of coderivatives). Suppose ū ∈ S(x̄) for a map-
ping S expressed as the graphical outer limit g-lim supν S

ν of a sequence of
osc mappings Sν : IRn →→ IRm. Let z ∈ D∗S(x̄ | ū)(y). Then there is a subse-
quence {Sν}ν∈N (for N ∈ N#

∞) along with (xν , uν)→N x̄ and (yν , zν)→N (y, z)

such that uν ∈ Sν(xν) and zν ∈ D̂∗S(xν |uν)(yν), hence in particular zν ∈
D∗S(xν |uν)(yν). (The index set N can be taken in N∞ if actually Sν→g S.)

Guide. Derive this by applying 6.18(b) to the graphs of these mappings and
using the fact that proximal normals are regular normals.

J∗. Other Results

The Clarke normal cone N epi f

(
x̄, f(x̄)

)
= cl conNepi f

(
x̄, f(x̄)

)
(cf. 6.38) leads

to a concept of subgradients which captures a tighter duality for functions that
aren’t regular. The sets of Clarke subgradients and Clarke horizon subgradients
of f at x̄ are defined by

∂̄f(x̄) :=
{
v
∣∣∣ (v,−1) ∈ N epi f

(
x̄, f(x̄)

)}
,

∂̄
∞
f(x̄) :=

{
v
∣∣∣ ( v, 0 ) ∈ N epi f

(
x̄, f(x̄)

)}
.

8(32)

8.49 Theorem (Clarke subgradients). Let f : IRn → IR be locally lsc and finite
at x̄. Then ∂̄f(x̄) is a closed convex set, ∂̄∞f(x̄) is a closed convex cone, and

∂̄f(x̄) =
{
v
∣∣∣ 〈v, w〉 ≤ d̂f(x̄)(w) for all w ∈ IRn

}
,

∂̄
∞
f(x̄) =

{
v
∣∣∣ 〈v, w〉 ≤ 0 for all w ∈ dom d̂f(x̄)

}
.



J∗. Other Results 337

Moreover ∂̄∞f(x̄) = ∂̄f(x̄)∞ as long as ∂̄f(x̄) �= ∅, or equivalently ∂f(x̄) �= ∅,
and in that case

d̂f(x̄)(w) = sup
〈
∂̄f(x̄), w

〉
for all w ∈ IRn.

When the cone ∂̄∞f(x̄) is pointed, which is true if and only if the cone ∂∞f(x̄)
is pointed, one has the representations

∂̄f(x̄) = con ∂f(x̄) + con ∂
∞
f(x̄), ∂̄

∞
f(x̄) = con ∂

∞
f(x̄).

Proof. The initial assertions are immediate from the defining formulas in
8(32), because N epi f

(
x̄, f(x̄)

)
= T̂epi f

(
x̄, f(x̄)

)∗
by 6.38, while epi d̂f(x̄) =

T̂epi f
(
x̄, f(x̄)

)
by 8.17(a). The function d̂f(x̄) is lsc and sublinear (cf. 8.18), so

the formula for ∂̄f(x̄) in terms of d̂f(x̄) ensures through the theory of support

functions in 8.24 that as long as ∂̄f(x̄) isn’t empty, d̂f(x̄)(w) is the indicated
supremum. Since N epi f

(
x̄, f(x̄)

)
= cl conNepi f

(
x̄, f(x̄)

)
with

Nepi f

(
x̄, f(x̄)

)
=
{
λ(v,−1) ∣∣ v ∈ ∂f(x̄), λ > 0

} ∪ {(v, 0) ∣∣ v ∈ ∂∞
f(x̄)

}
8(33)

by 8.9, it’s clear that ∂̄f(x̄) �= ∅ if and only if ∂f(x̄) �= ∅. Also, Nepi f

(
x̄, f(x̄)

)
is pointed if and only if ∂∞f(x̄) is pointed. But then by 3.15, N epi f

(
x̄, f(x̄)

)
is

pointed too and simply equals conNepi f

(
x̄, f(x̄)

)
, so that ∂̄∞f(x̄) is pointed.

Conversely, the pointedness of the cone ∂̄∞f(x̄) entails that of the cone ∂∞f(x̄),
because ∂̄∞f(x̄) ⊃ ∂∞f(x̄).

The identification of N epi f

(
x̄, f(x̄)

)
with conNepi f

(
x̄, f(x̄)

)
yields at once

through 8(33) the convex hull formulas for ∂̄f(x̄) and ∂̄∞f(x̄).

In a variety of settings, including those in which f is subdifferentially
regular, one actually has ∂̄f(x̄) = ∂f(x̄) and ∂̄∞f(x̄) = ∂∞f(x̄). When these
equations don’t hold, it is tempting to think that the replacement of ∂f(x̄)
and ∂∞f(x̄) by ∂̄f(x̄) and ∂̄∞f(x̄) would be well rewarded by the close duality
thereby achieved, as expressed in Theorem 8.49. There are some fundamental
situations, however, where such replacement is definitely undesirable because
it would lead to a serious loss of local information.

This is already apparent from the discussion of convexified normal cones
in Chapter 6, since ∂̄δC = NC = cl conNC in contrast to ∂δC = NC , and there
are many cases where convexification of a cone wipes out its structure. But
the drawbacks are especially clear in the context of generalizing the subdiffer-
entiation of functions f : IRn → IR to that of mappings F : IRn → IRm.

Figure 8–13 shows a mapping F : IR1 → IR1 and a point (x̄, ū) ∈ gphF
where NgphF (x̄, ū) is a rather complicated cone comprised of two lines and one
of the sectors between them. It embodies significant local information about F ,
but the convexified cone NgphF (x̄, ū) is all of IR

2 and says little. In this case the
coderivative mapping D∗F (x̄) is much richer than the convexified coderivative
mapping D

∗
F (x̄) we would obtain through the general definition of D

∗
S(x̄ | ū)

for S : IRn →→ IRm by
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v ∈ D∗
S(x̄ | ū)(y) ⇐⇒ (v,−y) ∈ NgphS(x̄, ū).

Not only normal and tangent cones, but also recession cones to epi f have
implications for the analysis of a function f .

8.50 Proposition (recession properties of epigraphs). For a function f : IRn →
IR and a point x̄ where f is finite and locally lsc, the following properties of a
pair (w, β) ∈ IRn × IR are equivalent:

(a) (w, β) belongs to the local recession cone Repi f

(
x̄, f(x̄)

)
;

(b) there exist V ∈ N (x̄) and δ > 0 such that df(x)(w) ≤ β when x ∈ V
and f(x) ≤ f(x̄) + δ;

(c) there exist V ∈ N (x̄) and δ > 0 such that d̂f(x)(w) ≤ β when x ∈ V
and f(x) ≤ f(x̄) + δ;

(d) there exist V ∈ N (x̄) and δ > 0 such that 〈v, w〉 ≤ β for all v ∈ ∂f(x)
when x ∈ V and f(x) ≤ f(x̄) + δ;

(e) there exist V ∈ N (x̄) and δ > 0 such that 〈v, w〉 ≤ β for all v ∈ ∂̂f(x)
when x ∈ V and f(x) ≤ f(x̄) + δ;

(f) for some V ∈ N (x̄), δ > 0 and ε > 0 one has

f(x+ τw)− f(x)
τ

≤ β when τ ∈ [0, ε], x ∈ V, f(x) ≤ f(x̄) + δ.

Proof. First we note the meaning of (a) on the basis of the definition of local
recession vectors in 6.33: there is a neighborhood of

(
x̄, f(x̄)

)
, which we may as

well take in the form V × [f(x̄)− δ, f(x̄) + δ
]
with V ∈ N (x̄) and δ > 0, along

with ε > 0 such that for all points (x, α) ∈ epi f lying in this neighborhood,
and all τ ∈ [0, ε], one has (x, α) + τ(w, β) ∈ epi f , or in other words,

τ ∈ [0, ε], x ∈ V, α ≥ f(x)
f(x̄)− δ ≤ α ≤ f(x̄) + δ

}
=⇒ f(x+ τw) ≤ α+ τβ.

This property is equivalent to (f) because f is locally lsc at x̄: by choosing a
smaller V ∈ N (x̄) relative to any δ, we can always ensure that whenever x ∈ V
and f(x) ≤ α ≤ f(x̄) + δ, then also α ≥ f(x̄)− δ.

The equivalence of (a) with (b) and (c) is clear from the characterization
of local recession vectors in 6.35(a)(b) and the identification of Tepi f

(
x̄, f(x̄)

)
and T̂epi f

(
x̄, f(x̄)

)
with epi df(x̄) and epi d̂f(x̄) in 8.2(a) and 8.17(a).

Similarly, condition 6.35(c) tells us by way of the description of the normal
cone Nepi f

(
x̄, f(x̄)

)
in 8.9 that (a) is equivalent to having the existence of

V ∈ N (x̄) and δ > 0 such that

x ∈ V
f(x) ≤ f(x̄) + δ

}
=⇒

{〈
(v,−1), (w, β)〉 ≤ 0 when v ∈ ∂f(x)〈
(v, 0), (w, β)

〉 ≤ 0 when v ∈ ∂∞
f(x).

This condition obviously entails (d), hence in turn (e) because ∂̂f(x) ⊂ ∂f(x),
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but it is at the same time a consequence of (e) through the limit definition of

∂f and ∂∞f in terms of ∂̂f in 8.3. Thus, (a) is equivalent to (d) and (e).

8.51 Example (nonincreasing functions). A function f : IRn → IR is said to be
nonincreasing relative to K, a cone in IRn, if f(x+ w) ≤ f(x) for all x ∈ IRn

and w ∈ K. For f lsc and proper, this holds if and only if

∂f(x) ⊂ K∗ for all x ∈ dom f (K∗ = polar cone).

Detail. This comes from the equivalence of the recession properties in 8.50(d)
and (f) in the case of β = 0.

f
(w, )β(x,f(x))

_ _

Fig. 8–15. Uniform descent indicated by an epigraphical recession vector.

Functions of a single real variable have special interest but also a number
of peculiarities in the context of subgradients and subderivatives. In the case
of f : IR1 → IR and a point x̄ where f is finite, the elements of ∂̂f(x̄), ∂f(x̄)
and ∂∞f(x̄) are numbers rather than vectors, and they generalize slope values

rather than gradients. By the convexity in 8.6, ∂̂f(x̄) is a certain closed interval
(perhaps empty) within the closed set ∂f(x̄) ⊂ IR, while for ∂∞f(x̄) there are
only four possibilities: [0, 0], [0,∞), (−∞, 0], or (−∞,∞).

The subderivative functions df(x̄) and d̂f(x̄) are entirely determined then
through positive homogeneity from their values at w̄ = ±1; limits w → w̄ don’t
have to be taken:

lim inf
τ ↘ 0

f(x̄+ τ)− f(x̄)
τ

= df(x̄)(1),

lim sup
τ ↘ 0

f(x̄+ τ)− f(x̄)
τ

= −d (−f)(x̄)(1),

lim inf
τ ↗ 0

f(x̄+ τ)− f(x̄)
τ

= −df(x̄)(−1),

lim sup
τ ↗ 0

f(x̄+ τ)− f(x̄)
τ

= d (−f)(x̄)(−1),

8(34)

and through 8.18 one then has

∂̂f(x̄)(1) = lim sup
x→f x̄

df(x)(1), ∂̂f(x̄)(−1) = lim sup
x→f x̄

df(x)(−1).
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Differentiability of f at x̄ corresponds to having all four of the values in 8(34)
coincide and be finite; the common value is then f ′(x̄). More generally, the
existence of the right derivative or the left derivative at x̄, defined by

f ′
+
(x̄) := lim

τ ↘ 0

f(x̄+ τ)− f(x̄)
τ

, f ′
−(x̄) := lim

τ ↗ 0

f(x̄+ τ)− f(x̄)
τ

,

where infinite values are allowed, corresponds to

f ′
+
(x̄) = df(x̄)(1) = −d (−f)(x̄)(1),

f ′
−(x̄) = −df(x̄)(−1) = d (−f)(x̄)(−1). 8(35)

When these one-sided derivatives exist, they fully determine df(x̄) through

df(x̄)(w) =

⎧⎪⎪⎨
⎪⎪⎩
f ′
−(x̄)w for w < 0,
f ′
+(x̄)w for w > 0,
0 for w = 0 if f ′

−(x̄) <∞ and f ′
+
(x̄) > −∞,

−∞ for w = 0 if f ′
−(x̄) =∞ or f ′

+(x̄) = −∞.

8.52 Example (convex functions of a single real variable). For a proper, convex
function f : IR1 → IR the right and left derivatives f ′

+
(x̄) and f ′

−(x̄) exist at
any x̄ ∈ dom f and satisfy f ′

−(x̄) ≤ f ′
+
(x̄). When f is locally lsc at x̄, one has

∂f(x̄) = ∂̂f(x̄) =
{
v ∈ IR ∣∣ f ′

−(x̄) ≤ v ≤ f ′
+
(x̄)
}
,

∂
∞
f(x̄) =

⎧⎪⎪⎨
⎪⎪⎩

[0, 0] if f ′
−(x̄) > −∞, f ′

+(x̄) <∞,
[0,∞) if f ′

−(x̄) > −∞, f ′
+
(x̄) =∞,

(−∞, 0] if f ′
−(x̄) = −∞, f ′

+
(x̄) <∞,

(−∞,∞) if f ′
−(x̄) = −∞, f ′

+
(x̄) =∞.

Detail. The existence of right and left derivatives is apparent from 8.21 (or
even from 2.12), and the preceding facts can then be applied in combination
with the regularity of f at points where it is locally lsc (cf. 7.27) and the duality
between subgradients and subderivatives in such cases (cf. 8.30).

A rich example, displaying nontrivial relationships among the subdiffer-
entiation concepts we’ve been studying, is furnished by distance functions.

8.53 Example (subdifferentiation of distance functions). For f = dC in the case
of a closed set C �= ∅ in IRn, one has at any point x̄ ∈ C that

∂f(x̄) = NC(x̄) ∩ IB, ∂̂f(x̄) = N̂C(x̄) ∩ IB,
df(x̄)(w) = d

(
w, TC(x̄)

)
, d̂f(x̄)(w) = max

v∈NC (x̄)∩IB

〈
v, w
〉
.

On the other hand, one has at any point x̄ /∈ C in terms of the projection
PC(x̄) =

{
x̃ ∈ C ∣∣ |x̄− x̃| = dC(x̄)

}
that
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∂f(x̄) =
x̄− PC(x̄)

dC(x̄)
, ∂̂f(x̄) =

⎧⎨
⎩
{
x̄− x̃
dC(x̄)

}
if PC(x̄) = {x̃}

∅ otherwise,

df(x̄)(w) = min
x̃∈PC (x̄)

〈
x̄− x̃, w〉
dC(x̄)

, d̂f(x̄)(w) = max
x̃∈PC(x̄)

〈
x̄− x̃, w〉
dC(x̄)

.

At all points x̄ ∈ C and x̄ /∈ C, one has both ∂∞f(x̄) = {0} and ∂f(x̄)∞ = {0}.

Detail. The expressions for df(x̄) will be verified first. If x̄ ∈ C, so f(x̄) = 0,
we have [f(x̄ + τw) − f(x̄)]/τ = dC(x̄ + τw)/τ = d

(
w, [C − x̄]/τ), where in

addition |d(w, [C− x̄]/τ)−d(w̄, [C− x̄]/τ)| ≤ |w− w̄|. From this we obtain by
way of the connections between set limits and distance functions in 4.8 that

df(x̄)(w̄) = lim inf
τ ↘ 0

d
(
w̄, [C − x̄]/τ

)
= d
(
w, lim sup

τ ↘ 0
[C − x̄]/τ

)
,

where the ‘lim sup’ is by definition TC(x̄). If instead x̄ /∈ C, so f(x̄) > 0, we
have for any x̃ in PC(x̄) (this set being nonempty and compact; cf. 1.20) that

lim inf
τ ↘ 0
w→w̄

f(x̄+ τw)− f(x̄)
τ

≤ lim inf
τ ↘ 0
w→w̄

|x̄+ τw − x̃| − |x̄− x̃|
τ

=
〈
x̄− x̃, w̄〉/|x̄− x̃|.

Here we utilize the fact that the norm function h(z) := |z| is differentiable at
points z �= 0, namely with ∇h(z) = z/|z|. This yields

df(x̄)(w̄) ≤ min
x̃∈PC(x̄)

〈
x̄− x̃, w̄〉/dC(x̄).

To get the opposite inequality, we consider wν → w̄ and τν ↘ 0 with the prop-
erty that [f(x̄+ τνwν)− f(x̄)]/τν → df(x̄)(w̄). Selecting xν ∈ PC(x̄+ τνwν),
we obtain a bounded sequence with f(x̄ + τνwν) = |x̄ + τνwν − xν |, and by
passing to a subsequence if necessary we can suppose that xν converges to
some x̃, which must be a point of PC(x̄) (cf. 1.20). In particular xν ∈ C, so
|x̄− xν | ≥ f(x̄) = |x̄− x̃| and we can estimate

[f(x̄+ τνwν)− f(x̄)]/τν ≥ [ |x̄+ τνwν − xν | − |x̄− xν | ]/τν
≥ 〈x̄− xν , wν

〉/|x̄− xν | → 〈
x̄− x̃, w̄〉/|x̄− x̃|,

where the convexity of h(x) = |x| is used in writing h(z′)−h(z) ≥ 〈∇h(z), z′−z〉
(see 2.14 and 2.17). Thus, df(x̄)(w̄) ≥ 〈x̄−x̃, w̄〉/|x̄−x̃| and the general formula
for df(x̄) is therefore correct.

The regular subgradient set ∂̂f(x̄) consists of the vectors v such that
〈v, w〉 ≤ df(x̄)(w) for all w, cf. 8.4. In the case of x̄ ∈ C, where we have
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seen that df(x̄)(w) = d
(
w, TC(x̄)

)
, this tells us that a vector v belongs to

∂̂f(x̄) if and only if 〈v, w〉 ≤ |w − w̃| for all w̃ ∈ TC(x̄) and w ∈ IRn. Since
for fixed v and w̄ the inequality 〈v, w〉 ≤ |w − w̄| holds for all w if and only if
|v| ≤ 1 and 〈v, w̄〉 ≤ 0 (as seen from writing 〈v, w〉 = 〈v, w − w̄〉 + 〈v, w̄〉), we
conclude in this case that ∂̂f(x̄) consists of the vectors v belonging to both IB

and T̂C(x̄)
∗. The polar cone TC(x̄)

∗ is N̂C(x̄) by 6.28.

In the case of x̄ /∈ C, the formula derived for df(x̄) tells us instead that v

belongs to ∂̂f(x̄) if and only if〈
v, w
〉 ≤ 〈x̄− x̃, w〉/dC(x̄) for all w ∈ IRn and x̃ ∈ PC(x̄).

For fixed x̃, this inequality (for all w) holds if and only if v = (x̄ − x̃)/dC(x̄).
Therefore, if PC(x̄) consists of only one x̃, the corresponding v from this formula

is the only element of ∂̂f(x̄), whereas if PC(x̄) consists of more than one x̃, then

∂̂f(x̄) has to be empty.

Armed with this knowledge of ∂̂f , we invoke the limits in 8(5) to generate
∂f and ∂∞f . Because f is continuous, we obtain

∂f(x̄) = lim sup
x→x̄

∂̂f(x), ∂
∞
f(x̄) = lim sup

x→x̄

∞ ∂̂f(x).

We have determined that ∅ �= ∂̂f(x) ⊂ IB for all x ∈ IRn, so ∂∞f(x̄) = {0} and
∅ �= ∂̂f(x̄) ⊂ IB for all x̄, hence also ∂f(x̄)∞ = {0}. In particular we have

∂̂f(x) ⊂ [x− PC(x)
]/
dC(x) ⊂

⋂
x̃∈PC(x)

N̂C(x̃) when x /∈ C,

because any vector of the form v = (x− x̃)/dC(x) with x̃ ∈ PC(x) is a proximal
normal to C at x̃, hence a regular normal.

In the case of x̄ /∈ C, the osc property of PC (cf. 1.20, 7.44) implies

through ∂f(x̄) = lim supx→x̄ ∂̂f(x) that ∂f(x̄) ⊂
[
x̄−PC(x̄)

]/
dC(x̄). Equality

actually has to hold, because for any x̃ ∈ PC(x̄) and any τ ∈ (0, 1) the point

xτ = (1 − τ)x̄ + τ x̃ has PC(xτ ) = {x̃} (see 6.16) so that ∂̂f(xτ ) consists
uniquely of (xτ − x̃)/dC(xτ ), which approaches (x̄− x̃)/dC(x̄) as τ ↘ 0. In the
alternative case of x̄ ∈ C, we have for x → x̄ in the limit defining ∂f(x̄) that

∂̂f(x) = N̂C(x)∩IB when x ∈ C, but also ∂̂f(x) ⊂ N̂C(x̃)∩IB for all x̃ ∈ PC(x)
when x /∈ C. Because PC(x)→ {x̄} as x→ x̄ ∈ C, we get

∂f(x̄) = lim sup
x→C x̄

[
N̂C(x) ∩ IB

]
= NC(x̄) ∩ IB

according to the definition of NC(x̄) in 6.3.

Only d̂f(x̄) remains. We have d̂f(x̄)(w) = sup
{〈v, w〉 ∣∣ v ∈ ∂f(x̄)} from

8.23, since ∂∞f(x̄) = {0}, and through this the expressions derived for ∂f(x̄)

when x̄ ∈ C or x̄ /∈ C yield the ones claimed for d̂f(x̄)(w).

An observation about generic continuity concludes this chapter.
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8.54 Exercise (generic continuity of subgradient mappings).

(a) For any proper function f : IRn → IR, the set of points where the
mapping ∂f : IRn →→ IRn fails to be continuous relative to its domain in the
topology of f -attentive convergence is meager in this topology. So too is the
set of points where the mapping x �→ ∂f(x) ∪ dir ∂∞f(x) into csm IRn fails to
be continuous.

(b) For any mapping S : IRn →→ IRm, the set of points of gphS where the
mapping-valued mapping (x, u) �→ D∗S(x |u) fails to be continuous relative to
its domain in the topology of graphical convergence is meager in this domain.

Guide. Derive these properties from Theorem 5.55, recalling that the f -
attentive topology on a subset of dom f can be identified with the ordinary
topology on the corresponding subset of gph f .

Commentary

Subdifferential theory didn’t grow out of variational geometry. Rather, the opposite
was essentially what happened. Although tangent and normal cones can be traced
back for many decades and attracted attention on their own with the advent of
optimization in its modern form, the bulk of the effort that has been devoted to
their study since the early 1960’s came from the recognition that they provided the
geometric testing ground for investigations of generalized differentiability.

Subgradients of convex functions marked the real beginning of the subject in the
way it’s now seen. This notion, in the sense of associating a set of vectors v with f
at each point x through the affine support inequality in 8.12 and Figure 8–6, or

f(x+ w) ≥ f(x) + 〈v, w〉 for all w, 8(36)

and thus defining a set-valued mapping for which calculus rules could nonetheless be
provided, first appeared in the dissertation of Rockafellar [1963]. The notation ∂f(x)
was introduced there as well. Affine supports had, of course, been considered before
by others, but without any hint of building a set-valued calculus out of them.

Around the same time, Moreau [1963a] used the term ‘subgradient’ (French:
sous-gradient), not for vectors v but for a single-valued mapping that selects for
each x some element of ∂f(x). After learning of Rockafellar’s work, Moreau [1963b]
proposed using ‘subgradient’ instead in the sense that thereafter became standard,
and convex analysis started down its path of rapid development by those authors and
soon others. The importance of multivaluedness in this context was also recognized
early by Minty [1964], but he shied away from speaking of multivalued mappings
and preferred instead the language of ‘relations’ as subsets of a product space. His
work on maximal monotone relations in IR × IR, cf. Minty [1960], was influential
in Rockafellar’s thinking. Such relations are now recognized as the graphs of the
generally multivalued mappings ∂f associated with proper, lsc, convex functions f
on IR (as in 8.52).

It was well understood in those days that subgradients v correspond to epigraph-
ical normal vectors (v,−1), and that the subgradient set ∂f(x) could be characterized
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with respect to the one-sided directional derivatives of f at x, which in turn are as-
sociated with tangent vectors to the convex set epi f . The support function duality
between convex sets and sublinear functions (in 8.24), which afforded the means of
expressing this relationship, goes back to Minkowski [1910], at least for bounded sets.
The envelope representations in 8.13, on which this correspondence rests, have a long
history as well but in their modern form (not just for convex functions that are finite
on IRn) they can be credited to Fenchel [1951]. See Hörmander [1954] for an early
discussion of the corresponding facts beyond IRn. The dualizations in Proposition
8.29 can be found in Rockafellar [1970a].

Subgradients in the convex case found widespread application in optimization
and problems of control of ordinary and partial differential equations, as seen for
instance in books of Rockafellar [1970a], Ekeland and Temam [1974], and Ioffe and
Tikhomirov [1974]. Optimality conditions like the one in the convex case of Theorem
8.15 are just one example (to be augmented by others in Chapter 10). Applications
not fitting within the domain of convexity had to wait for other ideas, however.

A major step forward came with the dissertation of Clarke [1973], who found a
way of extending the theory to the astonishingly broad context of all lsc, proper func-
tions f on IRn. Clarke’s approach was three-tiered. First he developed subgradients
for Lipschitz continuous functions out of their almost everywhere differentiability, ob-
taining a duality with certain directional derivative expressions. Next he invoked that
for distance functions dC in order to get a new concept of normal cones to nonconvex
sets C. Finally he applied that concept to epigraphs so as to obtain normals (v,−1)
whose v component could be regarded as a subgradient. This innovation, once it
appeared in Clarke [1975], sparked years of efforts by many researchers in elaborating
the ideas and applying them to a range of topics, most significantly optimal control;
cf. Clarke [1983], [1989] for references. The notion of subdifferential regularity in 8.30,
likewise from Clarke [1973], [1975], became a centerpiece.

Lipschitzian properties, which will be discussed in Chapter 9, so dominated
the subject at this stage that relatively little was made of the remarkable extension
that had been achieved to general functions f : IRn → IR. For instance, although
Clarke featured a duality between compact, convex sets posed as subgradient sets
of Lipschitz continuous functions and finite sublinear functions expressed by certain
limits of difference quotients, there was nothing analogous for the case of general f .
Rockafellar [1979a], [1980], filled the gap by introducing a subderivative function which
in the terminology adopted here is the one giving regular subderivatives (the notation

used was f↑(x;w), not d̂f(x)(w)). He demonstrated that it gave Clarke’s directional
derivatives in the Lipschitzian case (cf. 9.16), yet furnished the full duality between
subgradients and generalized directional derivatives that had so far been lacking.

Of course that duality differs from the more elaborate subderivative-subgradient
pairing seen here in 8.4 and 8.23, apart from the case of subdifferential regularity in
8.30. The passage to those relationships, signaling a significant shift in viewpoint,
was propelled by the growing realization that automatic convexification of subgradient
sets (which came from Clarke’s convexification of normal cones; cf. 6(19) and 8(32))
could often be a hindrance. This advance owes credit especially to Mordukhovich and
Ioffe; see the Commentary of Chapter 6 and further comments below.

The importance and inevitability of making a comprehensive adjustment of the
theory to the new paradigm has been our constant guide in putting this chapter
together. It has molded not only our exposition but also our choices of terminology
and notation, in particular in attaining full coordination with the format of variational
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geometry. The motivations explained in the Commentary to Chapter 6 carry over to
this endeavor as well.

Much has already been said in the Commentary to Chapter 7 about one-sided
directional derivatives, but here one-sidedness with respect to liminf and limsup too
has been brought into the picture. The lower-limit expressions we’ve denoted by
df(x)(w) were considered by Penot [1978], who called them ‘lower semiderivatives’.
Aubin [1981] dubbed them ‘contingent derivatives’ (later ‘contingent epi-derivatives’
in Aubin and Frankowska [1990]), while Ioffe [1981b], [1984a], offered the name ‘Dini
derivatives’. One-sided derivatives defined with liminf and limsup were indeed stud-
ied long ago by Dini [1878], but only for functions on IR1, where the complications
of directional convergence don’t surface. We prefer ‘subderivative’ for this concept
because of its attractive parallel with ‘subgradient’ and the side benefit of harmoniz-
ing with the earlier terminology of Rockafellar [1980], as long as the subderivatives
in that work are now designated ‘regular’, which is entirely appropriate.

Once nonconvex functions f : IRn → IR (not necessarily Lipschitz continuous)
were addressed, the original definition of subgradients (through the affine support
inequality enjoyed by convex functions) had to be replaced by something else. Clarke
initially chose to appeal to normal vectors (v,−1) to epigraphs. Rockafellar [1980]
established that Clarke’s subgradients at x could be described equally well as the
vectors v satisfying

d̂f(x)(w) ≥ 〈v, w〉 for all w 8(37)

(in present notation); this fact shows up here in 8.49. Although analogous to the
subgradient inequality in the convex case, and able to serve directly as the definition
of Clarke’s subgradients in the general setting, this characterization was burdened by
the complexity of the limits that are involved in expressing d̂f(x)(w) unless f falls
into some special category, or the direction vector w has an interior property as in
Theorem 8.22, a result of Rockafellar [1979a]. For purposes such as the development
of a strong calculus, alternative characterizations of subgradients were desirable.

That led to the introduction of ‘proximal’ subgradients in Rockafellar [1981b].
Such vectors v satisfy an inequality like 8(36), except that affine supports are replaced
by quadratic supports; cf. 8(30). At the same time they correspond to (v,−1) being
a proximal normal to epi f , cf. 8.46, making them able to draw on the geometric con-
structions of Clarke. As in that geometry, limits then had to be taken. The definition
reached was just like 8.3, but instead of ‘regular subgradients’ yielding ‘general sub-
gradients’, proximal subgradients produced ‘limiting proximal subgradients’. (Now,
we know that these two kinds of limit vectors are actually the same; see 8.46 and
other comments below.)

This wasn’t the end of the process, because the goal at the time was to recover
Clarke’s convexified subgradient set, denoted here by ∂̄f(x). A serious complication
from this angle was the fact that, in cases where f isn’t Lipschitz continuous, ∂̄f(x)
could well be more than just the convex hull of the set of ‘limiting proximal subgra-
dients’. Along with such subgradients, certain direction points had to be taken into
account in the convexification.

The ideas were already available from convex analysis (see the Commentary
to Chapter 3), but they hadn’t previously been needed in subdifferential theory.
What was required for their use was the introduction of a supplementary class of
subgradients to serve in representing the crucial direction points. These ‘singular
limiting proximal subgradients’ were generated just like the horizon subgradients in
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8.3, but from sequences of proximal subgradients instead of regular subgradients.
Not only did they yield in Rockafellar [1981b] the right convex hull formula for ∂̄f(x)
(see 8.49), but also they soon supported new types of formulas by which subgradient
sets could be expressed or estimated; cf. Rockafellar [1982a], [1985a] (the latter being
where the notation ∂

∞
f(x) first appeared, although for what we now write as ∂̄

∞
f(x)).

Even earlier in Rockafellar [1979a] there were subgradients representing direction
points within the convexified framework of Clarke, and having a prominent role in
the calculus of other subgradients, but they could be handled as elements of ∂̄f(x)∞

or kept out of sight through the polarity between that convex cone and the closure
of dom d̂f(x).

Meanwhile, other strategies were being tested. The idea of defining subgradients
v in terms of ‘limiting proximal normal vectors’ to epi f , and proceeding in that
mode without any move toward convexification, began with Mordukhovich [1976].
He realized after a while that limiting proximal normal vectors could equally be
generated from sequences of regular normal vectors; for a set C, they led to the same
unconvexified normal cone NC(x) at x. His limit subgradients were thus the vectors
v such that (v,−1) ∈ Nepi f (x, f(x)). He also understood that regular subgradients
v to f at x could be characterized by

f(x+ w) ≥ f(x) + 〈v, w〉+ o
(
|w|
)
, 8(38)

cf. Kruger and Mordukhovich [1980], as well as by

df(x)(w) ≥ 〈v,w〉 for all w. 8(39)

Still more, he found that regular subgradients could be replaced in the limit process
by the ε-regular subgradients v ∈ ∂̂εf(x) for ε > 0, described by

df(x)(w) ≥ 〈v, w〉 − ε|w| for all w, 8(40)

as long as ε was made to go to 0 as the target point was approached (see 10.46).

These elaborations, on the basis of which Mordukhovich’s subgradients can be
verified as being the same as the ones in ∂f(x) in the present notation, were written
up in 1980 in two working papers at the Belorussian State University in Minsk. The
results were described in some published notes, e.g. Kruger and Mordukhovich [1980],
Mordukhovich [1984], and they received full treatment in Mordukhovich [1988].

The first to contemplate an inequality like 8(39) as a potentially useful way of
defining subgradients v of nonconvex functions f was Pshenichnyi [1971]. He didn’t
work with df(x̄) but with the simpler directional derivative function f ′(x̄; ·) of 7(20)
(with limits taken only along half-lines from x̄), and he asked that f ′(x̄;w) be a finite,
convex function of w ∈ IRn, then calling f ‘quasi-differentiable’ at x̄. Of course, in
cases where f is semidifferentiable at x̄, f ′(x̄; ·) is a finite function agreeing with df(x̄)
(cf. 7.21), and it’s sure to be convex for instance when f is also subdifferentially regular
at x̄. The inequality in 8(39) was used directly as a subgradient definition by Penot
[1974], [1978], without any restrictions on f . Neither he nor Pshenichnyi followed up
by taking limits of such subgradients with respect to sequences xν →f x̄ to construct
other, more ‘stable’ sets of subgradients.

Vectors v satisfying instead the modified affine support inequality 8(38), which
so aptly extends to nonconvex functions the subgradient inequality 8(36) associated
with convex functions, were put to use as subgradients by Crandall and Lions [1981],
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[1983], in work on ‘viscosity solutions’ to partial differential equations of Hamilton-
Jacobi type; see also Crandall, Evans and Lions [1984] and other citations in these
works. This approach was followed also in the Italian school of variational inequalities,
e.g. as reported by Marino and Tosques [1990]. But these researchers too stopped
short of the crucial step of taking limits of such vectors v to get other subgradients,
without which only a relatively feeble calculus of subgradients can be achieved.

The fact in 8.5, that the modified affine support inequality 8(38) actually cor-
responds to v being the gradient of a ‘smooth support’ to f at x, is new here as
a contribution to the basics of variational analysis, but a precedent in the theory of
norms can be found in the book of Deville, Godefroy and Zizler [1993]. It’s out of this
fact and the immediate appeal of 8(38) in extending the convexity inequality 8(36)
that we’ve adopted 8(38) [in the form 8(3)] as the hallmark of regular subgradients
in Definition 8.3, instead of using the equivalent property in 8(39) or the geometric
condition that (v,−1) be a regular normal vector to epi f at (x, f(x)).

Substantial advances in the directions promoted by Mordukhovich were made by
Ioffe [1981c], [1984a], [1984b], [1984c], [1986], [1989]. He used the term ‘approximate
subgradients’ for the vectors v ∈ ∂f(x̄), but this may have been a misnomer arising
from language differences. Ioffe thought of this term as designating vectors obtained
through a process of taking limits—like what had been called ‘limiting subgradients’
in English. While adjectives with the same root as ‘approximate’ in Russian and
French might be construed in such a sense, the meaning of that word in English is
different and has a numerical connotation, giving the impression that an ‘approximate’
subgradient is an ‘estimate’ calculated for some kind of ‘true’ subgradient, whose
definition however had not in this case actually been formulated.

Ioffe’s efforts went especially into the question of how to extend the theory of
subgradients to spaces beyond IRn, and this continues to be a topic of keen interest
to many researchers. It’s now clear that a major distinction has to be made between
separable and nonseparable Banach spaces, and that separable Asplund spaces are
particularly favorable territory, but even there the paradigm of relationships in Figure
8–9 (and on the geometric level in Figure 6–17) can’t be maintained intact and requires
some sacrifices. The current state of the infinite-dimensional theory can be gleaned
from recent articles of Borwein and Ioffe [1996] and Mordukhovich and Shao [1996a];
for an exposition in the setting of Hilbert spaces see Loewen [1993]. Much of the
difficulty in infinite-dimensional spaces has centered on the quest for an appropriate
‘compactness’ concept. Especially to be mentioned besides the items already cited are
works of Borwein and Strojwas [1985], Loewen [1992], Jourani and Thibault [1995],
Ginsburg and Ioffe [1996], Mordukhovich and Shao [1997], and Ioffe [1997].

In the infinite-dimensional setting the vectors v satisfying 8(38) can definitely
be more special than the ones satisfying 8(39); the former are often called ‘Fréchet
subgradients’, while the latter are called ‘Hadamard subgradients’. (This terminol-
ogy comes from parallels with differentiation; Fréchet and Hadamard had nothing
to do with subgradients.) In spaces where neither of these kinds of vectors is ade-
quately abundant, the ε-regular subgradients described by 8(40) can be substituted
in limit processes. Besides their utilization in the work of Mordukhovich and Ioffe,
ε-regular subgradients were developed independently in this context by Ekeland and
Lebourg [1976], Treiman [1983b], [1986]. For still other ideas of ‘subgradients’ and
their relatives, see Warga [1976], Michel and Penot [1984], [1992], and Treiman [1988].

For set-valued mappings S : IRn →→ IRm, graphical derivatives DS(x |u) with
the cones TgphS(x, u) as their graphs (cf. 8.33) were introduced by Aubin [1981],
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who made them the cornerstone for many developments; see Aubin and Ekeland
[1984], Aubin and Frankowska [1990], and Aubin [1991]. This work, going back to re-

ports distributed in 1979, included the mappings D̂S(x |u) associated with the cones

T̂gphS(x |u), here called regular tangent cones, and also certain ‘codifferential’ map-
pings whose graphs corresponded to normal cones to gphS. Aubin mainly considered
the latter for S graph-convex, in which case they are the coderivatives D∗S(x |u); he
noted that they can be obtained also by applying the upper adjoint operation to
the mappings DS(x |u), which are graph-convex like S, hence sublinear. The theory
of adjoints of sublinear mappings H was invented by Rockafellar [1967c], [1970a].
Graphical derivatives and graphical regularity of set-valued mappings were explored
in depth by Thibault [1983].

Independently, Mordukhovich [1980] introduced the unconvexified mappings
D∗S(x |u) for the purpose of deriving a maximum principle in the optimal control
of differential inclusions. The systematic study of such mappings was begun by Ioffe
[1984b], who was the first to employ the term ‘coderivative’ for them. The topic was
pursued in Mordukhovich [1984], [1988], and more recently in Mordukhovich [1994d]
and Mordukhovich and Shao [1997a].

Semidifferentiability of set-valued mappings was defined by Penot [1984] and
proto-differentiability by Rockafellar [1989b], who also clarified the connections be-
tween the two concepts. An earlier contribution of Mignot [1976], predating even
Aubin’s introduction of graphical differentiation, was the definition of ‘conical deriva-
tives’ of set-valued mappings, i.e., derivative mappings with conical graph, which were
something like semiderivatives but with limits taken only along half-lines. Mignot
didn’t relate such derivatives to graphical geometry but employed them in the study
of projections.

The results in 8.44 about the subdifferentiation of derivatives are new, and so too
are the approximation results in 8.47(b) and 8.48; for facts connected with 8.47(b), see
also Benoist [1992a], [1992b], [1994]. Convex functions, enjoy a more powerful prop-
erty of subgradient convergence discovered by Attouch [1977]; see Theorem 12.35. For
finite functions satisfying an assumption of ‘uniform subdifferentiability’ a stronger
fact about convergence of subgradients than in 8.47(b), resembling the theorem of
Attouch just mentioned, was proved by Zolezzi [1985]. Related results have been
furnished by Poliquin [1992], Levy, Poliquin and Thibault [1995], and Penot [1995].

Recession properties of epigraphs were considered in Rockafellar [1979a], but not
in the scope in which they appear in 8.50. An alternative approach to the character-
ization of nondecreasing functions in 8.51 has been developed by Clarke, Stern and
Wolenski [1993]. The generic continuity fact in 8.54 hasn’t previously been noted.

The property of calmness in 8.32 was developed by Clarke [1976a] in the context
of optimal value functions, where it can be used to express a kind of constraint
qualification; see also Clarke [1983].

The formulas in 8.53 for the subderivatives and subgradients of distance func-
tions show that distance functions provide a vehicle capable of carrying all the basic
notions of variational geometry. Indeed, distance functions were given such a role in
Clarke’s theory, as explained earlier, and they have remained prominent to this day
in the research of others, notably Ioffe in his work at introducing appropriately robust
normal cones and subgradients in infinite dimensional spaces.



9. Lipschitzian Properties

The notion of Lipschitz continuity is useful in many areas of analysis, but in
variational analysis it takes on a fundamental role. To begin with, it singles
out a class of functions which, although not necessarily differentiable, have
a property akin to differentiability in furnishing estimates of the magnitudes,
if not the directions, of change. For such functions, real-valued and vector-
valued, subdifferentiation operates on an especially simple and powerful level.
As a matter of fact, subdifferential theory even characterizes the presence of
Lipschitz continuity and provides a calculus of the associated constants. It
thereby supports a host of applications in which such constants serve to quantify
the stability of a problem’s solutions or the rate of convergence in a numerical
method for determining a solution.

But the study of Lipschitzian properties doesn’t stop there. It can be
extended from single-valued mappings to general set-valued mappings as a
means of obtaining quantitative results about continuity that go beyond the
topological results obtained so far. In that context, Lipschitz continuity can
be captured by coderivative conditions, which likewise pin down the associated
constants. What’s more, those conditions can be applied to basic objects of
variational analysis such as profile mappings associated with functions, and
this leads to important insights. For instance, the very concepts of normal
vector and subgradient turn out to represent ‘manifestations of singularity’ in
the Lipschitzian behavior of certain set-valued mappings.

A. Single-Valued Mappings

Single-valued mappings will absorb our attention at first, but groundwork will
be laid at the same time for generalizations to set-valued mappings. In line with
this program, we distinguish systematically from the start between ‘Lipschitz
continuity’ as a property invoked with respect to an entire set in the domain
space and ‘strict continuity’ as an allied concept that is tied instead to limit
behavior at individual points . This distinction will be valuable later because,
in handling set-valued mappings that aren’t just locally bounded, we’ll have to
work not only with localizations in domain but also in range.

9.1 Definition (Lipschitz continuity and strict continuity). Let F be a single-
valued mapping defined on a set D ⊂ IRn, with values in IRm. Let X ⊂ D.
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(a) F is Lipschitz continuous on X if there exists κ ∈ IR+ = [0,∞) with

|F (x′)− F (x)| ≤ κ|x′ − x| for all x, x′ ∈ X.
Then κ is called a Lipschitz constant for F on X .

(b) F is strictly continuous at x̄ relative to X if x̄ ∈ X and the value

lipXF (x̄) := lim sup
x,x′→

X x̄

x�=x′

|F (x′)− F (x)|
|x′ − x|

is finite. More simply, F is strictly continuous at x̄ (without mention of X) if
x̄ ∈ intD and the value

lipF (x̄) := lim sup
x,x′→x̄
x�=x′

|F (x′)− F (x)|
|x′ − x|

is finite. Here lipF (x̄) is the Lipschitz modulus of F at x̄, whereas lipXF (x̄) is
this modulus relative to X .

(c) F is strictly continuous relative to X if, for every point x̄ ∈ X , F is
strictly continuous at x̄ relative to X .

Clearly, to say that F is strictly continuous at x̄ relative to X is to assert
the existence of a neighborhood V ∈ N (x̄) such that F is Lipschitz continuous
on X ∩ V . Therefore, strict continuity of F relative to X is identical to local
Lipschitz continuity of F on X . When we get to set-valued mappings, however,
the meanings of these terms will diverge, with local Lipschitz continuity being a
comparatively narrow concept not implied by strict continuity, and with strict
continuity at x̄ no longer necessarily entailing even continuity beyond x̄ itself.
To aid in that transition, we prefer to speak already now of strict continuity
rather than local Lipschitz continuity. That terminology also fits better with
the ‘pointwise’ emphasis we’ll be giving to the subject.

Whenever κ is a Lipschitz constant for F on X , the same holds for every
κ′ ∈ (κ,∞). The modulus lipF (x̄) captures a type of minimality, however;
it’s the lower limit of the Lipschitz constants for F that work on the balls
IB(x̄, δ) as δ ↘ 0, and similarly for lipXF (x̄). In developing properties of these
expressions, we’ll concentrate for simplicity on the function lipF , since anyway
lip

X
F ≤ lipF where the latter is defined. Analogs for lip

X
F are usually easy

to obtain in parallel.

9.2 Theorem (Lipschitz continuity from bounded modulus). For a single-valued
mapping F : D → IRm, D ⊂ IRn, the modulus function lipF : intD → IR is
usc, so that the set O =

{
x ∈ intD

∣∣ lipF (x) <∞}
is open.

On any convex set X ⊂ O where lipF is bounded from above, hence on
any compact, convex set X ⊂ O, F is Lipschitz continuous with constant

κ = sup
x∈X

{
lipF (x)

}
.
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Proof. The upper semicontinuity of lipF on intD follows from the defining
formula and implies that every set of the form

{
x ∈ intD

∣∣ lipF (x) < α
}
is

open. In particular, O is open. Then further, lipF is bounded above on every
compact set X ⊂ O (as may be seen for instance by applying Theorem 1.9 to
the function f : IRn → IR that agrees with − lipF on X but has the value ∞
outside of X).

Suppose now that lipF is bounded above by κ on X ⊂ intD, and consider
any two points x and x′ of X . Under the assumption that X is convex, the
line segment [x, x′] lies in X . Let ε > 0. Around each point y ∈ [x, x′] there is
a ball of some radius δy > 0 on which F is Lipschitz continuous with constant
κ+ε. The open balls int IB(y, δy/2) cover [x, x

′], and hence by the compactness
principle a finite collection of them cover it. Thus, there exist points yk ∈ [x, x′]
and values δk > 0 for k = 1, . . . , r such that [x, x′] ⊂ ⋃r

k=1 IB(yk, δk/2), while
F is Lipschitz continuous on IB(yk, δk) with constant κ + ε. Choose δ0 > 0
satisfying δ0 < δk/2 for all k. Then for every y ∈ [x, x′] the ball IB(y, δ0)
will be included in one of the balls IB(yk, δk), namely for an index k such that
y ∈ B(yk, δk/2). If we partition [0, 1] into 0 = τ0 < τ1 < · · · < τm = 1 in such a
way that the corresponding points xi = x+ τi(x

′−x) for i = 0, 1, . . . , m satisfy
|xi−xi−1| ≤ δ0, we will have on each segment

{
x+τ(x′−x) ∣∣ τi−1 ≤ τ ≤ τi

}
that

F is Lipschitz continuous with constant κ+ ε. In this case |F (xi)−F (xi−1)| ≤
(κ+ ε)|xi − xi−1| and

∑m
i=1 |xi − xi−1| = |x′ − x|. Therefore∣∣F (x′)− F (x)∣∣ ≤ ∑m

i=1

∣∣F (xi)− F (xi−1)
∣∣

≤
∑m

i=1
(κ+ ε)|xi − xi−1| = (κ+ ε)|x′ − x|,

so F is Lipschitz continuous relative to X with constant κ + ε. Since ε > 0
was arbitrary, we conclude that F is Lipschitz continuous relative to X with
constant κ.

Lipschitz continuity is related to the concept of calmness introduced in
Chapter 8 for functions f : IRn → IR. A mapping F : D → IRm is called calm
at x̄ relative to X if, in analogy with 8(13) in the real-valued case, there exist
κ ∈ IR+ and V ∈ N (x̄) such that∣∣F (x)− F (x̄)∣∣ ≤ κ|x− x̄| for all x ∈ X ∩ V. 9(1)

This is like F being strictly continuous at x̄, but it involves comparisons only
between x̄ and nearby points x, not between all possible pairs of points x and
x′ in some neighborhood of x̄. In requiring the same constant κ to work for all
such pairs, strict continuity is ‘locally uniform calmness’. Similarly, Lipschitz
continuity on a set X is ‘uniform calmness’ relative to X .

The possible absence of such uniformity is demonstrated in Figure 9–1,
which depicts a mapping F that is calm at every point of IR, including the
origin, but with constants that necessarily tend toward ∞ as the origin is
approached (because the segments in the graph get steeper and steeper in the
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x
_

gph F

Fig. 9–1. A function that is calm everywhere but not strictly continuous everywhere.

vicinity of the origin). This mapping isn’t strictly continuous at the origin.

In the case of linear mappings, Lipschitzian properties have a global char-
acter and can be expressed by a matrix norm.

9.3 Example (linear and affine mappings). A mapping F : IRn → IRm is called
affine if it differs from a linear mapping by at most a constant term, or in other
words, if F (x) = Ax+ a for a matrix A ∈ IRm×n and a vector a ∈ IRm. Such
a mapping F is Lipschitz continuous on IRn with constant κ = |A|, where |A|
is the norm of A, defined by

|A| := max
w �=0

|Aw|
|w| = max

|w|=1
|Aw| = max

|y|=1, |w|=1

〈
y, Aw

〉
and satisfying in terms of the components aij of A the inequalities

maxm,n
i,j=1 |ai,j | ≤ |A| ≤

(∑m,n
i,j=1 a

2
ij

)1/2 ≤ √
mnmaxm,n

i,j=1 |ai,j|.
Detail. Writing x′ = x + w, we get |F (x′) − F (x)|/|x′ − x| = |Aw|/|w|.
The maximum of the difference ratio is therefore |A|, and this serves then as
a Lipschitz constant for F relative to X = IRn. The alternate formula for
|A| in terms of maximization over both y and w is valid because 〈y, w〉 ≤
|y||w| for all vectors y and w, with equality when y = w. The lower bound
indicated for |A| comes from the fact that special choices of y and w with
|y| = 1 and |w| = 1 make 〈y, Aw〉 equal to either aij or −aij . The first
upper bound is derived by writing 〈y, Aw〉 =

∑m,n
i,j=1 aijbij for bij := yiwj

and observing that this implies
〈
y, Aw

〉 ≤ (
∑m,n

i,j=1 a
2
ij)

1/2(
∑m,n

i,j=1 b
2
ij)

1/2 where∑m,n
i,j=1 b

2
ij = (

∑m
i=1 y

2
i ) (

∑n
j=1 w

2
i ). The latter expression equals 1 when |y| = 1

and |w| = 1, and the upper bound then follows. The second upper bound is
obtained by replacing each term a2ij in the first by the upper estimate α2, where
α = maxm,n

i,j=1 |aij |.
A sequence of matrices Aν ∈ IRm×n is said to converge to a matrix A if

the components converge: aνij → aij for all i and j. The bounds on |A| in 9.3
show that this is true if and only if limν |Aν − A| = 0. The standard matrix
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norm |A| obeys the usual laws of norms: |A| > 0 for A �= 0, |A+B| ≤ |A|+ |B|,
and |λA| = |λ||A|, and in addition it satisfies |AB| ≤ |A||B|. The expression
(
∑m,n

i,j=1 a
2
ij)

1/2, called the Frobenius norm of A, likewise has these properties.
For affine mappings Lν(x) = Aνx + aν and L(x) = Ax + a, one has Lν→p L
(or equivalently Lν→g L) if and only if |Aν − A| → 0 and |aν − a| → 0.

9.4 Example (nonexpansive and contractive mappings). A mapping F : D →
IRn, D ⊂ IRn, is said to be nonexpansive on a set X ⊂ D if∣∣F (x′)− F (x)∣∣ ≤ |x′ − x| for all x, x′ ∈ X,
and contractive on X if this inequality is strict as long as x′ �= x. The nonex-
pansive property is Lipschitz continuity with constant κ = 1, while a sufficient
condition for the contractive property is Lipschitz continuity with κ < 1.

The property of being contractive is important in the study of iterative
procedures for computing fixed points (cf. 5.3). The rate of convergence to a
fixed point x̄ = F (x̄) is governed by the value of lipF at x̄.

9.5 Exercise (rate of convergence to a fixed point). Let F : D → IRn, with
D ⊂ IRn, have a fixed point x̄ ∈ intD at which lipF (x̄) < 1.

For all δ > 0 sufficiently small, F is contractive on IB(x̄, δ), moreover with
F
(
IB(x̄, δ)

) ⊂ IB(x̄, δ). For any such δ and any choice of x0 ∈ IB(x̄, δ), the
sequence {xν}ν∈IN generated by xν = F (xν−1) converges to x̄ and, unless it
eventually coincides with x̄, does so at the rate

lim sup
ν→∞

|xν − x̄|
|xν−1 − x̄| ≤ lipF (x̄).

Guide. Apply the definition of lipF (x̄) in 9.1.

While the language in 9.1 and 9.2 is that of vector-valued mappings F :
D → IRm, an important special case to be kept in mind is that of a proper
function f : IRn → IR and the set D = dom f . Note that when F is expressed
coordinatewise by F (x) =

(
f1(x), . . . , fm(x)

)
, its Lipschitz continuity or strict

continuity relative to a subset X ⊂ D corresponds to the same property holding
for each function fi : D → IR.

For a real-valued function f , Lipschitz continuity relative to X with con-
stant κ amounts to the double inequality

f(x)− κ|x′ − x| ≤ f(x′) ≤ f(x) + κ|x′ − x| for all x, x′ ∈ X.
This is illustrated in Figure 9–2 with X ⊂ IR1 and κ = 1. Actually, if either
half of the double inequality holds for all x and x′ in X , then so does the other.
Once more, this resembles calmness as defined ahead of 8.32, but it requires
the same constant κ to work globally for all points in the set X .

9.6 Example (distance functions). For any nonempty, closed set C ⊂ IRn, the
distance function dC is Lipschitz continuous on IRn with constant κ = 1. It
has lipdC(x) = 1 when x /∈ intC, but lipdC(x) = 0 when x ∈ intC.
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gph f

X

Fig. 9–2. A real-valued function f that is Lipschitz continuous on an interval X.

Detail. The Lipschitz continuity is ensured by 4(3). If x ∈ intC, dC is
identically 0 on a neighborhood of x, so it’s clear that lipdC(x) = 0. To verify
that lipdC(x) = 1 when x /∈ intC, it suffices by the upper semicontinuity of
lipdC (in 9.2) to do so when x /∈ C. For any point x̄ /∈ C, there’s a point x̃ �= x̄
in the projection PC(x̄). On the line segment from x̃ to x̄, the distance from
C increases linearly: dC

(
x̃+ τ(x̄− x̃)) = τdC(x̄) for 0 ≤ τ ≤ 1, where dC(x̄) =

|x̄− x̃|. It follows that for any two points x = x̃+τ(x̄− x̃) and x′ = x̃+τ ′(x̄− x̃)
in this line segment we have |dC(x′)− dC(x)| = |τ ′− τ ||x̄− x̃| = |x′−x|. Since
x̄ can be approached by such pairs of points, lipdC(x̄) can’t be less than 1, but
from earlier, it can’t be greater than 1 either.

It is convenient to define lipf also for extended -real-valued functions f :
IRn → IR by interpreting |f(x′) − f(x)| as ∞ when either f(x′) or f(x) is ∞
(or both) in the formula

lipf(x̄) := lim sup
x,x′→x̄
x�=x′

|f(x′)− f(x)|
|x′ − x| .

This convention fits the extended arithmetic in Chapter 1 and it makes lipf
be usc on all of IRn, with

lipf(x̄) :=∞ for x̄ /∈ int(dom f). 9(2)

B. Estimates of the Lipschitz Modulus

The question of how to estimate the values of the modulus function lipF as-
sociated with a mapping F is crucial. In the case of differentiable mappings,
which we take up first, bounds on partial derivatives can be utilized. While our
aim in the large is to handle mappings that aren’t necessarily differentiable,
this case is a handy building block. Lipschitz constants for smooth mappings
F can be derived through Theorem 9.2 from the following result, which relies
on the matrix norm (as in 9.3) of the Jacobian of the mapping.

9.7 Theorem (strict continuity from smoothness). Let O ⊂ IRn be open. If
F : O → IRm is of class C1, then F is strictly continuous on O with
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lipF (x̄) =
∣∣∇F (x̄)∣∣ for any x̄ ∈ O.

This holds in particular for real-valued f : O → IR, in which case if f is actually
of class C2, the mapping ∇f : O → IRn is strictly continuous too on O with

lip∇f(x̄) = ∣∣∇2f(x̄)
∣∣ for any x̄ ∈ O.

Proof. The expression |F (x′) − F (x)|/|x′ − x| can be written in the form
|F (x + τw) − F (x)|/τ with |w| = 1 by taking w = (x′ − x)/|x′ − x| and
τ = |x′ − x|. Choose δ > 0 such that x+ τw ∈ O when |x− x̄| ≤ δ, τ ∈ [0, δ],
and |w| = 1. For any y ∈ IRm with |y| = 1 we have〈

y,
[
F (x+ τw)− F (x)]/τ〉 =

[〈
y, F (x+ τw)

〉− 〈
y, F (x)

〉]/
τ

=
〈
y,∇F (x+ σw)w

〉
for some σ ∈ (0, τ) by the mean value theorem as applied to the smooth function
ϕ(τ) =

〈
y, F (x+ τw)

〉
. Consequently,〈

y,
[
F (x+ τw)− F (x)]/τ〉 ≤ ∣∣y∣∣ ∣∣∇F (x+ σw)

∣∣ ∣∣w∣∣ = ∣∣∇F (x+ σw)
∣∣,

where
∣∣∇F (x + σw)

∣∣ is the norm of ∇F (x + σw) as in 9.3. Maximizing over

all y with |y| = 1 we get
∣∣[F (x + τw) − F (x)]/τ ∣∣ ≤ ∣∣∇F (x + σw)

∣∣, where the
left side is |F (x′)− F (x)|/|x′ − x| in the notation we started with. In passing
next to the upper limit that defines lipF (x̄) in 9.1, we can’t get more than the
upper limit achievable by sequences

∣∣∇F (xν + σνwν)
∣∣ as xν → x̄ and σν ↘ 0

with |wν | ≡ 1. But the limit of all such sequences is
∣∣∇F (x̄)∣∣ by the assumed

smoothness of F , since the norm of a matrix A depends continuously on the
components of A (cf. the final inequalities in 9.3). Thus, lipF (x̄) ≤ ∣∣∇F (x̄)∣∣.

To get equality, we take w̄ with |w̄| = 1 such that |∇F (x̄)w̄| = |∇F (x̄)|,
as is possible from the definition of |∇F (x̄)|. Then for xτ = x̄ + τw̄ we have
|F (xτ )− F (x̄)|/|xτ − x̄| → |∇F (x̄)| as τ ↘ 0.

The remaining assertions in the theorem are now immediate, first from the
case of F = f and then from the case of F = ∇f .

From this and Theorem 9.2, for instance, F is Lipschitz continuous relative
to a convex set X with constant κ when F is smooth on an open set O ⊃ X
and

∣∣∇F (x)∣∣ ≤ κ for all x ∈ X .
Of course, a C1 function f can have ∇f strictly continuous without f

having to be C2. Then f is called a C1+ function. In general for an open set
O ⊂ IRn, a mapping F : O → IRm is said to be of class Ck+ if it’s of class Ck
and the kth partial derivatives are not just continuous but strictly continuous
on O. In accordance with this, one can think of continuous mappings as being
of class C0 on O, while strictly continuous mappings are of class C0+.

Constants of Lipschitz continuity can often be obtained quite easily also
for mappings that aren’t smooth and therefore aren’t covered by 9.7. The
distance functions in 9.6 are an example; dC is known to have 1 as such a
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constant even though it fails to be differentiable at boundary points of C. The
following rules help in estimating the modulus for a mapping constructed from
other mappings with known modulus, regardless of smoothness.

9.8 Exercise (calculus of the modulus). For single-valued mappings F on open
domains, the corresponding functions lipF obey the rules

(a) lip(λF )(x) = |λ| lipF (x), and in particular, lip(−F )(x) = lipF (x),

(b) lip(F1 + F2)(x) ≤ lipF1(x) + lipF2(x),

(c) lip(F2◦F1)(x) ≤ lipF2(F1(x))· lipF1(x),

(d) lip(F1, . . . , Fr)(x) ≤
∣∣( lipF1(x), . . . , lipFr(x)

)∣∣, where (F1, . . . , Fr) is

the mapping x �→ (
F1(x), . . . , Fr(x)

)
.

9.9 Exercise (scalarization of strict continuity). Consider F : D → IRm

with D ⊂ IRn, and write F (x) =
(
f1(x), . . . , fm(x)

)
. For each vector

y = (y1, . . . , ym) ∈ IRm, define the function yF : D → IR by

(yF )(x) := 〈y, F (x)〉 = y1f1(x) + · · ·+ ymfm(x).

Then F is strictly continuous at a point x̄ if and only if all the functions yF
are strictly continuous at x̄. Moreover

lipF (x̄) = sup
y∈IB

{
lip(yF )(x̄)

}
= sup

|y|=1

{
lip(yF )(x̄)

}
.

Guide. The final formula is the key. The inequality ≥ follows from 9.8(c) in
viewing yF as the composition of F with the linear function associated with y.
Equality is obtained by arguing that, when lipF (x̄) > 0, there exist sequences
xν → x̄ and x′ν → x̄ with lipF (x̄) = limν

∣∣F (x′ν)− F (xν)∣∣/∣∣x′ν − xν∣∣ and for

which the vectors zν :=
[
F (x′ν) − F (xν)]/∣∣x′ν − xν ∣∣ converge to some z̄ �= 0.

With ȳ := z̄/|z̄| one gets lip(ȳF )(x̄) = lipF (x̄).

For mappings into IR, the operations of pointwise minimization and max-
imization are available along with the ones in 9.8.

9.10 Proposition (strict continuity in pointwise max and min). Consider any
collection {fi}i∈I of functions fi : O → IR, where O is open in IRn. If the index
set I is finite, one has

lip
(
supi∈I fi

)
(x) ≤ supi∈I

(
lipfi

)
(x),

lip
(
infi∈I fi

)
(x) ≤ supi∈I

(
lipfi

)
(x),

so that the functions supi∈I fi and inf i∈I fi are strictly continuous at any point
where all the functions fi are.

More generally, if I is possibly infinite but lipfi(x) ≤ k(x) for all i ∈ I
for a function k : O → IR that is usc, then both lip

(
supi∈I fi

)
(x) ≤ k(x) and

lip
(
inf i∈I fi

)
(x) ≤ k(x). In this case, therefore, the functions supi∈I fi and

infi∈I fi are strictly continuous at every point x̄ ∈ O where k(x̄) <∞.
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Proof. Each of the functions lipfi is usc (cf. Theorem 9.2), and so too
then is the function supi(lipfi) when I is finite (cf. 1.26). The assertions
for I finite thus follow from the general case by taking k(x) = supi(lipfi)(x).
The assertions about supi fi are equivalent to those about infi fi, because
lip(−fi)(x) = lipfi(x).

Concentrating therefore on the general case of supi fi, we fix any x̄ ∈ O
and observe that if κ > k(x̄) there exists by the upper semicontinuity of k a
ball IB(x̄, δ) on which k < κ. Then for all x ∈ IB(x̄, δ) we have lipfi(x) < κ
by assumption, and because IB(x̄, δ) is a convex set we may conclude from 9.2
that κ is a constant for fi on IB(x̄, δ). Thus,

fi(x
′) ≤ fi(x) + κ|x′ − x|

fi(x) ≤ fi(x′) + κ|x′ − x|

}
for x, x′ ∈ IB(x̄, δ).

Taking the supremum over i ∈ I on both sides of each inequality, we find that
the same two inequalities hold for f = supi fi. Thus, κ is a constant for f on
IB(x̄, δ). Since for arbitrary κ > k(x̄) this holds for some δ > 0, we have by
Definition 9.1 that lipf(x̄) ≤ k(x̄).

9.11 Example (Pasch-Hausdorff envelopes). Suppose f : IRn → IR is proper
and lsc. For any κ ∈ IR+ the function fκ := f κ| · |, with

fκ(x) := infw

{
f(w) + κ|w − x|

}
,

is the Pasch-Hausdorff envelope of f for the value κ. Unless fκ ≡ −∞, fκ is
Lipschitz continuous on IRn with constant κ, and it is the greatest of all such
functions majorized by f . (When fκ ≡ −∞, there is no function majorized by
f that is Lipschitz continuous on IRn with constant κ.)

Furthermore, as long as there exists a κ̄ ∈ IR+ with fκ̄ �≡ −∞, one has,
when κ↗∞, that fκ(x)↗f(x) for all x, and consequently also fκ→e f .

Detail. From the definition we have for any x and x′ that

fκ(x
′) := infw

{
f(w) + κ|w − x+ x− x′|}

≤ infw
{
f(w) + κ|w − x|+ κ|x′ − x|} = fκ(x) + κ|x′ − x|.

Therefore, either fκ ≡ −∞ or fκ is finite and Lipschitz continuous with con-
stant κ. But for any function g ≤ f with the latter properties, we have

g(x) = infw
{
g(w) + κ|w − x|} ≤ infw

{
f(w) + κ|w − x|}

for all x, so that g ≤ fκ.
The convergence assertion at the end is based on observing that if fκ̄(x̄) �=

−∞ for some κ̄ and x̄, then f(w) ≥ fκ̄(x̄)− κ̄|w− x̄|, so that f∞ ≥ −κ̄| · |. Since
κ| · |→t δ{0} as κ↗∞ (by 7.53), we then have f κ| · |→e f δ{0} by 7.56(a), and
this means by definition that fκ→e f . But fκ(x) is nondecreasing with respect
to κ, so in this case we also have fκ→p f by 7.4(d).
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f f

κ = 1.0κ = 0.5
fκfκ

Fig. 9–3. Pasch-Hausdorff envelopes for different Lipschitz constants.

9.12 Exercise (extensions of Lipschitz continuity). If f : IRn → IR is Lipschitz
continuous on C �= ∅ with constant κ, then the function

f̄(x) := inf
w∈C

{
f(w) + κ|x− w|}

agrees with f on C and is Lipschitz continuous on IRn with constant κ. Also,

inf
x∈C

f(x) = inf
x∈IRn

f̄(x), argmin
x∈C

f(x) = C ∩ argmin
x∈IRn

f̄(x).

Guide. Consider the Pasch-Hausdorff envelope of f + δC for κ.

Extensions that preserve Lipschitz constants will be treated in greater
depth in Theorem 9.58.

C. Subdifferential Characterizations

The theorem proved next reveals a major strength of variational analysis
through subgradients and subderivatives: the ability to characterize Lipschitz-
ian properties even to the extent of determining the size of the modulus. Here
again the virtues of the concept of horizon subgradients are evident.

Although we focus on an extended-real-valued function f defined on the
whole space IRn, this is just a convention having its roots in the way ∞ can
be used in simplifying the expression of optimization problems, as explained in
Chapter 1. The result, along with others subsequently derived from it, really
just concerns the behavior of f on a neighborhood of a point x̄. When f is
only given locally, it can be applied by regarding f to be ∞ elsewhere.

9.13 Theorem (subdifferential characterization of strict continuity). Suppose
f : IRn → IR is locally lsc at x̄ with f(x̄) finite. Then the following conditions
are equivalent:

(a) f is strictly continuous at x̄,

(b) ∂∞f(x̄) = {0},
(c) the mapping ∂̂f : x �→ ∂̂f(x) is locally bounded at x̄,

(d) the mapping ∂f : x �→ ∂f(x) is locally bounded at x̄.

(e) the function d̂f(x̄) is finite everywhere,
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(f) f is finite around x̄, and for each w ∈ IRn the function x �→ df(x)(w)
is bounded above on some neighborhood of x̄.

Moreover, when these conditions hold, ∂f(x̄) is nonempty and compact
and one has

lipf(x̄) = max
|w|=1

d̂f(x̄)(w) = max
v∈∂f(x̄)

|v| =: max |∂f(x̄)|. 9(3)

Proof. Conditions (b) and (c) are equivalent by the definition of ∂∞f(x̄) in
8.3. (It suffices to interpret local boundedness in (c) and (d) in the sense of
f -attentive convergence, since the distinction drops away once the equivalence
with (a) is established.) These conditions imply through 8.10 that ∂f(x̄) is
nonempty and through 8.6 that it is closed. Local boundedness of ∂f at x̄
in (d) follows from that in (c) via the definition of ∂f , whereas the reverse
implication comes out of 8.6. In view of the support function formula for
regular subderivatives in 8.23, along with the finiteness criterion in 8.29(d),
conditions (b), (c) and (d) are equivalent therefore to (e). This formula yields
the second equation in 9(3).

Under (a) we have for any κ > lipf(x̄) that
[
f(x+ τw)−f(x)]/τ ≤ κ|w|,

as long as τ is small enough and x is close enough to x̄. Thus, (a) implies (f).
But (f) in turn implies (e) through the formula in 8.18 for regular subderivatives
as limits of ordinary subderivatives.

This argument reveals that d̂f(x̄)(w) ≤ κ when |w| = 1 and κ > lipf(x̄).

Therefore, max|w|=1 d̂f(x̄)(w) ≤ lipf(x̄); here ‘max’ can appropriately be writ-

ten in place of ‘sup’ because the function d̂f(x̄), being convex (through sub-
linearity; cf. 8.6) is continuous when it is finite (cf. 2.36). The value lip f(x̄),
however, is the limit of a certain sequence of difference quotients[

f(xν + τνwν)− f(xν)]/τν with xν → x̄, wν → w̄, τν ↘ 0

having |w̄| = 1, which is not less that d̂f(x̄)(w̄), so in (a) we must have

max|w|=1 d̂f(x̄)(w) = lipf(x̄), hence 9(3). From 8.22, however, (a) is guar-

anteed by 0 ∈ int
(
dom d̂f(x̄)

)
. That condition is identical to (e), because

dom d̂f(x̄) is a cone.

Although Theorem 9.13 asserts that ∂f(x̄) is nonempty and compact when
f is strictly continuous at x̄, it’s possible also for ∂f(x̄) to have these properties
without f necessarily being strictly continuous at x̄. This is exemplified by the
continuous function f : IR→ IR with

f(x) =

{−√x for x ≥ 0,
0 for x ≤ 0,

which has ∂f(0) = {0} but ∂∞f(0) = (−∞, 0].
9.14 Example (Lipschitz continuity from convexity). A finite convex function
f on an open, convex set O ⊂ IRn is strictly continuous on O.
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In fact, for any proper, convex function f : IRn → IR and any set X on
which f is bounded below by α, if there exists ε > 0 such that f is bounded
above by β on X + εIB, then f is Lipschitz continuous on X with constant
κ = (β − α)/ε and therefore also has ∂f(x) ⊂ κIB for all x ∈ X .

Detail. To obtain the first assertion as a consequence of Theorem 9.13, extend
f to be a proper, lsc, convex function on IRn with O ⊂ int(dom f); cf. 2.36. At
every point x̄ ∈ O we have ∂∞f(x̄) = {0} by 8.12, so f is strictly continuous at
such points x̄. The second assertion can be confirmed on the basis of convexity
alone, without the intervention of Theorem 9.13. For any two points x and x′

in X , we can write x′ = (1− τ)x+ τx′′ with x′′ = x′ + εz for

z =
1

|x′ − x| (x
′ − x), τ =

|x′ − x|
ε+ |x′ − x| ≤

|x′ − x|
ε

.

Then x′′ ∈ X + εIB and f(x′) ≤ (1− τ)f(x) + τf(x′′), so that f(x′)− f(x) ≤
τ(β−α) ≤ κ|x′−x|. From the formula at the end of Theorem 9.13, one obtains
in this case the bound on ∂f(x).

Note that the first assertion could be derived independently of 9.13 by
invoking the second assertion in the case of X being a sufficiently small ball
around any point x̄ ∈ O. Because f is to be continuous on O (by 2.36), it’s
bounded above and below on all compact subsets of O.

9.15 Exercise (subderivatives under strict continuity). Whenever f is strictly
continuous at x̄, one has

df(x̄)(w) = lim inf
τ ↘ 0

f(x̄+ τw)− f(x̄)
τ

,

d̂f(x̄)(w) = lim sup
τ ↘ 0
x→x̄

f(x+ τw)− f(x)
τ

= lim sup
x→x̄

df(x)(w)

= max
〈
∂f(x̄), w

〉
:= max

{〈v, w〉 ∣∣ v ∈ ∂f(x̄)}.
Then the functions df(x̄) and d̂f(x̄) are globally Lipschitz continuous with
constant κ = lipf(x̄).

Guide. Specialize Definitions 8.1 and 8.16, using a local constant κ′ > lipf(x̄)
to compare quotients: Δτf(x)(w

′) ≤ Δτf(x)(w) + κ′|w′ − w| when x is close
enough to x̄ and τ > 0 is sufficiently small. Invoke 8.18 and 8.23, utilizing
criterion 9.13(b).

9.16 Theorem (subdifferential regularity under strict continuity). A function f
that is finite on an open set O ⊂ IRn is both strictly continuous and regular on
O if and only if for every x ∈ O and w ∈ IRn the limit

h(x, w) = lim
τ ↘ 0

f(x+ τw)− f(x)
τ

exists, is finite, and depends upper semicontinuously on x for each fixed w.
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Then h(x, w) depends upper semicontinuously on x and w together, and f is
semidifferentiable on O with

h(x, w) = lim
τ ↘ 0
w′→w

f(x+ τw′)− f(x)
τ

= lim sup
τ ↘ 0
x′→x
w′→w

f(x′ + τw′)− f(x′)
τ

= df(x)(w) = d̂f(x)(w) = max
{〈v, w〉 ∣∣ v ∈ ∂f(x)}.

Also, ∂f : O →→ IRn is nonempty-convex-valued, osc, and locally bounded.

Proof. First suppose the limit h(x, w) always exists, and assume it’s finite and
is usc in x. Then for each w the function x �→ h(x, w) is locally bounded from
above on O. From the definition of df(x)(w) we have df(x)(w) ≤ h(x, w), so
for each w the function x �→ df(x)(w) likewise is locally bounded from above.
This implies through criterion (f) of Theorem 9.13 that f is strictly continuous
on O. Then by 9.15, df(x)(w) = h(x, w), so df(x)(w) is usc in x for each w.

Also by 9.15, df(x)(w) = d̂f(x)(w), hence f is regular by 8.19.
Restart now by assuming only that f is strictly continuous and regular on

O; all the claims about h(x, w) will turn out to follow from this. Continuity
of f makes the mapping ∂f osc on O by 8.7, because f -attentive convergence
can be replaced in that result by ordinary convergence. Strict continuity im-
plies through Theorem 9.13 that ∂f is nonempty-compact-valued and locally
bounded on O, and in addition that df(x)(w) is locally bounded from above
in x ∈ O for each w ∈ IRn. Then by regularity, ∂f(x) is convex with df(x)
as its support function: df(x)(w) = max

{〈v, w〉 ∣∣ v ∈ ∂f(x)}; cf. 8.30. Hence
df(x)(w) is convex in w and, because it is finite, also continuous in w; cf. 2.36.

Regularity further ensures through 8.19 that d̂f(x)(w) = df(x)(w).

The alternative limit expressions in 9.15 for df(x)(w) and d̂f(x)(w) then
coincide and in particular yield the value h(x, w), this being finite and usc in
x ∈ O for each w, and also given by the max expression above. The finiteness
of d̂f(x)(w) for all w ∈ IRn triggers through 8.18 the formula

d̂f(x)(w) = lim sup
x′→

f x
τ ↘ 0
w′→w

f(x′ + τw′)− f(x′)
τ

.

This upper limit therefore gives h(x, w) as well, with x′→f x reducing to x′ → x
because f is continuous. It further implies that h is usc on O × IRn.

The strong properties in 9.16 hold in particular for finite, convex functions,
since such functions are strictly continuous (by 9.14) and regular (by 7.27). A
much broader class of functions for which these properties always hold will be
developed in Chapter 10 in terms of ‘subsmoothness’ (cf. 10.29).

We look now at a concept of ‘strict differentiability’ related to strict con-
tinuity and see how it too can be characterized in terms of subgradients.

9.17 Definition (strict differentiability). A function f : IRn → IR is strictly
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differentiable at a point x̄ if f(x̄) is finite and there is a vector v, which will be
the gradient ∇f(x̄), such that f(x′) = f(x) + 〈v, x′ − x〉+ o(|x′ − x|), i.e.,

f(x′)− f(x)− 〈
v, x′ − x〉

|x′ − x| → 0 as x, x′ → x̄ with x′ �= x.

Strict differentiability can be regarded as the pointwise localization of
smoothness, as will be borne out by a corollary of the next theorem.

9.18 Theorem (subdifferential characterization of strict differentiability). Let
f : IRn → IR be finite at x̄. Then the following conditions are equivalent:

(a) f is strictly differentiable at x̄;

(b) f is strictly continuous at x̄ and has at most one subgradient there;

(c) f is locally lsc at x̄, ∂f(x̄) is a singleton, and ∂∞f(x̄) = {0};
(d) f is continuous around x̄, and f and −f are regular at x̄, with ∂̂f(x̄)

and ∂̂[−f ](x̄) nonempty;

(e) f is regular at x̄, and on a neighborhood of x̄ there exists h ≥ f with
h(x̄) = f(x̄), such that h differentiable at x̄;

(f) f is locally lsc at x̄, and d̂f(x̄) is a linear function;

(g) f is locally lsc at x̄, and d̂f(x̄)(−w) = −d̂f(x̄)(w) for all w.
When these equivalent conditions hold, one has moreover that

∂f(x̄) = {∇f(x̄)}, df(x̄) = 〈∇f(x̄), · 〉 = d̂f(x̄), lipf(x̄) =
∣∣∇f(x̄)∣∣.

Proof. By Definition 9.17, f is strictly differentiable at x̄ with ∇f(x̄) = v if
and only if the function g(x) := f(x)− 〈v, x〉 satisfies

[g(x′)− g(x)]/|x′ − x| → 0 as x, x′ → x̄ with x′ �= x.

This condition is identical to having lipg(x̄) = 0, which implies that g is strictly
continuous at x̄ and the same then for f . (In particular, all the conditions (a)–
(g) do entail f being locally lsc at x̄.) Applying Theorem 9.13 to g, we see
that lipg(x̄) = 0 corresponds to g being not only strictly continuous at x̄ but
having ∂g(x̄) = {0}. Obviously ∂g(x̄) = ∂f(x̄) − v, so we obtain in this way
the equivalence of (a) with (b) and (c), along with the validity of the last line
of the theorem when these properties are present.

To see how these properties imply (d), observe that since∇f(x̄) ∈ ∂̂f(x̄) by
8.8(a), the relations ∂f(x̄) = {∇f(x̄)} and ∂∞f(x̄) = {0} entail the regularity
of f at x̄; cf. 8.11. Since f is strictly differentiable if and only if −f is, they
imply the regularity of −f at x̄ also. Thus, (a) gives (d).

If (d) holds, the regularity of −f at x̄ yields a vector v̄ with

f(x) ≤ f(x̄) + 〈v̄, x− x̄〉+ o1(|x− x̄|).
But since f is regular at x̄ as well, any vector v ∈ ∂f(x̄) satisfies

f(x) ≥ f(x̄) + 〈v, x− x̄〉+ o2(|x− x̄|).
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Then 〈v − v̄, x − x̄〉 ≤ o1(|x − x̄|) + o2(|x − x̄|), which is only possible when

v = v̄. The set ∂f(x̄) = ∂̂f(x̄) must just be {v̄}, so ∂∞f(x̄) must be {0}.
The equivalence of (f) and (g) with (c) is furnished by the formula for

∂̂f(x̄) in 8.23, which also shows that d̂f(x̄)(w) = 〈∇f(x̄), w〉.
Next, (e) follows from (a) by taking h = f . But if (e) holds we have

df(x̄)(w) ≤ dh(x̄)(w) = 〈∇h(x̄), w〉 < ∞ with df(x̄) = d̂f(x̄) sublinear (by

8.18, 8.19). Then d̂f(x̄)(w) + d̂f(x̄)(−w) ≥ d̂f(x̄)(0) with d̂f(x̄)(0) = 0 (oth-

erwise d̂f(x̄) ≡ −∞, so (0,−1) ∈ intRepi f (x̄, f(x̄)); cf. 6.36), while

d̂f(x̄)(w) + d̂f(x̄)(−w) ≤ 〈∇h(x̄), w〉+ 〈∇h(x̄),−w〉 = 0.

Thus, (e) implies (g). This completes the network of equivalences. The formula
for lipf(x̄) follows from (b) and Theorem 9.13.

The condition ∂∞f(x̄) = {0} isn’t superfluous in 9.18(c). An example
where ∂f(x̄) is a singleton, but f isn’t strictly differentiable at x̄ and ∂∞f(x̄)
must therefore contain nonzero vectors, is furnished by the function f that was
considered after the proof of Theorem 9.13.

9.19 Corollary (smoothness). For a function f : IRn → IR and an open set O
where f is finite, the following properties are equivalent:

(a) f is strictly differentiable on O;

(b) f is C1 on O;

(c) f is strictly continuous and regular on O with ∂f single-valued;

(d) f is lsc on O, ∂f is locally bounded, and ∂f is single-valued where it is
nonempty-valued in O.

Proof. The theorem immediately gives the equivalence of (a) with (c). The
equivalence of (c) with (b) is apparent from 9.16, since f is differentiable at
x if and only if it is semidifferentiable at x and df(x) is a linear function; cf.
7.21; the support function of ∂f(x) is linear if and only if ∂f(x) is a singleton.

Obviously (c) implies (d). But if (d) holds, f is strictly continuous on O
by criterion 9.13(d), and then ∂f(x) is nonempty for all x ∈ O by 9.13 also.
We get (a) in this case through the equivalence of 9.18(b) with 9.18(a).

9.20 Corollary (continuity of gradient mappings). When f is regular on an
open set O ⊂ IRn, it is strictly differentiable at every point of O where it is
differentiable. Relative to this set of points, the mapping ∇f is continuous.

In particular, these properties hold when f is a finite convex function on
an open convex set O.

Proof. The first assertion is evident from 9.18(e) with h = f . The second is
then justified because ∂f reduces to ∇f on the set of points in question and
yet is osc with respect to f -attentive convergence; cf. 8.7. Since f is continuous
wherever it’s differentiable, f -attentive convergence in this set is the same as
ordinary convergence. Finite convex functions are regular by 7.27.
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9.21 Corollary (upper subgradient property). If f is strictly continuous and
regular on an open set O, as for instance when f is finite and convex, then at
all points x̄ ∈ O one has

−∂̂(−f)(x̄) =
{ {∇f(x̄)} if f is differentiable at x̄,
∅ if f is not differentiable at x̄,

−∂(−f)(x̄) = {
v
∣∣ ∃xν → x̄ with ∇f(xν)→ v

} ,

and therefore in particular −∂(−f)(x̄) ⊂ ∂f(x̄).
Proof. The assertion for −∂̂(−f)(x̄) follows from criterion (e) in the theo-
rem along with the variation description of regular subgradients in 8.5. The
assertion for −∂(−f)(x̄) then follows by definition. Finite convex functions are
strictly continuous by 9.14 and regular by 7.27.

9.22 Exercise (criterion for constancy). Let f : IRn → IR be lsc and proper,
and let x̄ ∈ dom f . Then the following conditions are equivalent:

(a) f is constant on a neighborhood of x̄,

(b) ∂f(x) = {0} for all x in a neighborhood of x̄ relative to dom f ,

(c) there exists ε > 0 such that whenever |x− x̄| ≤ ε, |f(x)−f(x̄)| ≤ ε and
∂̂f(x) �= ∅, one has ∂̂f(x) = {0}.
Guide. Through the basic facts about subgradients and the preceding results,
these conditions can be identified with f being strictly differentiable at all x in
some neighborhood of x̄, with ∇f(x) = 0.

In 9.22(c), the regular subgradient set ∂̂f(x) could be replaced by the set
of proximal subgradients defined by 8(30), because every regular subgradient
is a limit of proximal subgradients at nearby points; cf. 8.47(a).

D. Derivative Mappings and Their Norms

To extend some of these characterizations to the vector-valued case, i.e., from
f : IRn → IR to F : IRn → IRm, we must replace subderivatives and subgradi-
ents by the graphical derivative and coderivative mappings introduced in 8.33,
which are positively homogeneous but possibly multivalued. As an aid in this
development we define for any positively homogeneous mapping H : IRn →→ IRm

the outer norm |H|+ ∈ [0,∞] by

|H|+ := sup
w∈IB

sup
z∈H(w)

|z|. 9(4)

This is the infimum over all constants κ ≥ 0 such that |z| ≤ κ|w| for all pairs
(w, z) ∈ gphH. Although we won’t really make use of it here, the inner norm
|H|− ∈ [0,∞] is defined instead by

|H|− := sup
w∈IB

inf
z∈H(w)

|z|. 9(5)
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It gives the infimum of all constants κ ≥ 0 such that d
(
0, H(w)

) ≤ κ|w| for all
w. Obviously |H|− ≤ |H|+ always, and equality holds when H is single-valued.

When H is actually a linear mapping, its outer and inner norms agree with
the norm of the corresponding matrix (as defined in 9.3):

|H|+ = |H|− = |A| when H(w) = Aw.

In general, however, the positively homogeneous mappings H : IRn →→ IRm

don’t even form a vector space under addition and scalar multiplication, so
neither |H|+ nor |H|− is truly a ‘norm’ in the sense ordinarily accompanying
that term. Nevertheless, elementary rules are valid like

|λH|+= |λ||H|+, |H1 +H2|+≤ |H1|++ |H2|+, |H2◦H1|+≤ |H2|+|H1|+,
|λH|−= |λ||H|−, |H1 +H2|−≤ |H1|−+ |H2|−, |H2◦H1|−≤ |H2|−|H1|−.

9.23 Proposition (local boundedness of positively homogeneous mappings). For
H : IRn →→ IRm positively homogeneous, the following are equivalent:

(a) H is osc and locally bounded;

(b) H is osc relative to some neighborhood of 0, and H(0) = {0};
(c) H is osc relative to IB, and |H|+ <∞.

Furthermore, whenever g-lim supν H
ν ⊂ H for positively homogeneous map-

pings Hν : IRn →→ IRm, one has lim supν |Hν |+ ≤ |H|+, so that if H is locally
bounded the same must be true of Hν for all ν in an index set N ∈ N∞.

Proof. Under (a) the set H(IB) is compact (by 5.15 and 5.25(a)), so we
have (c). On the other hand, (c) implies (b) because H(0) is itself a cone (by
8.36) and thus can’t be bounded unless it consists only of 0. Finally, if (b)
holds we have H osc everywhere by positive homogeneity. If H weren’t locally
bounded, there would be a bounded sequence of points wν for which there exist
zν ∈ H(wν) with 0 < |zν | → ∞. Let z̄ν = zν/|zν | and w̄ν = wν/|zν |. Then
z̄ν ∈ H(w̄ν) with |z̄ν | = 1 and w̄ν → 0. Since H is osc, any cluster point z̄ of
{z̄ν}ν∈IN would give us z̄ ∈ H(0), z̄ �= 0, which is forbidden in (b).

Suppose now that g-lim supν H
ν ⊂ H. Consider κ < lim supν |Hν |+.

There’s an index set N ∈ N#
∞ along with ε > 0 such that κ + ε < |Hν |+

for all ν ∈ N , and accordingly there exist (wν , zν) ∈ gphHν such that |zν | ≥
(κ+ε)|wν |. Since gphHν is a cone (cf. 8.36), we can assume |wν |2+ |zν |2 = 1.
The sequence of pairs (wν , zν) then has a cluster point (w̄, z̄) �= (0, 0), necessar-
ily in gphH, for which |z̄| ≥ (κ+ ε)|w̄|. Then |H|+ ≥ κ+ ε. Having proceeded
from any κ < lim supν |Hν |+, we deduce that |H|+ ≥ lim supν |Hν |+.

In particular then, if |H|+ <∞, this condition being the hallmark of local
boundedness as determined earlier, we must have |Hν |+ < ∞ for all ν suffi-
ciently large. The osc mapping clHν , which like Hν is positively homogeneous
(its graph is still a cone) obviously has | clHν |+ = |Hν |+, so by the foregoing
it too must be locally bounded for all ν sufficiently large. Local boundedness
of clHν entails that of Hν .
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Additional properties of |H|+ and also |H|− will be developed in 11.29 and
11.30 for mappings H that are sublinear.

9.24 Proposition (derivatives and coderivatives of single-valued mappings). For
F : D → IRm with D ⊂ IRn, consider x̄ ∈ intD.

(a) If F is calm at x̄, as is true when F is strictly continuous at x̄, its
derivative mapping DF (x̄) is nonempty-valued, osc and locally bounded, with

∣∣DF (x̄)∣∣+ = lim sup
x→x̄
x�=x̄

∣∣F (x)− F (x̄)∣∣
|x− x̄| ≤ lipF (x̄).

(b) If F is strictly continuous at x̄, its coderivative mapping D∗F (x̄) is
nonempty-valued, osc and locally bounded, with

D∗F (x̄)(y) = ∂(yF )(x̄) for all y and
∣∣D∗F (x̄)

∣∣+ = lipF (x̄).

The regular coderivative D̂∗F (x̄) likewise has D̂∗F (x̄)(y) = ∂̂(yF )(x̄) for all y.

Proof. The limit expression for
∣∣DF (x̄)∣∣+ in (a) is clear from the definition

of the outer norm in 9(4) and the characterization of DF (x̄)(w) in 8(21), or
equivalently 8(20); the boundedness of the difference quotients in the latter
serves to establish the nonemptiness of DF (x̄)(w) for every w. The other
properties of DF (x̄) then follow from 9.23 as applied to H = DF (x̄).

For (b), let V ∈ N (x̄) be open and such that F is strictly continuous on

D∩V ; cf. 9.1. For any x̃ we know from 8(23) that v ∈ D̂∗F (x̃)(y) if and only if〈
v, x− x̃〉 ≤ 〈

y, F (x)− F (x̃)〉+ o
(∣∣(x, F (x))− (x̃, F (x̃))

∣∣),
but when x̃ ∈ V the strict continuity of F induces the error term to be of the
form o

(|x− x̃|), so that the condition can be written simply as

(yF )(x) ≥ (yF )(x̃) +
〈
v, x− x̃〉+ o

(|x− x̃|).
Thus, D̂∗F (x̃)(y) = ∂̂(yF )(x̃) for all y. The graphical limit formula for D∗F (x̄)
in 8(22) then gives us D∗F (x̄)(y) = ∂(yF )(x̄) for all y, utilizing the estimate

that ∂̂[yνF ](xν) ⊂ ∂[yF+(yν−y)F ](xν) ⊂ ∂[yF ](xν)+∂[(yν−y)F ](xν), where
∂[(yν − y)F ](xν)→ {0} when xν → x̄ and yν → y. The formula for

∣∣D∗F (x̄)
∣∣+

follows then, via 9(3), from the one in 9.9 and the definition.

An example of a Lipschitz continuous mapping F : IR → IR which at 0
has a multivalued derivative mapping DF (0) : IR→→ IR is shown in Figure 9–4.
For more on this kind of situation, see 9.49(b).

Some of the results about differentiability properties of real-valued func-
tions can be extended to vector-valued functions through 9.24. Generalizing
Definition 7.20 to the case of F : D → IRm, D ⊂ IRn, we call

lim
w′→w
τ ↘ 0

F (x̄+ τw′)− F (x̄)
τ
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gph F

(0,0)

(x,u)
_ _

gph DF(x)
_

Fig. 9–4. A single-valued mapping with multivalued graphical derivative.

the semiderivative of F at x̄ for w, if this limit vector exists. If it exists for
every w ∈ IRn, we say that F is semidifferentiable at x̄. The same concept
can also be reached by specializing to single-valued mappings the definition of
semidifferentiability given for set-valued mappings ahead of 8.43.

In the notation F (x) =
(
f1(x), . . . , fm(x)

)
, semidifferentiability of F at x̄

corresponds to that property for each of the functions fi. The characterizations
of semidifferentiability in 7.21 carry over then to F . (For the sake of applying
7.21 to fi, there’s no harm in thinking of fi as∞ outside ofD). In particular, F
is seen to be semidifferentiable at x̄ if and only if there’s a continuous, positively
homogeneous mapping H : IRn → IRm (single-valued) such that

F (x) = F (x̄) +H(x− x̄) + o
(|x− x̄|). 9(6)

This expansion, which corresponds to the one in 8.43(f) in the context of set-
valued mappings, reduces to the differentiability of F at x̄ when H(w) = Aw
for some A ∈ IRm×n; cf. 7.22. Then 9(6) can be written equivalently as

F (x′)− F (x̄)−A(x′ − x̄)
|x′ − x̄| → 0 as x′ → x̄ with x′ �= x̄.

In emulation of 9.17 we go on to define F to be strictly differentiable at x̄ if
F (x′) = F (x) +A(x′ − x) + o(|x′ − x|), i.e.,

F (x′)− F (x)−A(x′ − x)
|x′ − x| → 0 as x, x′ → x̄ with x′ �= x. 9(7)

9.25 Exercise (differentiability properties of single-valued mappings). Consider
F : D → IRm, D ⊂ IRn, and a point x̄ ∈ intD.

(a) F is semidifferentiable at x̄ if and only if F is calm at x̄ and the mapping
DF (x̄) is single-valued. Then F (x) = F (x̄) +DF (x̄)(x− x̄) + o

(|x− x̄|).
(b) F is differentiable at x̄ if and only if F is calm at x̄ and the mapping

DF (x̄) is not just single-valued but also linear. Then DF (x̄)(w) = ∇F (x̄)w.
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(c) F is strictly differentiable at x̄ if and only if F is strictly continuous
at x̄ and the mapping D∗F (x̄) is single-valued, in which case D∗F (x̄) must be
linear. Then D∗F (x̄)(y) = ∇F (x̄)∗y.

(d) F is strictly differentiable at x̄ if and only if F is both strictly continuous
and graphically regular at x̄.

Guide. In (a) argue from the definition of semidifferentiability and the facts
about it just mentioned. Then specialize to get (b). In (c) apply criterion
9.18(b) to f = yF , using the form for D∗F (x̄) established in 9.24(b). Graphical

regularity of F at x̄ is equivalent to having D̂∗F (x̄)(y) = D∗F (x̄)(y) for all y,

cf. 8.40(f). Get the necessity of this in (d) through (c) and the form for D̂∗F (x̄)
in 9.24(b). Obtain the sufficiency by invoking 9.13 once more.

The revelation in 9.25(d) that a strictly continuous mapping F : IRn →
IRm can’t be graphically regular without in fact being strictly differentiable
underscores the special nature of the geometry of the graphs of such single-
valued mappings. Regularity is absent at all ‘nonsmooth’ points and therefore
can’t begin to play the role that it does in the geometry of sets defined by
smooth inequality constraints.

E. Lipschitzian Concepts for Set-Valued Mappings

Lipschitz continuity can be extended to set-valued mappings S in terms of
Pompeiu-Hausdorff distance as defined in 4.13,

dl∞
(
S(x′), S(x)

)
= sup

u∈IRm

∣∣∣d(u, S(x′))− d(u, S(x))∣∣∣
= sup

u∈S(x′)∪S(x)

∣∣∣d(u, S(x′))− d(u, S(x))∣∣∣.
9.26 Definition (Lipschitz continuity of set-valued mappings). A mapping S :
IRn →→ IRm is Lipschitz continuous on X , a subset of IRn, if it is nonempty-
closed-valued on X and there exists κ ∈ IR+, a Lipschitz constant, such that

dl∞
(
S(x′), S(x)

) ≤ κ|x′ − x| for all x, x′ ∈ X,
or in equivalent geometric form,

S(x′) ⊂ S(x) + κ|x′ − x|IB for all x, x′ ∈ X.
Observe that in the notation su(x) = d(u, S(x)) the inequality in 9.26

refers to having |su(x′) − su(x)| ≤ κ|x′ − x| for all x, x′ ∈ X and u ∈ IRm. In
other words, it requires all the functions su to be Lipschitz continuous on X
with the same constant κ.

When S is actually single-valued, Lipschitz continuity on X in the sense
of 9.26 reduces to Lipschitz continuity in the sense of 9.1. The new definition
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doesn’t clash with the earlier one. But in relying on Pompeiu-Hausdorff dis-
tance, the set-valued version has serious limitations if the sets S(x) are allowed
to be unbounded, because it necessitates that these sets have the same horizon
cone for all x; cf. 4.40. That’s true in some situations of interest, such as when
S(x) = S0(x) +K with S0 locally bounded and K a fixed cone or other closed
set, and also in the presence of polyhedral graph-convexity as will be seen in
9.35 and 9.47, but it leaves out a host of other potential applications.

Again the example of a ray rotating in IR2 at a constant rate around the
origin is instructive (see Figure 5–7 and the surrounding discussion). In inter-
preting the ray as a set S(t) varying with time t ∈ IR, we get a mapping that
doesn’t even behave continuously with respect to Pompeiu-Hausdorff distance,
much less in the manner laid out by Definition 9.26. Yet this mapping is con-
tinuous in the sense of set convergence as adopted in Chapter 5, and it’s clearly
a prime candidate for suggesting what kind of generalization ought to be made
of Lipschitz continuity for the sake of wider relevance.

u

x

gph S

κ = 2

Fig. 9–5. A Lipschitz continuous set-valued mapping that is locally bounded.

To formulate such a property, appropriate in the analysis of a much larger
class of mappings S : IRn →→ IRm than those covered by Definition 9.26, we can
utilize the quantification of set convergence that was developed in Chapter 4
in terms of the distances dlρ and d̂lρ in 4(11). We can apply these expressions
to image sets S(x) and S(x′) in IRm, obtaining

dlρ
(
S(x′), S(x)

)
= max

|u|≤ρ

∣∣∣d(u, S(x′))− d(u, S(x))∣∣∣,
d̂lρ

(
S(x′), S(x)

)
= 9(8)

inf
{
η ≥ 0

∣∣∣ S(x′) ∩ ρIB ⊂ S(x) + ηIB, S(x) ∩ ρIB ⊂ S(x′) + ηIB
}
,

(where ‘inf’ can be replaced by ‘min’ when S is closed-valued).

Both dlρ and d̂lρ are of interest, because, as explained in Chapter 4, dlρ is

a pseudo-metric, whereas d̂lρ, although not a pseudo-metric, is typically easier
to understand geometrically and to estimate. The double inequality
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d̂lρ
(
S(x′), S(x)

) ≤ dlρ
(
S(x′), S(x)

) ≤ d̂lρ′
(
S(x′), S(x)

)
when ρ′ ≥ 2ρ+max

{
d(0, S(x′)), d(0, S(x))

}
,

9(9)

which translates 4.37(a) to this context (with 2ρ replaceable by ρ when S(x) and
S(x′) are convex), ties the two expressions closely to each other. They relate
to Pompeiu-Hausdorff distance dl∞

(
S(x′), S(x)

)
through the fact, coming from

4.37(b) and 4.38, that

dlρ
(
S(x′), S(x)

)
↗ dl∞

(
S(x′), S(x)

)
as ρ↗∞, with

dlρ
(
S(x′), S(x)

)
= dl∞

(
S(x′), S(x)

)
when S(x′) ∪ S(x) ⊂ ρIB.

9(10)

It’s clear from this that the definition of Lipschitz continuity in 9.26 could
just as well have been stated without appeal to Pompeiu-Hausdorff distance,
but instead in terms of the inequalities dlρ(S(x

′), S(x)) ≤ κ|x′ − x| holding for
all x, x′ ∈ X , the crucial thing being that the same κ works for all ρ. The path
to the concept we need for handling mappings S with S(x) possibly unbounded
is found in relinquishing such uniformity by allowing κ to depend on ρ.

9.27 Definition (sub-Lipschitz continuity). A mapping S : IRn →→ IRm is sub-
Lipschitz continuous on a set X ⊂ IRn if it is nonempty-closed-valued on X
and for each ρ ∈ IR+ there exists κ ∈ IR+, a ρ-Lipschitz constant , such that

dlρ
(
S(x′), S(x)

) ≤ κ|x′ − x| for all x, x′ ∈ X,
and hence also

S(x′) ∩ ρIB ⊂ S(x) + κ|x′ − x|IB for all x, x′ ∈ X.

In this case the inclusion is only implied by the inequality—for a given κ.
But by virtue of 9(9), the inclusion can nonetheless replace the inequality in
this definition as a whole; it’s just that in passing from the inclusion to the
inequality a shift to a larger κ is needed.

The fact that sub-Lipschitz continuity is more readily available than Lips-
chitz continuity in many practical situations involving set-valued mappings will
be confirmed in 9.32. In particular, the example of the rotating ray will be seen
to exhibit this property; this will be covered not only by 9.32, but because of
convex-valuedness, also by a special truncation criterion in 9.33.

Together with Lipschitz and sub-Lipschitz continuity it will now be helpful,
as in the analysis of single-valued mappings, to work with a concept of ‘strict
continuity’ that focuses on individual points.

9.28 Definition (strict continuity of set-valued mappings). Consider a mapping
S : IRn →→ IRm and a set X ⊂ IRn.

(a) S is strictly continuous at x̄ relative to X if x̄ ∈ X and S is nonempty-
closed-valued on some neighborhood of x̄ relative to X , and in addition, for
each ρ ∈ IR+ the value
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lip
X,ρ

S(x̄) := lim sup
x,x′→

X x̄

x�=x′

dlρ
(
S(x′), S(x)

)
|x′ − x|

is finite. More simply, S is strictly continuous at x̄ (without mention of X) if
x̄ ∈ int(domS), S is closed-valued around x̄ and for each ρ ∈ IR+ the value

lipρS(x̄) := lim sup
x,x′→x̄
x�=x′

dlρ
(
S(x′), S(x)

)
|x′ − x|

is finite. Here lipρS(x̄) is the ρ-Lipschitz modulus for S at x̄, and lipX,ρS(x̄)

is this modulus relative to X . Similarly defined with ρ = ∞, lip∞S(x̄) is the
Lipschitz modulus for S at x̄, while lipX,∞S(x̄) is its relativization to X .

(b) S is strictly continuous relative to X if, for every point x̄ ∈ X , S is
strictly continuous at x̄ relative to X

9.29 Proposition (alternative descriptions of strict continuity). Consider S :
IRn →→ IRm and a set X ⊂ IRn on which S is nonempty-closed-valued. Then
each of the following conditions at a point x̄ ∈ X is equivalent to S being
strictly continuous at x̄ relative to X :

(a) for each ρ ∈ IR+ there exist κ ∈ IR+ and V ∈ N (x̄) such that

dlρ
(
S(x′), S(x)

) ≤ κ|x′ − x| for all x, x′ ∈ X ∩ V ; 9(11)

(b) for each ρ ∈ IR+ there exist κ ∈ IR+ and V ∈ N (x̄) such that

d̂lρ
(
S(x′), S(x)

) ≤ κ|x′ − x| for all x, x′ ∈ X ∩ V, 9(12)

or equivalently, S(x′) ∩ ρIB ⊂ S(x) + κ|x′ − x|IB for all x, x′ ∈ X ∩ V ;

(c) for each ρ ∈ IR+ there exist κ ∈ IR+ and V ∈ N (x̄) such that all the
functions x �→ d

(
u, S(x)

)
for u ∈ ρIB are Lipschitz continuous on X ∩ V with

constant κ.

Proof. The equivalence with (a) is immediate from the definition of lipX,ρS(x̄)
in 9.28, while the equivalence with (c) comes from the dlρ formula in 9(8). For
the necessity of (b), note that 9(11) implies 9(12) by 9(9). For the sufficiency,
assume that the inequality in (b) holds. Fixing any ρ ∈ IR+, choose ρ′ >
2ρ + d

(
0, S(x̄)

)
. By assumption there exist κ ∈ IR+ and V ∈ N (x̄) such

that 9(12) holds for ρ′. Looking at this property in its geometric form, we
see in particular that S(x̄) ∩ ρ′IB ⊂ S(x) + κ|x − x̄|IB when x ∈ X ∩ V and
consequently S(x) �= ∅ for such x, in fact with d

(
0, S(x)

) ≤ d(0, S(x̄))+κ|x−x̄|.
Take ε > 0 small enough that d

(
0, S(x̄)

)
+κε < ρ′−2ρ and IB(x̄, ε) ⊂ V . Then

ρ′ > 2ρ+ d
(
0, S(x)

)
for all x ∈ X ∩ IB(x̄, ε), so that, by 9(9) and the fact that

9(12) holds for ρ′, we have 9(11) holding with IB(x̄, ε) in place of V .

Strict continuity at a point entails continuity at that point, of course.
This is clear from the characterization of set convergence in 4.36 in terms of
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the pseudo-metrics dlρ, or more simply from the distance function characteri-
zation of continuity in 5.11 when contrasted with the characterization of strict
continuity in 9.29(c). In particular, if S is strictly continuous at x̄, one must
have x̄ ∈ int(domS). Continuity of S relative to X requires the functions
su : x �→ d

(
u, S(x)

)
for u ∈ IRm to be continuous relative to X . In comparison,

strict continuity requires these functions su to be strictly continuous relative
to X , moreover with certain uniformities in the modulus.

Just as the modulus lipρS(x̄) defined in 9.28 corresponds to the limiting
constant at x̄ in the conditions 9(11), we can introduce a similar modulus with
respect to the conditions in 9(12):

lip∧
ρ S(x̄) := lim sup

x,x′→x̄
x�=x′

d̂lρ
(
S(x′), S(x)

)
|x′ − x| . 9(13)

This is motivated by the fact that lip∧
ρ S(x̄) is sometimes easier to estimate

than lipρS(x̄). Through 9(8) we deduce the useful relation that

lip∧
ρ S(x̄) ≤ lipρS(x̄) ≤ lip∧

ρ′ S(x̄) when ρ′ ≥ 2ρ+ d
(
0, S(x̄)

)
. 9(14)

The corresponding modulus lip∧
X,ρ

S(x̄) relative to a set X is defined of course

by restricting the convergence x, x′ → x̄ to x, x′ ∈ X .

Because the neighborhood V in 9.29(a) can shrink as ρ increases, strict
continuity of S at a point x̄ doesn’t entail S necessarily being strictly contin-
uous at all points nearby, much less that S is sub-Lipschitz continuous on a
neighborhood of x̄. This feature is crucial, however, to our being able later to
characterize strict continuity in terms of coderivative mappings (in 9.38).

Of course, the problem with shrinking neighborhoods in the ρ-modulus
limits of Definition 9.28 doesn’t enter in considering the ρ = ∞ case by itself.
From having lip∞S(x̄) < ∞, we do get that S is Lipschitz continuous in a
neighborhood of x̄. But local Lipschitz continuity is no longer identifiable
with strict continuity, as it was for single-valued mappings. It’s a narrower
property with fewer applications. As part of the following theorem, however,
local Lipschitz continuity does persist in being identifiable with strict continuity
in the case of mappings that are locally bounded.

9.30 Theorem (Lipschitz versus sub-Lipschitz continuity). If a mapping S :
IRn →→ IRm is Lipschitz continuous on a set X ⊂ IRn, then it is sub-Lipschitz
continuous on X as well. The two properties are equivalent whenever S is
bounded on X , i.e., the set S(X) is bounded in IRm.

More generally, in the case where S is locally bounded on X , it is locally
Lipschitz continuous on X if and only if it is locally sub-Lipschitz continuous
on X . Furthermore, these properties are equivalent then to S being strictly
continuous relative to X .

Indeed, if S is strictly continuous and locally bounded relative to X at a
point x̄, then S is Lipschitz continuous on a neighborhood of x̄ relative to X .
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Proof. The first part is obvious from 9(10). In the case of local boundedness,
this is applied to a neighborhood of each point. When x̄ has a neighborhood
V0 such that S(X ∩ V0) ⊂ ρIB, the condition in 9.29(b) provides Lipschitz
continuity of S on X ∩ V ∩ V0.

Without the boundedness assumption in Theorem 9.30, sub-Lipschitz con-
tinuity on X can differ from Lipschitz continuity, even when specialized to
single-valued mappings . For an illustration of this phenomenon in the case of
X = IR, consider the mapping F : IR → IR2 with F (t) = (t, sin t2). As seen
through 9.7, F is strictly continuous on IR and therefore, by 9.2, Lipschitz con-
tinuous on any bounded interval of IR. But it’s not Lipschitz continuous glob-
ally on IR: we have F ′(t) = (1, 2t cos t2), so that lipF (t) = (1 + 4t2 cos2 t2)1/2,
but this expression isn’t bounded above as t ranges over IR. On the other hand,
F is sub-Lipschitz continuous globally on IR. To see this, let u = (u1, u2) and
su(t) = |u− F (t)| = [(u1 − t)2 + (u2 − sin t2)2]1/2, and observe on the basis of
9.7 that when |u| ≤ ρ < |t| we have

lip su(t) =

∣∣〈u− F (t), F ′(t)
〉∣∣∣∣u− F (t)∣∣ ≤

∣∣(u1 − t) + 2t cos t2(u2 − sin t2)
∣∣

|u1 − t|

≤ 1 +
2| cos t2||u2 − sin t2|

1− ρ/|t| ≤ 1 + 4(ρ+ 1) when |t| ≥ 2ρ.

This implies the existence for each ρ ∈ IR+ of a constant κ ∈ IR+ such that
lip su(t) ≤ κ for all t ∈ IR when u ∈ ρIB, in which case su is Lipschitz continuous
on IR with this constant. Then dlρ

(
F (t′), F (t)

) ≤ κ|t′ − t| for all t, t′ ∈ IR.
9.31 Theorem (sub-Lipschitz continuity via strict continuity). If S : IRn →→ IRm

is strictly continuous on an open set O ⊂ IRn, then for each ρ ∈ IR+ the function
lipρS is finite and usc on O with lipρS ≤ lip∞S.

If X ⊂ O is a convex set on which each of the functions lipρS for ρ ∈ IR+

is bounded from above, this being true in particular when X is also compact,
then S is sub-Lipschitz continuous on X . Indeed, the value

κρ = sup
x∈X

{
lipρS(x)

}
serves as a ρ-Lipschitz constant for S on X .

If these constants κρ are all bounded from above by some κ, then S is
Lipschitz continuous on X with constant κ. In particular, that holds when the
function lip∞S is bounded from above on X , in which case one can take

κ = sup
x∈X

{
lip∞S(x)

}
.

Proof. The initial claims about the functions lipρS are elementary conse-
quences of Definition 9.28 and the first relation in 9(10). Note also that a
finite osc function on a nonempty compact set attains its maximum and thus
is bounded from above (cf. 1.9).
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Through the dlρ formula in 9(8), lipρS(x̄) is the infimum of all κ serving
on some neighborhood of x̄ as a Lipschitz constant for all the functions su :
x �→ d

(
u, S(x)

)
with u ∈ ρIB. These functions thus have lip su(x̄) ≤ lipρS(x̄)

at every point x̄ ∈ X , so that lip su ≤ κρ on X . Applying 9.2, we obtain for
every u ∈ ρIB that κρ serves as a constant for su relative to all of X . Invoking
9(8) once more, we get dlρ

(
S(x′), S(x)

) ≤ κρ|x′ − x| for all x, x′ ∈ X .
The remainder, about the case of Lipschitz continuity, is evident from

9(10) again and the fact that lipρS(x) ≤ lip∞S(x).

The rotating ray exhibits sub-Lipschitz continuity, although not Lipschitz
continuity, as already mentioned. This fits more broadly with the following
example, in which a major class of sub-Lipschitz continuous mappings is iden-
tified. The example, based on the theorem just proved, also provides an illus-
tration of how the constants involved in this property may be estimated in a
particular situation.

9.32 Example (transformations acting on a set). Let S(x) = A(x)C + a(x) for
a nonempty, closed set C ⊂ IRm and nonsingular matrices A(x) ∈ IRm×m and
vectors a(x) ∈ IRm depending on a parameter vector x ∈ O, where O is an
open subset of IRn. Suppose the functions a : x �→ a(x) and A : x �→ A(x) are
strictly continuous with respect to x ∈ O. Then the mapping S : O →→ IRm is
strictly continuous at any point x̄ ∈ O, with

lip∧
ρS(x̄) ≤ |A(x̄)−1|(ρ+ |a(x̄)|) lipA(x̄) + lipa(x̄), 9(15)

so S is sub-Lipschitz continuous on any compact, convex set X ⊂ O. In fact,
if C is bounded with C ⊂ λIB, one has

lip∞S(x̄) ≤ λ lipA(x̄) + lipa(x̄),

and in that case S is Lipschitz continuous on such a set X . But if C is not
bounded and the cone A(x)C∞ fails to be the same for all x ∈ X , then it is
impossible for S to be Lipschitz continuous on X .

Detail. The nonsingularity of A(x) ensures that S is closed-valued. Consider
any x and x′ in O and any u′ ∈ [A(x′)C+a(x′)]∩ρIB; we have |u′| ≤ ρ and there
exists z ∈ C with u′ = A(x′)z + a(x′). Let u = A(x)z + a(x). Then u′ − u =
[A(x′)−A(x)]z+ [a(x′)− a(x)], so |u′− u| ≤ |A(x′)−A(x)||z|+ |a(x′)− a(x)|.
Also, z = A(x′)−1[u′ − a(x′)], so that |z| ≤ |A(x′)−1|(|u′|+ |a(x′)|). Thus,

[A(x′)C + a(x′)] ∩ ρIB ⊂ [A(x)C + a(x)] + λ(x, x′)IB

for λ(x, x′) = |A(x′)−A(x)||A(x′)−1|(ρ+ |a(x′)|)+ |a(x)− a(x′)|,
hence d̂l

(
S(x′), S(x)

) ≤ λ̄(x, x′)|x′ − x| for λ̄(x, x′) := min
{
λ(x, x′), λ(x′, x)

}
.

By dividing both sides of this inequality by |x′ − x| and taking the limit as
x, x′ → x̄ with x �= x′, we obtain 9(15) through 9(13). Then S is strictly
continuous at x̄ by 9.29(a), hence sub-Lipschitz continuous by 9.31 relative to
any compact, convex set X ⊂ O.
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When C lies in λIB, there exists ρ̄ such that S(x) and S(x′) lie in ρ̄IB when
x and x′ are near enough to x̄. The estimate of the constant goes through with
the inequality |z| ≤ |A(x′)−1|(|u′| + |a(x′)|) simplified to |z| ≤ λ. This yields
lipS(x̄) ≤ λ lipA(x̄) + lip a(x̄).

When C isn’t bounded, yet S is Lipschitz continuous on X with constant
κ, the inclusion S(x′) ⊂ S(x) + κ|x′ − x|IB entails S(x′)∞ ⊂ S(x)∞ for all
x, x′ ∈ X (cf. 3.12), hence actually S(x′)∞ = S(x)∞. But S(x)∞ = A(x)C∞

by the inclusion in 3.10 and the invertibility of A(x). It’s essential then that
A(x′)C∞ = A(x)C∞ for all x, x′ ∈ X .

Convexity, as always, brings simplifications and additional properties. The
example of the rotating ray, because it concerns a set-valued mapping, gets its
sub-Lipschitz continuity also by the following criterion.

9.33 Theorem (truncations of convex-valued mappings). For a closed-valued
mapping S : IRn →→ IRm and a set X ⊂ domS, let ρ0 = supx∈X d

(
0, S(x)

)
and

consider for each ρ ∈ IR+ the truncation Sρ : IRn →→ IRm given by

Sρ(x) := S(x) ∩ ρIB.

(a) Suppose S is convex-valued and ρ0 < ∞. Take any ρ̄ ∈ (ρ0,∞). Then
S is strictly continuous relative to X if and only if, for every ρ ∈ (2ρ̄,∞), the
bounded mapping Sρ is locally Lipschitz continuous relative to X .

(b) Suppose S is graph-convex and X is compact with X ⊂ int(domS).
Then ρ0 <∞, and there exists λ ∈ IR+ such that, for ρ ≥ ρ0 + 1, one has

Sρ(x
′) ⊂ Sρ(x) + λρ|x′ − x|IB for all x ∈ X and x′ ∈ IRn, 9(16)

and therefore in particular d̂lρ
(
S(x′), S(x)

) ≤ λρ|x′ − x| for all x, x′ ∈ X .

Moreover, one can take λ = 2/ inf
{
d(x,X)

∣∣d(0, S(x)) ≥ ρ0 + 1
}
.

Proof. The equivalence in (a) is immediate from the bounds in 4.39. The
verification of (b) begins with the recollection from 5.9(b) that graph-convexity
implies S is isc on int(domS) and therefore by 5.11(b) that d

(
0, S(x)

)
is usc on

int(domS). This guarantees that the supremum defining ρ0 is finite and the
value ε̄ := inf

{
d(x,X)

∣∣d(0, S(x)) ≥ ρ0 + 1
}
is positive. Take any ε ∈ (0, ε̄);

for x ∈ X + εIB we have Sρ(x) �= ∅ as long as ρ ≥ ρ0 + 1. Fix ρ ∈ [ρ0 + 1,∞),
x ∈ X and x′ �= x. Let e = (x′−x)/|x′−x| and x′′ = x−εe. Then x′′ ∈ domS
and x = (1− τ)x′ + τx′′ for τ = |x′− x|/(ε+ |x′− x|). The graph-convexity of
S carries over to Sρ and gives the inequality Sρ(x) ⊃ (1− τ)Sρ(x

′) + τSρ(x
′′);

cf. 5(4). Hence

Sρ(x) + τSρ(x
′) ⊃ (1− τ)Sρ(x

′) + τSρ(x
′) + τSρ(x

′′) = Sρ(x
′) + τSρ(x

′′),

where we use the special distributive law in 2.23(c) for scalar multiplication of
convex sets. But Sρ(x

′) ⊂ Sρ(x
′′) + 2ρIB. Therefore

Sρ(x) + τSρ(x
′′) + 2τρIB ⊃ Sρ(x

′) + τSρ(x
′′).
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Now we can invoke the cancellation law in 3.35 to drop τSρ(x
′′) from both sides.

This yields Sρ(x
′) ⊂ Sρ(x) + 2τρIB. Setting λ = 2/ε we get 2τ ≤ λ|x′− x| and

the desired inclusion, except with ε in place of ε̄. The result follows then for ε̄
as well, due to the arbitrary choice of ε ∈ (0, ε̄).

9.34 Corollary (strict continuity from graph-convexity). If S : IRn →→ IRm is
closed-valued and graph-convex, it is strictly continuous at any x̄ ∈ int(domS).
Indeed, for ρ > d

(
0, S(x̄)

)
+1 one has lip∧

ρ S(x̄) ≤ 2ρ
/
η̄, where η̄ is the positive

distance from x̄ to
{
x
∣∣ d(0, S(x)) ≥ d(0, S(x̄)) + 1

}
.

Proof. Apply Theorem 9.33(b) to arbitrarily small neighborhoods X of x̄.

A still more special case, significant in treating linear constraint systems,
is worth recording here as well.

9.35 Example (polyhedral graph-convex mappings). If S : IRn →→ IRm is not
just graph-convex but such that gphS is polyhedral in IRn × IRm, then S is
Lipschitz continuous on domS, even if its values S(x) are unbounded sets.

Detail. The polyhedral property means that gphS can be described by a
finite system of linear inequalities. For some dimension d there exist A ∈ IRd×n,
B ∈ IRd×m, and c ∈ IRd such that

u ∈ S(x) ⇐⇒ Ax+Bu+ c ∈ IRd
+.

Let K and R be the kernel and range, respectively, of the linear transformation
L : IRm → IRd corresponding to the matrix B, and let M : IRd → IRm be the
pseudo-inverse of L: in terms of the projection PR(w) of a point w ∈ IRd on
the subspace R ⊂ IRd, M(w) is the point of the affine set L−1

(
PR(w)

)
that is

nearest to the origin of IRm. The mapping M is linear, hence representable by
a matrix D; we have L−1(w) = Dw + K when w ∈ R, whereas L−1(w) = ∅
when w /∈ R. In this notation,

S(x) = D
[
(C −Ax) ∩R]

+K for all x, where C = IRd
+
− c.

Since (C − Ax′) ⊂ (C − Ax) + |A||x′ − x|IB, we obtain for x, x′ ∈ domS that
S(x′) ⊂ S(x) + κ|x′ − x|IB for κ = |A||D|. Thus, S is Lipschitz continuous on
the set domS.

F. Aubin Property and Mordukhovich Criterion

A broader framework for Lipschitzian estimates will rise from the concepts we
develop next. These allow the essence of strict continuity to be localized from
points in the domain of a mapping to points in its graph.

9.36 Definition (Aubin property and graphical modulus). A mapping S :
IRn →→ IRm has the Aubin property relative to X at x̄ for ū, where x̄ ∈ X
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and ū ∈ S(x̄), if gphS is locally closed at (x̄, ū) and there are neighborhoods
V ∈ N (x̄), W ∈ N (ū), and a constant κ ∈ IR+ such that

S(x′) ∩W ⊂ S(x) + κ|x′ − x|IB for all x, x′ ∈ X ∩ V. 9(17)

This condition with V in place of X ∩ V is simply the Aubin property at x̄ for
ū. The graphical modulus of S at x̄ for ū is then

lipS(x̄ | ū) := inf
{
κ
∣∣ ∃V ∈ N (x̄), W ∈ N (ū), such that

S(x′) ∩W ⊂ S(x) + κ|x′ − x|IB for all x, x′ ∈ V }
.

The difference between strict continuity and the Aubin property is that
an arbitrarily large ball ρIB is replaced by a sufficiently small neighborhood W
of a particular vector ū ∈ S(x̄), say W = IB(ū, ρ) for ρ sufficiently small.

The Aubin property is stable in the sense that, if it holds at x̄ for ū, then
for all (x, u) ∈ gphS near enough to (x̄, ū), it holds at x for u. Moreover the
function (x, u) �→ lipS(x |u) on gphS is usc relative to such a neighborhood.

9.37 Exercise (distance characterization of the Aubin property). Let ū ∈ S(x̄)
with x̄ ∈ X ⊂ IRn, and suppose gphS is locally closed at (x̄, ū). Then the
following are equivalent:

(a) S has the Aubin property relative to X at x̄ for ū;

(b) (x, u) �→ d
(
u, S(x)

)
is strictly continuous relative to X × IRm at (x̄, ū);

(c) there exist κ ∈ IR+, W ∈ N (ū) and V ∈ N (x̄) such that the functions
x �→ d

(
u, S(x)

)
for u ∈W are Lipschitz continuous on X ∩ V with constant κ;

(d) there exist κ ∈ IR+, ρ ∈ IR+ and V ∈ N (x̄) such that

dlρ
(
S(x′)− ū, S(x)− ū) ≤ κ|x′ − x| for all x, x′ ∈ X ∩ V ;

(e) there exist κ ∈ IR+, ρ ∈ IR+ and V ∈ N (x̄) such that

d̂lρ
(
S(x′)− ū, S(x)− ū) ≤ κ|x′ − x| for all x, x′ ∈ X ∩ V.

Moreover, in the case of x̄ ∈ intX , the graphical modulus lipS(x̄ | ū) is the
infimum of all κ fitting the pattern in (c). Indeed,

lipS(x̄ | ū) = lim sup
(x,u)→(x̄,ū)

lip su(x) for su(x) = d
(
u, S(x)

)

= lim sup
x,x′→x̄, x�=x′

ρ ↘ 0

dlρ
(
S(x′)− ū, S(x)− ū))

|x′ − x|

= lim sup
x,x′→x̄, x�=x′

ρ ↘ 0

d̂lρ
(
S(x′)− ū, S(x)− ū))

|x′ − x| .

Guide. In taking W to be of the form IB(ū, ρ), one sees that (e) is merely a
restatement of (a), while (d) is a restatement of (c). To establish the equivalence
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between (a) and (c), reduce to ū = 0. Work with the inequalities in 9(9) as ρ
and ρ′ tend to 0. In passing from (c) to (b), utilize the Lipschitz continuity of
distance functions in 9.6.

9.38 Theorem (graphical localization of strict continuity). A closed-valued
mapping S : IRn →→ IRm is strictly continuous at x̄ relative to X if and only
if it is osc relative to X at x̄ and, for every ū ∈ S(x̄), has the Aubin property
relative to X at x̄ for ū. Indeed, when x̄ ∈ intX and ρ > d

(
0, S(x̄)

)
, one has

lipρS(x̄) ≥ sup
ū∈S(x̄)
|ū|<ρ

{
lipS(x̄ | ū)

}
, lip∧

ρS(x̄) ≤ max
ū∈S(x̄)
|ū|≤ρ

{
lipS(x̄ | ū)

}
.

Proof. Suppose first that strict continuity holds. Since this entails continuity,
we in particular have S osc relative to X at x̄. Consider ū ∈ S(x̄) and ρ >
|ū|. Appealing to the equivalences in 9.29, let V ∈ N (x̄) be a corresponding
neighborhood such that the condition in 9.29(b) is fulfilled for some κ ∈ IR+;
there’s no loss of generality in taking V to be closed and such that S is closed-
valued on V . Then the neighborhood V × ρIB of (x̄, ū) has closed intersection
with gphS. Thus, gphS is locally closed at x̄. We have 9(17) for W = ρIB,
so the Aubin property holds relative to X at x̄ for ū. When x̄ is interior to
X , we can conclude further that lipS(x̄ | ū) ≤ κ and establish thereby that
lipS(x̄ | ū) ≤ lipρS(x̄). This yields the estimate claimed for lipρS(x̄).

Suppose now instead that S is osc relative to X at x̄ and has the Aubin
property there for every ū ∈ S(x̄). For each ū ∈ S(x̄) we have the existence of
Wū ∈ N (ū), Vū ∈ N (x̄), and κū ∈ IR+ such that Vū×Wū has closed intersection
with gphS and

S(x′) ∩Wū ⊂ S(x) + κū|x′ − x|IB for all x, x′ ∈ X ∩ Vū. 9(18)

Let ρ > d
(
0, S(x̄)

)
. The set S(x̄) ∩ ρIB is nonempty and compact, so

we can cover it by finitely many of the open sets intWū, corresponding say to
points ūk ∈ S(x̄)∩ρIB for k = 1, . . . , r. Let V =

⋂r
k=1 Vūk

,W =
⋃r

k=1Wūk
and

κ = maxrk=1 κūk
. Then S(x̄)∩ ρIB ⊂ intW , and V ×W has closed intersection

with gphS. Further, from 9(18) we have 9(17) for these elements.

There can’t exist xν → x̄ inX∩V with elements uν ∈ [S(xν)∩ρIB] \ intW ,
for the sequence {uν}ν∈IN would have a cluster point ū ∈ ρIB \ intW , and then
ū ∈ [S(x̄) ∩ ρIB] \ intW because S is osc relative to X at x̄, a contradiction.
Hence, by shrinking V somewhat if necessary, we can arrange that S(x)∩ρIB ⊂
W when x ∈ V . Then [V ×W ] ∩ gphS is closed. Also, the inclusion in 9(17)
persists for the smaller V and with W replaced by ρIB. Hence S is strictly
continuous relative to X at x̄, indeed with lip∧

ρ S(x̄) ≤ κ.

When x̄ ∈ intX , we can refine the argument by introducing ε > 0 and
taking κū = lipS(x̄ | ū)+ε. Then the κ we get is maxrk=1 lipS(x̄ | ūk)+ε, so that
κ ≤ κ̂+ ε with κ̂ the maximum of lipS(x̄ | ū) over all ū ∈ S(x̄)∩ ρIB (inasmuch
as each ūk lies in this set). We obtain lip∧

ρ S(x̄) ≤ κ̂ + ε, and through the
arbitrary choice of ε we conclude that lip∧

ρ S(x̄) ≤ κ̂.
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The Aubin property has been depicted as a Lipschitzian property localized
in the range space as well as the domain space, but the localization in range
actually allows for a certain relaxation of the localization in domain that will
play a crucial role in some later developments.

9.39 Lemma (extended formulation of the Aubin property). For a mapping
S : IRn →→ IRm, a pair (x̄, ū) ∈ gphS where gphS is locally closed, and a set
X ⊂ IRn containing x̄, the following conditions on κ ∈ IR+ are equivalent:

(a) there exist V ∈ N (x̄) and W ∈ N (ū) such that

S(x′) ∩W ⊂ S(x) + κ|x′ − x|IB for all x, x′ ∈ X ∩ V.

(b) there exist V ∈ N (x̄) and W ∈ N (ū) such that

S(x′) ∩W ⊂ S(x) + κ|x′ − x|IB for all x ∈ X ∩ V, x′ ∈ X.
Thus, the inclusion in (b) can be substituted for the inclusion in (a) in the
definition of S having the Aubin property relative to X at x̄ for ū. Moreover,
in the case where X is suppressed (with X ∩ V simplified to V ), the infimum
of the constants κ with respect to which the extended inclusion in (b) holds,
for various V and W , still gives the modulus lipS(x̄ | ū).

Proof. Trivially (b) implies (a), so assume that (a) holds for neighborhoods
V = IB(x̄, δ) and W = IB(ū, ε). We’ll verify that (b) holds for V ′ = IB(x̄, δ′)
and W ′ = IB(ū, ε′) when 0 < δ′ < δ, 0 < ε′ < ε, and 2κδ′ + ε′ ≤ κδ. Fix any
x ∈ X ∩ IB(x̄, δ′). Our assumption gives us

S(x′) ∩ IB(ū, ε′) ⊂ S(x) + κ|x′ − x|IB when x′ ∈ X ∩ IB(x̄, δ),

and our goal is to demonstrate that this holds also when x′ ∈ X \ IB(x̄, δ). From
applying (a) to x′ = x̄, we see that ū ∈ S(x) + κ|x − x̄|IB and consequently
IB(ū, ε′) ⊂ S(x) + (κδ′ + ε′)IB, where κδ′ + ε′ ≤ κδ− κδ′. But |x′− x| > δ− δ′
when x′ ∈ X \ IB(x̄, δ), so for such points x′ we have κδ−κδ′ ≤ κ|x′−x|, hence
S(x′) ∩ IB(ū, ε′) ⊂ S(x) + κ|x′ − x|IB, as required.

The next theorem provides not only a handy test for the Aubin prop-
erty but also a means of estimating the graphical modulus lipS(x̄ | ū) through
knowledge of the coderivative mapping D∗S(x̄ | ū). It will be possible on the
platform of the calculus of operations in Chapter 10 to gain such knowledge
from the way that a given mapping S is put together from simpler mappings.
Once estimates are at hand for the graphical modulus, estimates can also be
obtained for other values like lipρS(x̄), as seen in 9.38.

9.40 Theorem (Mordukhovich criterion). Consider S : IRn →→ IRm, x̄ ∈ domS
and ū ∈ S(x̄). Suppose that gphS is locally closed at (x̄, ū). Then S has the
Aubin property at x̄ for ū if and only if

D∗S(x̄ | ū)(0) = {0},
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or equivalently |D∗S(x̄ | ū)|+ <∞, and in that case lipS(x̄ | ū) = |D∗S(x̄ | ū)|+.
This condition holds if dom D̂S(x̄ | ū) = IRn, and it is equivalent to that

when D̂S(x̄ | ū) = DS(x̄ | ū), i.e., when S is graphically regular at x̄ for ū.

Proof. First we take care of the relationship with the regular graphical deriva-
tive mapping D̂S(x̄ | ū), whose graph is the regular tangent cone T̂gphS(x̄, ū).
This cone is convex (cf. 6.26), as is its projection on IRn, which is the cone

D := dom D̂S(x̄ | ū). We have D = IRn if and only if D∗ = {0} (through
the polarity facts in 6.21 and the relative interior properties in 2.40). A
vector v belongs to D∗ if and only if 〈v, w〉 ≤ 0 for all w ∈ D, or equiva-

lently, 〈(v, 0), (w, z)〉 ≤ 0 for all (w, z) ∈ T̂gphS(x̄, ū), which is the same as

(v, 0) ∈ T̂gphS(x̄, ū)
∗. But T̂gphS(x̄, ū)

∗ = NgphS(x̄, ū)
∗∗ = cl conNgphS(x̄, ū)

by 6.28(b) and 6.21. Thus, dom D̂S(x̄ | ū) = IRn if and only if

(v, 0) ∈ cl conNgphS(x̄, ū) =⇒ v = 0.

In contrast, we have by definition that D∗S(x̄ | ū)(0) = {0} if and only if

(v, 0) ∈ NgphS(x̄, ū) =⇒ v = 0.

The claim in the theorem about D̂S(x̄ | ū) is justified therefore through the
fact that cl conNgphS(x̄, ū) ⊃ NgphS(x̄, ū), with equality when gphS is Clarke

regular at (x̄, ū) also characterized by having D̂S(x̄ | ū) = DS(x̄ | ū); cf. 8.40.
Moving on now to the proof of the main result, let’s observe that the

condition D∗S(x̄ | ū)(0) = {0}, in relating only to the normal cone NgphS(x̄, ū),
depends only on the nature of gphS in an arbitrarily small neighborhood
of (x̄, ū). The same is true of the Aubin property, but an argument needs
to be made. Without loss of generality, the inclusion 9(17) in the definition
of this property can be focused on neighborhoods of type V = IB(x̄, δ) and
W = IB(ū, ε), thus taking the form

S(x′) ∩ IB(ū, ε) ⊂ S(x) + κ|x′ − x|IB for all x, x′ ∈ IB(x̄, δ). 9(19)

Then it never involves more on the right side than
[
S(x) + 2κδIB

] ∩ IB(ū, ε)
and thus stands or falls according to the behavior of gphS in the neighborhood
IB(x̄, δ)× IB(ū, ε+ 2κδ) of (x̄, ū).

There’s no harm, therefore, in assuming from now on that gphS is closed
in its entirety. Then in particular, S(x) is a closed set for all x. We’ll argue in
this context that the coderivative condition is equivalent to the distance version
of the Aubin property in 9.37(c), using this also to verify the equality between

κ1 := lipS(x̄ | ū), κ2 := |D∗S(x̄ | ū)|+.
Necessity. Suppose the Aubin property holds, and view it and the value

κ1 in the manner of 9.37. The property D∗S(x̄ | ū) = {0} to be confirmed is
identical to having κ2 < ∞, because κ2 is the infimum of all κ ∈ IR+ such
that |v| ≤ κ|y| whenever v ∈ D∗S(x̄ | ū)(y), or equivalently from 8.33, (v,−y) ∈
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NgphS(x̄, ū). But (v,−y) ∈ NgphS(x̄, ū) if and only if there exist (xν , uν) →
(x̄, ū) in gphS and (vν ,−yν) → (v,−y) with (vν ,−yν) ∈ N̂gphS(x

ν , uν). In
place of such regular normals (vν ,−yν) we can restrict our attention to proximal
normals by 6.18(a), inasmuch as gphS is a closed set. Therefore, κ2 is also the
infimum of all κ ∈ IR+ such that there exist δ > 0 and ε > 0 for which

|v| ≤ κ|y| whenever (v,−y) is a proximal normal vector to

gphS at a point (x̃, ũ) with |x̃− x̄| < δ and |ũ− ū| < ε.

}
9(20)

We therefore consider any κ, δ, and ε satisfying 9(19) and aim at showing they
satisfy 9(20). That will prove necessity along with the inequality κ1 ≥ κ2.

Fix any (x̃, ũ) ∈ gphS with |x̃ − x̄| < δ and |ũ − ū| < ε. To say that
(v,−y) is a proximal normal vector to gphS at (x̃, ũ) is to assert the existence
of τ > 0 such that (x̃, ũ) belongs to the projection PgphS

(
(x̃, ũ) + τ(v,−y));

cf. 6.16. Without affecting this projection property, we can reduce the size of
τ so as to arrange that ũ − τy ∈ int IB(ū, ε); we’ll denote ũ − τy by û; then
|û− ū| < ε. Then |(x, u)− (x̃+ τv, û)| ≥ |(τv,−τy)| for all (x, u) ∈ gphS, i.e.,

|x− (x̃+ τv)|2 + |u− û|2 ≥ τ2|v|2 + τ2|y|2 whenever u ∈ S(x),
an inequality which turns into an equation when u = ũ and x = x̃. We get∣∣x− (x̃+ τv)

∣∣2 + d
(
û, S(x)

)2 ≥ τ2|v|2 + τ2|y|2 for all x,∣∣x̃− (x̃+ τv)
∣∣2 + d

(
û, S(x̃)

)2
= τ2|v|2 + τ2|y|2,

and in this way we obtain

τ2|v|2 − |x− (x̃+ τv)|2 ≤ d
(
û, S(x)

)2 − d(û, S(x̃))2
=

[
d
(
û, S(x)

)− d(û, S(x̃))][d(û, S(x))+ d
(
û, S(x̃)

)]
.

9(21)

Due to having |x̃− x̄| < δ and |û− ū| < ε, we know from assuming 9(19) that

d
(
û, S(x)

)− d(û, S(x̃)) ≤ κ|x− x̃| as long as x ∈ IB(x̄, δ).

On the other hand the Lipschitz continuity of d
(
u, S(x̃)

)
in u with constant 1

(in 9.6) gives d
(
û, S(x̃)

) ≤ d
(
ũ, S(x̃)

)
+ τ |y|, where d(ũ, S(x̃)) = 0. Similarly

we have d
(
û, S(x)

) ≤ d(ũ, S(x))+ τ |y| with d(ũ, S(x)) ≤ d(ũ, S(x̃))+ κ|x− x̃|
as long as x ∈ IB(x̄, δ). Altogether then from 9(21), we get

2τ
〈
v, x− x̃〉− |x− x̃|2 ≤ κ|x− x̃|(κ|x− x̃|+ 2τ |y|) when x ∈ IB(x̄, δ).

Applying this to x = x̃+ λv for λ > 0 small enough to ensure that this point
lies in IB(x̄, δ) (which is possible because |x̃− x̄| < δ), we obtain

2τλ|v|2 − λ2|v|2 ≤ κλ|v|(κλ|v|+ 2τ |y|).
Unless |v| = 0, this implies (2τ −λ)|v| ≤ κ(κλ|v|+2τ |y|), and then in the limit
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as λ ↘ 0 that 2τ |v| ≤ 2τκ|y|. Hence certainly |v| ≤ κ|y|, which is the property
in 9(20) that we needed.

Sufficiency. The description of κ2 at the beginning of our proof of necessity
can be given another twist. On the basis of 6.6 and the definition of the
normal cone NgphS(x̄, ū), we have (v,−y) in this cone if and only if there
exist (xν , uν) → (x̄, ū) in gphS and (vν ,−yν) → (v,−y) with (vν ,−yν) ∈
NgphS(x

ν , uν). Therefore, κ2 is also the infimum of all κ ∈ IR+ such that there
exist δ0 > 0 and ε0 > 0 for which

|v| ≤ κ|y| when (v,−y) ∈ NgphS(x̂, û), x̂ ∈ IB(x̄, δ0), û ∈ IB(ū, ε0). 9(22)

From the assumption that this holds, we’ll demonstrate the existence of
δ > 0 and ε > 0 for which 9(19) holds. This will establish sufficiency and the
complementary inequality κ2 ≥ κ1.

Our context having been reduced to that of an osc mapping S, we know
that the function (x, u) �→ d

(
u, S(x)

)
is lsc on IRn × IRm (cf. 5.11 and 9.6).

Temporarily fixing any ũ, let’s see what can be said about regular subgradients
of the lsc function dũ(x) := d

(
ũ, S(x)

)
, since those can be used to generate the

other subgradients of dũ and ascertain strict continuity of dũ on the basis of
Theorem 9.13.

Suppose v ∈ ∂̂dũ(x̂), where x̂ is a point with dũ(x̂) finite, so that S(x̂) �= ∅.
By the variational description of regular subgradients in 8.5, there exists on
some open neighborhood O of x̂ a smooth function h ≤ dũ with h(x̂) = dũ(x̂)
and ∇h(x̂) = v. Then x̂ ∈ argminO(dũ − h). Let û be a point of S(x̂) nearest
to ũ; we have |û− ũ| = dũ(x̂). Then (x̂, û) gives the minimum of −h(x)+ |u− ũ|
over all (x, u) ∈ gphS with x ∈ O.

We can rephrase this as follows. Taking V to be any closed neighborhood
of x̄ in O, define the lsc, proper function f0 on IRn × IRm by f0(x, u) :=
−h(x) + |u− ũ| when x ∈ V but f0(x, u) :=∞ when x /∈ V . Then f0 achieves
its minimum relative to the closed set gphS at (x̂, û). The optimality condition
in Theorem 8.15 holds sway here: we have

∂f0(x̂, û) ⊂
{
(−v, y) ∣∣ y ∈ IB}

, ∂
∞
f0(x̂, û) =

{
(0, 0)

}
(cf. 8.8, 8.27), where the expression for ∂∞f0(x̂, û) confirms that the constraint
qualification in 8.15 is fulfilled. The optimality condition takes the form

∂f0(x̂, û) +NgphS(x̂, û) � (0, 0).

We conclude from it, through the relation derived for ∂f0(x̂, û), that our vector
v must be such that there exists y ∈ IB with (v,−y) ∈ NgphS(x̂, û).

Here is where we might be able to apply the property stemming from
our assumption of the coderivative condition: if we knew at this stage that x̂ ∈
IB(x̄, δ0) and û ∈ IB(ū, ε0), we would be sure from 9(22) that |v| ≤ κ|y| ≤ κ. We
do, of course, have at least the estimate |û−ū| ≤ |û−ũ|+|ũ−ū| = dũ(x̂)+|ũ−ū|.
Thus, to summarize what we have learned so far,
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if v ∈ ∂̂dũ(x̂) with |x̂− x̄| ≤ δ0

and dũ(x̂) + |ũ− ū| ≤ ε0, then |v| ≤ κ. 9(23)

We’ll use this stepping stone now to reach our goal. We start with the
case of ũ = ū, having dū(x̄) = 0. By Definition 8.3, ∂∞dū(x̄) is the cone giving
the direction points in hzn IRn achievable as limits of unbounded sequences of
subgradients vν ∈ ∂̂dū(xν) associated with points xν → x̄ such that dū(x

ν)→
dū(x̄). But in taking x̂ = xν and v = vν in 9(22), as well as ũ = ū, we see
that for large enough ν in such a sequence the inequality |vν | ≤ κ has to hold.
Therefore ∂∞dū(x̄) = {0}. It follows from 9.13 that dū is strictly continuous at
x̄, hence on some neighborhood of x̄ and finite there, implying S(x) is nonempty
for x in such a neighborhood. At the same time the function u �→ d

(
u, S(x)

)
is known from 9.6 to be Lipschitz continuous with constant 1 when S(x) �= ∅.
Hence the function (x, u) �→ d

(
u, S(x)

)
is finite around (x̄, ū), a point at which

it vanishes and is calm.
The size of the constant doesn’t yet matter; all we need for the moment is

the existence of some λ ∈ IR+ and μ ∈ IR+ such that

d
(
u, S(x)

) ≤ λ(|x− x̄|+ |u− ū|) when |x− x̄| ≤ μ and |u− ū| ≤ μ.
Furnished with this, we can choose δ > 0 and ε > 0 small enough that 2δ ≤
min{μ, δ0}, ε ≤ min{μ, ε0/2}, and λ(2δ + ε) ≤ ε0/2. Then in applying 9(23)

to any ũ ∈ IB(ū, ε) with x̂ ∈ IB(x̄, 2δ) we obtain ∂̂dũ(x̂) ⊂ κIB. From that and
the definition of ∂dũ(x) we get ∂dũ(x) ⊂ κIB for all x ∈ int IB(x̄, 2δ). Then
lipdũ(x) ≤ κ for all x ∈ int IB(x̄, 2δ) by Theorem 9.13, which implies through
Theorem 9.2 that dũ is Lipschitz continuous on int IB(x̄, 2δ) with constant κ. In
particular, then, dũ is Lipschitz continuous on IB(x̄, δ) with constant κ. Thus,
9(19) holds, as demanded.

The Mordukhovich criterion in Theorem 9.40 for the Aubin property to
hold deserves special notice as a bridge to many other topics and results. It’s
equivalent to the local boundedness of the coderivative mapping D∗S(x̄ | ū)
(see 9.23). From the calculus of coderivatives in Chapter 10, formulas will be
available for checking whether indeed 0 is the only element of D∗S(x̄ | ū)(0), and
if so, obtaining estimates of the outer norm |D∗S(x̄ | ū)|+, which in the case of
graphical regularity, by the way, will be seen in 11.29 to agree with |DS(x̄ | ū)|−.
This will provide a strong handle on Lipschitzian properties in general.

The Mordukhovich criterion opens a remarkable perspective on the very
meaning of normal vectors and subgradients, teaching us that local aspects of
Lipschitzian behavior of general set-valued mappings, as captured in the Aubin
property, lie at the core of variational analysis.

9.41 Theorem (reinterpretation of normal vectors and subgradients).

(a) For a set C ⊂ IRn and a point x̄ ∈ C where C is locally closed, a vector
v̄ belongs to the normal cone NC(x̄) if and only if the mapping

α �→ {
x ∈ C ∣∣ 〈v̄, x− x̄〉 ≥ α}
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fails to have the Aubin property at α = 0 for x = x̄.

(b) For a function f : IRn → IR and a point x̄ where f is finite and locally
lsc, a vector v̄ belongs to the subgradient set ∂f(x̄) if and only if the mapping

α �→ {
x
∣∣ f(x)− f(x̄)− 〈v̄, x− x̄〉 ≤ α}

fails to have the Aubin property at α = 0 for x̄.

Thus in particular, the condition 0 ∈ ∂f(x̄) holds if and only if the level-set
mapping α �→ lev≤α f fails to have the Aubin property at f(x̄) for x̄.

Proof. Assertion (a) is merely the special case of (b) where f = δC , inasmuch
as ∂δC(x̄) = NC(x̄) (cf. 8.14), so it’s enough to look at (b). Let f̄(x) =
f(x)−〈v̄, x− x̄〉. The question is whether the condition 0 ∈ ∂f̄(x̄) is equivalent
to the mapping S : α �→ lev≤α f̄ not having the Aubin property at ᾱ = f̄(x̄)
for x̄. By the Mordukhovich criterion in 9.40, the Aubin property fails if and
only if the set D∗S(ᾱ | x̄)(0) contains more than just 0, which by definition of
this coderivative mapping in 8.33 means that the cone NgphS(ᾱ, x̄) in IR× IRn

contains a vector (η, 0) with η �= 0. But S is the inverse of the profile mapping
Ef̄ : IRn → IR, which has epi f̄ as its graph (cf. 5.5), so this is the same as

saying that the cone Nepi f̄

(
x̄, f̄(x̄)

)
contains a vector (0, η) with η �= 0. That’s

equivalent by the variational geometry of epi f̄ in 8.9 to having 0 ∈ ∂f̄(x̄).
The normal vector characterization in 9.41(a) is illustrated in Figure 9–6.

When C is locally closed at x̄, we can tell whether a vector v̄ �= 0 belongs to
NC(x̄) by looking at the intersection of C with the family of parallel half-spaces
Hα :=

{
x
∣∣ 〈v̄, x− x̄〉 ≥ α}. These half-spaces all have −v̄ as (outward) normal,

and H0 is the one among them whose boundary hyperplane passes through x̄.
We inspect the behavior of C ∩Hα around x̄ as α varies around 0. A lack of
Lipschitzian behavior, in the sense of the Aubin property being absent, is the
telltale sign that v̄ is normal to C at x̄. (It’s important to keep in mind that
the Aubin property requires nonemptiness of the intersections C ∩ Hα for α
near 0, whether above or below.)

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

����
����
����
����

����
����
����
����

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

���
���
���
���
���

���
���
���
���
���

no

no
no

yes
yes

yes

C

Fig. 9–6. Normality as reflecting a lack of Lipschitzian behavior of local sections.

The subgradient characterization in 9.41(b) corresponds to essentially the
same picture, but for an epigraph in the setting of 8.9 and Figure 8–4.
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Theorem 9.41 has far-ranging implications, beyond what might at once be
apparent. The concepts of normal vector and subgradient that it interprets are
central not only to the theory of generalized differentiation, as laid out in this
book, but also even to classical differentiation by way of the subgradient charac-
terization of strict differentiability in 9.18. The recognition that these concepts
can be identified with the continuity properties of certain mappings brings with
it the realization that continuity and differentiability, as basic themes of anal-
ysis, are intertwined more profoundly than has previously been revealed. It’s
interesting too that this insight requires an acceptance of set-valued mappings
as basic mathematical objects; it wouldn’t be available in the confines of a kind
of analysis that looks only to single-valuedness.

Lipschitzian properties of set boundaries can also be studied by the meth-
ods of variational analysis. A set C ⊂ IRn is called epi-Lipschitzian at x̄, one
of its boundary points, if ‘locally around x̄ it can be viewed from some angle
as the epigraph of a Lipschitz continuous function’ as in Figure 9–7; this refers
to the existence of a neighborhood V ∈ N (x̄), a vector e of unit length and,
for the orthogonal hyperplane H :

{
x
∣∣ 〈e, x − x̄〉 = 0

}
through x̄, a Lipschitz

continuous function g : H ∩ V → IR such that C agrees in some neighborhood
of x̄ with the set

{
x+ αe

∣∣x ∈ H, g(x) ≤ α <∞}
.

C
e

H

x
_

Fig. 9–7. A set that is epi-Lipschitzian at a certain boundary point.

A companion concept is that a function f : IRn → IR is directionally
Lipschitzian at x̄, a point where it is finite, if the set epi f is epi-Lipschitzian
at

(
x̄, f(x̄)

)
; cf. Figure 9–8. Note that this doesn’t require f to be Lipschitz

continuous around x̄, or for that matter even continuous at x̄.

9.42 Exercise (epi-Lipschitzian sets and directionally Lipschitzian functions).

(a) A set C ⊂ IRn with boundary point x̄ is epi-Lipschitzian at x̄ if and
only if C is locally closed at x̄ and the normal cone NC(x̄) is pointed, the latter

being equivalent to having int T̂C(x̄) �= ∅.
(b) A function f : IRn → IR, finite at x̄, is directionally Lipschitzian at x̄ if

and only if it is locally lsc at x̄ and the cone ∂∞f(x̄) is pointed, the latter being

equivalent to having int(dom d̂f(x̄)) �= ∅, or in other words the existence of a
vector w �= 0 such that
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lim sup
x→f x̄

x′−x −→
dir w

0

f(x′)− f(x)
|x′ − x| <∞.

(c) A function f : IRn → IR that is finite and locally lsc at x̄ is directionally
Lipschitzian at x̄ in particular whenever there is a convex cone K ⊂ IRn with
intK �= ∅ such that f is nonincreasing relative to K.

Guide. Important for (a) are the recession properties in 6.36 and, with respect
to the desired function g, the epigraphical geometry in 8.9 along with 9.13. Get
(b) by applying (a) to C = epi f and bringing in the recession properties in
8.50, or for that matter 8.22. Derive (c) as a corollary of (b); cf. 8.51.

epi f

e

(x,f(x))
_ _

Fig. 9–8. A directionally Lipschitzian function that is not Lipschitz continuous.

G. Metric Regularity and Openness

Lipschitzian properties of S−1 come out as important properties of S itself.
They furnish useful estimates of a different kind. In the following theorem, the
property in (b) is the metric regularity of S at x̄ for ū with constant κ, whereas
the property in (c) is openness at x̄ for ū with linear rate κ. Metric regularity is
related to estimates of how far a given point xmay be from solving a generalized
equation S(x) � ū for a given element ū, i.e., estimates of the distance of x
from S−1(ū). The estimates are expressed in terms of the ‘residual’ in the
generalized equation, namely the distance of ū from S(x).

9.43 Theorem (metric regularity and openness). For a mapping S : IRn →→ IRm

and any x̄ and ū ∈ S(x̄) such that gphS is locally closed at (x̄, ū), the following
conditions are equivalent:

(a) (inverse Aubin property): S−1 has the Aubin property at ū for x̄;

(b) (metric regularity): ∃V ∈ N (x̄), W ∈ N (ū), κ ∈ IR+, such that

d
(
x, S−1(u)

) ≤ κd
(
u, S(x)

)
when x ∈ V, u ∈W ;

(c) (linear openness): ∃V ∈ N (x̄), W ∈ N (ū), κ ∈ IR+, such that
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S(x+ κεIB) ⊃ [
S(x) + εIB

] ∩W for all x ∈ V, ε > 0;

(d) (coderivative nonsingularity): 0 ∈ D∗S(x̄ | ū)(y) only for y = 0,

where (d) holds in particular when rge D̂S(x̄ | ū) = IRm, and is equivalent to

that when D̂S(x̄ | ū) = DS(x̄ | ū), i.e., when S is graphically regular at x̄ for ū.

Furthermore, the infimum of all κ fitting the circumstances in (b) agrees
with the similar infimum in (c) and has the value

lipS−1(ū | x̄) =
∣∣D∗S−1(ū | x̄)

∣∣+ =
∣∣D∗S(ū | x̄)−1

∣∣+
= max

{
|y|

∣∣∣D∗S(x̄ | ū)(y) ∩ IB �= ∅
}

= 1
/
min
|y|=1

d
(
0, D∗S(x̄ | ū)(y)

)
.

Proof. The equivalence between (a) and (d) stems from the Mordukhovich
criterion 9.40 as applied to S−1 instead of S; this also gives lipS−1(ū | x̄) =
|D∗S−1(ū | x̄)|+. By definition, the graph of D∗S−1(ū | x̄) consists of all pairs
(−v, y) such that (y, v) ∈ NgphS−1(ū, x̄), or equivalently, (v, y) ∈ NgphS(x̄, ū),
while that of D∗S(ū | x̄)−1 consists of all the pairs (v,−y) such that (v, y) ∈
NgphS(x̄, ū). Thus, y ∈ D∗S−1(ū | x̄)(−v) if and only if v ∈ D∗S(x̄ | ū)−1(−y).
From this we obtain |D∗S−1(ū | x̄)|+ = |D∗S(ū | x̄)−1|+. But the latter value
equals max

{|y| ∣∣ y ∈ D∗S(ū | x̄)−1(IB)
}
, cf. 9(4). (The supremum is attained

because the mapping H = D∗S(ū | x̄)−1 is osc and locally bounded (see 9.23),
so that H(IB) is compact; see 5.25(a).) This maximum agrees with the one in
the theorem, since y ∈ H(IB) if and only if H−1(y) ∩ IB �= ∅. This establishes
the alternative formulas claimed for lipS−1(ū | x̄).

As the key to the rest of the proof of Theorem 9.43, we apply Lemma
9.39 to S−1 to interpret the property in (a) as referring to the existence of
V ∈ N (x̄), W ∈ N (ū) and κ ∈ IR+ such that

S−1(u′) ∩ V ⊂ S−1(u) + κ|u′ − u|IB for all u ∈W, u′ ∈ IRm. 9(24)

Clearly x′ ∈ S−1(u′) ∩ V if and only if u′ ∈ S(x′) with x′ ∈ V . On the other
hand, x′ ∈ S−1(u) + κ|u′ − u|IB if and only if there exists x ∈ S−1(u) with
|x′ − x| ≤ κ|u′ − u|. The latter is the same as having d

(
x′, S−1(u)

) ≤ κ|u′ − u|
when x′ has a nearest point in S−1(u). Thus, under that proviso, which is sure
to hold when the neighborhoods V and W containing x′ and u are sufficiently
small, we can equally well think of 9(24) as asserting that

x′ ∈ V, u ∈W, u′ ∈ S(x′) =⇒ d
(
x′, S−1(u)

) ≤ κ|u′ − u|.
We can identify this with (b) by minimizing with respect to u′ ∈ S(x′). Next,
observe that we can also recast 9(24) as the implication

x′ ∈ V, u ∈W, u′ ∈ S(x′), ε ≥ |u′ − u| =⇒ u ∈ S(x′ + κεIB).

This means that when x′ ∈ V and ε > 0 the set S(x′+κεIB) contains all u ∈W
belonging to S(x′) + εIB, which is the condition in (c).
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It will later be seen from 11.29 that in the case of graphical regularity the
constant in Theorem 9.43 also equals

∣∣DS(x̄ | ū)−1
∣∣−.

9.44 Example (metric regularity in constraint systems). Let S(x) = F (x)−D
for smooth F : IRn → IRm and closed D ⊂ IRm; then S−1(u) consists of all x
satisfying the constraint system F (x)− u ∈ D, with u as parameter.

Metric regularity of S for ū = 0 at a point x̄ ∈ S−1(ū) means the existence
of κ ≥ 0 furnishing for some ε > 0 and δ > 0 the estimate

d
(
x, S−1(u)

) ≤ κ d
(
F (x)− u, D)

when |x− x̄| ≤ ε, |u| ≤ δ,
where d(F (x)− u,D) measures the extent to which x might fail to satisfy the
system. Taking u = 0 in particular, one gets

d(x, C) ≤ κd(F (x), D) for C = F−1(D) when |x− x̄| ≤ ε.

A condition both necessary and sufficient for this metric regularity to hold
is the constraint qualification

y ∈ ND

(
F (x̄)

)
, ∇F (x̄)∗y = 0 =⇒ y = 0

(which is equivalent to having TD(F (x̄)) +∇F (x̄)IRn = IRm, provided that D
is Clarke regular at x̄, as when D is convex). The infimum of the constants κ
for which the metric regularity property holds is equal to

max
y∈ND(F (x̄))

|y|=1

1

|∇F (x̄)∗y| .

Detail. The set gphS is specified by F0(x, u) ∈ D with F0(x, u) = F (x)− u.
The mapping F0 is smooth from IRn×IRm to IRm, and its Jacobian ∇F0(x̄, 0) =[∇F (x̄),−I] has full rank m. Applying the rule in 6.7, we see that

NgphS

(
x̄, 0) =

{
(v,−y) ∣∣ y ∈ ND(F (x̄)), v = ∇F (x̄)∗y}.

Thus, D∗S(x̄ |0) is the mapping y �→ ∇F (x̄)∗y as restricted to y ∈ ND(F (x̄))
(empty-valued elsewhere). Theorem 9.43 then justifies the claims. The tangent
cone alternative to the constraint qualification comes from 6.39.

When D = {0} in this example, the constraint system F (x) − u ∈ D
reduces to the equation F (x) = u in which x is unknown and the vector u is
a parameter; the constraint qualification then is the nonsingularity of ∇F (x̄).
When D is a box, e.g., IRm

+ , one is dealing with an inequality system instead.

9.45 Example (openness from graph-convexity). Let S : IRn →→ IRm be graph-
convex and osc, and let ū ∈ S(x̄). In this case the properties 9.43(a)–(d) hold
for x̄ and ū if and only if ū ∈ int(rgeS), or equivalently rgeDS(x̄ | ū) = IRm.
In particular, one then has the existence of κ ∈ IR+ such that

S(x̄+ κεIB) ⊃ ū+ εIB for all ε > 0 sufficiently small.
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Detail. Since gphS is a closed, convex set under these assumptions, S is
graphically regular at x̄ for ū. We know from Theorem 9.43 that in this case
the properties (a)–(d) are equivalent to rgeDS(x̄ | ū) = IRm. It’s elementary
that the Aubin property of S−1 in 9.43(a) requires ū ∈ int domS−1 = int rgeS.
On the other hand, the latter implies that property through 9.34 as applied to
S−1. The ‘in particular’ assertion just specializes 9.43(c) to x = x̄.

A more powerful, ‘global’ consequence of graph-convexity will be uncovered
below in Theorem 9.48.

The equivalences developed in the proof of Theorem 9.43 also lead to
‘global’ results related to metric regularity and openness.

9.46 Proposition (inverse properties). If S : IRn →→ IRm is osc and U ⊂ rgeS,
the following conditions are equivalent (with S(x) ∩ U = S(x) if U = rgeS):

(a) S−1 is Lipschitz continuous on U with constant κ;

(b) d
(
x, S−1(u)

) ≤ κd
(
u, S(x) ∩ U)

for all u ∈ U and x ∈ IRn;

(c) S(x+ κrIB) ⊃ [
[S(x) ∩ U ] + rIB

] ∩ U for all x ∈ IRn, r > 0.

More generally, one has the equivalence of the following conditions (which
reduce to the preceding conditions when S−1(U) is bounded):

(a′) S−1 is sub-Lipschitz continuous on U ;

(b′) for every ρ ∈ IR+ there exists κ ∈ IR+ such that

d
(
x, S−1(u)

) ≤ κd(u, S(x) ∩ U)
when u ∈ U and |x| ≤ ρ;

(c′) for every ρ ∈ IR+ there exists κ ∈ IR+ such that

S(x+ κrIB) ⊃ [
[S(x) ∩ U ] + rIB

] ∩ U when r > 0 and |x| ≤ ρ.
Proof. This rests on recognizing first the equivalence of the following three
conditions on V , U , and κ:

S−1(u′) ∩ V ⊂ S−1(u) + κ|u′ − u|IB for all u, u′ ∈ U ; 9(25a)

d
(
x, S−1(u)

) ≤ κd(u, S(x) ∩ U)
for all x ∈ V, u ∈ U ; 9(25b)

S(x+ κrIB) ⊃ [
[S(x) ∩ U ] + rIB

] ∩ U for all x ∈ V, r > 0. 9(25c)

The equivalence can be established in the same way that conditions 9.43(b) and
9.43(c) were identified with 9(24) in the proof of Theorem 9.43. The argument
requires S−1 to be closed-valued, and that is certainly the case when S is osc
(and therefore has closed graph), as here.

To pass to the equivalence of the present (a), (b), (c), take V = IRn. For
(a′), (b′), (c′), take V = ρIB instead.

9.47 Example (global metric regularity from polyhedral graph-convexity). Let
S : IRn →→ IRm be such that gphS is not just convex but polyhedral. Then
there exists κ ∈ IR+ such that

d
(
x, S−1(u)

) ≤ κd
(
u, S(x)

)
for all x when u ∈ rgeS,
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and then also S(x+ κrIB) ⊃ [S(x) + rIB] ∩ rgeS for all r > 0 and all x.

Detail. This follows from Proposition 9.46 by way of the Lipschitz continuity
of S−1 relative to rgeS in 9.35. There’s no need to require x ∈ domS, since
points x �∈ domS have S(x) = ∅ and d(u, S(x)) =∞.

Note that Example 9.47 fits the constraint system framework of Example
9.44 when S(x) = F (x)−D with F linear and D polyhedral.

For graph-convexity that isn’t polyhedral, there’s the following estimate.
It’s very close to what comes from putting Proposition 9.46 together with The-
orem 9.33(b), but because the latter goes slightly beyond Lipschitz continuity
in its formulation (with only one of the two points in the inclusion being re-
stricted), a direct derivation from 9.33(b) is needed.

9.48 Theorem (metric regularity from graph-convexity; Robinson-Ursescu). Let
S : IRn →→ IRm be osc and graph-convex. Let ū ∈ int(rgeS), x̄ ∈ S−1(ū). Then
there exists ε > 0 along with coefficients α, β ∈ IR+ such that

d
(
x, S−1(u)

) ≤ (
α|x− x̄|+ β) d

(
u, S(x)

)
when |u− ū| ≤ ε.

Proof. For simplicity and without loss of generality, we can assume that
ū = 0 and x̄ = 0. Then S−1 is continuous at 0 (by its graph-convexity; cf.
9.34), and 0 ∈ S−1(0). Take ε > 0 small enough that 2εIB ⊂ int(rgeS) and
every u ∈ 2εIB has S−1(u) ∩ IB �= ∅. Let T = S−1, and for each ρ ≥ 0
define Tρ(u) = T (u) ∩ ρIB. We have d

(
0, T (u)

) ≤ 1 for all u ∈ 2εIB, and from
9.33(b) this gives us λ ∈ IR+ such that Tρ(u

′) ⊂ Tρ(u) + λρ|u′ − u|IB when
u ∈ εIB, ρ ≥ 2. This inclusion means that whenever u′ ∈ T−1

ρ (x) there exists

x′ ∈ Tρ(u) with |x′ − x| ≤ λρ|u′ − u|. Thus, d
(
x, Tρ(u)

) ≤ λρd
(
u, T−1

ρ (x)
)

when u ∈ εIB, ρ ≥ 2. We note next that T−1
ρ (x) = S(x) when x ∈ ρIB, but

otherwise T−1
ρ (x) = ∅. Therefore, the property we have obtained is that

d
(
x, S−1(u) ∩ ρIB) ≤ λρd

(
u, S(x)

)
when u ∈ εIB, x ∈ ρIB, ρ ≥ 2.

Here d
(
x, S−1(u) ∩ ρIB)

= d
(
x, S−1(u)

)
as long as |x| ≤ (ρ − 1)/2, inasmuch

as S−1(u) ∩ IB �= ∅. (Namely, this inequality guarantees that the distance of x
to S−1(u) is no more than 1 + (ρ − 1)/2 = (1 + ρ)/2, while the distance of x
from the exterior of ρIB is at least ρ− (ρ− 1)/2 = (1 + ρ)/2.) Hence

d
(
x, S−1(u)

) ≤ λρd
(
u, S(x)

)
when |u| ≤ ε, ρ ≥ 2|x|+ 2.

The conclusion is reached then with α = 2λ and β = 2λ.

H∗. Semiderivatives and Strict Graphical Derivatives

The Aubin property, along with Lipschitz or sub-Lipschitz continuity more
generally, has interesting consequences for derivatives.
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9.49 Exercise (Lipschitzian properties of derivative mappings).

(a) If S : IRn →→ IRm has the Aubin property at x̄ for ū ∈ S(x̄), its
derivative mapping DS(x̄ | ū) : IRn →→ IRm is nonempty-valued and Lipschitz
continuous globally with constant κ = lipS(x̄ | ū): one has

DS(x̄ | ū)(w′) ⊂ DS(x̄ | ū)(w) + lipS(x̄ | ū) |w′ − w|IB for all w,w′.

Furthermore DS(x̄ | ū)(w) = lim supτ ↘ 0ΔτS(x̄ | ū)(w) for all w, with

DS(x̄ | ū)(w)∞ = DS(x̄ | ū)(0) = TS(x̄)(ū).

(b) If F : IRn → IRm is strictly continuous at x̄, its derivative mapping
DF (x̄) : IRn →→ IRm is nonempty-valued, locally bounded and Lipschitz con-
tinuous globally with constant κ = lipF (x̄): one has

DF (x̄)(w′) ⊂ DF (x̄)(w) + lipF (x̄) |w′ − w|IB for all w, w′.

Furthermore, DF (x̄)(w) = lim supτ ↘ 0ΔτF (x̄)(w) for all w.

Guide. In (a), consider κ′ > lipS(x̄ | ū) and verify the existence of neighbor-
hoods V ∈ N (x̄) and W ∈ N (0) such that

ΔτS(x̄ | ū)(w′) ∩ τ−1W ⊂ ΔτS(x̄ | ū)(w) + κ′|w′ − w|IB
when x̄ + τw and x̄ + τw belong to V . Get not only the Lipschitz continu-
ity from this, but also the fact that DS(x̄ | ū) is the pointwise limsup of the
mappings ΔτS(x̄ | ū) as τ ↘ 0, rather than just the graphical limsup (having
provision for w′ → w as τ ↘ 0). Applying this at w = 0, deduce the formula
for DS(x̄ | ū)(0). Use the inclusion of Lipschitz continuity for DS(x̄ | ū) along
with 3.12 to see that DS(x̄ | ū)(w′)∞ = DS(x̄ | ū)(w)∞ for all w,w′, checking
also that DS(x̄ | ū)(0)∞ = DS(x̄ | ū)(0). Finally, specialize (a) to obtain (b).

The Aubin property also has significance for the semidifferentiability of
mappings, which for general set-valued case was defined ahead of 8.43.

9.50 Proposition (semidifferentiability from proto-differentiability).

(a) If S : IRn →→ IRm is proto-differentiable at x̄ for ū and has the Aubin
property there, it is semidifferentiable at x̄ for ū. In particular, S is semidiffer-
entiable anywhere that it is strictly continuous and graphically regular.

(b) For single-valued F : D → IRm, D ⊂ IRn, and any point x̄ ∈ intD
where F is strictly continuous, semidifferentiability is equivalent to proto-
differentiability. Indeed, calmness of F at x̄ suffices for this equivalence when
DF (x̄) is single-valued.

Proof. The second statement in (a) will immediately result from combining
8.41 with the first. The first statement could itself be derived from the semi-
differentiability characterization in 8.43(d); the Aubin property can be seen to
ensure that the mappings ΔτS(x̄ | ū) are asymptotically equicontinuous around
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the origin as τ ↘ 0. An alternative argument can be based, however, on the
characterization in 8.43(c), as follows.

Let H = DS(x̄ | ū), noting that domH = IRn by 9.49(a). The outer limit
aspect of proto-differentiability already gives

lim sup
w→w̄
τ ↘ 0

τ−1
(
S(x̄+ τw)− ū) = H(w̄).

To verify semidifferentiability, we have to show that the same formula holds
for the inner limit. Thus, we have to verify for arbitrary choice of z̄ ∈ H(w̄),
τν ↘ 0 and wν → w̄, the existence of zν → z̄ with ū+ τνzν ∈ S(x̄+ τνwν).

The inner limit aspect of proto-differentiability merely furnishes for z̄ and
the sequence τν ↘ 0 the existence of some w̄ν → w̄ and z̄ν → z̄ with ū+ τν z̄ν ∈
S(x̄+τνw̄ν). But due to the Aubin property, there’s a constant κ ≥ 0 together
with neighborhoods V ∈ N (x̄) and W ∈ N (ū) such that

S(x̄+ τνw̄ν)∩W ⊂ S(x̄+ τνwν) + κ
∣∣(x̄+ τνw̄ν)− (x̄+ τνwν)

∣∣IB
when x̄+ τνw̄ν ∈ V, x̄+ τνwν ∈ V.

Because ū + τν z̄ν belongs eventually to the set on the left, it must belong
eventually to the set on the right. Thus, for large ν there must be an element
of S(x̄+ τνwν), which we can write in the form ū+ τνzν , such that∣∣(ū+ τν z̄ν)− (ū+ τνzν)

∣∣ ≤ κ
∣∣(x̄+ τνw̄ν)− (x̄+ τνwν)

∣∣.
Then |z̄ν − zν | ≤ |w̄ν − wν | → 0, so we have zν → z̄ as required.

Part (b) specializes (a) and recalls the equivalence of 8.43(e) and (f).

Proposition 9.50 makes it possible to detect semidifferentiability through
the same calculus that can be used to establish the Aubin property and graph-
ical regularity. It provides a powerful tool in the study of ‘rates of change’ in
mathematical models involving set-valued mappings.

9.51 Example (semidifferentiability of feasible-set mappings). Consider a set
C(p) ⊂ IRn depending on p ∈ IRd through a constraint representation

C(p) =
{
x ∈ X ∣∣F (x, p) ∈ D}

with X ⊂ IRn and D ⊂ IRm closed and F : IRn × IRd → IRm smooth. Suppose
for a given p̄ that the constraint qualification for this representation of C(p̄) is
satisfied at the point x̄ ∈ C(p̄), namely

y ∈ ND

(
F (x̄, p̄)

)
−∇xF (x̄, p̄)

∗y ∈ NX(x̄)

}
=⇒ y = 0, 9(26)

moreover with X regular at x̄ and D regular at F (x̄, p̄). Then the mapping
C : p �→ C(p) has the Aubin property at p̄ for x̄, with
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lipC(p̄ | x̄) = max
y∈ND(F (x̄,p̄))

|y|=1

∣∣∇pF (x̄, p̄)
∗y

∣∣
d
(−∇xF (x̄, p̄)∗y, NX(x̄)

) ,
and it is semidifferentiable at p̄ for x̄ with derivative mapping

DC(p̄ | x̄)(q) =
{
w ∈ TX(x̄)

∣∣∣∇xF (x̄, p̄)w +∇pF (x̄, p̄)q ∈ TD
(
F (x̄, p̄)

)}
.

Detail. The regularity assumptions and constraint qualification 9(26) im-
ply the condition in 8.42, which led there to the conclusion that C is proto-
differentiable at p̄ for x̄ with DC(p̄ | x̄) given by the formula restated above,
and also provided a formula for D∗C(p̄ | x̄). Through the latter, 9(26) is seen
to correspond to D∗C(p̄ | x̄)(0) = {0}. We know then from the Mordukhovich
criterion in 9.40 that C has the Aubin property at p̄ for x̄, and that the mod-
ulus has the value described. Finally, we note from 9.50 that in this case the
proto-differentiability becomes semidifferentiability.

9.52 Example (semidifferentiability from graph-convexity). If S : IRn →→ IRm

is osc and graph-convex, and if x̄ ∈ int(domS), then S is semidifferentiable at
x̄ for every ū ∈ S(x̄).
Detail. We have S strictly continuous at x̄ by 9.34, so the Aubin property
holds at x̄ for every ū ∈ S(x̄). Furthermore, gphS is regular because it is
closed and convex, cf. 6.9. The semidifferentiability follows then from 9.50.

The Aubin property provides a means of localizing strict continuity to a
point (x̄, ū) of the graph of a mapping S, but often there’s interest in knowing
whether, in addition, single-valuedness emerges when the graph is viewed in a
sufficiently small neighborhood. The concept here is that S has a single-valued
localization at x̄ for ū if there are neighborhoods V ∈ N (x̄) and W ∈ N (ū)
such that the mapping x �→ S(x) ∩W , when restricted to V , is single-valued;
specifically, this restricted mapping T is then the single-valued localization in
question. To what extent can this property be characterized by ‘differentiation’,
especially in getting T also to be Lipschitz continuous on V ? For this we need
to appeal to another type of graphical derivative.

9.53 Definition (strict graphical derivatives). For a mapping S : IRn →→ IRm,
the strict derivative mapping D∗S(x̄|ū) : IRn →→ IRm for S at x̄ for ū, where
ū ∈ S(x̄), is defined by

D∗S(x̄ | ū)(w) :=
{
z
∣∣∣∃ τν ↘ 0, (xν , uν) −→

gph S
(x̄, ū), wν → w,

with zν ∈ [S(xν + τνwν)− uν ]/τν, zν → z
}
,

9(27)

or in other words,

D∗S(x̄ | ū) := g- lim sup
τ ↘ 0

(x,u) −→
gph S

(x̄,ū)

ΔτS(x |u).
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The notation reduces to D∗S(x̄) when S(x̄) = {ū}. In the case of a
continuous single-valued mapping F , strict differentiability of F corresponds to
D∗F (x̄) being a linear mapping . This is the source of the term ‘strict’ for the
graphical derivatives in Definition 9.53 in general. Note that if F is strictly
continuous, sequences wν → w are superfluous in the definition of D∗F (x̄),
because |ΔτF (x)(w

′) − ΔτF (x)(w)| ≤ κ|w′ − w| locally for some constant κ;
one then has the simpler formula

D∗F (x̄)(w) =
{
z
∣∣ ∃ τν ↘ 0, xν → x̄ with ΔτνF (xν)(w)→ z

}
. 9(28)

It’s evident thatD∗S(x̄ | ū) is always osc and positively homogeneous. Moreover

D∗S(x̄ | ū) ⊃ g- lim sup
τ ↘ 0

(x,u) −→
gph S

(x̄,ū)

DS(x |u),

but the latter limit mapping can be smaller. This is illustrated in Figure 9–9
by the case of S : IR →→ IR with S(x) = {x2,−x2}, which for (x̄, ū) = (0, 0)
has D∗S(x̄ | ū)(0) = IR even though all the mappings DS(x |u) are single-
valued and linear, and converge uniformly on bounded sets to DS(0 |0) = 0 as
(x, u)→ (0, 0) in gphS.

u

(0,0)

gph S

x

gph S

Fig. 9–9. A mapping with strict derivative larger than the limit of nearby derivatives.

In the theorem on Lipschitz continuous single-valued localizations that
we’re about to state, strict derivatives are the key. The part of the proof con-
cerned with inverse mappings will make use of Brouwer’s theorem on invariance
of domains . This says that when two subsets of IRn are homeomorphic, and
one of them is open, the other must be open as well. Indeed, a nonempty open
subset of IRn can’t be homeomorphic to such a subset of IRm unless m = n;
for a reference, see the Commentary at the end of this chapter.

9.54 Theorem (single-valued localizations). Let ū ∈ S(x̄) for a mapping S :
IRn →→ IRm, and suppose that S is locally isc around x̄ for ū, in the sense of
there existing neighborhoods V ∈ N (x̄) and W ∈ N (ū) such that, for any
x ∈ V and ε > 0, one can find δ > 0 with

S(x) ∩W ⊂ S(x′) + εIB

S(x′) ∩W ⊂ S(x) + εIB

}
when x′ ∈ V ∩ IB(x, δ).
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(a) S has a Lipschitz continuous single-valued localization T at x̄ for ū if
and only if D∗S(x̄ | ū)(0) = {0}. Then D∗S(x̄ | ū)(0) = {0} as well, and

lipT (x̄) = |D∗S(x̄ | ū)|+ = |D∗S(x̄ | ū)|+.
If S is proto-differentiable at x̄ for ū, then also T is semidifferentiable at x̄ with
DT (x̄) = DS(x̄ | ū).

(b) For S convex-valued, S−1 has a Lipschitz continuous single-valued lo-
calization T at ū for x̄ if and only if D∗S(x̄ | ū)−1(0) = {0}. Then m = n,
D∗S(x̄ | ū)−1(0) = {0}, and

lipT (ū) = |D∗S(x̄ | ū)−1|+ = |D∗S(x̄ | ū)−1|+.
If S is proto-differentiable at x̄ for ū, then also T is semidifferentiable at ū with
DT (ū) = DS(x̄ | ū)−1.

Proof. As a preliminary we demonstrate, without invoking any continuity
hypothesis, that the conditionD∗S(x̄ | ū)(0) = {0} is equivalent to the existence
of V0 ∈ N (x̄) and W0 ∈ N (ū) such that the truncated mapping S0 : x �→
S(x)∩W0 single-valued and Lipschitz continuous relative to V0∩domS0. From
9.23 we have D∗S(x̄ | ū)(0) = {0} if and only if D∗S(x̄ | ū) is locally bounded,
|D∗S(x̄ | ū)|+ < ∞. That corresponds to the existence of κ ∈ IR+ and W0 ∈
N (ū) such that |z| ≤ κ whenever z = [u′ − u]/τ with u′ ∈ S(x + τw) ∩W0,
w ∈ IB, (x, u) close enough to (x̄, ū) in gphS, and τ near to 0; thus, |u′− u| ≤
κ|x′ − x| when u ∈ S0(x) and u

′ ∈ S0(x
′) with (x, u) and (x′, u′) close enough

to (x̄, ū). Then S0 can’t be multivalued near x̄ (as seen by taking x′ = x);
for some V0 ∈ N (x̄), S0 is single-valued and Lipschitz continuous relative to
V0 ∩ domS0.

Sufficiency in (a). When D∗S(x̄ | ū)(0) = {0}, we can take T to be the
restriction, to a neighborhood of x̄, of a truncation S0 of the kind in our pre-
liminary analysis. Our isc assumption makes S0 be nonempty-valued there.

Necessity in (a). When S has a localization T as in (a), S in particular
has the Aubin property at x̄ for ū. Then D∗S(x̄ | ū)(0) = {0} and lipT (x̄) =
|D∗S(x̄ | ū)|+ by Theorem 9.40. On the other hand, T must coincide around x̄
with a truncation S0 of the kind above, hence D∗S(x̄ | ū)(0) = {0}. Moreover

lipT (x̄) = lim sup
x→x̄
τ ↘ 0

(
sup
w∈IB

∣∣∣T (x+ τw)− T (x)
τ

∣∣∣) , 9(29)

where the difference quotients can be identified with ones for S, as in 9.53.
The cluster points of such quotients as x → x̄ and τ ↘ 0 are the elements of
D∗S(x̄ | ū)(w). Thus by 9(29), lipT (x̄) = max

{|z| ∣∣ z ∈ D∗S(x̄ | ū)(IB)
}

=:
|D∗S(x̄ | ū)|+. The claims about semidifferentiability are supported by 9.50(b).

Necessity in (b). The argument is the same as for necessity in (a),
we apply it to S−1 instead of S and, in stating the result, utilize the fact
that DS−1(ū | x̄) = DS(x̄|ū)−1 and D∗S−1(ū | x̄) = D∗S(x̄|ū)−1, whereas
y ∈ D∗S−1(ū | x̄)(v) means −y ∈ D∗S(x̄ | ū)−1(−v). The proto-differentiability
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of S at x̄ for ū is equivalent to that of S−1 at ū for x̄ through its identification
with the geometric derivability of gphS at (x̄, ū).

Sufficiency in (b). Likewise on the basis of our preliminary analysis but as
applied to S−1 in place of S, we get from D∗S(x̄ | ū)−1(0) = {0} the existence
of neighborhoods V0 ∈ N (x̄) andW0 ∈ N (ū) such that the truncation T0 : u �→
S−1(u)∩ V0 is single-valued and Lipschitz continuous relative to W0 ∩ domT0.
We need to verify, however, that the latter set has ū in its interior.

In combination with our isc assumption on S, the convex-valuedness of
S yields the existence around x̄ of a continuous selection s(x) ∈ S(x) with
s(x̄) = ū. Indeed, consider neighborhoods V and W as in the isc property
and choose λ > 0 with IB(ū, 2λ) ⊂ W . Take V1 ∈ N (x̄) within V such that
S(x)∩int IB(ū, λ) �= ∅ when x ∈ V1. Then we have for any x ∈ V1 and ε ∈ (0, λ)
the existence of δ > 0 such that x′ ∈ V1 ∩ IB(x̄, δ) implies

∅ �= S(x)∩IB(ū, 2λ−ε) ⊂ [
S(x′)+εIB

]∩IB(ū, 2λ−ε) ⊂ S(x′)∩IB(ū, 2λ)+εIB.

This tells us that limε ↘ 0 S(x)∩ IB(ū, 2λ− ε) ⊂ lim infx′→x S(x
′)∩ IB(ū, 2λ),

where the limit on the left includes S(x)∩IB(ū, 2λ) because S(x) is convex and
meets int IB(ū, 2λ). It follows that the truncation S0 : x �→ S(x) ∩ IB(ū, 2λ)
is isc on V1 as well as convex-valued there. Let S1(x) = S0(x) when x �= x̄
but S1(x̄) = {ū}. Then S1 too is isc and convex-valued on V1. By applying
Theorem 5.58 to S1, we get the desired selection s.

Near (ū, x̄), the graph of s−1 for this selection s must lie in gphT0. Hence,
on some open set O that contains x̄ and is small enough that s(O) ⊂ W0, s
is one-to-one with continuous inverse and thus provides a homeomorphism of
O with a set O′ ⊂ W0 ∩ domT0 containing ū. By Brouwer’s theorem, quoted
above, O′ is open and m = n.

9.55 Corollary (single-valued Lipschitzian invertibility). Let O ⊂ IRn be open,
and let F : O → IRn be continuous. For F−1 to have a Lipschitz continuous
single-valued localization at ū = F (x̄) for a point x̄ ∈ O, it is necessary and
sufficient that F satisfy the nonsingular strict derivative condition

D∗F (x̄)(w) = 0 =⇒ w = 0,

in which case F also satisfies the nonsingular coderivative condition

D∗F (x̄)(y) = 0 =⇒ y = 0,

and one has lipF−1(ū | x̄) = |D∗F (x̄)−1|+ = |D∗F (x̄)−1|+. Moreover, if F
is semidifferentiable at x̄, the localized inverse is semidifferentiable at ū with
single-valued Lipschitz continuous derivative mapping equal to DF (x̄)−1.

When F is strictly differentiable at x̄, the two conditions are equivalent
and mean ∇F (x̄) is nonsingular. Then lipF−1(ū | x̄) = |∇F (x̄)−1|, and the
localized inverse is strictly differentiable at ū with ∇F (x̄)−1 as its Jacobian.

Proof. This just specializes 9.54(b) from set-valued S to single-valued F . The
claims in the case of strict differentiability are based on the identification of
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that property with the linearity of D∗F (x̄). The strict derivatives are given
then by D∗F (x̄)(w) = ∇F (x̄)w. But one also has D∗F (x̄)(y) = ∇F (x̄)∗y in
that case by cf. 9.25(c).

It’s evident that the nonsingular strict derivative condition in 9.55, namely
that D∗F (x̄)(w) = 0 only for w = 0, holds if and only if

lim inf
x,x′→x̄
x′ �=x

|F (x′)− F (x)|
|x′ − x| > 0.

The reciprocal of this limit quantity equals lipF−1(ū | x̄) for ū = F (x̄).
When F is strictly continuous in 9.55, the nonsingular coderivative condi-

tion can be expressed through 9.24(b) in the form that

0 ∈ ∂(yF )(x̄) only for y = 0.

It might be wondered whether, at least in this case along with the strictly
differentiable one, coderivative nonsingularity isn’t merely implied by strict
derivative nonsingularity, but is equivalent to it and thus sufficient on its own
for single-valued Lipschitzian invertibility.

Of course, coderivative nonsingularity at x̄ is already known to be equiv-
alent to the Aubin property of F−1 at F (x̄) for x̄ (through the Mordukhovich
criterion in 9.40), so the question revolves around whether localized single-
valuedness of F−1 might be automatic in this situation. If true, that would be
advantageous for applications of 9.55, because of the calculus of subgradients
and coderivatives to be developed in Chapter 10; much less can be said about
strict derivatives beyond the classical domain of smooth mappings. But the
answer is negative in general, even for Lipschitz continuous F , as seen from the
following counterexample.

Take F : IR2 → IR2 to be the mapping that assigns to a point hav-
ing polar coordinates (r, θ) the point having polar coordinates (r, 2θ). Let
(x̄, ū) = (0, 0). It’s easy to see that F−1 is Lipschitz continuous globally, and
that F−1(0) = {0} but F−1(u) is a doubleton at all u �= 0. The Lipschitz
continuity tells us through 9.40 that D∗F (0)−1 = {0}. However, we don’t have
D∗F (0)−1(0) = {0}, as indeed we can’t without contradicting 9.54(b). Instead,
actually D∗F (0)−1(0) = IR2.

This example doesn’t preclude the possibility of identifying special classes
of strictly continuous F or related mappings S for which the Aubin property
of the inverse automatically entails localized single-valuedness of the inverse.

The theory of Lipschitzian properties of inverse mappings readily extends
to cover implicit mappings that are defined by solving generalized equations.

9.56 Theorem (implicit mappings). For an osc mapping S : IRn × IRd →→ IRm,
consider the generalized equation S(x, p) � 0, with parameter element p, and
let x̄ ∈ R(p̄), where the implicit solution mapping R : IRd →→ IRn is defined by

R(p) =
{
x
∣∣S(x, p) � 0

}
.
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(a) For R to have the Aubin property at p̄ for x̄, it is sufficient that S
satisfy the condition

(0, r) ∈ D∗S(x̄, p̄ |0)(y) =⇒ y = 0, r = 0.

(b) For R to have a Lipschitz continuous single-valued localization at p̄ for
x̄, it is sufficient that S satisfy the condition in (a) along with

0 ∈ D∗S(x̄, p̄ |0)(w, 0) =⇒ w = 0.

(c) Under the condition in (a), if S is proto-differentiable at (x̄, p̄) for 0,
then R is semidifferentiable at p̄ with

DR(p̄ | x̄)(q) =
{
w
∣∣DS(x̄, p̄ |0)(w, q) � 0

}
.

When the condition in (b) is satisfied as well, this derivative mapping is single-
valued and Lipschitz continuous.

(d) If S is single-valued at (x̄, p̄) and strictly differentiable there, in the
sense of D∗S(x̄, p̄) being a linear mapping with n× (n+ p) matrix ∇S(x̄, p̄) =
[∇xS(x̄, p̄),∇pS(x̄, p̄)], the conditions in (a) and (b) are equivalent and mean
the nonsingularity of ∇xS(x̄, p̄). Then R is strictly differentiable at p̄ with

∇R(p̄) = ∇xS(x̄, p̄)
−1∇pS(x̄, p̄).

Proof. Let T (u, p) =
{
x
∣∣S(x, p) � u

}
, so that R(p) = T (0, p). The

graph of T differs from that of S only by a permutation of arguments, so
that (y, r, v) ∈ NgphT (0, p̄, x̄) if and only if (v, r, y) ∈ NgphS(x̄, p̄, 0). Thus,
(0, r) ∈ D∗S(x̄, p̄ |0)(y) corresponds to (−y, r) ∈ D∗T (0, p̄ | x̄)(0). The condi-
tion in (a) is equivalent therefore to the Mordukhovich criterion in 9.40 for
T to have the Aubin property at (0, p̄) for x̄, in which case R has the Aubin
property at p̄ for x̄.

Through graph considerations it’s elementary that w ∈ D∗T (0, p̄ | x̄)(z, q)
if and only if z ∈ D∗S(x̄, p̄ |0)(w, q). Also, though, w ∈ D∗R(p̄ | x̄)(q) implies
w ∈ D∗T (0, p̄ | x̄)(0, q). The condition in (b) thereby corresponds to having
D∗R(p̄ | x̄)(0) = {0}. When this is satisfied in tandem with the condition in
(a), which makes R be locally continuous around p̄ for x̄ by virtue of the
Aubin property, we are able to apply Theorem 9.54(a) to get the existence of
a Lipschitz continuous single-valued localization.

The semidifferentiability result in (c) is obtained then from 9.54(a) and the
fact, again seen through graphs, that T is proto-differentiable at (0, p̄) for x̄ if
and only if S is proto-differentiable at (x̄, p̄) for 0. The proto-differentiability
of T is semidifferentiability when T has the Aubin property at (0, p̄) for x̄ (cf.
9.50), and such semidifferentiability of T yields, as a special case, the claimed
semidifferentiability of R.

Under the assumption in (d), not only is D∗S(x̄, p̄) the linear mapping
associated with ∇S(x̄, p̄), but also, D∗S(x̄, p̄) is the linear mapping associated
with ∇S(x̄, p̄)∗. The assertions then follow from the earlier ones.
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Observe that Theorem 9.56(d) covers the classical implicit function the-
orem as the special case where S is locally a smooth, single-valued mapping,
just as 9.55 covers the classical inverse function theorem.

I∗. Other Properties

Calmness, like Lipschitz continuity and strict continuity, can be generalized to
set-valued mappings. A mapping S : IRn →→ IRm is calm at x̄ if S(x̄) �= ∅ and
there’s a constant κ ∈ IR+ along with a neighborhood V ∈ N (x̄) such that

S(x) ⊂ S(x̄) + κ|x− x̄|IB for all x ∈ V. 9(30)

Note that although x̄ must be an interior point of domS when S is strictly
continuous at x̄, calmness at x̄ has no such implication. A calmness variant of
the Aubin property is the following: S is calm at x̄ for ū, where ū ∈ S(x̄), if
there’s a constant κ ∈ IR+ along with neighborhoods V ∈ N (x̄) and W ∈ N (ū)
such that

S(x) ∩W ⊂ S(x̄) + κ|x− x̄|IB for all x ∈ V. 9(31)

9.57 Example (calmness of piecewise polyhedral mappings). A mapping S :
IRn →→ IRm is piecewise polyhedral if gphS is piecewise polyhedral, i.e., ex-
pressible as the union of finitely many polyhedral sets. Then S is calm at every
point x̄ ∈ domS. Piecewise linear mappings, being the piecewise polyhedral
mappings S that are single-valued on domS, have this property in particular.

gph S

Fig. 9–10. A piecewise polyhedral mapping.

Detail. Writing gphS =
⋃r

i=1Gi for polyhedral sets Gi, we can introduce for
each index i the mapping Si : IR

n →→ IRm having gphSi = Gi. By 9.35, each
such mapping Si is Lipschitz continuous on Xi := domSi, say with constant
κi. Taking κ = maxri=1 κi we see that at any point x̄ ∈ domS =

⋃r
i=1Xi that

every mapping Si is in particular calm at x̄ with constant κ, and therefore that
S has this property at x̄ too.

Piecewise linear mappings are piecewise polyhedral in consequence of the
characterization of their graphs in 2.48.

The extension of a real-valued Lipschitz continuous function f from a
subsetX ⊂ IRn to all of IRn has been studied in 9.12. For a Lipschitz continuous
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vector-valued function F : X → IRm, written with F (x) =
(
f1(x), . . . , fm(x)

)
,

the device in 9.12 can be applied to each component function fi so as likewise
to obtain a Lipschitz continuous extension of F beyond X . But unfortunately,
that approach won’t ensure that the Lipschitz constant is preserved. It’s quite
important for some purposes, as in the theory of nonexpansive mappings, that
an extension be obtained without increasing the constant.

9.58 Theorem (Lipschitz continuous extensions of single-valued mappings). If
a mapping F : X → IRm, X ⊂ IRn, is Lipschitz continuous relative to X with
constant κ, it has a unique continuous extension to clX , necessarily Lipschitz
continuous with constant κ, and it can even be extended in this mode beyond
clX , although nonuniquely.

Indeed, there is a mapping F : IRn → IRm that agrees with F on X and
is Lipschitz continuous on all of IRn with the same constant κ.

Proof. The extension just to clX is relatively elementary. Consider any
a ∈ X and r > 0, along with arbitrary points x̄1, x̄2 ∈ IB(a, r) ∩ clX . We
have |F (x)| ≤ |F (a)| + κ|x − a| when x ∈ IB(a, r) ∩ X , so that for i = 1, 2
the set Ui consisting of the cluster points of F (x) as x→X x̄i is nonempty.
Take any ūi ∈ Ui; there exist sequences xνi →X x̄i with F (xνi ) → ūi. We have
|F (xν2)−F (xν1)| ≤ κ|xν2−xν1 |, and hence in the limit that |ū2− ū1| ≤ κ|x̄2− x̄1|.
In particular this implies that ū2 = ū1 when x̄2 = x̄1 and therefore that
for any x̄ ∈ clX there is a unique limit to F (x) as x→X x̄. Thus, F has a
unique continuous extension to clX . Denoting this extension still by F , we
get F (x̄i) = ūi and consequently see that |F (x̄2)− F (x̄1)| ≤ κ|x̄2 − x̄1|. Hence
the extended F is Lipschitz continuous on clX with constant κ.

For the extension beyond clX , consider now the collection of all pairs
(X ′, F ′) where X ′ ⊃ X in IRn and F ′ : X ′ → IRm is Lipschitz continuous on
X ′ with constant κ and agrees with F on X . Applying Zorn’s Lemma relative
to the inclusion relation for graphs, we obtain a subcollection which is totally
ordered: for any of its elements (X1, F1) and (X2, F2), either X2 ⊃ X1 and
F2 agrees with F1 on X1, or the reverse. Take the union of the graphs in the
subcollection to get a set X and a mapping F : X → IRm. Evidently F is
Lipschitz continuous on X with constant κ. Our task is to prove that X is
all of IRn, and it can be accomplished by demonstrating that if this were not
true, the mapping F could be extended beyond X, contrary to the supposed
maximality of the pair (X,F ). Dividing F by κ if necessary, we can simplify
considerations to the case of κ = 1.

Suppose x /∈ X. We aim at demonstrating the existence of y ∈ IRm such
that |y − F (x′)| ≤ |x − x′| for all x′ ∈ X , or in other words, such that the
intersection of all the balls IB

(
F (x′), |x − x′|) for x′ ∈ X is nonempty. Since

these balls are compact sets, it suffices by the finite intersection property of
compactness to show that the intersection of every finite collection of them is
nonempty. Thus, we need only prove that if for i = 1, . . . , k we have pairs
(xi, yi) ∈ IRn × IRm satisfying
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|yi − yj | ≤ |xi − xj | for i, j ∈ {1, . . . , k}, 9(32)

as would be true for any finite set of elements of gphF , then for any x there is
a y such that |yi − y| ≤ |xi − x| for i = 1, . . . , k. The case of x = 0 is enough,
because we can always reduce to it by shifting xi to x

′
i = xi − x in 9(32).

An elementary argument based on minimization will work. Consider
ϕ(y) :=

∑k
i=1 θ

( |y − yi|2 − |xi|2) with θ(τ) = |τ |2+, where |τ |+ := max{0, τ}.
We have ϕ ≥ 0, and ϕ(y) = 0 if and only if y has the desired property.
Clearly ϕ is continuous, and it is also level-bounded because ϕ(y) ≤ β implies
|y−yi|2 ≤ |xi|2+

√
β for i = 1, . . . , k. Hence argminϕ �= ∅ (by 1.9). Because θ

is differentiable with θ′(τ) = 2|τ |+, ϕ is differentiable, and in fact its gradient
can be calculated to be

∇ϕ(y) = 4
k∑

i=1

μi(y)(y − yi) for μi(y) :=
∣∣∣ |y − yi|2 − |xi|2∣∣∣

+

. 9(33)

Fix any ȳ ∈ argminϕ, so that ∇ϕ(ȳ) = 0. If μi(ȳ) = 0 for all i, then ȳ meets
our specifications and we are done. Otherwise, by dropping the pairs (xi, yi)
with μi(ȳ) = 0 (which have no role to play), we may as well suppose that
μi(ȳ) > 0 for all i, or equivalently, that

|xi| < |yi − ȳ| for i = 1, . . . , k. 9(34)

It will be demonstrated that this case is untenable.

Let λi = μi(ȳ)/
[
μ1(ȳ)+ · · ·+μk(ȳ)

]
, so that λi > 0 and λ1 + · · ·+λk = 1.

From having ∇ϕ(ȳ) = 0 in 9(33) we get ȳ =
∑k

i=1 λiyi. Then from 9(34),

k∑
i=1

λi|xi|2 <
k∑

i=1

λi|yi − ȳ|2 =
k∑

i=1

λi

(
|yi|2 − 2〈yi, ȳ〉+ |ȳ|2

)

=

k∑
i=1

λi|yi|2 − 2
〈 k∑

i=1

λiyi, ȳ
〉
+

( k∑
i=1

λi

)
|ȳ|2 =

k∑
i=1

λi|yi|2 − |ȳ|2.

But 9(32) gives us
∑k,k

i,j=1 λiλj |yi − yj |2 ≤
∑k,k

i,j=1 λiλj |xi − xj |2, which in

terms of |yi − yj |2 = |yi|2 − 2〈yi, yj〉 + |yj |2 on the left and the corresponding

identity on the right reduces to
∑k

i=1 λi|yi|2 − |ȳ|2 ≤
∑k

i=1 λi|xi|2 − |x̄|2 with

x̄ :=
∑k

i=1 λixi. In combining this with the inequality just displayed, we obtain∑k
i=1 λi|xi|2 <

∑k
i=1 λi|xi|2 − |x̄|2, which is impossible.

9.59 Proposition (Lipschitzian properties in limits).

(a) Suppose for X ⊂ IRn and fν : X → IR that the mappings fν are
Lipschitz continuous on X with constant κ and converge pointwise on a dense
subset D of X . They then converge uniformly on bounded subsets of X to
a function f : X → IR which is Lipschitz continuous on X with constant κ.
Moreover, for any x̄ ∈ intX ,
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v ∈ ∂f(x̄) =⇒ ∃xν → x̄, vν ∈ ∂fν(xν) with vν → v.

(b) Suppose for X ⊂ IRn and F ν : X → IRm that the mappings F ν are
Lipschitz continuous on X with constant κ and converge pointwise on a dense
subset D of X . They then converge uniformly on bounded subsets of X to
a mapping F : X → IRn which is Lipschitz continuous relative to X with
constant κ. Moreover, for any x̄ ∈ intX and w̄ ∈ IRn,

v ∈ D∗F (x̄)(w̄) =⇒ ∃xν → x̄, vν ∈ D∗F ν(xν)(w̄) with vν → v.

(c) Suppose S = g-lim supν S
ν for osc mappings Sν : IRn →→ IRm, and let

ū ∈ S(x̄). Suppose there exist neighborhoods V ∈ N (x̄) and W ∈ N (ū) along
with κ ∈ IR+ such that, whenever (x, u) ∈ gphSν ∩ [V ×W ], the mapping Sν

has the Aubin property at x for u with constant κ. Then S has the Aubin
property at x̄ for ū with constant κ.

Proof. The claims in (a) can be identified with the special case of (b) where
m = 1; the subgradient inclusion in (a) comes from the inclusion in (b) by
taking w̄ = 1 in the context of the profile mappings in 8.35.

In (b), we can suppose without loss of generality, on the basis of the first
part of Theorem 9.58, that X is closed. By assumption, limν F

ν(x) exists for
each x ∈ D; denote this limit by F (x), obtaining a mapping F : D → IRm. For
any points x1, x2 ∈ D we have |F ν(x2) − F ν(x1)| ≤ κ|x2 − x1| for all ν, hence
in the limit |F (x2) − F (x1)| ≤ κ|x2 − x1|. Thus F is Lipschitz continuous on
D with constant κ and, again by the first part of Theorem 9.58, has a unique
extension to such a mapping on all of X = clD. With this extension denoted
still by F , consider any x ∈ X and any sequence xν→D x. For any μ ∈ IN ,∣∣F ν(xν)− F (x)∣∣ ≤ ∣∣F ν(xν)− F ν(xμ)

∣∣+ ∣∣F ν(xμ)− F (xμ)∣∣+ ∣∣F (xμ)− F (x)∣∣
≤ κ|xν − xμ|+ ∣∣F ν(xμ)− F (xμ)∣∣+ κ|x− xμ|.

This gives us lim supν |F ν(xν) − F (x)| ≤ 2κ|x − xμ|, and in letting μ → ∞
we then get lim supν |F ν(xν) − F (x)| = 0. Therefore, F ν(xν) → F (x). In
particular this tells us that F ν converges pointwise to F on all of X , so the
argument can be repeated with D = X to conclude that F ν(xν) → F (x)
whenever xν → x in X . Such continuous convergence of F ν to F automatically
entails uniform convergence on all compact subsets of X , hence on all bounded
subsets, since X is closed; cf. 5.43 as specialized to single-valued mappings.

The coderivative inclusion in (b) follows from the subgradient approxima-
tion rule in 8.47(b) as applied to the functions f(x) =

〈
w̄, F (x)

〉
+ δB(x) and

fν(x) =
〈
w̄, F ν(x)

〉
+δB(x) for a closed neighborhood B of x̄ in X ; cf. 9.24(b).

The locally uniform convergence of F ν to F on X entails that fν→e f .

In (c), we have by 9.40 that |D∗Sν(x |u)|+ ≤ κ when u ∈ Sν(x) and (x, u)
is close enough to (x̄, ū). It follows then from the approximation rule in 8.48
that |D∗S(x |u)|+ ≤ κ, and this yields the result, again by 9.40.
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J∗. Rademacher’s Theorem and Consequences

Lipschitz continuity has been viewed as intermediate between continuity and
differentiability, and this is borne out in the study of the extent to which a
single-valued Lipschitz continuous (or strictly continuous) mapping must actu-
ally be differentiable. It turns out that this must be true at ‘most’ points. To
render a precise description of the exceptional set where differentiability fails,
we recall the following concept of measure-theoretic analysis.

A set A ⊂ IRn is called negligible if for every ε > 0 there is a family of
boxes {Bν}ν∈IN with n-dimensional volumes εν such that

A ⊂
⋃∞

ν=1
Bν ,

∑∞
ν=1

εν < ε.

For instance, any countable (or finite) set of points in IRn is negligible, or any
line segment in IRn when n ≥ 2 is negligible. If a set A ⊂ IRn is negligible,
then so is every subset of A. In particular, the intersection of any collection of
negligible sets is negligible. Likewise, the union of any countable collection of
negligible sets is again negligible.

A useful criterion for negligibility is this: with respect to any vector w �= 0,
a measurable set D ⊂ IRn is negligible if and only if the set

{
τ
∣∣x+τw ∈ D} ⊂

IR is negligible (in the one-dimensional sense) for all but a negligible set of points
x ∈ IRn. Another standard fact to be noted concerns Lipschitz continuous (or
more generally ‘absolutely continuous’) real-valued functions ϕ on intervals
I ⊂ IR. Any such function is differentiable on I except at a negligible set of
points, and it’s the integral of its derivative function; in other words, one has
ϕ(t1) = ϕ(t0)+

∫ t1
t0
ϕ′(t)dt when [t0, t1] ⊂ I. The theorem stated next provides

a generalization in part to higher dimensions. The proof is omitted because it
requires too lengthy an excursion into measure theory beyond the needs of our
subject; see the Commentary at the end of this chapter for a reference.

9.60 Theorem (almost everywhere differentiability; Rademacher). Let O ⊂ IRn

be open, and let F : O → IRm be strictly continuous. Let D be the subset of
O consisting of the points where F is differentiable. Then O \D is a negligible
set. In particular D is dense in O, i.e., clD ⊃ O.

This prevalence of differentiability has powerful consequences for the sub-
differential theory of strictly continuous mappings.

9.61 Theorem (Clarke subgradients of strictly continuous functions). Let f be
strictly continuous on an open set O ⊂ IRn, and let D be the subset of O where
f is differentiable. At each point x̄ ∈ O let

∇f(x̄) := lim sup
x→D x̄

{∇f(x)} =
{
v
∣∣ ∃xν → x̄ with xν ∈ D, ∇f(xν)→ v

}
.

Then ∇f(x̄) is a nonempty, compact subset of ∂f(x̄) such that



404 9. Lipschitzian Properties

con∇f(x̄) = con ∂f(x̄) = ∂̄f(x̄),

d̂f(x̄)(w) = max
〈∇f(x̄), w〉 = max

{〈v, w〉 ∣∣ v ∈ ∇f(x̄)},
hence con∇f(x̄) = ∂f(x̄) when f is regular at x̄. These relations persist when
D is replaced by any set D′ ⊂ D such that D \D′ is negligible.

Proof. At any x̄ ∈ O, the Clarke subgradient set ∂̄f(x̄) is con ∂f(x̄) by 8.49,
since ∂∞f(x̄) = {0} by 9.13. Also, ∂f(x̄) is nonempty and compact by 9.13.

Let D be the subset of O where f is differentiable. This set is dense in
O by Theorem 9.60, so there do exist sequences xν→D x̄ as called for in the
definition of ∇f(x̄). At any x ∈ D we have ∇f(x) ∈ ∂̂f(x) ⊂ ∂f(x) and
in particular |∇f(x)| ≤ lipf(x). Hence any sequence of gradients ∇f(xν) as
xν→D x̄ is bounded (due to lipf being osc; cf. 9.2) and has all its cluster points
in ∂f(x̄) (by the definition of this subgradient set in 8.3, when the continuity
of f is taken into account). This tells us that ∇f(x̄) ⊂ ∂f(x̄), with both sets
nonempty and compact.

The convex sets con∇f(x̄) and con ∂f(x̄) are closed (even compact by
2.30) and so they coincide if and only if they have the same support function

(cf. 8.24). The support function of con ∂f(x̄) is d̂f(x̄) by 9.15, while the support
function of con∇f(x̄) is

h(w) := sup
{〈v, w〉 ∣∣ v ∈ con∇f(x̄)} = sup

{〈v, w〉 ∣∣ v ∈ ∇f(x̄)}.
Because con∇f(x̄) ⊂ con ∂f(x̄), we already know that h(w) ≤ d̂f(x̄)(w). Our

task is to demonstrate that d̂f(x̄)(w) ≤ h(w). Moreover, it really suffices
to consider vectors w of unit length, inasmuch as both sides are positively
homogeneous.

Fix any subset D′ ⊂ D with D \D′ negligible and choose any vector w
with |w| = 1. The set A = O \D′ = (O \D) ∪ (D \D′) is negligible, so its
intersection with the line

{
x+ τw

∣∣ τ ∈ IR}
is negligible in the one-dimensional

sense for all but a negligible set of x’s (cf. the remark ahead of 9.60.). Thus,
there is a dense subset X ⊂ O such that for each x ∈ X the set of τ ∈ IR with
x+ τw ∈ A is negligible in IR. We know from 9.15, along with the continuity
of f and the density of X , that

d̂f(x̄) = lim sup
x→X x̄
τ ↘ 0

f(x+ τw)− f(x)
τ

. 9(35)

When x ∈ X and τ is small enough that the line segment from x to x+ τw lies
in O, the function ϕ(t) = f(x + tw) is Lipschitz continuous for t ∈ [0, τ ] and
such that x + tw ∈ D′ for all but a negligible set of t ∈ [0, τ ]. The Lipschitz
continuity guarantees, as noted before 9.60, that ϕ(τ) = ϕ(0)+

∫ τ

0
ϕ′(t)dt, and

in this integral a negligible set of t values can be disregarded. Thus, the integral
is unaffected if we concentrate on t values such that x+ tw ∈ D′, in which case
ϕ′(t) = 〈∇f(x+ tw), w〉. From this we see that
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f(x+ τw)− f(x)
τ

=
ϕ(τ)− ϕ(0)

τ
=

1

τ

∫ τ

0

〈∇f(x+ tw), w
〉
dt

≤ sup
t∈[0,τ ]

x+tw∈D′

〈∇f(x+ tw), w
〉 ≤ sup

x′∈IB(x,τ)∩D′

〈∇f(x′), w〉.

Because
∣∣∇f(x′)∣∣ remains bounded when x′→D′ x̄, as noted earlier in our argu-

ment, we obtain from 9(35) that

d̂f(x̄) ≤ lim sup
x′→

D′ x̄
τ ↘ 0

〈∇f(x′), w〉 ≤ max
v∈∇ ′f(x̄)

〈v, w〉,

where ∇ ′
f(x̄) is the set defined in the same manner as ∇f(x̄) but with D′

substituted for D. Since D′ ⊂ D we have ∇′
f(x̄) ⊂ ∇f(x̄), so this inequality

establishes the result. The assertion about regularity refers to the convexity of
∂f(x̄) in that case; cf. 8.11.

The corresponding result for strictly continuous mappings F : IRn → IRm

brings to light an ‘adjoint’ relationship between coderivatives and the strict
derivatives in 9.53 and in particular 9(28).

9.62 Theorem (coderivative duality for strictly continuous mappings). Let F :
O → IRm be strictly continuous, with O ⊂ IRn open, and let D ⊂ O consist of
the points where F is differentiable. For x̄ ∈ O, define

∇F (x̄) := {
A ∈ IRm×n

∣∣ ∃xν → x̄ with xν ∈ D, ∇F (xν)→ A
}
.

Then ∇F (x̄) is a nonempty, compact set of matrices, and for every w ∈ IRn

and y ∈ IRm one has

max
〈
y,D∗F (x̄)(w)

〉
= max

〈
D∗F (x̄)(y), w

〉
= max

〈
y,∇F (x̄)w〉

for the expressions

max
〈
y,D∗F (x̄)(w)

〉
:= max

{〈y, z〉 ∣∣ z ∈ D∗F (x̄)(w)
}
,

max
〈
D∗F (x̄)(y), w

〉
:= max

{〈v, w〉 ∣∣ v ∈ D∗F (x̄)(y)
}
,

max
〈
y,∇F (x̄)w〉 := max

{〈y, Aw〉 ∣∣A ∈ ∇F (x̄)},
and therefore also

conD∗F (x̄)(w) = con
{
Aw

∣∣A ∈ ∇F (x̄)} =
{
Aw

∣∣A ∈ con∇F (x̄)},
conD∗F (x̄)(y) = con

{
A∗y

∣∣A ∈ ∇F (x̄)} =
{
A∗y

∣∣A ∈ con∇F (x̄)}.
These relations persist when D is replaced in the formula for ∇F (x̄) by any
set D′ ⊂ D such that D \D′ is negligible.

Proof. For any choice of y ∈ IRm and x ∈ D, the function yF is differen-
tiable at x with ∇(yF )(x) = ∇F (x)∗y; moreover dom∇(yF ) \D is negligi-
ble. Hence by 9.61, ∇(yF )(x̄) =

{
A∗y

∣∣A ∈ ∇F (x̄)} for any x̄ ∈ O. We
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have D∗F (x̄)(y) = ∂(yF )(x̄) by 9.24(b) and con ∂(yF )(x̄) = con∇(yF )(x̄)
by 9.61, so this yields the formula for conD∗F (x̄)(y) and the fact that
max

〈
D∗F (x̄)(y), w

〉
= max

〈∇(yF )(x̄), w〉 = max
{〈A∗y, w〉 ∣∣A ∈ ∇F (x̄)},

where of course 〈A∗y, w〉 = 〈y, Aw〉. At the same time, we know from 9.61

that max
〈∇(yF )(x̄), w〉 = d̂(yF )(x̄)(w). But

d̂(yF )(x̄)(w) = lim sup
x→x̄
τ ↘ 0

Δτ (yF )(x)(w) = lim sup
x→x̄
τ ↘ 0

〈
y,ΔτF (x)(w)

〉
.

Because ΔτF (x)(w) remains bounded as x → x̄ and τ ↘ 0, due to the Lip-
schitz continuity of F , this expression coincides with the max of 〈y, z〉 over
all vectors z achievable as cluster points of ΔτF (x)(w) with respect to such
convergence, i.e., all z ∈ D∗F (x̄)(w); cf. 9(28). Hence max

〈∇(yF )(x̄), w〉 =

max
〈
y,D∗F (x̄)(w)

〉
. Since the left side of this equation gives the max of

〈y, Aw〉 over all A ∈ ∇F (x̄), i.e., the support function of the compact set
∇F (x̄)w, the convex hull of that set must agree with the convex hull of
D∗F (x̄)(w), see 8.24 (and, for the closedness of these convex hulls, 2.30).

9.63 Corollary (coderivative criterion for Lipschitzian invertibility). For a map-
ping F : IRn → IRn and a point x̄ where F is strictly continuous, suppose that

0 ∈ con ∂(yF )(x̄) =⇒ y = 0.

Then F−1 has a Lipschitz continuous single-valued localization at F (x̄) for x̄.

Proof. Because ∂(yF )(x̄) = D∗F (x̄)(y) (cf. 9.24(b)), this condition implies
that 0 ∈ D∗F (x̄)(y) only for y = 0, but also through 9.62 that 0 ∈ D∗F (x̄)(w)
only for w = 0. The result is then obtained as a specialization of 9.55.

9.64 Exercise (strict differentiability and derivative continuity). Let O ⊂ IRn

be open, and let F : O → IRm be strictly continuous. Let D ⊂ O be the
domain of the mapping ∇F : x �→ ∇F (x), i.e., the set of points where F is
differentiable. Then the following are equivalent:

(a) F is strictly differentiable at x̄;

(b) F is differentiable at x̄ and ∇F is continuous at x̄ relative to D.

Guide. Get this from 9.25(c) and 9.62.

The following fact complements Rademacher’s theorem (in 9.60) in being
applicable to F−1 instead of F when the dimensions of the range space agree.

9.65 Theorem (singularities of Lipschitzian equations; Mignot). Let O ⊂ IRn

be open, and let F : O → IRn be strictly continuous. Let R ⊂ F (O) consist of
the points u ∈ IRn such that, for every x ∈ O with F (x) = u, F is differentiable
at x and ∇F (x) is nonsingular. Then F (O) \R is negligible. In particular, R
must be dense in the interior of F (O) (when that is nonempty).

Proof. Let D be the set of points x ∈ O where F is differentiable, and let E
be the set of x ∈ D where ∇F (x) is nonsingular. Then F (0) \R = F (O \E) =
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F (O \D) ∪ F (D \E). We’ll demonstrate first that F (O \D) is negligible and
second that F (D \E) is negligible.

The boxes in the definition of negligibility (ahead of 9.60) can just as well
be taken to be cubes. Let’s estimate what F does to a cube. Without loss of
generality we can assume that F is globally Lipschitz continuous on O with
constant κ. Any (closed) cube C ⊂ O of side s, with n-dimensional volume
vol(C) = sn, has diameter s

√
n. It lies in the ball around its center c whose

radius is 1
2s
√
n, and its image F (C) thus lies in a ball in IRn whose center is

F (c) and whose radius is 1
2κs
√
n. This in turn lies in a cube C̃ of side κs

√
n,

having vol(C̃) = (κs
√
n)n = (κ

√
n)n vol(C).

Because O \D is negligible, there exists for any ε > 0 a covering of O \D
by cubes Cν with

∑∞
ν=1 vol(C

ν) < ε. In the manner explained, this yields a

covering of F (O \D) by cubes C̃ν with
∑∞

ν=1 vol(C̃
ν) < ε(κ

√
n)n. This upper

bound can be made arbitrarily small, so F (O \D) is negligible.
Seeking now to establish the negligibility of F (D \E), it’s enough to focus

on the negligibility of F
(
B ∩ [D \E]

)
for any box B. We can take B to be the

unit cube, [0, 1]n. For each p ∈ IN , B can be evenly divided up into pn subcubes
of side 2−p, hence volume 2−pn and diameter 2−p

√
n. Denote the collection of

these cubes by Cp. Fixing ε > 0, construct a covering of B ∩ [D \E] as follows.
At each x ∈ D \E the differentiability of F provides the existence of some

δ(x) > 0 such that∣∣F (x′)− F (x)−∇F (x)(x′ − x)∣∣ ≤ ε|x′ − x|
for all x′ ∈ O with |x′ − x| ≤ δ(x). 9(36)

Denote by C∗1 the collection of all the cubes C ∈ C1 such that C contains an
x ∈ D \B with δ(x) > 1

2

√
n. Recursively, having gotten C∗1 , . . . , C∗p−1, let C∗p

consist of the cubes C ∈ Cp such that C contains a point x ∈ D \B with δ(x) >
2−p
√
n, but C isn’t covered by the union of the cubes in C∗1 , . . . , C∗p−1. Let

C∗ =
⋃∞

p=1 C∗p , noting that this is a countable collection that covers B∩ [D \E].
The interiors of the cubes in this countable collection are mutually disjoint, so

∞∑
p=1

∑
C∈C∗

p

1

2pn
=

∑
C∈C∗

vol(C) ≤ vol(B) = 1. 9(37)

Consider any one of the cubes in C∗, say C ∈ C∗p , and let x be a point of
C ∩ [D \E] with δ(x) > 2−p

√
n, as exists by our construction. Since 2−p

√
n is

the diameter of C, the inequality in 9(36) holds for all x′ ∈ C. Let L be the
‘linearization’ of F at x, i.e., the mapping x′ �→ F (x)+∇F (x)(x′−x). Because
x /∈ E, the range of L isn’t all of IRn and is contained in some hyperplaneH with
unit normal e. The inequality in 9(36) tells us that |F (x′)−L(x′)| ≤ ε2−p

√
n,

and this translates geometrically into F (C) ⊂ L(C)+[−λ, λ]n for λ = ε2−p
√
n.

On the other hand L, like F , is Lipschitz continuous with constant κ, so we can
argue that L(C) ⊂ H∩IB(

F (x), ρ
)
for ρ = κ2−p

√
n. Relative to changing to an

orthonormal basis that includes e, we see that L(C) can be estimated as lying
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in an (n− 1)-dimensional cube of side 2ρ. Thus, F (C) lies in a (rotated) box

C̃ with vol(C̃) = (2ρ)n−1(2λ) = (21−pκ
√
n)n−1(21−pε

√
n) and consequently

vol(C̃) = εμ vol(C) for μ := κn−1(
√
n)n2n. Associating each cube C ∈ C∗

with a box C̃ in this manner, we obtain a collection C̃∗ of boxes that covers
F
(
B ∩ [D \E]

)
and, by 9(37), has total volume no more than εμ. The factor

μ being independent of ε, which can be chosen arbitrarily small, we conclude
that F

(
B ∩ [D \E]

)
is negligible and the same for F (D \E).

Surprisingly, much of the special geometry of the graphs of Lipschitz con-
tinuous mappings carries over to a vastly larger class of mappings. This comes
from the fact that many mappings of keen interest, although neither single-
valued nor Lipschitz continuous, have graphs that locally, ‘from another angle’,
appear like graphs of Lipschitz continuous mappings.

9.66 Definition (graphically Lipschitzian mappings). A mapping S : IRn →→ IRm

is graphically Lipschitzian at (x̄, ū), where ū ∈ S(x̄), and of dimension d in this
respect, if there is a change of coordinates around (x̄, ū), C1 in both directions,
under which gphS can be identified locally with the graph in IRd×IRm+n−d of
a Lipschitz continuous mapping defined on a neighborhood of a point w̄ ∈ IRd.

u

x

gph S

Fig. 9–11. A graphically Lipschitzian mapping S with neither S nor S−1 single-valued.

Any single-valued strictly continuous mapping is graphically Lipschitzian
everywhere. (No change of coordinates is needed at all.) So too is the inverse
of any single-valued strictly continuous mapping. (The change of coordinates
is then just the reversal of the two arguments in the graph.) An example fitting
neither of these simple cases is shown in Figure 9–11. Highly important later as
graphically Lipschitzian mappings will be maximal monotone mappings (Chap-
ter 12) and the subgradient mappings associated with ‘prox-regular’ functions
(Chapter 13), as well as various solution mappings.

K∗. Mollifiers and Extremals

Another approach to generalized differentiation is that of approximating a Lip-
schitz continuous function f by a sequence of smooth functions fν and looking
at the vectors v that can be generated at a point x̄ as limits of gradients
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∇fν(xν) at points xν → x̄. In the mollifier context of 7.19, this idea leads to
a characterization of the set con ∂f(x̄) that supplements the one in 9.61.

9.67 Theorem (subgradients via mollifiers). Let the function f : IRn → IR be
strictly continuous. For any sequence of bounded and continuous mollifiers
{ψν}ν∈IN on IRn as described in 7.19, the corresponding averaged functions

fν(x) :=

∫
IRn

f(x− z)ψν(z)dz

are smooth and converge uniformly to f on compact sets; moreover, at every
point x̄ the set

G(x̄) :=
{
v
∣∣ ∃N ∈ N#

∞, x
ν→

N x̄ with ∇fν(xν)→N v
}

is such that

∂f(x̄) ⊂ G(x̄) and con ∂f(x̄) = conG(x̄),

hence ∂f(x̄) = G(x̄) when f is subdifferentially regular at x̄.

In general, a vector v belongs to the set ∂̄f(x̄) = con ∂f(x̄) if and only if
for some choice of a bounded mollifier sequence {ψν}ν∈IN one has ∇fν(x̄)→ v.

Proof. As specified in 7.19, the functions ψν are nonnegative, measurable
and bounded with

∫
IRnψν(z)dz = 1, and the sets Bν =

{
z
∣∣ψν(z) > 0

}
form

a bounded sequence that converges to {0} and thus, for any δ > 0, eventually
lies in δIB. Since f is strictly continuous, it’s Lipschitz continuous relative to
any bounded subset of IRn (cf. 9.2). By Rademacher’s theorem in 9.60, the
set D that is comprised of the points x where f is differentiable has negligible
complement in IRn. When O is an open set O where f is Lipschitz continuous
with constant κ, the points x ∈ D ∩O satisfy |∇f(x)| ≤ κ.

Consider ν and any x. We’ll verify that fν is differentiable at x with

∇fν(x) =

∫
IRn

∇f(x− z)ψν(z)dz =

∫
Bν

∇f(x− z)ψν(z)dz, 9(38)

where the integral makes sense because of the properties of ∇f just mentioned.
Observe first that

Δτf
ν(x)(w) =

∫
Bν

Δτf(x− z)(w)ψν(z)dz. 9(39)

When x − z ∈ D, we have Δτf(x − z)(w′) → 〈∇f(x− z), w〉 as w′ → w and
τ ↘ 0. Let λ be a Lipschitz constant for f on the (bounded) set x−Bν + 2IB.
Then |Δτf(x− z)(w)| ≤ λ when z ∈ Bν , w ∈ IB, τ ∈ (0, 1). Since the function
ψν is bounded, say by βν , we have∣∣Δτf(x− z)(w)ψν(z)

∣∣ ≤ λβν for z ∈ Bν , w ∈ IB, τ ∈ (0, 1),

and consequently, by the Lebesgue dominated convergence theorem,
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lim
τ ↘ 0

w′→
IB w

∫
Bν

Δτf(x− z)(w′)ψν(z)dz =

∫
Bν

〈∇f(x− z), w〉ψν(z)dz

=
〈
v, w

〉
for v =

∫
Bν

∇f(x− z)ψν(z)dz.

In combination with 9(39), this establishes the formula in 9(38) and in partic-
ular the existence of ∇fν(x) for any x ∈ IRn. The continuity of ∇fν(x) with
respect to x, giving the smoothness of fν , is evident from this formula, the
continuity of the mollifier and elementary properties of the integral.

The uniform convergence on bounded sets of the functions fν to f comes
from 7.19(a). As far as the gradient mappings∇fν are concerned, we know that
for any bounded set X and any δ > 0 there exists κ such that |∇f(x− z)| ≤ κ
when x− z ∈ D, x ∈ X and z ∈ δIB, and therefore from 9(38) that

∣∣∇fν(x)
∣∣ ≤ ∫

Bν

∣∣∇f(x− z)∣∣ψ(z)dz ≤ κ

∫
Bν

ψ(z)dz = κ for x ∈ X,

as long as ν is large enough that Bν ⊂ δIB. This shows that for any sequence
of points xν ∈ X converging to some x̄, the sequence of gradients ∇fν(xν) is
bounded, and all of its cluster points v have |v| ≤ κ.

We now take up the claim that ∂f(x̄) ⊂ G(x̄). For any x̄, the set G(x̄)
is nonempty and bounded. Indeed, the mapping G : IRn →→ IRn is locally
bounded, and the limit process in its definition ensures that it’s osc. Therefore,
to know that ∂f ⊂ G, we only need to check that ∂̂f ⊂ G, or on the basis of
8.47(a), that whenever v̄ is a proximal subgradient of f at x̄, one has v̄ ∈ G(x̄).
In verifying the latter, it’s harmless to assume that f is bounded below on IRn,
inasmuch as our analysis is local anyway. In that case there’s a ρ̄ > 0 with

f(x) ≥ f(x̄) +
〈
v̄, x− x̄〉− 1

2 ρ̄|x− x̄|2 for all x.

For any ρ ∈ (ρ̄,∞), let g(x) = f(x)− f(x̄)−〈v̄, x− x̄〉+ 1
2ρ|x− x̄|2. Then

g(x) ≥ 1
2 (ρ − ρ̄)|x − x̄|2 and g(x̄) = 0. Hence argmin g = {x̄}. As with f

above, the averaged functions gν obtained from the mollifiers ψν are smooth
and converge to g uniformly on compact sets; also, gν→e g. We have

gν(x) ≥
∫
Bν

1
2(ρ− ρ̄)|x− z − x̄|2ψν(z)dz

= 1
2(ρ− ρ̄)

∫
Bν

(|x− x̄|2 − 2〈x− x̄, z〉+ |z|2)ψν(z)dz

≥ 1
2(ρ− ρ̄)

(|x− x̄|2 − 2〈x− x̄, zν〉) for zν :=

∫
Bν

zψν(z)dz,

where zν → 0, so that 〈x− x̄, zν〉 ≤ |x− x̄| once ν is sufficiently large. For such
ν we have gν ≥ g0 for the function

g0(x) =
1
2 (ρ− ρ̄)

[
(|x− x̄|2 − 2|x− x̄|] = 1

2 (ρ− ρ̄)
[
(|x− x̄|2 − 1)2 − 1

]
,
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which is level-bounded. Thus, the sequence {gν}ν∈IN is eventually level-
bounded by 7.32(a). Then by Theorem 7.33, since gν→e g, the sets argmin gν

are nonempty for all ν in some index set N ∈ N∞ ⊂ N#
∞; furthermore, for an

arbitrary choice of points xν ∈ argmin gν for ν ∈ N we have xν→N x̄.

Along such a sequence {xν}ν∈N , we have ∇gν(xν) = 0. But from the
definition of gν and the gradient formula in 9(38) we have∇gν(xν) = ∇fν(xν)−
∇hν(xν) for the sequence of mollified functions hν obtained from h(x) := f(x̄)+
〈v̄, x− x̄〉 − 1

2ρ|x− x̄|2. Thus, again via 9(38),

∇fν(xν) = ∇hν(xν) =
∫
Bν

∇h(xν − z)ψν(z)dz

=

∫
Bν

[
v̄ − ρ(xν − z + x̄)

]
ψν(z)dz = v̄ − ρ(xν − zν − x̄).

Since xν→N x̄ and zν → 0, we conclude that ∇fν(xν)→N v̄, as required.

Next we must demonstrate that con ∂f(x̄) = conG(x̄). Both ∂f(x̄) and
G(x̄) are compact, and the same for their convex hulls (by Corollary 2.30), so
the convex hulls coincide when ∂f(x̄) and G(x̄) have the same support function

(cf. Theorem 8.24). The support function of ∂f(x̄) is d̂f(x̄) (cf. 9.15), so our
task is to show that

sup
{〈v, w〉 ∣∣ v ∈ G(x̄)} = d̂f(x̄)(w) for all w. 9(40)

Consider any v̄ ∈ G(x̄) along with N ∈ N#
∞ and xν→N x̄ such that

∇fν(xν)→N v̄. We have

〈
v̄, w

〉
= lim

ν∈N

〈∇fν(xν), w
〉
= lim

ν∈N

∫
Bν

〈∇f(xν − z), w〉ψν(z)dz

with
〈∇f(xν − z), w〉 ≤ d̂f(xν − z)(w) because the gradient ∇f(x) belongs to

∂f(x) when it exists, and d̂f(x) is the support function of ∂f(x). We know

from 9.16 that d̂f(x)(w) is usc with respect to x, so for any w and ε > 0 there
exists δ > 0 such that

d̂f(x− z)(w) ≤ d̂f(x̄)(w) + ε for z ∈ δIB when |x− x̄| ≤ δ.
The latter holds for ν ∈ N by x = xν − z when z ∈ Bν , and then∫

Bν

〈∇f(xν − z), w〉ψν(z)dz ≤
∫
Bν

[
d̂f(x̄)(w) + ε

]
ψν(z)dz = d̂f(x̄)(w) + ε.

Thus, 〈v̄, w〉 ≤ d̂f(x̄)(w)+ε for all w ∈ IRn and ε > 0. Since v̄ was an arbitrary
element of G(x̄), this tells us that ‘≤’ holds in 9(40).

To verify also that ‘≥’ holds in 9(40), fix w̄ and again pick any ε > 0.

According to the formula for d̂f(x̄)(w̄) in 9.15, there exist τε ∈ (0, ε) and

xε ∈ IB(x̄, ε) such that
[
f(xε + τεw̄) − f(xε)

]/
τε > d̂f(x̄)(w̄) − ε. From the

convergence of fν to f , there then exists Nε ∈ N∞ such that
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[
fν(xε + τεw̄)− fν(xε)

]/
τε > d̂f(x̄)(w̄)− ε when ν ∈ Nε.

The mean value theorem, which is applicable to fν because of its smoothness,
allows us to write

[
fν(xε + τεw̄)− fν(xε)

]/
τε as

〈∇fν(xνε), w̄
〉
for some xνε on

the line segment between xε and xε+τεw̄. It follows that, through consideration
of smaller and smaller values of ε, one can come up with and index set N0 ∈ N#

∞
and points xν→N0

x̄ such that lim infν∈N0

〈∇fν(xν), w̄
〉 ≥ d̂f(x̄)(w̄). Any clus-

ter point of {∇fν(xν)}ν∈N0
is then a vector v ∈ G(x̄) with 〈v, w̄〉 ≥ d̂f(x̄)(w̄),

as needed.

The claim that ∂f(x̄) = G(x̄) when f is subdifferentially regular at x̄
merely reflects the fact that in this case ∂f(x̄) is convex (cf. 8.11), so the
inclusions ∂f(x̄) ⊂ G(x̄) and conG(x̄) ⊂ con ∂f(x̄) collapse to an equation.

For the last assertion of the theorem, observe that any v ∈ G(x̄), generated
as limν∈N ∇fν(xν) in terms of an index set N ∈ N#

∞ and points xν→N x̄,
can also be generated as limν∈N ∇f̃ν(x̄) for the averaged functions f̃ν(x) =∫
IRn f(x − z̃)ψ̃ν(z̃)dz̃ corresponding to a certain mollifier sequence {ψ̃ν}ν∈IN .
This comes from writing

∇fν(xν) =

∫
Bν

∇f(xν − z)ψν(z)dz =

∫
B̃ν

∇f(x̄− z̃)ψ̃ν(z̃) dz̃

with ψ̃ν(z̃) = ψν(z̃ − x̄ + xν) and B̃ν =
{
z̃′

∣∣ ψ̃ν(z̃) > 0
}
= Bν − xν + x̄. By

discarding the mollifiers ψ̃ν for ν /∈ N and re-indexing, we can arrange to have
v be the full limit limν ∇f̃ν(x̄).

This informs us that the set G(x̄), arising at x̄ from one given mollifier
sequence {ψν}ν∈IN , is included within the set G(x̄) consisting of the vectors
v that arise at x̄ through consideration of all possible mollifier sequences, but
with restriction to full limits (not just cluster points) of gradients evaluated
only at x̄ itself. Then conG(x̄) ⊂ conG(x̄). But every element of G(x̄) comes
from some mollifier sequence and hence, by the preceding analysis, belongs to
con ∂f(x̄). From the already established fact that conG(x̄) = con ∂f(x̄), we
deduce that conG(x̄) = con ∂f(x̄).

We want to confirm that actually G(x̄) = con ∂f(x̄). This can be accom-
plished now by ascertaining thatG(x̄) is convex. Consider any v0 and v1 inG(x̄)
and τ ∈ (0, 1). We must check that the vector vτ = (1− τ)v0 + τv1 belongs to
G(x̄) as well. By the definition of G(x̄), there are mollifier sequences {ψν

0}ν∈IN

and {ψν
1}ν∈IN such that the associated sequences of averaged functions fν

0 and
fν
1 have v0 = limν ∇fν

0 (x̄) and v1 = limν ∇fν
1 (x̄). Let B

ν
0 and Bν

1 give the sets
of points where ψν

0 and ψν
1 are positive, and let vντ = (1−τ)∇fν

0 (x̄)+τ∇fν
1 (x̄),

so that vντ → vτ . We have from 9(38) that

vντ = (1− τ)
∫
Bν

0

∇f(x̄− z)ψν
0 (z)dz + τ

∫
Bν

1

∇f(x̄− z)ψν
1 (z)dz

=

∫
Bν

0∪Bν
1

∇f(x̄− z)ψν
τ (z)dz for ψν

τ = (1− τ)ψν
0 + τψν

1 .
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The sets Bν
τ =

{
z
∣∣ψν

τ (z) > 0
}
= Bν

0 ∪ Bν
1 converge to {0}, and the functions

ψν
τ ≥ 0 are still measurable and bounded with

∫ n

IR
ψν
τ (z)dz = 1. We thus have

a mollifier sequence {ψν
τ }ν∈IN yielding functions fν

τ (x) =
∫
IRn f(x− z)ψν

τ (z)dz

with vντ = ∇fν
τ (x̄). Then vτ = limν ∇fν

τ (x̄), so v ∈ G(x̄).
Distance functions are sometimes used in reducing a constrained minimiza-

tion problem to an unconstrained one, although at the price of nonsmoothness.
Here too, Lipschitzian properties are essential.

9.68 Proposition (constraint relaxation). Suppose f : IRn → IR has lipf ≤ κ
on C, where the set C ⊂ IRn is closed and nonempty. Then for any λ > κ there
is an open set O ⊃ C such that lipf < λ on O and

infO(f + λdC) = infC f, argminO(f + λdC) = argminC f. 9(41)

Proof. Fix λ > 0 and any ε > 0 such that κ + ε < λ. For each x ∈ C there
is an open neighborhood V ∈ N (x) such that lipf ≤ κ + ε on V . The union
of all such neighborhoods as x ranges over C is an open set O1 ⊃ C on which
lipf ≤ κ + ε. Let D be the complement of O1 in IRn. Then D is closed and
dD > 0 on C. In terms of the projection mapping PC for C (cf. 1.20), define

p(x) = inf
w∈PC(x)

dD(w).

Obviously 0 < p(x) < ∞ for all x ∈ IRn, because dD is continuous while
PC is osc and locally bounded with domPC = IRn (cf. 7.44) these properties
implying in particular that PC(x) is a nonempty, compact set for every x. By
interpreting p as arising from parametric optimization by minimizing g(x, w) =
dD(w) + δPC(x)(w) in w, we can apply 1.17 to ascertain that p is lsc. Let

O =
{
x ∈ IRn

∣∣ dC(x) < p(x)
}
.

Since dC is continuous and p > 0, we have p− dC lsc and O open with O ⊃ C.
For any x ∈ O and any w ∈ PC(x) the value ρ = |x − w| satisfies ρ =

dC(x) < p(x) ≤ dD(w), so that x and the ball IB(w, ρ) lie in O1. Then
lipf ≤ κ+ ε on IB(w, ρ), and in particular lipf ≤ λ at x by our arrangement
that κ + ε < λ at the beginning of the proof. Because IB(w, ρ) is a convex
set, we know from 9.2 that f is Lipschitz continuous on IB(w, ρ) with constant
κ+ ε. Hence f(w)− f(x) ≤ (κ+ ε)|x− w| = (κ+ ε)dC(x) and

(f + λdC)(x) ≥ f(w) +
[
λ− (κ+ ε)

]
dC(x) for all x ∈ O,

where λ − (κ + ε) > 0. From this we know that for any x ∈ O \C there is a
point w ∈ C with f(w) < (f + λdC)(x), while on C itself f + λdC agrees with
f . The assertions about ‘inf’ and ‘argmin’ follow immediately.

The relations in 9(41) tell us that the constrained problem of minimizing
f over C can be reduced, in a localized sense specified by the open set O ⊃ C,
to that of minimizing g = f + λdC over IRn: the two problems have the same
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optimal value and the same optimal solutions. Under these circumstances the
term λdC is called an exact penalty function for the given problem. Note that
the modified objective function g = f + λdC in 9.68 is such that lipg ≤ κ+ λ
on O. This follows from 9.6 and the calculus in 9.8.

The result in 9.68 can be applied to locally optimal solutions x̄ relative to
C by substituting a subset C ∩ IB(x̄, ε) for C.

Among the many interesting consequences of the theory of openness of
mappings is the following collection of ‘extremal principles’, so called because
they identify consequences of certain extreme, or boundary aspects of x̄.

9.69 Proposition (extremal principles).

(a) Suppose x̄ ∈ X but F (x̄) /∈ intF (X), where X ⊂ IRn is a closed set
and F : IRn → IRm is strictly continuous. Then there must be a vector y �= 0
such that NX(x̄) + ∂(yF )(x̄) � 0.

(b) Let C = C1+ . . .+Cr for closed sets Ci ⊂ IRn. Consider a point x̄ ∈ C
along with any points x̄i ∈ Ci such that x̄ = x̄1 + · · ·+ x̄r. If x̄ /∈ intC, there
must be a vector v �= 0 such that v ∈ NCi

(x̄i) for all i = 1, . . . , r.

(c) Suppose x̄ ∈ C ∩D for closed sets C,D ⊂ IRn that are nonoverlapping
at x̄ in the sense of having 0 /∈ int

[
C ∩ IB(x̄, δ)−D ∩ IB(x̄, δ)

]
for some δ > 0.

Then there must exist v �= 0 such that

v ∈ NC(x̄), −v ∈ ND(x̄),

in which case in particular the hyperplane H =
{
w
∣∣ 〈v, w〉 = 0

}
= v⊥ separates

the regular tangent cones T̂C(x̄) and T̂D(x̄) from each other.

Proof. To verify (a), let ū = F (x̄) and look at the mapping S defined by
S(x) = {F (x)} when x ∈ X but S(x) = ∅ when x /∈ X . Obviously ū ∈ S(x̄),
but ū /∈ int(rgeS) because rgeS = F (X). In particular, S can’t be open at ū
for x̄. Our strategy will be to explore what this implies through Theorem 9.43,
which is applicable because S is osc.

According to that theorem, the failure of S to be open at ū for x̄ is as-
sociated with the existence of a vector y �= 0 such that 0 ∈ D∗S(x̄ | ū)(y),
a condition meaning by definition that (0,−y) ∈ NgphS(x̄, ū). We have
gphS = (X × IRm) ∩ gphF , hence by the normal cone rules for intersections
in 6.42 and products in 6.41 also NgphS(x̄, ū) ⊂

[
NX(x̄)× {0}]+NgphF (x̄, ū).

Thus, there must exist v ∈ NX(x̄) with (−v,−y) ∈ NgphF (x̄, ū), or in other
words −v ∈ D∗F (x̄)(y), which by 9.24(b) is the same as −v ∈ ∂(yF )(x̄). Then
NX(x̄) + ∂(yF )(x̄) � v − v = 0. This is what was claimed.

Part (b) is obtained from part (a) by specialization to X = C1 × · · · × Cr

and F : (x1, . . . , xr) �→ x1 + · · · + xr. Part (c) falls out of (b) by choosing
C1 = C ∩ IB(x̄, δ) and C2 = −D ∩ IB(x̄, IB), with the x̄ in (b) identified not

with the x̄ in (c), but with 0. Because T̂C(x̄) is the polar cone NC(x̄)
∗ (see

6.28(b)), we have T̂C(x̄) ⊂
{
w
∣∣ 〈v, w〉 ≤ 0

}
when v ∈ NC(x̄). On the other

hand, T̂D(x̄) ⊂ {
w
∣∣ 〈v, w〉 ≥ 0

}
when −v ∈ ND(x̄). Therefore, in this situation

we get separation of the cones T̂C(x̄) and T̂D(x̄) from each other.
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The result in 9.69(c) is a sort of nonconvex separation principle. Most
appealing is the case where C and D are regular at x̄. Then the regular tangent
cones reduce to TC(x̄) and TD(x̄), while v and −v are regular normals to C
and D at x̄. The hyperplane H has TC(x̄) on one side and TD(x̄) on the other,
a property expressible also by the inequality characterizing regular normals to
C and D, and which can be construed as ‘infinitesimal separation’. It reduces
to true separation of C and D when they’re convex.

Commentary

Lipschitz continuous functions, stemming from Lipschitz [1877], have long been im-
portant in real analysis, especially in measure-theoretic developments and the exis-
tence theory for solutions to differential equations. In variational analysis they came
to the fore with Clarke’s definition of subgradients by way of Rademacher’s theorem
(in 9.60), a modern proof of which can be found in the book of Evans and Gariepy
[1992]. Such functions have been central to the subject ever since. They have offered
prime territory for explorations of nonsmoothness and have given rise to a kind of
‘Lipschitzian analysis’ comparable to convex analysis.

But Lipschitzian properties haven’t only been important as favorable assump-
tions; they have also been sought as favorable conclusions in quantifying the varia-
tions of optimal values, optimal solutions, and the behavior of solution elements more
generally. In this, their role can be traced from the classical literature of perturba-
tions to modern nonsmooth extensions of the implicit function theorem, and on to
quantitative studies of the continuity of general set-valued mappings, which tie in
with ‘metric regularity’.

One of the principle achievements of researchers in variational analysis in recent
years has been the recognition of the ways that these different lines of development
can be brought together and supported by an effective calculus. This chapter and
the next present this achievement along with new insights such as the continuity
interpretation of normal vectors and subgradients in 9.41.

Clarke’s approach to generalizing subgradients beyond convex analysis was to
start with Lipschitz continuous functions f , taking the set of subgradients at x̄ to
be what we’ve denoted in 9.61 by con∇f(x̄). As mentioned in the Commentary for
Chapter 8, he went on then to use the subgradients of the distance function dC (which
is Lipschitz continuous by 9.6) to get normal vectors to a closed set C at a point x̄.
Specifically, he took the normal cone to be cl pos[con∇dC(x̄)], and he relied then on
epigraphical normal vectors of such type in defining subgradients of lsc functions f in
general. In the notation used here, the normal cone obtained by this route is NC(x̄)
(cf. 6(19), 6.38 and 8.53) while the subgradient set is ∂̄f(x̄) (cf. 8(32), 8.49 and 9.61).

Although a different approach to subgradients and normal vectors has been
followed in this book, Clarke’s pattern still has echoes in the infinite-dimensional
theory (with some modifications, such as dropping the convexification and placing
special attention on different modes of convergence and closure); see Borwein and
Ioffe [1996], for example. But anyway the importance of Lipschitzian properties
hasn’t been diminished even for finite-dimensional spaces. The results in 9.41 on the
reinterpretation of normal vectors and subgradients in terms of such properties, which
are stated here for the first time, reinforce the significance on the deepest level.
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There’s much to say about this, but before going further we have to comment on
the terminology that we’ve adopted. Traditionally, Lipschitzian continuity of a map-
ping F has been depicted in relation to a set X and the specification of a particular
constant κ acting on X. While maintaining this on the side, we’ve worked at freeing
the concept into one capable also of being applied pointwise, hence our introduction
of the term ‘strict continuity’, which can readily be handled in this manner. Although
strict continuity of F relative to a set X is the same as local Lipschitz continuity of
F relative to X, as long as a single-valued mapping is in question, local Lipschitz
continuity tends to blur this focus and falls short of the challenges when set-valued
generalizations are sought. (The choice of ‘strict’ harmonizes with strict differentia-
bility and other usages where a condition at a single point is strengthened to pairs of
nearby points.)

The philosophy is evident in Theorem 9.2 as well as elsewhere in the chapter,
and the advantages gained are both stylistic and technical. It’s no longer necessary,
whenever the Lipschitz continuity comes up locally, to specify an explicit background
set X when the particular choice of X (other than as a neighborhood, say) may be
irrelevant. More significantly, a path is laid to working with the modulus function
lipF and its characteristics. The theme of calculating and estimating lipF (x̄) from
the available structure of F runs through many of the results we obtain.

A key result on these lines is Theorem 9.13, which characterizes the property
of f being strictly continuous at a point x̄ as corresponding to the situation where
the ‘cosmic’ subgradient set ∂f(x̄) ∪ dir ∂

∞
f(x̄) actually contains no direction points

(this being describable in several different ways), and expresses the modulus lipf(x̄)
as the ‘outer norm’ of this set. The fact that functions satisfying Lipschitz conditions
have bounded sets of subgradients from which the values of local constants can be
derived was apparent from the start in Clarke’s scheme. The implication from the
boundedness of the convexified subgradient set ∂̄f(x̄) to f being Lipschitz continu-
ous on a neighborhood of x̄ was established, however, by Rockafellar [1979b]. This
translates to the conditions in 9.13 through the relations in 8.49, which originated in
Rockafellar [1981b].

The Lipschitz properties of finite convex functions in 9.14 were well appreciated
in convex analysis along with the fact that such functions f are differentiable precisely
at the points x̄ where ∂f(x̄) is a singleton; cf. Rockafellar [1970a]. Recognition that
this singleton property corresponds more generally as in 9.18, regardless of convex-
ity, to strict differentiability came in Rockafellar [1979a]. Strict differentiability is a
concept attributable to Peano in the late 19th century and discussed for example in
Bourbaki [1967]. Little was made of it until the idea was reinvented by Leach [1961],
who called it ‘strong differentiability’.

The first of the ‘lim sup’ formulas in 9.15 for the regular derivatives d̂f(x̄)(w) was
originally Clarke’s definition of a new kind of directional derivative f◦(x̄;w), yielding
insights about Lipschitz continuous functions. He showed that this gave the support
function of ∂̄f(x̄) (which is the same, in this setting, as the support function of either
∂f(x̄) or ∇f(x̄)); cf. Clarke [1975]. Rockafellar [1980] extended Clarke’s directional
derivatives f◦(x̄;w) beyond Lipschitz continuous functions by means of the formula

in Definition 8.16, using the notation f↑(x̄, w) instead of d̂f(x̄)(w).
Theorem 9.16, characterizing the combination of Lipschitz continuity with sub-

differential regularity, was proved in Rockafellar [1982b]. This is also the source
for the identification of differentiability with strict differentiability of such functions
through 9.18(e) and for the equivalences of continuous differentiability with 9.19(c)
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and 9.19(d); likewise for the continuity fact in 9.20. The constancy criterion in 9.22, in
the proximal subgradient form mentioned afterward, was brought out by Clarke and
Redheffer [1993]. For more on this and also characterizations of Lipschitz continuity
in terms of directional derivatives, see Clarke, Stern and Wolenski [1993].

The outer and inner ‘norms’ defined for positively homogeneous mappings in
9(4)–9(5) go back to the days of convex analysis; see Rockafellar [1967a], [1976b].
They were used in estimates already by Robinson [1972].

The ‘scalarization formula’ in 9.24(b) for expressing the coderivatives of single-
valued strictly continuous mappings F appeared in Ioffe [1984a], [1984b]; cf. also Mor-
dukhovich [1984]. In geometric formulation, this fact was stated in the dissertation
of Kruger [1981]; see Kruger [1985]. The contrast in 9.25 between single-valuedness
of DF (x̄) and that of D∗F (x̄) in characterizing semidifferentiability versus strict dif-
ferentiability at x̄ hasn’t previously been recorded.

In developing Lipschitzian properties of set-valued mappings, we were motivated
by the desirability of a ‘pointwise’ calculus of the associated constants, like the one in
the single-valued case, and by the shape of the quantitative theory of set convergence
and set-valued mappings in Chapters 4 and 5. In that theory, Hausdorff distance
is a concept effectively limited to a context of bounded sets and locally bounded
mappings, with minor exceptions. While Lipschitz continuity of locally bounded
mappings is important in areas like the study of differential inclusions, cf. Aubin
and Cellina [1984], many other applications need to contend with mappings having
unbounded images. This made it imperative for us to adopt the tactic, fresh to this
topic of mappings, of working with dlρ and d̂lρ in tandem. It’s in this spirit that
9.26–9.31 should be received.

The estimates in Example 9.32 are new and serve to point out the differences
between ‘Lipschitz’ and ‘sub-Lipschitz’ continuity in practice when dealing with map-
pings that aren’t locally bounded. Part (a) of Theorem 9.33 is new too; part (b),
however, is closely related to the Robinson-Ursescu theorem in 9.48, discussed be-
low. The statement in 9.35 for mappings with gphS polyhedral can be attributed to
Walkup and Wets [1969a].

The concept of sub-Lipschitz continuity as a way out of the limitations of Haus-
dorff distance first surfaced in Rockafellar [1985c], where it was characterized relative
to Lipschitz continuity, distance functions and the Aubin property (much as in 9.29,
9.31, 9.37 and 9.38). The latter property was designated ‘pseudo-Lipschitz’ by Aubin
[1984]. Noting that pseudo has the connotation of ‘false’, we prefer to name this after
Aubin himself as the inventor.

The characterizations of epi-Lipschitzian sets in 9.42(a) and directionally Lip-
schitzian functions in 9.42(b) come from Rockafellar [1979a] and [1979b], respectively.

The equivalence in Theorem 9.43 between the metric regularity property in (b)
and the openness property in (c) was known to Dmitruk, Miliutin and Osmolovskii
[1980] and Ioffe [1981]. Connections between these and (a), the Aubin property for
S−1, came out in Borwein and Zhuang [1988] and a similar result of Penot [1989].
For subsequent work on the relations between such properties, see Cominetti [1990],
Dontchev and Hager [1994], Mordukhovich [1992], [1993], [1994c], Mordukhovich and
Shao [1995], [1997b], and Ioffe [1997]. Here we have relied on the extended formulation
of the Aubin property in Lemma 9.39 to simplify the statements; this improvement
is owed to Henrion [1997].

The Mordukhovich criterion in Theorem 9.40 is the key to a Lipschitzian calculus
for set-valued mappings and indeed to understanding the profound role of Lipschitzian
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properties in variational analysis quite generally. Its original context was not that of
the Aubin property, but the property of ‘openness at a linear rate’ in 9.43(c). In such
terms, the coderivative criterion was announced in Mordukhovich [1984] along with an
estimate for the corresponding constant; the proofs were furnished in Mordukhovich
[1988], where the estimate was shown to be exact, at least for S local bounded. Ioffe
[1981b] had earlier obtained the same estimate (but not the criterion itself) through
his theory of ‘fans’, certain predecessors to graphical coderivatives; in Ioffe [1987] he
connected it with coderivative norms. Other early research related to this matter was
undertaken by Dmitruk, Miliutin and Osmolovskii [1980] and Warga [1981]; see also
Kruger [1988].

The equivalences of Borwein and Zhuang [1988] paved the way for translating
Mordukhovich’s criterion for the openness property to one for the Aubin property in
the form that we have adopted in Theorem 9.40. Mordukhovich [1992] later provided
a direct derivation of the criterion in this form and the associated estimates for the
modulus. Upper bounds for the modulus in the Aubin property had previously been
derived by Rockafellar [1985c], but in essence relative to the sublinearized coderivative

mapping D
∗
S(x̄ | ū), arising from the Clarke normal cone NgphS(x̄, ū), instead of

D∗S(x̄ | ū). Such bounds can be far from exact, unless S is graphically regular.
For single-valued mappings the concepts of metric regularity and openness at a

linear rate really go back Ljusternik [1934] and in more robust form to Graves [1950];
see Dontchev [1996] for discussion and history. The early context could be viewed as
one occupied with equality constraints, especially in infinite-dimensional spaces, since
the finite-dimensional case falls into the framework of the classical implicit-function
theorem.

Once inequality constraints attracted interest in the mathematical programming
community, a different line of development started up with the result of Hoffman
[1952] about estimating errors in systems of linear inequalities. Hoffman’s result,
which can be identified with 9.47 as applied to S(x) = Ax − b + IRm

+ for A ∈ IRn×n

and b ∈ IRm, continues to be the object of much research in getting estimates of
the modulus κ; cf. Luo and Tseng [1994], Klatte and Thiere [1995], and Burke and
Tseng [1996] for recent work and additional references. The ‘piecewise polyhedral’
formulation in 9.47 is new, but it doesn’t provide much of a handle on κ.

Robinson was a key player in that line of development from the beginning. Af-
ter applying and extending Hoffman’s theorem in several ways, cf. Robinson [1973a],
[1973b], [1975], he moved on to nonlinear generalizations, first in the context of con-
vexity. Theorem 9.48, one of the landmark results on the metric regularity of set-
valued mappings, was independently put together by Ursescu [1975] and Robinson
[1972], [1976a], for mappings with closed convex graph from one Banach space to
another. In Robinson [1976b], error bounds for nonconvex inequality systems were
obtained. For an infinite-dimensional extension of Hoffman’s theorem with a tie-in to
Clarke subgradients, see Ioffe [1979a].

The conditions of metric regularity and openness of mappings that have been
treated here are, in a sense, ‘first-order’ properties. Higher-order versions have been
developed by Frankowska [1986], [1987a], [1987b], [1989], [1990], even for mappings
between metric spaces.

The Lipschitzian properties of derivative mappings in 9.49 are new. The result
in 9.50 on the semidifferentiability consequences of proto-differentiability could be
put together from formulas of Thibault [1983]. It was stated explicitly in this form
by Rockafellar [1989b], where much of the example in 9.51 of feasible-set mappings
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was developed as well.

The strict derivative mapping D∗S(x̄ | ū) in Definition 9.53 is the ‘paratin-
gent’ derivative of Aubin and Frankowska [1990] (corresponding graphically to their
‘paratingent cone’ in variational geometry); our term brings out the evident similarity
to the kind of limit taken in the definition of strict differentiability.

Strict derivatives of single-valued Lipschitz continuous mappings F were inves-
tigated by Kummer [1991]. He noted that the existence of a single-valued Lipschitz
continuous inverse in the circumstances of 9.55 is an immediate consequence of the
definition of such derivatives in combination with Brouwer’s theorem (which itself can
be found in Spanier [1966], for instance), and he developed some calculus for taking
advantage of that fact. The special case of 9.55 in which F is assumed to be strictly
differentiable at x̄ gives an earlier result of Leach [1961], [1963], generalizing the in-
verse function theorem. An extension in that mode to an implicit function theorem
was achieved by Nijenhuis [1974] in a statement resembling 9.56(d), but as applied
to a single-valued mapping in place of the generally set-valued S.

To the extent that a set-valued mapping S is involved from the start, the local-
ization results in Theorem 9.54 are new, and the same is true of the implicit mapping
results in 9.56, except for part (a) of that theorem in giving a sufficient condition
for the Aubin property to hold. Precedents for the latter exist in papers of Mor-
dukhovich [1994a], [1994b], [1994c], which also go into detail about many special
cases. Earlier work of Rockafellar [1985c] and Aubin and Frankowska [1987], [1990]
in providing sufficient conditions relied on stronger assumptions in terms of the con-
vexified coderivative mapping obtained when the normal cone to gphS in Definition
8.53 is replaced by its closed, convex hull, the Clarke normal cone.

A common case where the Aubin property of the implicit mapping in 9.56(a)
yields a Lipschitz continuous single-valued localization without any need for the strict
derivative assumption in 9.56(b) has been uncovered by Dontchev and Rockafellar
[1996]. This case concerns variational inequalities over polyhedral sets. The same
paper indicates a significant class of nonsmooth single-valued mappings (the ‘normal
maps’ associated with such variational inequalities) for which the Aubin property
suffices for single-valued Lipschitzian invertibility, and the strict derivative test of
9.55 can be bypassed. The book of Dontchev and Rockafellar [2009] presents much
more fully the modern generalizations of the implicit function theorem that are now
available through variational analysis.

Because strict derivatives of strictly continuous mappings F can be hard to
calculate, the coderivative criterion in 9.63, although generally only sufficient for
single-valued Lipschitzian invertibility, may sometimes be more practical than the
strict derivative criterion in 9.55. This version of the inverse function theorem was
discovered by Clarke [1976a]. The corresponding version of the implicit function
theorem was laid out by Hiriart-Urruty [1979]. Levy [1996] provided estimates for
the graphical derivatives of ‘implicit’ mappings that might not be single-valued.

The matrix set con∇F (x̄) in 9.62 and 9.63 is the generalized Jacobian of F at x̄
introduced by Clarke; see Clarke [1983] for more on this object and its behavior. The
results in 9.62 about D∗F (x̄) and its ‘adjoint’ relationship to D∗F (x̄) appear here
for the first time in terms of D∗F (x̄) but are closely related to the results of Ioffe
[1981a] on fans. Borwein, Borwein and Wang [1996] have demonstrated the existence
of Lipschitz continuous mappings F such that, for almost every x, D∗F (x) fails to be
convex-valued. They have also shown that it’s possible to have D∗F (x) = D∗G(x)
for all x even though the Lipschitz continuous mappings F and G differ by more
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than just a constant. For mappings from IRn to IR, this was demonstrated earlier by
Rockafellar [1982b] for the sublinearized coderivative D

∗
F (x).

The calmness property in 9(31) was called ‘upper Lipschitzian’ by Robinson
[1979], who established the fact about piecewise polyhedral mappings in 9.57; cf.
Robinson [1981]. We prefer the terminology of calmness because it’s consonant with
other uses of that word and avoids the discrepancy with true Lipschitzian concepts,
which always concern uniformities with respect to variable pairs of points (without
one of them being fixed, as in this case). Other Lipschitzian properties of piecewise
polyhedral mappings, in particular the inverses of piecewise linear mappings, have
been studied by Gowda and Sznajder [1996].

The envelopes in 9.11 entered the literature through Hausdorff [1919], who cred-
ited them to Pasch; see also Hiriart-Urruty [1980a]. The extension theorem for Lips-
chitz continuous mappings in 9.58 can be attributed to Mickle [1949], but our proof,
based on minimization, is new. The singularity result in 9.65, a Lipschitzian version
of a famous theorem of Sard, was obtained by Mignot [1976]. For related results about
generic Lipschitzian invertibility, see Jofré [1989]. For infinite-dimensional general-
izations of Rademacher’s theorem in 9.60, see Preiss [1990].

Graphically Lipschitzian mappings as in 9.66 were studied by Rockafellar [1985b].
The constraint relaxation principle in 9.68 was pioneered by Clarke and has often been
helpful in the derivation of optimality conditions; cf. Clarke [1976b], [1983].

The rule in 9.67 for generating subgradients by ‘mollification’ fits with the
broader idea of defining classes of subgradients of a Lipschitz continuous function
f , at a point x̄ where f may fail to be differentiable, as limits of gradients ∇fν(xν)
obtained from sequences of smooth functions fν that approximate f in one way or
another. The use of that process was initiated by Halkin [1976a], [1976b], and Warga
[1975], [1976], [1981], and continued by Frankowska [1984]. The version in 9.67, where
the approximating functions fν are produced by ‘averaging’, was developed by Er-
moliev, Norkin and Wets [1985], who also investigated what might happen when f
is discontinuous as in the mollification framework of 7.19. Here we have sharpened
their results for Lipschitz continuous f by dropping the smoothness of the mollifiers
(through an appeal to the generic differentiability of f in Rademacher’s theorem) and
by bringing to light the fact that every subgradient v ∈ ∂f(x̄) can be generated as a
cluster point of the gradients ∇fν(xν) associated with some sequence xν → x̄.

The ‘nonconvex separation’ result in 9.69(c), which can be found in Borwein
and Jofré [1996] except for the assertion about regular tangent cones, traces back to
the idea that led Mordukhovich to some of his earliest successes in bypassing convex
analysis. For more on this kind of extremal principal and its history see Mordukhovich
[1996], Mordukhovich and Shao [1996a]. The results in 9.69(a)(b) were obtained by
Jofré and Rivera [1995a], although in slightly different form. Applications to economic
models were provided in Jofré and Rivera [1995b].

A final comment goes back to the discussion around Fig. 5–7 and why we work
with “osc” instead of “usc” as a property of mappings. Let S(t) = C − ta with
C ⊂ IR2 being

{
(x1, x2) ∈ O

∣∣x1x2 ≥ 0
}

for O = int IR2
+, and a = (1, 1). Then S

is Lipschitz continuous but not usc (although it is osc)! For instance, S(0) ⊂ O, yet
S(t) �⊂ O for all t > 0.



10. Subdifferential Calculus

Numerous facts about functions f : IRn → IR and mappings F : IRn → IRm

and S : IRn →→ IRm have been developed in Chapters 7, 8, and 9 by way of the
variational geometry in Chapter 6 and characterized through subdifferentia-
tion. In order to take advantage of this body of results, bringing the theory
down from an abstract level to workhorse use in practice, one needs to have
effective machinery for determining subderivatives, subgradients, and graphi-
cal derivatives and coderivatives in individual situations. Just as in classical
analysis, contemplation of ε’s and δ’s only goes so far. In the end, the vitality
of the subject rests on tools like the chain rule.

In variational analysis, though, calculus serves additional purposes. While
classically the calculation of derivatives can’t proceed without first assuming
that the functions to be differentiated are differentiable, the subdifferentiation
concepts of variational analysis require no such preconditions. Their rules of
calculation operate in inequality or inclusion form with little more needed than
closedness or semicontinuity, and they give a means of establishing whether a
differentiability property or Lipschitzian property is present or not.

One of the motivating ideas is that of deriving conditions of optimality
in problems of constrained minimization and understanding their behavior in
relation to stability and perturbation. A reexamination of what that involves,
and what we can now bring to bear on it, will help to light the way.

A. Optimality and Normals to Level Sets

Powerful results in the study of optimal solutions have already been obtained
in the first-order conditions of Theorem 6.12, leading to a Lagrange multiplier
rule in 6.15, and through their extension in Theorem 8.15 to the minimization
of nonsmooth, possibly even discontinuous functions. These results will be
carried further in this chapter and combined with others, but it’s instructive
to begin by returning to first principles.

We’ve taken the view that any problem of minimization in n variables
can be represented as the minimization, over all of IRn, of a certain function
f : IRn → IR, which without loss of significant generality could be taken to
be proper and lower semicontinuous. If f were a differentiable function, we
could immediately appeal to the classical rule of Fermat , according to which
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a function’s derivatives must vanish at a local minimum. This rule has the
following extension to our abstract framework.

10.1 Theorem (Fermat’s rule generalized). If a proper function f : IRn → IR
has a local minimum at x̄, then

df(x̄) ≥ 0, ∂f(x̄) � 0,

where the first condition corresponds to ∂̂f(x̄) � 0 and thus implies the second.

If f is subdifferentially regular or in particular convex, these conditions are
equivalent. In the convex case they are not just necessary for a local minimum
but sufficient for a global minimum, i.e., for having x̄ ∈ argmin f .

If f = f0+g with f0 smooth, the condition df(x̄) ≥ 0 takes the form that
−〈∇f0(x̄), · 〉 ≤ dg(x̄), whereas ∂f(x̄) � 0 comes out as −∇f0(x̄) ∈ ∂g(x̄).
Proof. The subgradient condition is the case of Theorem 8.15 with C = IRn,
but it warrants a direct proof here. If f(x) ≥ f(x̄) around x̄ it’s evident
that df(x̄)(w) ≥ 0 for all w by Definition 8.1. In fact, f(x) ≥ f(x̄) + o

(|x −
x̄|), so by Definition 8.3 we have 0 ∈ ∂̂f(x̄), where always ∂̂f(x̄) ⊂ ∂f(x̄).

The equivalence of df(x̄) ≥ 0 with 0 ∈ ∂̂f(x̄) is known from 8.4, while the

equality between ∂f(x̄) and ∂̂f(x̄) under regularity is known from 8.11. As
seen in 8.12, this equality always holds for convex functions, whose subgradient
characterization shows that 0 ∈ ∂f(x̄) implies that f(x) ≥ f(x̄) for all x.

The rest of the theorem relies on the formula ∂f(x̄) = ∇f0(x̄) + ∂g(x̄) in
8.8(c) and the defining formula for df(x̄)(w) in 8.1.

When f is differentiable, this rule gives the classical condition ∇f(x̄) = 0.
The case of f = f0 + g at the end of the theorem specializes on choosing
g = δC to the conditions in 6.12 for the minimization of f0 over C, because
dg(x̄) = δ

( · |TC(x̄)) and ∂g(x̄) = NC(x̄); cf. 8.2, 8.14. Another illustration of
the last part of Theorem 10.1 is seen in connection with the proximal mappings

Pλf(x) := argminw

{
f(w) +

1

2λ
|w − x|2

}
.

10.2 Example (subgradients in proximal mappings). For any proper function
f : IRn → IR and any λ > 0, one has

Pλf(x) ⊂ (I + λ∂f)−1(x) for all x.

When f is convex, this inclusion holds as an equation.

Detail. Fixing x and λ, let f0(w) = (1/2λ)|w − x|2. The function f0 is
convex and smooth with ∇f0(w) = (w − x)/λ. In the problem that defines
Pλf(x), we minimize f0 + f over IRn, and this is covered by the last part
of Theorem 10.1 (with f acting as g). The condition −∇f0(w) ∈ ∂f(w) is
necessary for w to belong to Pλf(x), and when f is convex it is sufficient.
Because∇f0(w) = (w−x)/λ, this condition can be written as x ∈ (I+λ∂f)(w),
or equivalently, w ∈ (I + λ∂f)−1(x).
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It’s not yet evident that the optimality conditions in 8.15 can likewise be
recovered from the fundamentals in Theorem 10.1, although the minimization
of f0 over C clearly corresponds to the minimization of f = f0 + δC over IRn

regardless of any smoothness assumptions on f0. But that will emerge once
we are able to handle the subdifferentiation of a sum like f0 + δC with greater
generality.

Anyway, the extended statement of Fermat’s rule brings to the forefront
the desirability of being able to evaluate df(x̄) and ∂f(x̄) in very broad cir-
cumstances, taking into account the particular manner in which f may be con-
structed out of other functions, or even various sets or set-valued mappings.
This is the goal we are headed toward here.

Often the formulas we’ll arrive at won’t be expressed as equations but in-
clusions. They can be high in their content of information nonetheless, because
many applications merely require verification of an inclusion or inequality in
one direction. For instance, constraint qualifications and tests of Lipschitz con-
tinuity typically require verifying that some set contains no more than the zero
vector, and for that purpose it’s obviously enough to show that some other set,
known at least to include the one in question, doesn’t contain more than the
zero vector.

A feature soon to be apparent is that subderivatives and subgradients
won’t be treated symmetrically on an equal theoretical footing. Despite the
temptation to think of subgradients as ‘dual’ objects, their role will more and
more be ‘primary’. The seeds of this development can be seen already in 8.15.
Although the relation df(x̄) ≥ 0 in Theorem 10.1 can in principle be sharper
as a necessary condition for a minimum than ∂f(x̄) � 0 when f isn’t regular
at x̄, it tends to be less robust because of instabilities. This has to be expected
from its equivalence with ∂̂f(x̄) � 0 and the fact that the mapping ∂̂f lacks
the outer semicontinuity properties built into ∂f , as recorded in 8.7.

Indeed, the condition ∂f(x̄) � 0 has a geometric interpretation in the
behavior of f locally around x̄ rather than just at x̄ itself. As found in 9.41(b),
it means exactly that the level-set mapping α �→ lev≤α f fails to have the Aubin
property at ᾱ = f(x̄) for the point x̄. In other words, the condition ∂f(x̄) � 0
signifies that x̄ is a sort of generalized ‘stationary point’ of f in the sense that
a specific mode of non-Lipschitzian behavior is exhibited at x̄ by the nest of
level sets of f .

Out of such considerations, the calculus of subgradients, along with that
of normal vectors and coderivative mappings, ultimately dominates over the
calculus of subderivatives, tangent vectors and graphical derivative mappings.

Two examples furnish additional illustration of this trend. First, recall that
in Chapter 6 there were two versions of the constraint qualification needed for
the analysis of a set defined by a system of constraints, one in terms of normal
cones (in 6.14) and the other in terms of tangent cones (in 6.39). It was seen
that while these two conditions were equivalent in the presence of Clarke reg-
ularity, the normal cone version was better in general (cf. 6.39). Second, recall
that in Chapter 9 a key result was the derivation of the Mordukhovich criterion
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for the Aubin property (in 9.38), which was shown to have deep consequences
in many directions, in particular for strict continuity and metric regularity of
mappings. That criterion, involving a coderivative mapping, has no convenient
counterpart in terms of derivative mappings.

Key relations between the variational geometry of sets and the subdiffer-
entiation of functions have already been seen in terms of epigraphs in 8.2 and
8.9 and indicators in 8.2 and 8.14. These allow us to pass readily between the
two contexts in ways that can be very useful. On the one hand, we are able to
use formulas for tangent and normal cones in Chapter 6 to get formulas now for
subderivatives and subgradients. But on the other hand, any formulas we get
for subderivatives or subgradients can be specialized back to tangent vectors
and normal vectors by taking the functions to be indicators.

Still another connection between sets and functions, also in relation to the
understanding of Fermat’s rule, is the following.

C

f(x) = α
_

/

x
_

N (x)
_

C

f(x)6
_

v

Fig. 10–1. Normal cone to a level set.

10.3 Proposition (normals to level sets). Suppose C =
{
x
∣∣ f(x) ≤ ᾱ

}
for a

proper, lsc function f : IRn → IR, and let x̄ be a point with f(x̄) = ᾱ. Then

TC(x̄) ⊂
{
w
∣∣ df(x̄)(w) ≤ 0

}
, N̂C(x̄) ⊃ pos ∂̂f(x̄).

If ∂f(x̄) � 0, then also

T̂C(x̄) ⊃
{
w
∣∣ d̂f(x̄)(w) ≤ 0

}
, NC(x̄) ⊂ pos ∂f(x̄) ∪ ∂∞

f(x̄).

If f is regular at x̄ with ∂f(x̄) � 0, then C is regular at x̄ and

TC(x̄) =
{
w
∣∣ df(x̄)(w) ≤ 0

}
, NC(x̄) = pos ∂f(x̄) ∪ ∂∞

f(x̄).

Proof. We can think of C as defined by the constraint F (x) ∈ D for D =
epi f ⊂ IRn+1 and F : x �→ (x, ᾱ) =

(
x, f(x̄)

)
. Then all we have to do is

apply Theorems 6.14 and 6.31 with X = IRn, calling forth the description in
Theorems 8.2 and 8.9 of the tangent and normal cones toD at F (x̄) =

(
x̄, f(x̄)

)
.

Since ∇F (x̄)w = (w, 0) and ∇F (x̄)∗(z, ζ) = z, the inclusions in 8.2 and 8.9
yield the inclusions here. The constraint qualification in 6.14 and 6.31 is the
condition that Nepi f

(
x̄, f(x̄)

)
shouldn’t contain any (z, ζ) with z = 0 but
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ζ = 0, and according to the normal cone formula in 8.9 this corresponds to
having 0 /∈ ∂f(x̄). Regularity of f at x̄ is regularity of D at F (x̄) by definition
(see 7.25).

When f is smooth, of course, f is regular (cf. 7.28) and the condition
∂f(x̄) � 0 means ∇f(x̄) = 0 (cf. 8.8). The formulas in 10.3 reduce then to

TC(x̄) =
{
w
∣∣ 〈∇f(x̄), w〉 ≤ 0

}
, NC(x̄) =

{
λ∇f(x̄) ∣∣λ ≥ 0

}
.

This could already have been gleaned from the formulas in Theorems 6.14 and
6.31 in the special case of a single inequality constraint. On the other hand,
we’ll later see in 10.50 how such formulas can be extended to a wider class of
constraint systems in which the constraint functions don’t have to be smooth.

10.4 Example (level sets with epi-Lipschitzian boundary). For a strictly con-
tinuous function f : IRn → IR, let C =

{
x
∣∣ f(x) ≤ ᾱ

}
and consider a point x̄

of C with f(x̄) = ᾱ. In order that C have epi-Lipschitzian boundary at x̄ in
the sense of 9.42, the condition

0 /∈ con ∂f(x̄)

is always sufficient. Under this condition there is a neighborhood V ∈ N (x̄)
such that

V ∩ bdryC = V ∩ {x ∣∣ f(x) = ᾱ
}
, V ∩ intC = V ∩ {x ∣∣ f(x) < ᾱ

}
.

In fact there is a vector w̄ = 0 along with V ∈ N (x̄) and δ > 0 such that

f(x+ τw̄) ≤ f(x)− λτ
f(x− τw̄) ≥ f(x) + λτ

}
for all τ ∈ (0, δ) when x ∈ V. 10(1)

Detail. Strict continuity at x̄ corresponds in 9.13 to having ∂∞f(x̄) = {0}, in
which case ∂f(x̄) is nonempty and compact. Then, already just from 0 /∈ ∂f(x̄),
we have NC(x̄) ⊂ pos ∂f(x̄) by 10.3, with equality when f is regular at x̄.
According to 9.42, C has the epi-Lipschitzian boundary property if and only if
NC(x̄) is pointed, and that’s true then as long as pos ∂f(x̄) is pointed. But if
pos ∂f(x̄) weren’t pointed, we would have 0 ∈ con ∂f(x̄); see 3.15, 2.27.

The pointedness of a cone implies the nonemptiness of the interior of its
polar (see 6.22), so the condition 0 /∈ con ∂f(x̄) also gives us a vector w̄ such

that 〈v, w〉 < 0 for all v ∈ ∂f(x̄). Then d̂f(x̄)(w̄) < 0 by 8.23 and the compact-

ness of ∂f(x̄), and we get 10(1) from 8.22 (in the light of dom d̂f(x̄) being all of
IRn; cf. 9.13). It’s evident from this local property of descent in the direction of
w̄ that all points x̃ ∈ V with f(x̃) = ᾱ belong to the closures of

{
x
∣∣ f(x) < ᾱ

}
and

{
x
∣∣ f(x) > ᾱ

}
and therefore to bdryC. Hence the local descriptions of

bdryC and intC are correct.

An example showing the difference between the conditions ∂f(x̄) � 0 and
con ∂f(x̄) � 0 in their effect on the boundary of C =

{
x
∣∣ f(x) ≤ f(x̄)} is that
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of the Lipschitz continuous function f(x1, x2) = |x1|− |x2| on IR2 at x̄ = (0, 0).
The set ∂f(x̄) is the union of the segments [−1, 1] × {1} and [−1, 1] × {−1},
so ∂f(x̄) � 0 = (0, 0). In this case, as predicted from our analysis of Fermat’s
rule, the mapping α �→ lev≤α f has the Aubin property at ᾱ = f(x̄) = 0 for x̄.
But con ∂f(x̄) is the square [−1, 1]× [−1, 1], so con ∂f(x̄) � 0 = (0, 0). The set
C = lev≤0 f is the union of two quadrants, and it doesn’t have epi-Lipschitzian
boundary property that’s the concern of 10.4.

B. Basic Chain Rule

Moving on now to the systematic development of the extended calculus that
is needed, we start with rules that can readily be derived as extensions of the
ones for normals and tangents in Chapter 6.

10.5 Proposition (separable functions). Let f(x) = f1(x1) + · · ·+ fm(xm) for
lsc functions fi : IR

ni → IR, where x ∈ IRn is expressed as (x1, . . . , xm) with
xi ∈ IRni . Then at any x̄ = (x̄1, . . . , x̄m) with f(x̄) finite and dfi(x̄i)(0) = 0,
one has

∂̂f(x̄) = ∂̂f1(x̄1)× · · · × ∂̂fm(x̄m),

∂f(x̄) = ∂f1(x̄1)× · · · × ∂fm(x̄m),

∂
∞
f(x̄) ⊂ ∂

∞
f1(x̄1)× · · · × ∂∞

fm(x̄m),

while on the other hand

df(x̄) ≥ df1(x̄1) + · · ·+ dfm(x̄m),

d̂f(x̄) ≤ d̂f1(x̄1) + · · ·+ d̂fm(x̄m).

Moreover, f is regular at x̄ when fi is regular at x̄i for each i. Then the
inclusions and inequalities become equations.

Proof. The formula for ∂̂f(x̄) is justified by the variational description of reg-
ular subgradients in 8.5. The formula for ∂f(x̄) then follows from the definition
of general subgradients as limits of regular subgradients; obviously xν→f x̄ if
and only if xνi →fi x̄i for each i. Next consider any v = 0 in ∂∞f(x̄). By defi-

nition we have λνvν → v for some choice of λν ↘ 0, vν ∈ ∂̂f(xν), xν→f x̄. The

formula for ∂̂f(x̄) translates this into having λνvνi → vi with vνi ∈ ∂̂fi(x̄i),
xνi →fi x̄i. Then vi ∈ ∂∞fi(x̄i) for each i. The inclusion for ∂∞f(x̄) is therefore
correct. The inequality for df(x̄) comes from the fact that

lim inf
τ ↘ 0
w→w̄

f(x̄+ τw)− f(x̄)
τ

= lim inf
wi→w̄i
τ ↘ 0

m∑
i=1

fi(x̄i + τwi)− f(x̄i)
τ

≥
m∑
i=1

lim inf
wi→w̄i
τi ↘ 0

fi(x̄i + τwi)− f(x̄i)
τi

.
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The inequality for d̂f(x̄), on the other hand, is a consequence of the equation

for ∂f(x̄) and inclusion for ∂∞f(x̄) through the expression for d̂f(x̄) in 8.23.

Now suppose each fi is regular at x̄i. We have dfi(x̄i) = d̂fi(x̄i) and

dfi(0)(x̄i) = 0 (cf. 8.19). Since in general df(x̄) ≤ d̂f(x̄), the inequalities we

have obtained for df(x̄) and d̂f(x̄) must be equations, and these two functions
must coincide and have the value 0 at the origin. In particular, f itself must
be regular at x̄. We further have ∂fi(x̄i) = ∂̂fi(x̄i) = ∅ and ∂∞fi(x̄i) =

∂̂fi(x̄i)
∞ for each i (by 8.11), hence ∂f(x̄) = ∂̂f(x̄) = ∅ and also ∂∞f(x̄) ⊂

∂̂f1(x̄1)
∞×· · ·× ∂̂fm(x̄m)∞. But this product set is [∂̂f1(x̄1)×· · ·× ∂̂fm(x̄m)]∞

by 3.11, because the sets ∂̂fi(x̄i) are convex. Therefore it equals ∂̂f(x̄)
∞. Thus,

∂∞f(x̄) ⊂ ∂̂f(x̄)∞. The opposite inclusion holds always by 8.6, so ∂∞f(x̄) =
∂∞f1(x̄1)× · · · × ∂∞fm(x̄m).

When applied to indicators fi = δCi
, the rules for separable functions in

10.5 reduce to the ones for product sets in 6.41. This illustrates once more the
geometric underpinnings of the subject.

A master key to calculus is the following chain rule. In this we continue
to make use of a smooth mapping F : IRn → IRm and its Jacobian

∇F (x) :=

[
∂fi
∂xj

(x)

]m,n

i,j=1

∈ IRm×n,

but an extension will later be achieved in 10.49 for mappings F that aren’t
necessarily even differentiable but just strictly continuous.

10.6 Theorem (basic chain rule). Suppose f(x) = g
(
F (x)

)
for a proper, lsc

function g : IRm → IR and a smooth mapping F : IRn → IRm. Then at any
point x̄ ∈ dom f = F−1(dom g) one has

∂̂f(x̄) ⊃ ∇F (x̄)∗∂̂g(F (x̄)),
df(x̄)(w) ≥ dg

(
F (x̄)

)(∇F (x̄)w).
If the only vector y ∈ ∂∞g(F (x̄)) with ∇F (x̄)∗y = 0 is y = 0 (this being true
for convex g when dom g cannot be separated from the range of the linearized
mapping w �→ F (x̄) +∇F (x̄)w) one also has

∂f(x̄) ⊂ ∇F (x̄)∗∂g(F (x̄)), ∂
∞
f(x̄) ⊂ ∇F (x̄)∗∂∞

g
(
F (x̄)

)
,

d̂f(x̄)(w) ≤ d̂g
(
F (x̄)

)(∇F (x̄)w).
If in addition g is regular at F (x̄), then f is regular at x̄ and

∂f(x̄) = ∇F (x̄)∗∂g(F (x̄)), ∂
∞
f(x̄) = ∇F (x̄)∗∂∞

g
(
F (x̄)

)
,

df(x̄)(w) = dg
(
F (x̄)

)(∇F (x̄)w).
Proof. We have epi f = F

−1
(epi g) for the smooth mapping F : IRn × IR →

IRm×IR defined by F (x, α) =
(
F (x), α

)
. The normal and tangent cones to epi f
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at
(
x̄, f(x̄)

)
can therefore be computed from those to epi f at

(
F (x̄), g(F (x̄))

)
by the rules in 6.14 and 6.31 in terms of the Jacobian

∇F (x̄, f(x̄)) =

[∇F (x̄) 0
0 1

]
.

The formulas epigraphical tangent and normal cones in 8.2 and 8.9 translate
these cone results into the statements here.

The special comment about the convex case is founded on the fact that
when g is convex the vectors y = 0 in ∂∞g

(
F (x̄)

)
, if any, are those that are

normal to supporting hyperplanes to the convex set dom g at F (x̄); cf. 6.9. Such
a vector satisfies ∇F (x̄)∗y = 0 if and only if it is normal to the affine set M ={
F (x̄) +∇F (x̄)w ∣∣w ∈ IRn

}
(which passes through x̄)), and this corresponds

to having the hyperplane H =
{
w
∣∣ 〈y, u− F (x̄)〉} furnish separation between

dom g and M .

When g is taken in 10.6 to be the indicator δD of a closed set D ⊂ IRm,
we have f = δC for the set C = F−1(D). The chain rule in this case yields
the variational geometry results in 6.14 and 6.31 that correspond to choosing
X = IRn in those theorems.

An alternative chain rule, which is sharper in some respects but more
limited in its applicability, grows out of 6.7 instead of 6.14 and 6.31. This has
the following statement.

10.7 Exercise (change of coordinates). Suppose f(x) = g
(
F (x)

)
for a proper,

lsc function g : IRm → IR and a smooth mapping F : IRn → IRm, and let x̄ be
a point where f is finite and the Jacobian ∇F (x̄) has rank m. Then

∂̂f(x̄) = ∇F (x̄)∗∂̂g(F (x̄)),
∂f(x̄) = ∇F (x̄)∗∂g(F (x̄)),
∂

∞
f(x̄) = ∇F (x̄)∗∂∞

g
(
F (x̄)

)
,

df(x̄)(w) = dg
(
F (x̄)

)(∇F (x̄)w),
d̂f(x̄)(w) = d̂g

(
F (x̄)

)(∇F (x̄)w).
In particular, f is regular at x̄ if and only if g is regular at F (x̄).

Guide. This is patterned on 6.7 and 6.32 and can be derived similarly, or
by adopting the pattern in the proof of 10.6 but appealing in the epigraphical
framework to 6.7 and 6.32 instead of 6.14 and 6.31.

Before proceeding with the many consequences of Theorem 10.6, we look
at a typical application to necessary conditions for a minimum.

10.8 Example (composite Lagrange multiplier rule). Consider the problem:

minimize f0(x) + θ
(
f1(x), . . . , fm(x)

)
over all x ∈ X,
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where X is a closed subset of IRn, the functions fi are C1 on IRn, and θ is lsc,
proper, and convex on IRm. This corresponds to minimizing

f(x) := δX(x) + f0(x) + θ
(
F (x)

)
over all of IRn, where F = (f1, . . . , fm). Let D = dom θ (convex), so that the
set of feasible solutions to the problem is C :=

{
x ∈ X ∣∣F (x) ∈ D}. Then at

any point x̄ ∈ C satisfying the constraint qualification

−∇F (x)∗y ∈ NX(x), y ∈ ND

(
F (x)

)
=⇒ y = 0,

one has the inclusions

∂f(x̄) ⊂ {∇f0(x̄) +∇F (x̄)∗y ∣∣ y ∈ ∂θ(F (x̄))}+NX(x̄),

∂
∞
f(x̄) ⊂ {∇F (x̄)∗y ∣∣ y ∈ ND

(
F (x̄)

)}
+NX(x̄),

where equality holds when X is regular at x̄ (as when X is convex, or in
particular when X = IRn).

Thus, a necessary condition for f to attain a local minimum at a point x̄
satisfying the constraint qualification is the existence of a vector ȳ such that

−[∇f0(x̄) +∇F (x̄)∗ȳ] ∈ NX(x̄) with ȳ ∈ ∂θ(F (x̄)).
When X and f are convex, the existence of such a vector ȳ is sufficient for f to
attain a global minimum at x̄, even in the absence of the constraint qualification
being satisfied at x̄.

Detail. Define G(x) =
(
x, f0(x), f1(x), . . . , fm(x)

)
and g(x, u0, u1, . . . , um) =

δX(x)+u0+θ(u1, . . . , um). Then f(x) = g
(
G(x)

)
with G smooth and g lsc and

proper. Subgradients of g can be determined from 10.5 and the fact (from 8.12)
that ∂∞θ(u) = ND(u). The chain rule in Theorem 10.6 then yields the claimed
inclusions and equations for ∂f(x̄) and ∂∞f(x̄); the constraint qualification here
corresponds to the nonexistence of y ∈ ∂∞g

(
G(x̄)

)
such that ∇G(x̄)∗y = 0,

except for y = 0. The necessary condition is immediate from these formulas
and the general version of Fermat’s rule in 10.1. Even without the constraint
qualification we have

∂̂f(x̄) ⊃ {∇f0(x̄) +∇F (x̄)∗y ∣∣ y ∈ ND

(
F (x̄)

)}
+NX(x̄),

when X is regular at x̄, in which case the multiplier rule says that 0 ∈ ∂̂f(x̄).
If f is convex, this is equivalent to having x̄ ∈ argmin f ; cf. 10.1.

The optimality condition in this example generalizes the multiplier rule in
6.15, which corresponds to θ = δD for a box D = D1×· · ·×Dm. Although the
framework now is much broader, and more than just constraints are involved in
the choice of θ, it’s still appropriate to speak of ȳ = (ȳ1, . . . , ȳm) as a Lagrange
multiplier vector , recalling that

∇F (x̄)∗ȳ = ȳ1∇f1(x̄) + · · ·+ ȳm∇fm(x̄).
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The theory of generalized Lagrangian functions will later provide reinforce-
ment for such terminology (cf. 11.45, 11.48). A generalization to functions
f0, f1, . . . , fm that aren’t necessarily smooth, but only strictly continuous, will
be furnished in 10.52.

The possibility of handling penalty terms and other composite cost expres-
sions alongside of exact constraints reveals the power of Example 10.8 in more
detail. The problem of minimizing

f0(x) + θ1
(
f1(x)

)
+ · · ·+ θm

(
fm(x)

)
over x ∈ X is the same as that of minimizing f0(x) over x ∈ X subject to
fi(x) ∈ Di for i = 1, . . . , m when each θi is the indicator of a closed interval
Di, but more generally one could take at least some of the θi’s merely to
be proper, lsc, convex functions on IR with effective domains Di. Then in
10.8 one would have θ(u1, . . . , um) = θ1(u1) + · · · + θm(um) with effective
domain D = D1×· · ·×Dm. The condition ȳ ∈ ∂θ(F (x̄)) would come down to

ȳi ∈ ∂θi
(
fi(x̄)

)
for i = 1, . . . , m. Each multiplier ȳi is thereby restricted to lie

in a certain closed interval, which depends on θi and the value fi(x̄). This is
analogous to the sign restrictions on Lagrange multipliers seen in the constraint
setting of 6.15.

In the framework of variational analysis, the chain rule for f = g◦F is the
platform for many other rules of calculus. We have already noted that the rules
for normals and tangents to inverse images are a special case; cf. 6.7 and 6.32
and more significantly Theorems 6.14 and 6.31. So too are the rules for set
intersections in 6.42; they correspond in the following to the special case where
fi = δCi

.

10.9 Corollary (addition of functions). Suppose f = f1 + · · ·+ fm for proper,
lsc functions fi : IR

n → IR, and let x̄ ∈ dom f . Then

∂̂f(x̄) ⊃ ∂̂f1(x̄) + · · ·+ ∂̂fm(x̄),

df(x̄) ≥ df1(x̄) + · · ·+ dfm(x̄).

Under the condition that the only combination of vectors vi ∈ ∂∞fi(x̄) with
v1 + · · · + vm = 0 is v1 = v2 = · · · = vm = 0 (this being true in the case of
convex functions f1, f2 when dom f1 and dom f2 cannot be separated), one
also has that

∂f(x̄) ⊂ ∂f1(x̄) + · · ·+ ∂fm(x̄),

∂
∞
f(x̄) ⊂ ∂

∞
f1(x̄) + · · ·+ ∂

∞
fm(x̄),

d̂f(x̄) ≤ d̂f1(x̄) + · · ·+ d̂fm(x̄).

If also each fi is regular at x̄, then f is regular at x̄ and

∂f(x̄) = ∂f1(x̄) + · · ·+ ∂fm(x̄),

∂
∞
f(x̄) = ∂

∞
f1(x̄) + · · ·+ ∂

∞
fm(x̄),

df(x̄) = df1(x̄) + · · ·+ dfm(x̄).



B. Basic Chain Rule 431

Proof. Let F : IRn → (IRn)m be the mapping that takes x to (x, . . . , x), and
define the function g : (IRn)m → IR by g(x1, . . . , xm) = f1(x1) + · · ·+ fm(xm).
Then f(x) = g

(
F (x)

)
. The chain rule in Theorem 10.6 and the facts about

separable functions in 10.5, as applied to g, yield all. In the convex case, the
separation condition mentioned in Theorem 10.6 turns into the one for the
effective domains of f1 and f2 here.

On the basis of this calculus result for sums, the optimality conditions
in Theorem 8.15, with respect to the minimization of a possibly nonsmooth
function f0 over a set C, find their place as a special case of the optimality
condition in the extended version of Fermat’s rule in 10.1. They correspond to
taking f = f0 + δC in 10.1 and applying the calculus in 10.9.

10.10 Exercise (subgradients of Lipschitzian sums). If f = f1 + f2 with f1
strictly continuous at x̄ while f2 is lsc and proper with f2(x̄) finite, then

∂f(x̄) ⊂ ∂f1(x̄) + ∂f2(x̄), ∂
∞
f(x̄) ⊂ ∂∞

f2(x̄).

If f1 is strictly differentiable at x̄, these inclusions hold as equations.

Guide. Adding to f1 the indicator of some neighborhood of x̄ so as to make
f1 lsc and proper, apply 10.9 with 9.13(b) to get the inclusions. The version
with equality doesn’t follow from 10.9, because f2 isn’t assumed regular. For
that instead apply the inclusion result to f2 = f + (−f1).

Also fitting into the chain rule in 10.6 are the formulas given earlier in 8.31
for subderivatives and subgradients of elementary max functions. This is clear
from the fact that

f = max{f1, . . . , fm} ⇐⇒ f = vecmax ◦F for F = (f1, . . . , fm).

(For subgradients of g = vecmax, see 8.26; subderivatives of this convex func-
tion are readily determined as well.) More general rules applicable to the
pointwise maximum of a possibly infinite collection of smooth functions will
be developed below under the topic of ‘subsmoothness’. (See Definition 10.29
and Theorem 10.31).

Still another chain rule application handles ‘partial subdifferentiation’.

10.11 Corollary (partial subgradients and subderivatives). For a proper, lsc
function f : IRn×IRm → IR and a point (x̄, ū) ∈ dom f , let ∂xf(x̄, ū) denote the

subgradients of f( · , ū) at x̄, and similarly ∂̂xf(x̄, ū) and ∂∞
xf(x̄, ū). Likewise,

let dxf(x̄, ū) and d̂xf(x̄, ū) denote the subderivative functions associated with
f( · , ū) at x̄. One always has

∂̂xf(x̄, ū) ⊃
{
v
∣∣ ∃y with (v, y) ∈ ∂̂f(x̄, ū)},

dxf(x̄, ū)(w) ≥ df(x̄, ū)(w, 0) for all w.

Under the condition that (0, y) ∈ ∂∞f(x̄, ū) implies y = 0 (this being true for
convex f when dom f cannot be separated from (IRn, ū)), one also has
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∂xf(x̄, ū) ⊂
{
v
∣∣∃y with (v, y) ∈ ∂f(x̄, ū)},

∂
∞
x f(x̄, ū) ⊂

{
v
∣∣∃y with (v, y) ∈ ∂∞

f(x̄, ū)
}
,

d̂xf(x̄, ū)(w) ≤ d̂f(x̄, ū)(w, 0) for all w.

If also f is regular at (x̄, ū), then f( · , ū) is regular at x̄ and

∂xf(x̄, ū) =
{
v
∣∣ ∃y with (v, y) ∈ ∂f(x̄, ū)},

∂
∞
x f(x̄, ū) =

{
v
∣∣ ∃y with (v, y) ∈ ∂∞

f(x̄, ū)
}
,

dxf(x̄, ū)(w) = df(x̄, ū)(w, 0) for all w.

Proof. Write f( · , ū) = f◦F with F (x) = (x, ū) and apply Theorem 10.6.

C. Parametric Optimality

An interesting and useful consequence of the formulas for partial subdiffer-
entiation is a form of Fermat’s rule that addresses the role parameters may,
and typically do, have in a problem of optimization.

10.12 Example (parametric version of Fermat’s rule). For a proper, lsc function
f : IRn × IRm → IR and vector ū ∈ IRm, consider the problem of minimizing
f(x, ū) over x ∈ IRn. Suppose x̄ is locally optimal and

 ∃ y = 0 with (0, y) ∈ ∂∞
f(x̄, ū), 10(2)

which in the case of convex f means that dom f does not have a supporting
half-space at (x̄, ū) with normal vector of the form (0, y) = (0, 0). Then

∃ ȳ with (0, ȳ) ∈ ∂f(x̄, ū). 10(3)

If f is regular at (x̄, ū) and f(x, ū) is convex in x, this condition is sufficient
for x̄ to be globally optimal.

Detail. This combines the partial subgradient rule in 10.11 with the version
of Fermat’s rule already in 10.1. The convex case reflects 8.12.

The vectors ȳ in this parametric version of Fermat’s rule can be regarded as
generalized Lagrange multiplier elements for the problem of minimizing f(x, ū)
in x. Condition 10(2) is the corresponding abstract constraint qualification. (A
weaker condition giving the same conclusion, the ‘calmness’ constraint qualifi-
cation, will be developed in 10.47.)

The connection of Fermat’s rule with Lagrange multipliers and constraints
can be seen from more than one angle. The simplest interpretation stems
from the observation that the problem of minimizing f(x, ū) in x for a given
ū = (ū1, . . . , ūm) is the same as the problem of minimizing f(x, u1, . . . , um)
with respect to all (x, u1, . . . , um) ∈ IRn × IRm subject to
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fi(x, u1, . . . ,um) = 0 for i = 1, . . . , m,

where fi(x, u1, . . . , um) := ūi − ui.
These equality constraints define a set C ⊂ IRn× IRm, and in applying 8.15 to
the minimization of f over C, and viewing the associated normal cone condition
for optimality in the context of 6.14, we find that the components ȳi of ȳ are
Lagrange multipliers for these constraints quite specifically.

This simple interpretation isn’t the only one, however, and in focusing
too closely on it one could miss something of deep conceptual importance.
The formulation of Fermat’s rule in 10.12 is ideally suited to the framework
of parametric optimization very generally, such as we have been building up
around Theorems 1.17, 7.41, and elsewhere. Explicit constraints and their
parameterization are only one theme in the opus of perturbation and stability
with respect to max and min.

The message in 10.12 is that in passing from a model of minimization
in terms of a single problem, by itself, to one in which a problem is regarded
as belonging to a family with a particular parameterization, the description of
optimality is opened up to the incorporation of a dual element in the space
of parameters, as expressed abstractly in condition 10(3). The significance of
such dual elements ȳ is revealed through their relation to subgradients of the
optimal value function p(u) in the chosen parameterization.

10.13 Theorem (subdifferentiation in parametric minimization). Consider

p(u) := infx f(x, u), P (u) := argminx f(x, u),

for a proper, lsc function f : IRn × IRm → IR, and suppose f(x, u) is level-
bounded in x locally uniformly in u. Then at any ū ∈ dom p the sets

Ŷ (ū) :=
⋂

x̄∈P (ū)
M̂(x̄, ū) for M̂(x̄, ū) :=

{
y
∣∣ (0, y) ∈ ∂̂f(x̄, ū)},

Y (ū) :=
⋃

x̄∈P (ū)
M(x̄, ū) for M(x̄, ū) :=

{
y
∣∣ (0, y) ∈ ∂f(x̄, ū)},

Y∞(ū) :=
⋃

x̄∈P (ū)
M∞(x̄, ū) for M∞(x̄, ū) :=

{
y
∣∣ (0, y) ∈ ∂∞

f(x̄, ū)
}
,

are closed with Ŷ (ū) convex, Ŷ (ū) ⊂ Y (ū), Y (ū)∞ ⊂ Y∞(ū), and one has

∂̂p(ū) ⊂ Ŷ (ū), ∂p(ū) ⊂ Y (ū), ∂
∞
p(ū) ⊂ Y∞(ū),

d̂p(ū)(z) ≤ sup
y∈Y (ū)

〈
y, z
〉
+ δ

Y∞(ū)∗
(z)

≤ sup
x̄∈P (ū)

{
infw d̂f(x̄, ū)(w, z)

}
,

dp(ū)(z) ≤ inf
x̄∈P (ū)

{
infw df(x̄, ū)(w, z)

}
.

When f is convex, so p is convex as well, one has for any x̄ ∈ P (ū) that
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∂p(ū) = Y (ū) =M(x̄, ū), ∂
∞
p(ū) = Y∞(ū) =M∞(x̄, ū),

dp(ū)(z) = clz infw df(x̄, ū)(w, z),

and as long as ∂p(ū) = ∅, or equivalently dp(ū)(0) = −∞, also

dp(ū)(z) = sup
y∈M(x̄,ū)

〈
y, z
〉
.

Proof. The assumptions on f ensure that the image of C := epi f under the
projection mapping F : (x, u, α) �→ (u, α) is D := epi p, cf. 1.18; indeed, the set
D is closed, and F−1 is locally bounded on D (as seen through 1.17). Theorem
6.43 can then be applied. The facts asserted here are simply the consequences
of that theorem in the background of the variational geometry of epigraphs
in 8.2 and 8.9. In particular, the cone asserted to include the normal cone in
6.43 is the one representing the set Y (ū)∪dir Y∞(ū) in the ray space model for
csm IRm, so its closedness corresponds to having Y (ū) and Y∞(ū) closed with
Y (ū)∞ ⊂ Y∞(ū); cf. 3.4. The subgradient inclusions yield the first inequality in

the estimate for d̂p(ū)(z) by the rule (valid for any lsc function; cf. 8.23) that

d̂p(ū)(z) = sup
y∈∂p(ū)

〈
y, z
〉
+ δ

∂
∞
p(ū)∗

(z),

and the second inequality in this estimate comes then from the same rule as
applied to d̂f(x̄, ū)(w, z), which gives

d̂f(x̄, ū)(w, z) ≥ sup
y∈M(x̄,ū)

〈
(0, y), (w, z)

〉
+ δ

M∞(x̄,ū)∗
(z) for all w.

In the convex case, 8.21 and 8.30 provide the additional simplifications beyond
those coming from 6.43. The convexity of p follows from that of f by 2.22.

A result that supplements Theorem 10.13 in some respects, giving an equa-
tion formula for dp(ū)(z) in certain cases where p may not be convex, will be
provided in 10.58.

The result about image sets in 6.43 can be identified with the case of
Theorem 10.13 where f is the indicator of

{
(x, F (x))

∣∣x ∈ C} for a set C ⊂ IRn

and a mapping F : IRn → IRm. Then p is the indicator of D = F (C).

In particular, Theorem 10.13 says that every subgradient vector ȳ ∈ ∂p(ū)
must be a vector associated with an optimal solution x̄ ∈ P (ū) in the manner
of the parametric form of Fermat’s rule in 10.11—and when there’s enough
convexity the converse holds as well. Furthermore, the vectors y of concern in
the abstract constraint qualification associated with this rule are closely tied
to the horizon subgradients of p. The facts we state next turn the spotlight on
the case that comes out most strongly in relating properties of p to these ideas.

10.14 Corollary (parametric Lipschitz continuity and differentiability). Let
p(u) = infx f(x, u) and P (u) = argminx f(x, u) as in Theorem 10.13 for a
proper, lsc function f : IRn × IRm → IR such that f(x, u) is level-bounded in x
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locally uniformly in u, and let ū be a point of dom p. Let Y (ū) and Y∞(ū) be
the associated sets of multiplier vectors as defined in Theorem 10.13.

(a) If Y∞(ū) = {0}, then p is strictly continuous at ū with

lip p(ū) ≤ max
y∈Y (ū)

|y| <∞.

(b) If Y (ū) = {ȳ} too, then p is strictly differentiable at ū with ∇p(ū) = ȳ.

When f is convex, with corresponding simplification of Y (ū) and Y∞(ū) in
10.13, the condition Y∞(ū) = {0} is also necessary for p to be strictly continuous
at ū. Then too, the inequality for lip p(ū) is an equation.

Proof. This just combines 9.13 and 9.18 with the facts in Theorem 10.13. The
assumptions imply through 1.17 that p is lsc and proper.

These insights help in particular in understanding the significance of the
Lagrange multipliers appearing in the multiplier rule in 10.8, and as a special
case, the earlier one in 6.15.

10.15 Example (subdifferential interpretation of Lagrange multipliers). With
u = (u1, . . . , um) ∈ IRm as parameter vector, let p(u) denote the optimal value
and P (u) the optimal solution set in the problem

minimize f0(x) + θ
(
f1(x) + u1, . . . , fm(x) + um

)
over all x ∈ X,

where X ⊂ IRn is nonempty and closed, each fi : IRn → IR is smooth, and
θ : IRm → IR is proper, lsc and convex. This problem corresponds to minimizing

f(x, u) := δX(x) + f0(x) + θ
(
F (x) + u

)
over x ∈ IRn, where F (x) =

(
f1(x), . . . , fm(x)

)
. Assume that f(x, u) is level-

bounded in x locally uniformly in u, i.e., that for each α ∈ IR and r ∈ IR+ the
set
{
(x, u) ∈ X × rIB ∣∣ f0(x) + θ

(
F (x) + u

) ≤ α} is bounded. Let D := dom θ,
and associate with x̄ ∈ P (ū) the multiplier sets

M(x̄, ū) :=
{
y ∈ ∂θ(F (x̄) + ū

) ∣∣∣ −∇f0(x̄)−∇F (x̄)∗y ∈ NX(x̄)
}
,

M∞(x̄, ū) :=
{
y ∈ ND

(
F (x̄) + ū

) ∣∣∣ −∇F (x̄)∗y ∈ NX(x̄)
}
.

Consider a vector ū ∈ dom p. If at every x̄ ∈ P (ū) the set X is regular
and M∞(x̄, ū) = {0} (constraint qualification), then p is strictly continuous at
ū with

∂p(ū) ⊂
⋃

x̄∈P (ū)

M(x̄, ū), lip p(ū) ≤ max
y∈M(x̄,ū)
x̄∈P (ū)

|y| <∞.

If besides there happens to be only one vector ȳ ∈ ⋃x̄∈P (ū)M(x̄, ū), then p

must be strictly differentiable at ū with ∇p(ū) = ȳ.
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Detail. Let g(x, w0, w1, . . . , wm) := δX(x)+w0+θ(w1, . . . , wm) and G(x, u) :=(
x, f0(x), f1(x)+u1, . . . , fm(x)+um

)
, so that f(x, u) = g

(
G(x, u)

)
. This yields{

y
∣∣ (0, y) ∈ ∂f(x̄, ū)} =M(x̄, ū),

{
y
∣∣ (0, y) ∈ ∂∞

f(x̄, ū)
}
=M∞(x̄, ū),

through the chain rule in 10.6. The results then follow from 10.14.

A remarkable feature of this application is that despite the potential non-
smoothness of the optimal value function p, which is inherent in constrained
minimization regardless of any smoothness assumed for the functions fi, it’s
possible to identify circumstances in which p has Lipschitzian properties and
can even be strictly differentiable. In the latter case the components ȳi of the
Lagrange multiplier vector ȳ are interpreted as giving the rates of change of the
optimal value with respect to perturbations in the parameters. Each multiplier
ȳi signals the marginal effect of raising or lowering the value fi(x̄).

When the multiplier vector isn’t unique in 10.15, or 10.14, its components
can’t be identified with partial derivatives of p, but the connection with rates
of change of p—directional derivatives or subderivatives—is nevertheless very
close. This is borne out by the formulas that apply to dp(ū) and d̂p(ū) in
Theorem 10.13. For instance in the convex case with ū ∈ int dom p, we get

lim
τ ↘ 0
z→z̄

p(ū+ τz)− p(ū)
τ

= max
y∈M(x̄,ū)

〈
y, z̄
〉

for any x̄ ∈ P (ū),

because convex functions are semidifferentiable at points in the interior of their
effective domain; cf. 9.14 and 9.15.

Lipschitzian properties not only describe the behavior of the optimal value
function p when the constraint qualification in the version of Fermat’s rule in
10.12 is fulfilled, but even explain what the constraint qualification means.

10.16 Proposition (Lipschitzian meaning of constraint qualification). For a
proper, lsc function f : IRn × IRm → IR and a point (x̄, ū) ∈ dom f , the
condition

(0, y) ∈ ∂∞
f(x̄, ū) =⇒ y = 0 10(4)

is equivalent to the set-valued mapping E : u �→ epi f(·, u) having the Aubin
property at ū for

(
x̄, f(x̄, ū)

)
.

Proof. The Mordukhovich criterion in 9.40 for the Aubin property of E at ū
for
(
x̄, f(x̄, ū)

)
takes the form that the coderivative mappingD∗E

(
ū | x̄, f(x̄, ū))

should have image {0} at 0. The graph of this coderivative mapping consists
of the elements (−v,−β, y) such that (v, β, y) belongs to the normal cone to
gphE at

(
ū, x̄, f(x̄, ū)

)
, but that’s the same as (y, v, β) belonging to the normal

cone to epi f at
(
x̄, ū, f(x̄, ū)

)
. The Mordukhovich criterion works out therefore

to requiring that the only element of form (0, y, 0) in the epigraphical normal
cone be (0, 0, 0). But from Theorem 8.9, the elements (v, y, 0) in this cone
correspond to horizon subgradients (v, y) ∈ ∂∞f(x̄, ū).
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10.17 Exercise (geometry of sets depending on parameters). For a mapping
S : IRn → IRm consider S−1(u) =

{
x
∣∣S(x) � u} as a variable subset of IRn

depending on u ∈ IRm as parameter element. Suppose S is osc and let ū ∈ rgeS
and C := S−1(ū). Then for x̄ ∈ C one has

TC(x̄) ⊂
{
w
∣∣DS(x̄ | ū)(w) � 0

}
, N̂C(x̄) ⊃ rge D̂∗S(x̄ | ū),

while if the constraint qualification

D∗S(x̄ | ū)(y) � 0 =⇒ y = 0 10(5)

is fulfilled, one also has

T̂C(x̄) ⊃
{
w
∣∣ D̂S(x̄ | ū)(w) � 0

}
, NC(x̄) ⊂ rgeD∗S(x̄ | ū).

If in addition S is graphically regular at (x̄, ū), then

TC(x̄) =
{
w
∣∣DS(x̄ | ū)(w) � 0

}
, NC(x̄) = rgeD∗S(x̄ | ū).

Guide. Apply 10.11 to the indicator of the graph of S.

This result fits with the interpretation in 10.16, because the constraint
qualification 10(5) means that S−1 has the Aubin property at ū for x̄, or
equivalently that S is metrically regular for ū at x̄; see 9.43.

Another result related to parametric minimization is a calculus rule for
functions generated by epi-addition.

10.18 Exercise (epi-addition). Suppose f = f1 · · · fm for proper, lsc func-
tions fi : IR

n → IR such that for each ρ > 0 the set{
(x1, . . . , xm) ∈ (IRn)m

∣∣∣ |x1 + · · ·+ xm| ≤ ρ, f1(x1) + · · ·+ fm(xm) ≤ ρ
}

is bounded. Let P (x) =
{
(x1, . . . , xm)

∣∣ f1(x1) + · · ·+ fm(xm) = f(x)
}
. Then

at any x̄ ∈ dom f the sets

V̂ (x̄) =
⋂

(x̄1,...,x̄m)∈P (x̄)

⋃
i=1,...,m

∂̂fi(x̄i),

V (x̄) =
⋃

(x̄1,...,x̄m)∈P (x̄)

⋃
i=1,...,m

∂fi(x̄i),

V∞(x̄) =
⋃

(x̄1,...,x̄m)∈P (x̄)

⋃
i=1,...,m

∂
∞
fi(x̄i),

are closed with V̂ (x̄) convex. Moreover, V̂ (x̄) ⊂ V (x̄), and V (x̄)∞ ⊂ V∞(x̄),
and one has

∂̂f(x̄) ⊂ V̂ (x̄), ∂f(x̄) ⊂ V (x̄), ∂
∞
f(x̄) ⊂ V∞(x̄),

and when each function fi is regular at x̄i, also
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df(x̄)(w) ≤ inf
(x̄1,...,x̄m)∈P (x̄)
w1+···+wm=w

∑m

i=1
df(x̄i)(wi),

d̂f(x̄)(w) ≤ sup
(x̄1,...,x̄m)∈P (x̄)

{
inf

w1+···+wm=w

∑m

i=1
d̂f(x̄i)(wi)

}
.

When each fi is convex, implying f is convex, the unions are superfluous in the
definition of V (x̄) and V∞(x̄), and one has for any (x̄1, . . . , x̄m) ∈ P (x̄) that

∂f(x̄) = V (x̄) =
⋂

i=1,...,m

∂fi(x̄i),

∂
∞
f(x̄) = V∞(x̄) =

⋂
i=1,...,m

∂
∞
fi(x̄i),

df(x̄)(w) = clw

{
inf

w1+···+wm=w

∑m

i=1
df(x̄i)(wi)

}
.

Guide. For the function ϕ(x, x1, . . . , xm) := δ{0}
(
x−∑m

i=1 xi
)
+
∑m

i=1 fi(xi)
on (IRn)m+1 one has in (b) that

f(x) = inf
(x1,...,xm)

ϕ(x, x1, . . . , xm), P (x) = argmin
(x1,...,xm)

ϕ(x, x1, . . . , xm).

Apply Theorem 10.13, getting the subgradients of ϕ from the representation
ϕ = g◦L with g(u, x1, . . . , xm) = δ{0}(u)+

∑m
i=1 fi(xi) and L : (x, x1, . . . , xm) �→(

x − ∑m
i=1 xi, x1, . . . , xm

)
. The linear transformation L is nonsingular and

merely provides a change of coordinates, so 10.7 can be used with 10.5.

D. Rescaling

Continuing now with other rules of calculus, we make note of an obvious one
which hasn’t been mentioned until now:

∂̂(λf)(x̄) = λ∂̂f(x̄)

∂(λf)(x̄) = λ∂f(x̄)

∂
∞
(λf)(x̄) = ∂

∞
f(x̄)

⎫⎪⎬
⎪⎭ when λ > 0. 10(6)

Similarly, of course, d(λf)(x̄) = λdf(x̄) and d̂(λf)(x̄) = λd̂f(x̄) when λ > 0.
(When λ = 0 one has to be careful about 0·±∞.) The formulas can be viewed
as an instance of a chain rule in which f is composed with the increasing
function t → λt. The following is a general statement of such a rule in which
the composition may be nonlinear. It has two forms, according to two different
approaches that can be taken.

10.19 Proposition (nonlinear rescaling). Suppose h(x) = θ
(
f(x)

)
for a proper,

lsc function f : IRn → IR and a proper, lsc function θ : IR → IR, with θ(∞)
interpreted as ∞. Let x̄ be any point of domh.
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(a) Assuming that f is smooth around x̄, suppose that either ∇f(x̄) = 0
or ∂∞θ

(
f(x̄)

)
= {0}. Then

∂h(x̄) ⊂ {λ∇f(x̄) ∣∣λ ∈ ∂θ(f(x̄))},
∂

∞
h(x̄) ⊂ {λ∇f(x̄) ∣∣λ ∈ ∂∞

θ
(
f(x̄)

)}
.

Equality holds in this case if θ is regular at f(x̄) (as when θ is convex), and
then h is regular at x̄.

(b) Assuming that θ is nondecreasing with sup θ = ∞, and that θ(α) >
θ
(
f(x̄)

)
for all α > f(x̄), suppose either ∂f(x̄) � 0 or ∂∞θ

(
f(x̄)

)
= {0}. Then

∂h(x̄) ⊂ {λv ∣∣λ ∈ ∂θ(f(x̄)), v ∈ ∂f(x̄)} ∪ ∂∞
f(x̄),

∂
∞
h(x̄) ⊂ {λv ∣∣λ ∈ ∂∞

θ
(
f(x̄)

)
, v ∈ ∂f(x̄)} ∪ ∂∞

f(x̄).

Equality holds in this case when f and θ are convex (and then h is convex).

Proof. In case (a) we simply apply the chain rule in Theorem 10.6. Although
that rule is stated for a smooth mapping F : IRn → IRm, only a neighborhood
of x̄ is really involved. In the present situation we take m = 1 and identify F
with the function f , this being smooth on a neighborhood of x̄, and identify
g in that theorem with θ. The constraint qualification in 10.6, that only y ∈
∂∞g
(
F (x̄)

)
with ∇F (x̄)∗y = 0 is y = 0, emerges as the requirement that the

only λ ∈ ∂∞θ
(
f(x̄)

)
with λ∇f(x̄) = 0 is λ = 0. Obviously that holds under our

assumption in (a). The claimed inclusions then follow from 10.6 along with the
fact that equality holds when θ is regular at f(x̄).

In case (b) we argue entirely differently. Let E = epi f and g(x, α) =
δE(x, α) + θ(α). Then h(x) = infα g(x, α), where for each x ∈ domh the
infimum is attained at α = f(x), in fact in the case of x̄, uniquely at ᾱ := f(x̄).
We’ll apply Theorem 10.13 to this instance of parametric minimization, but
first we must make sure the hypothesis of that theorem is satisfied.

It’s clear that g is proper and lsc. It also has to be level-bounded in α
locally uniformly in x. This property holds if and only if, for each β ∈ IR and
bounded set X ⊂ IRn, the set

B =
{
(x, α) ∈ E ∣∣x ∈ X, θ(α) ≤ β

}
is bounded. Our assumption that f is proper and lsc gives a finite lower bound
α1 to f on X (see 1.10), while our assumption that sup θ = ∞ gives a finite
upper bound α2 to the interval

{
α
∣∣ θ(α) ≤ β}. Then B lies in the bounded set

X× [α1, α2]. This establishes that Theorem 10.13 is applicable to the situation
at hand. We deduce first by that route that

∂h(x̄) ⊂ {v ∣∣ (v, 0) ∈ ∂g(x̄, ᾱ)}, ∂
∞
h(x̄) ⊂ {v ∣∣ (v, 0) ∈ ∂∞

g(x̄, ᾱ)
}
,

these inclusions being equations when g is convex, e.g. f and θ are convex.
The subgradients of g can be analyzed next from 10.9 and the fact that the

subgradients of δE are normals to E which have a subgradient interpretation
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through Theorem 8.9. The constraint qualification in 10.9 comes out in this
case as the requirement that there should be no λ = 0 in ∂∞θ(ᾱ) such that
(0,−λ) ∈ NE(x̄, ᾱ); the latter is possible with λ = 0 if and only if (0,−1) ∈
NE(x̄, ᾱ), which corresponds by 8.9 to having 0 ∈ ∂f(x̄). Our assumptions in
(b) exclude this. We obtain then from the calculus rule in 10.9 that

∂g(x̄, ᾱ) ⊂ NE(x̄, ᾱ) + {0} × ∂θ(α),
∂

∞
g(x̄, ᾱ) ⊂ NE(x̄, ᾱ) + {0} × ∂∞

θ(α),

where equality holds in the convex case. All that’s left to do is to take for
expression for NE(x̄, ᾱ) in 8.9 and put these formulas together.

E. Piecewise Linear-Quadratic Functions

An important class of functions enjoying especially simple rules of calculus is
the following.

10.20 Definition (piecewise linear-quadratic functions). A function f : IRn →
IR is called piecewise linear-quadratic if dom f can be represented as the union
of finitely many polyhedral sets, relative to each of which f(x) is given by an
expression of the form 1

2〈x,Ax〉 + 〈a, x〉 + α for some scalar α ∈ IR, vector
a ∈ IRn, and symmetric matrix A ∈ IRn×n. (As a special case, f(x) can be
given by a such expression on a single polyhedral set, this set being dom f .)

The piecewise linear functions defined previously in 2.47 have expressions
just of the form 〈a, x〉 + α. The term piecewise linear-quadratic is preferred
here to piecewise quadratic because it helps to head off any false impression
that quadratic terms have to be present. The formula on some ‘pieces’ may
well just be affine.

Note that a function given by different linear-quadratic formulas on dif-
ferent pieces of dom f doesn’t fit the definition of piecewise linear-quadratic
unless the pieces can be arranged as a polyhedral union. For instance, the func-
tion f(x1, x2) = |x21 + x22 − 1| on IR2 isn’t piecewise linear-quadratic, although
its values are given by 1 − x21 − x22 on C1 =

{
(x1, x2)

∣∣x21 + x22 ≤ 1
}
and by

x21 + x22 − 1 on C2 =
{
(x1, x2)

∣∣x21 + x22 ≥ 1
}
. This may seem unnecessarily

restrictive, but it’s crucial to many of the applications made of the concept.

10.21 Proposition (properties of piecewise linear-quadratic functions). If a
function f : IRn → IR is piecewise linear-quadratic, then dom f is closed and f
is continuous relative to dom f , hence lsc on IRn. At any point x̄ ∈ dom f the
subderivative function df(x̄) is piecewise linear with dom df(x̄) = Tdom f (x̄),
and it is given simply by

df(x̄)(w̄) = lim
τ ↘ 0

f(x̄+ τw̄)− f(x̄)
τ
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When f is convex, dom f is polyhedral. The subgradient sets ∂f(x̄) and ∂∞f(x̄)
at any x̄ ∈ dom f are then polyhedral as well, and ∂f(x̄) = ∅.
Proof. Consider a representation of dom f as the union of a finite collection of
polyhedral sets Ck, k ∈ K, on each of which there is an expression 1

2〈x,Akx〉+
〈ak, x〉 + αk for f(x). The sets Ck are closed, and f is continuous relative to
them, so because only finitely many are involved, f is continuous relative to
their union dom f , which itself then is closed.

Consider a point x̄ ∈ dom f , and let K(x̄) denote the set of indices k ∈ K
such that x̄ ∈ Ck. For any sequence of points x̄+ τνwν in dom f with τν ↘ 0
and wν → w̄ there must exist k̄ ∈ K(x̄) and N ∈ N#

∞ such that x̄+ τνwν ∈ Ck̄

for all ν ∈ N . Then w̄ belongs to the tangent cone TCk̄
(x̄), which is polyhedral

(see 6.46), and

lim
ν∈N

f(x̄+ τνwν)− f(x̄)
τν

=
〈
Ak̄x̄+ ak̄, w̄

〉
.

On the other hand, if w̄ ∈ TCk̄
(x̄) we have x̄ + τw̄ ∈ Ck̄ for all τ > 0 suffi-

ciently small because of the special approximation property of tangent cones
to polyhedral sets in 6.47, and then

lim
τ ↘ 0

f(x̄+ τw̄)− f(x̄)
τ

=
〈
Ak̄x̄+ ak̄, w̄

〉
.

It follows that dom df(x̄) is the union of the cones TCk
(x̄) for k ∈ K(x̄), and

that on each of these polyhedral cones one has df(x̄)(w) = 〈Akx̄ + ak, w〉.
Thus, df(x̄) is piecewise linear and domdf(x̄) is all of Tdom f (x̄). It’s evident
then as well that the formula for df(x̄)(w) is valid when w /∈ domdf(x̄).

When f is convex, dom f is a convex set; the representation of dom f as a
union of finitely many polyhedral sets implies then that dom f itself is polyhe-
dral; cf. 2.50. For any x̄ ∈ dom f , the proper, piecewise linear function df(x̄)
is the support function of ∂f(x̄) (by 8.30, 7.27), hence convex. It follows that
∂f(x̄) = ∅. The cone dom df(x̄) = Tdom f (x̄) is polar to the cone Ndom f (x̄),
which coincides with ∂∞f(x̄) by 8.12 and is polyhedral by 6.46. The analysis
above shows that df(x̄) is the support function of the polyhedral set generated
by this cone and finitely many points of the form Akx̄+ak. Because the corre-
spondence between nonempty, closed, convex sets and their support functions
is one to one (cf. 8.24), this polyhedral set must be ∂f(x̄).

The main consequence of the piecewise linear-quadratic property is to re-
move the need for any constraint qualification when determining subderivatives
and subgradients in certain situations.

10.22 Exercise (piecewise linear-quadratic calculus).

(a) If f = f1+ ·+fm for piecewise linear-quadratic functions fi : IR
n → IR,

then f is piecewise linear-quadratic, and at any point x̄ ∈ dom f one has
df(x̄) = df1(x̄) + · · ·+ dfm(x̄). When each fi is convex, so that f is convex,
one has in addition that ∂f(x̄) = ∂f1(x̄) + · · ·+ ∂fm(x̄).
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(b) If f(x) = g(Ax + a) for g : IRm → IR piecewise linear-quadratic and
some A ∈ IRm×n, then f is piecewise linear-quadratic, and at any point x̄ ∈
dom f one has df(x̄)(w) = dg(Ax̄ + a)(Aw). When g is convex, so that f is
convex, one has in addition that ∂f(x̄) = A∗∂g(Ax̄+ a).

(c) If ϕ(x) = f(x, ū) with f : IRn × IRm → IR piecewise linear-quadratic
and ū ∈ IRm, then ϕ is piecewise linear-quadratic and at any x̄ ∈ domϕ one
has dϕ(x̄)(w) = df(x̄, ū)(w, 0). When f is convex, so that ϕ is convex, one has
in addition that ∂ϕ(x̄) =

{
v
∣∣∃ y, (v, y) ∈ ∂f(x̄, ū)}.

Guide. In both (a) and (b), verify the piecewise linear-quadratic property from
the definition in 10.20. (For the behavior of polyhedral sets under operations,
see also 3.52(a).) Then use the formula in 10.21 to get the formula for df(x̄). In
the convex case, show that the set on the right side of the formula for ∂f(x̄) is a
nonempty, polyhedral set C (cf. 10.21, 3.52(a)) which, by direct verification, has
for its support function σC the formula identified as giving df(x̄). Argue then
from the regularity of f (in 7.27, 8.30) and the one-to-oneness of the support
function correspondence (in 8.24) that necessarily C = ∂f(x̄). Identify (c) with
a special case of (b) in which g(x, u) = f(x, ū+ u) and A is the matrix of the
linear mapping x �→ (x, 0).

Other operations on piecewise linear-quadratic functions will be treated in
11.32 and 11.33. Note that the pointwise max of a finite collection of piecewise
linear-quadratic functions isn’t necessarily piecewise linear-quadratic. An ex-
ample has already been provided in the function f(x1, x2) = |x21+x22−1| on IR2,
which is the maximum of f1(x1, x2) = x21+x

2
2−1 and f2(x1, x2) = 1−x21−x22,

but such that the ‘pieces’ on which one or the other of these functions is dom-
inant aren’t polyhedral. This is the reason why the operation of pointwise
maximization doesn’t appear in 10.22.

F. Amenable Sets and Functions

Chain rules support the very definition of a major class of sets and functions,
which also draws on piecewise linear-quadratic properties.

10.23 Definition (amenable sets and functions).

(a) A function f : IRn → IR is amenable at x̄ if f is finite at x̄ and there
is an open neighborhood V of x̄ on which f can be represented in the form
f = g◦F for a C1 mapping F from V into a space IRm and a proper, lsc, convex
function g : IRm → IR such that, in terms of D = cl(dom g),

the only vector y ∈ ND

(
F (x̄)

)
with ∇F (x̄)∗y = 0 is y = 0.

It is strongly amenable if such a representation exists with F not just C1 but C2,
and it is fully amenable if, in addition to this, g can be taken to be piecewise
linear-quadratic.
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(b) A set C ⊂ IRn is amenable at one of its points x̄ if there is an open
neighborhood V of x̄ along with a C1 mapping F from V into a space IRm and
along with a closed, convex set D ⊂ IRm such that

C ∩ V =
{
x ∈ V ∣∣F (x) ∈ D}

and the constraint qualification in (a) is satisfied. It is strongly amenable if
this can be arranged with F of class C2, and fully amenable if, in addition, D
can be taken to be polyhedral.

The constraint qualification in this definition matches the one utilized in
the variational geometry of normal and tangent cones in 6.14 and 6.31; cf.
6.39 for an alternate form. Obviously, C is amenable as defined in 10.23(b) if
and only if its indicator function δC is amenable as defined in 10.23(a). On
the other hand, if f is amenable the set C = cl(dom f) is amenable. In both
cases the same goes for strong amenability and full amenability. These stricter
properties will be especially of interest later in the development of the theory
of second-order subdifferentiation in Chapter 13.

Amenability is a property that bridges between smoothness and convexity
while covering at the same time a great many of the functions that are of interest
as the essential objective in a problem of minimization. It assists in analyzing
terms of the type θ

(
f1(x), . . . , fm(x)

)
that enter optimization formats like the

one in 10.15, but it also comes up in situations where ‘composition’ doesn’t
appear on the surface. In the list given next, we refer to a function f simply
as amenable if it is amenable at every point of dom f , and so forth.

10.24 Example (prevalence of amenability).

(a) Every C1 function is amenable; every C2 function is fully amenable.

(b) Every proper, lsc, convex function is strongly amenable; every piecewise
linear-quadratic convex function is fully amenable.

(c) Every closed, convex set is strongly amenable; every polyhedral set is
fully amenable.

(d) A set C =
{
x ∈ X ∣∣F (x) ∈ D} for closed, convex sets X , D, and a C1

mapping F is amenable at any of its points x̄ where the constraint qualification
holds that the only y ∈ ND

(
F (x̄)

)
with −∇F (x̄)∗y ∈ NX(x̄) is y = 0. It is

strongly amenable at such a point when F is C2, and fully amenable if X and
D are polyhedral besides.

(e) A function f = max{f1, . . . , fm} is amenable if each fi is C1, and it is
fully amenable if each fi is C2.

(f) A function f = f0 + δC with f0 finite is amenable at a point x̄ ∈ C if
f0 and C are amenable at x̄. The same goes for strong or full amenability.

(g) A function f = ϕ + f0 with ϕ proper, lsc and convex and f0 ∈ C1 is
amenable. It is strongly amenable when f0 ∈ C2, and fully amenable if, in
addition, ϕ is piecewise linear-quadratic.

Detail. In (a) we can regard f as the composition of the mapping f : IRn → IR1

with g(u) = u. In (b) we can take F to be the identity mapping and let g = f .
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Likewise F is the identity in (c). In (e) the mapping F (x) = {f1(x, . . . , fm(x)}
is composed with g(u1, . . . , um) = max{u1, . . . , um}, which is not only convex
but piecewise linear. In all these cases the constraint qualification is satisfied
trivially. The constraint qualification cited in (d) translates to the one in the
definition of amenability when C is viewed as F−1

0 (D0) for F0 : x �→ (x, F (x))
and D0 = X ×D, a representation which supports all the claims.

Closer scrutiny is required in (f), where it is merely assumed that on an
open neighborhood V of x̄ there are amenable representations f0 = g0◦F0 and
C ∩ V =

{
x ∈ V ∣∣F1(x) ∈ D1

}
, where Fi maps IRn into IRmi . Observe first

that the finiteness of f0 along with its amenability at x̄ implies that F0(x̄)
belongs to the interior of D0 = cl(dom g0), for otherwise there would exist a
vector y0 = 0 in ND0

(
F (x̄)

)
, and ∇F0(x̄)

∗y0 would then be a nonzero vector
in Ndom f0(x̄) by 6.14, contrary to x̄ being an interior point of dom f0.

Let F (x) =
(
F0(x), F1(x)

)
and g(u) = g0(u0) + δD1

(u1) for u = (u0, u1) ∈
IRm = IRm0 × IRm1 . The set D = cl(dom g) is D0 ×D1 and has ND

(
F (x̄)

)
=

ND0

(
F0(x̄)

)×ND1

(
F1(x̄)

)
by 6.41. To say that a vector y ∈ ND

(
F (x̄)

)
satisfies

∇F (x̄)∗y = 0 is to say that y = (y0, y1) with yi ∈ NDi

(
Fi(x̄)

)
satisfying

∇F0(x̄)
∗y0+∇F1(x̄)

∗y1 = 0. ButND0

(
F0(x̄)

)
= {0} because F0(x̄) ∈ intD0, so

y0 = 0, and then also y1 = 0 by the constraint qualification in the representation
of C. This shows that y = 0 and confirms the amenability of f at x̄.

For strong amenability in (f) we note that F is C2 when both F0 and F1 are
C2. For full amenability, the observation is that g is piecewise linear-quadratic
when g0 has this property and D1 is polyhedral.

The conclusions in (g) are obtained by writing f = g◦F for the mapping
F : IRn → IRn × IR with F (x) =

(
x, f0(x)

)
and the function g : IRn × IR→ IR

with g(u, u0) = ϕ(u) + u0.

A major class of convex, piecewise linear-quadratic functions θ that is often
utilized in expressions like θ

(
f1(x), . . . , fm(x)

)
in 10.15, rendering them fully

amenable, will be described in Example 11.18.

10.25 Exercise (consequences of amenability).

(a) If f is amenable at x̄, it is regular at x̄ and has ∂∞f(x̄) = Ndom f (x̄).
If f is fully amenable at x̄, dom f is locally closed at x̄ and ∂f(x̄) = ∅. Then
too, ∂f(x̄) and ∂∞f(x̄) are polyhedral, and df(x̄) is piecewise linear.

(b) If f is amenable at x̄, there is an open neighborhood V of x̄ such that f
is amenable at every point x ∈ V ∩dom f , and the set gph ∂f is closed relative
to V × IRn. Likewise, strong amenability and full amenability of f , if present
at x̄, hold also for all x ∈ dom f in a neighborhood of x̄.

(c) If C is amenable at x̄, it is regular at x̄. If C is fully amenable at x̄, it
is locally closed at x̄ and the cones NC(x̄) and TC(x̄) are polyhedral.

(d) If C is amenable at x̄, there is an open neighborhood V of x̄ such that
C is amenable at every point x ∈ V ∩C, and the set gphNC is closed relative
to V × IRn. Likewise, strong amenability and full amenability of C, if present
at x̄, hold also for all x ∈ C in a neighborhood of x̄.
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Guide. Obtain the first part of (a) from the chain rule in 10.6 along with
some facts in 6.9. For the rest of (a) utilize the formulas provided by the
chain rule in conjunction with 10.21 and 10.22; see also 3.55. For the first
claim in (b) argue that if the constraint qualification holds at x̄ it has to
hold at neighboring points as well. Get the closed graph property from the
corresponding fact convex functions as applied to the outer function g in a
representation f = g◦F , which comes from the subgradient inequality enjoyed
by such functions. Finally, obtain (c) and (d) by specializing (a) and (b).

10.26 Exercise (calculus of amenability).

(a) Suppose f = f1 + · · · + fm with each fi amenable at x̄ and such that
the only choice of vi ∈ Ndom fi

(x̄) with v1 + · · ·+ vm = 0 is v1 = · · · = vm = 0.
Then f is amenable at x̄. The same holds for strong or full amenability. In all
cases, one has for all x ∈ dom f near x̄ that

∂f(x) = ∂f1(x) + · · ·+ ∂fm(x), df(x) = df1(x) + · · ·+ dfm(x).

(b) Suppose f = g◦F with F a C1 mapping and g a function that is
amenable at F (x̄) and such that the only choice of y ∈ Ndom g

(
F (x̄)

)
with

∇F (x̄)∗y = 0 is y = 0. Then f is amenable at x̄. Likewise, f is strongly
amenable at x̄ if F is C2 rather than just C1 and g is strongly amenable at
F (x̄), and it is fully amenable at x̄ if F is C2 and g is fully amenable at F (x̄).
In all cases, one has for all x ∈ dom f near x̄ that

∂f(x) = ∇F (x)∗∂g(F (x)), df(x)(w) = dg
(
F (x)

)(∇F (x)w).
(c) Suppose C = C1 ∩ · · · ∩ Cm with each Ci amenable at x̄ and such that

the only choice of vi ∈ NCi
(x̄) with v1 + · · · + vm = 0 is v1 = · · · = vm = 0.

Then C is amenable at x̄. The same holds for strong or full amenability. In all
cases, one has for all x ∈ C near x̄ that

NC(x) = NC1
(x) + · · ·+NCm

(x), TC(x) = TC1
(x) ∩ · · · ∩ TCm

(x).

(d) Suppose C = F−1(D) with F a C1 mapping and D a set that is
amenable at F (x̄) and such that the only choice of y ∈ ND

(
F (x̄)

)
with

∇F (x̄)∗y = 0 is y = 0. Then C is amenable at x̄. Likewise, C is strongly
amenable at x̄ if F is C2 rather than just C1 and D is strongly amenable at
F (x̄), and it is fully amenable at x̄ if F is C2 and D is fully amenable at F (x̄).
In all cases, one has for all x ∈ C near x̄ that

NC(x) = ∇F (x)∗ND

(
F (x)

)
, TC(x) =

{
w
∣∣∇F (x)w ∈ TD(F (x))}.

Guide. The key is (b); one can derive (a) from (b) in the manner that the
addition rule in 10.9 was derived from the chain rule in 10.6, and then (c)
and (d) can be deduced through specialization to indicator functions. To get
(b), consider a local representation g = g0◦F0 around F (x̄) as provided by the
amenability of g, and observes that this gives a local representation f = g0◦G
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of f with G = F0◦F . Show that this representation meets the requirements for
f to be amenable at x̄. Facts in 10.25 can be used, if needed.

G. Semiderivatives and Subsmoothness

For subderivatives in general, the calculus rules given so far in this chapter can
be supplemented by special ones in the case of semidifferentiability.

10.27 Exercise (calculus of semidifferentiability).

(a) If f = λ1f1+. . .+λmfm for functions fi that are semidifferentiable at x̄,
and any coefficients λi ∈ IR, then f is semidifferentiable at x̄ with df(x̄)(w) =
λ1df1(x̄)(w) + · · ·+ λmdfm(x̄)(w).

(b) If f = g◦F for F smooth and g semidifferentiable at F (x̄), then f is
semidifferentiable at x̄ with df(x̄)(w) = dg

(
F (x̄
)
)
(∇F (x̄)w). The same holds

if F is merely semidifferentiable at x̄, as long as∇F (x̄)w replaced by DF (x̄)(w).

(c) If f = max{f1, . . . , fm} with fi semidifferentiable at x̄, then f too
is semidifferentiable at x̄ with df(x̄)(w) = maxi∈I(x̄) dfi(x̄)(w) for I(x̄) ={
i
∣∣ fi(x̄) = f(x̄)

}
. The same holds with min in place of max.

Guide. Work from 7.20 and 7.21. (Incidentally, the chain rule in (b) wouldn’t
hold if semidifferentiability didn’t entail taking the limit as w′ → w as well
as t↘ 0 in Definition 7.20.) It’s possible to derive (c) from (b) by taking g =
vecmax, which is semidifferentiable by 7.27.

The results in 10.27 can readily be brought down also to the level of semi-
differentiability at x̄ for a vector w. The given statements correspond to that
property holding for every w ∈ IRn; cf. Definition 7.20.

As an illustration of 10.27, any functions f generated from finite convex
or concave functions by addition, scalar multiplication, composition with a
smooth mapping, or (finitary) pointwise max or min, are semidifferentiable
because finite, convex functions are themselves semidifferentiable (see 7.27).
The following is a specific case.

10.28 Example (semidifferentiability of eigenvalue functions). For an m × m
symmetric matrix A(x) whose components are C1 functions of x as a parameter
vector in an open set O ⊂ IRn, let λ1(x) ≥ λ2(x) ≥ · · · ≥ λm(x) be the
eigenvalues of A(x) (with repetition according to multiplicity). Then λk is
strictly continuous and semidifferentiable on O.

Detail. For the finite, convex functions Λk defined in 2.54 on the space IRm×m
sym

of symmetric matrices of order m, we have

λ1(x) = Λ1

(
A(x)

)
, λk(x) = Λk

(
A(x)

)− Λk−1

(
A(x)

)
for k = 2, . . . , m.

Since the mapping x �→ A(x) from IRn into IRm×m
sym is smooth, while finite,

convex functions are semidifferentiable (by 7.27), we get the semidifferentiabi-
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lity of these eigenvalue functions from rules 10.27(a)(b). The strict continuity
comes similarly from 9.8 and 9.14.

The pointwise max or min of finitely many smooth functions, while gener-
ally not differentiable, is semidifferentiable according to 10.27(c). Many func-
tions expressed by pointwise max or min of infinite collections of smooth func-
tions are semidifferentiable as well. To develop this fact with other properties
of such functions and their calculus, we introduce classes of ‘subsmoothness’
between strict continuity and strict differentiability.

10.29 Definition (subsmooth functions). A function f : O → IR, where O is an
open set in IRn, is said to be lower-C1 on O, if on some neighborhood V of each
x̄ ∈ O there is a representation

f(x) = max
t∈T

ft(x) 10(7)

in which the functions ft are of class C1 on V and the index set T is a compact
space such that ft(x) and ∇ft(x) depend continuously not just on x ∈ V but
jointly on (t, x) ∈ T × V .

More generally, f is lower-Ck on O if such a local representation can be
arranged in which the functions ft are of class Ck, with ft(x) and all its partial
derivatives through order k depending continuously not just on x but on (t, x).

In particular, a function f(x) = max
{
f1(x), . . . , fm(x)

}
is lower-Ck when

each fi is of class Ck. (This is the case where T is the index set {1, . . . , m} in
the discrete topology.)

Similarly, upper-Ck functions are defined in terms of a minimum in place
of a maximum; thus, f is upper-Ck when −f is lower-Ck.

A prime example of a compact index space T other than {1, . . . , m} would
be a closed, bounded subset of IRm. Thus if

f(x) = max
t∈T

g(t, x) for all x ∈ O 10(8)

where T is compact in IRm, one has that f is lower-Ck if g and its partial
derivatives in x up through order k depend continuously on (t, x).

Often the functions of interest in connection with subsmoothness have a
special such ‘max’ representation around which all considerations revolve, but
in requiring just the existence of some such representation locally , Definition
10.29 sets the stage for identifying and characterizing properties that this class
of functions has in general.

Any Ck function is in particular lower-Ck, since it can be regarded trivially
as given by a representation of the form in Definition 10.29 in which the index
set consists of a single element.

10.30 Proposition (smoothness versus subsmoothness). Consider an open set
O ⊂ IRn and a function f : O → IR. For f to be of class C1 on O, it is necessary
and sufficient that f be both lower-C1 and upper-C1 on O.
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Proof. The necessity is clear from the elementary fact stated just before the
proposition. For the sufficiency, consider in a neighborhood of x̄ ∈ O both a
lower representation (with max) and an upper representation (with min). In
particular these furnish on some neighborhood V1 ∈ N (x̄) a smooth function
g1 ≤ f satisfying g1(x̄) = f(x̄) as well as on some neighborhood V2 ∈ N (x̄)
a smooth function g2 ≥ f satisfying g2(x̄) = f(x̄). From the local expansions
gi(x) = gi(x̄)+ 〈∇gi(x̄), x− x̄〉+oi(x− x̄) with oi(x− x̄)/|x− x̄| → 0 as x→ x̄,
we obtain in some neighborhood V ∈ N (x̄) that

〈∇g1(x̄), x− x̄〉+ o1(x− x̄) ≤ f(x)− f(x̄) ≤ 〈∇g2(x̄), x− x̄〉+ o2(x− x̄).
This implies that 〈∇g1(x̄)−∇g2(x̄), x−x̄〉 ≤ o2(x−x̄)−o1(x−x̄) and therefore
that ∇g1(x̄) = ∇g2(x̄). Denoting the common gradient vector by v, we get

o1(x− x̄) ≤ f(x)− f(x̄)− 〈v, x− x̄〉 ≤ o2(x− x̄).
Thus, f is differentiable at x̄ with ∇f(x̄) = v.

Proposition 10.30 will be supplemented in 13.34 by the characterization
that f belongs to C1+, the class of smooth functions with strictly continuous
gradient, if and only if f is both lower-C2 and upper-C2.
10.31 Theorem (consequences of subsmoothness). Any lower-C1 function f on
an open set O ⊂ IRn is both strictly continuous and regular on O and thus
is semidifferentiable and exhibits the properties in 9.16. Further, f is strictly
differentiable where it is differentiable; ∇f is continuous relative to the set D
consisting of such points of differentiability, and O \D is negligible.

Moreover, in terms of ∇f(x̄) := {v ∣∣∃xν→D x̄ with ∇f(xν)→ v
}
and the

expressions
f(x) = max

t∈T
ft(x), T (x) = argmax

t∈T
ft(x),

that correspond to a local representation of f around x̄ under the criterion for
subsmoothness in Definition 10.29, one has

lipf(x̄) = max
v∈∇f(x̄)

|v| = max
t∈T (x̄)

∣∣∇ft(x̄)∣∣,
df(x̄)(w) = max

v∈∇f(x̄)

〈
v, w
〉
= max

t∈T (x̄)

〈∇ft(x̄), w〉,
∂f(x̄) = con∇f(x̄) = con

{∇ft(x̄) ∣∣ t ∈ T (x̄)},
−∂(−f)(x̄) = ∇f(x̄) ⊂ {∇ft(x̄) ∣∣ t ∈ T (x̄)}.

Proof. Let V be a compact, convex neighborhood of x̄ on which the specified
local representation is valid. For each t ∈ T the function ft has lipft(x) =∣∣∇ft(x)∣∣ by 9.7, hence lipf(x) ≤ supt∈T

∣∣∇ft(x)∣∣ by 9.10. The supremum in
this estimate is finite, because ∇ft(x) depends continuously on t in the compact
space T (and then

∣∣∇ft(x)∣∣ likewise). Hence f is Lipschitz continuous on V .

Since t ∈ T (x) if and only if ft(x)− f(x) = 0, the continuity of f(x) in x
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and the continuity of ft(x) in (t, x) imply that the set

G :=
{
(x, t) ∈ V × T ∣∣ t ∈ T (x)}

is closed in the compact space V × T . In particular, T (x) is compact—and
nonempty—for each x ∈ V .

Let k(x, w) := maxt∈T (x)

〈∇ft(x), w〉. For α ∈ IR and any w ∈ IRn, the

set
{
x ∈ V ∣∣ k(x, w) ≥ α

}
is compact because it is the image of the compact

set
{
(x, t) ∈ G

∣∣ 〈∇ft(x), w〉 ≥ α
}

under the projection (x, t) �→ x. Hence
k(x, w) is usc in x. By showing next that df(x)(w) = k(x, w) for x ∈ intV ,
we’ll not only get the subderivative formula claimed in terms of the gradients
∇ft but also establish through 9.15 that d̂f(x̄)(w) = df(x̄)(w) and therefore
that f is regular at x̄ (cf. 8.19). This regularity, in combination with f being
strictly continuous at x̄, will immediately yield also, through Corollary 9.20
and Theorem 9.61, the properties claimed for ∇f and ∇f .

With x ∈ intV and w ∈ IRn fixed for now, observe that for any t ∈ T (x)
we have ft(x) = f(x), but on the other hand ft(x+ τw) ≤ f(x+ τw) as long
as τ > 0 is small enough that x+ τw ∈ V . It follows that

lim inf
τ→0

f(x+ τw)− f(x)
τ

≥ lim inf
τ→0

ft(x+ τw)− ft(x)
τ

=
〈∇ft(x), w〉,

where the first expression is df(x)(w) by 9.16 and the strict continuity of f .
This being true for any t ∈ T (x), we conclude that df(x)(w) ≥ k(x, w). For
the opposite inequality, we note that when x+ τw ∈ V and t ∈ T (x+ τw) we
have f(x+ τw) = ft(x+ τw) and f(x) ≥ ft(x), so

f(x+ τw)− f(x)
τ

≤ ft(x+ τw)− ft(x)
τ

≤ max
μ∈(0,1)

〈∇ft(x+ μτw), w
〉 ≤ max

μ∈(0,1)

k(x+ μτw, w).

This yields the estimate

df(x)(w) ≤ lim sup
τ ↘ 0

f(x+ τw)− f(x)
τ

≤ lim sup
τ ↘ 0

[
max

μ∈(0,1)

k(x+ μτw, w)

]
≤ k(x, w),

which comes out of the standard mean value theorem and the upper semicon-
tinuity of the function k( · , w). Thus it’s true, as claimed, that df(x)(w) =
k(x, w) and f is regular. In particular, we have from formula 9(3) in 9.13 that

lipf(x̄) = max
|w|=1

[
max
t∈T (x̄)

〈∇ft(x̄), w〉
]

= max
t∈T (x̄)

[
max
|w|=1

〈∇ft(x̄), w〉
]

= max
t∈T (x̄)

∣∣∇ft(x̄)∣∣.
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Next, let C =
{∇ft(x̄) ∣∣ t ∈ T (x̄)}. This is a nonempty, compact subset of

IRn, because it is the image of T (x̄) under the continuous mapping t �→ ∇ft(x̄).
We have seen that df(x̄) is the support function of C, but df(x̄) is known
from Theorem 9.16 to be the support function of the compact, convex set
∂f(x̄). Then ∂f(x̄) must be cl(conC); cf. 8.24. The closure operation can be
dropped, because the convex hull of a compact set is compact by 2.30. This
verifies the formula for ∂f(x̄) as the convex hull of gradients ∇ft(x̄).

The formula for ∂(−f)(x̄) follows now by observing that d(−f)(x̄) =
−df(x̄) by semidifferentiability and applying the formula already derived
for df(x̄). One has ∂(−f)(x̄) = {−∇f(x̄)} if f is differentiable at x̄, but
∂(−f)(x̄) = ∅ otherwise.
10.32 Example (subsmoothness of Moreau envelopes). Let f : IRn → IR be lsc,
proper, and prox-bounded with threshold λf . Then for λ ∈ (0, λf ) the function
−eλf is lower-C2, hence semidifferentiable, strictly continuous and regular, and

lip[−eλf ](x) = λ−1 max
{|y − x| ∣∣ y ∈ Pλf(x)

}
,

d[−eλf ](x)(w) = λ−1 max
{〈y − x, w〉 ∣∣ y ∈ Pλf(x)

}
,

∂[−eλf ](x) = λ−1
[
con Pλf(x)− x

]
,

∂[eλf ](x) ⊂ λ−1
[
x− Pλf(x)

]
.

Proof. Let h = −eλf . We know from 1.25 that h(x) = maxy g(y, x) for the
function g(y, x) := −f(y)−(1/2λ)|y−x|2. The associated argmax set is Pλf(x).
The mapping Pλf is nonempty-valued, osc and locally bounded by 1.25, so for
any x̄ there is an open neighborhood O ∈ N (x̄) along with a compact set Y
such that, for all x ∈ O, one has h(x) = maxy∈Y g(y, x) and Pλf(x) ⊂ Y .
Clearly g(y, x) is C∞ in x with all derivatives depending continuously on (y, x),
so it follows that h is lower-C∞, in particular lower-C2. The three equations
then follow from the ones in Theorem 10.31, since ∇xg(y, x) = λ−1(y−x), and
the inclusion comes similarly from having ∂[eλf ](x̄) = −∂(−h)(x̄).

It will be demonstrated in 12.62 that, in contrast to the Moreau envelopes
eλf , the double envelopes eλ,μf in 1.46 are C1+ even when f isn’t convex.

10.33 Theorem (subsmoothness and convexity). Any finite, convex function is
lower-C2. In fact a function f is lower-C2 on an open set O ⊂ IRn if and only
if, relative to some neighborhood of each point of O, there is an expression
f = g − h in which g is a finite, convex function and h is C2; indeed, h can be
taken to be a convex, quadratic function, even of form 1

2ρ| · |2.
In this way f can be given local representations f(x) = maxt∈T ft(x)

in which the compact index space T and functions ft are chosen in such a
manner that ft(x) is a quadratic (although not necessarily convex) function of
x having coefficients that depend continuously on t ∈ T . When f is convex,
such representations can be set up with ft(x) affine in x.

Proof. Consider any lower-C2 function f on O and a local representation of
f on a neighborhood V of x̄ ∈ O in accordance with Definition 10.29. Choose
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δ > 0 with IB(x̄, δ) ⊂ V , and take ρ > 0 to be an upper bound to |∇2ft(x)| on
T × IB(x̄, δ). It will be shown first that

ft(x) ≥ ft(w) + 〈∇ft(w), x− w〉 − 1
2ρ|x− w|2 for all x, w ∈ IB(x̄, δ). 10(9)

Specifically, for any points x and w in IB(x̄, δ), we have w+ τ(x−w) ∈ IB(x̄, δ)
for τ ∈ [0, 1] by the convexity of the ball. The function ϕ(τ) := ft

(
w+τ(x−w))

has |ϕ′′(τ)| = ∣∣〈 (x − w),∇2ft(w + τ(x − w))(x − w) 〉∣∣ ≤ ρ|x − w|2, so that
in integrating ϕ back from its second derivative we get ϕ(τ) ≥ ϕ(0) + ϕ(τ) −
1
2ρτ |x− w|2 for τ ∈ [0, 1]. This inequality gives 10(9). Since 10(9) holds with
equality when w = x, we obtain in terms of B := IB(x̄, δ) that

f(x) = max
(t,w)∈T×B

{
ft(w) +

〈∇ft(w), x− w〉− 1
2ρ|x− w|2

}
for all x ∈ B.

It follows then that f = g − h on B with h(x) = 1
2ρ|x|2 and

g(x) = max
(t,w)∈T×B

{
ft(w) +

〈∇ft(w), x− w〉− 1
2ρ|w|2 + ρ

〈
x, w
〉}
.

As the pointwise supremum of a collection of affine functions of x, g is convex.
Thus, f is locally of the form g − h with g a finite, convex function and h a
quadratic convex function, hence a C∞ function.

To complete the proof of the theorem, it suffices now to consider any
finite, convex function g on an open, convex set C ⊂ IRn and show that on any
compact set B ⊂ C there’s a representation g(x) = maxs∈S

{〈a(s), x〉+ α(s)
}

in which S is a compact space and the vector a(s) ∈ IRn and scalar α(s) ∈ IR
depend continuously on s ∈ S. By invoking the subgradient inequality

g(x) ≥ g(w) + 〈v, x− w〉 when v ∈ ∂g(w)
(see 8.12) we get a representation of the desired kind in which

S =
{
s = (w, v) ∈ B × IRn

∣∣ v ∈ ∂g(w)},
a(s) = v, α(s) = g(w)− 〈v, w〉.

Here a(s) depends continuously on s = (w, v), and so too does α(s), because g
is continuous, even strictly continuous and regular by 9.14 (and 7.27). These
properties of g imply the local boundedness and outer semicontinuity of ∂g on
C through 9.16, and the compactness of S then follows.

10.34 Corollary (higher-order subsmoothness). If f is lower-C2 on an open set
O, then f is also lower-C∞ on O. Thus, for all k > 2, the class of lower-Ck
functions is indistinguishable from the class of lower-C2 functions.

Proof. The special representation of a lower-C2 function furnished by Theorem
10.33 in terms of quadratic functions is a representation that fits the definition
of lower-Ck for all k.



452 10. Subdifferential Calculus

Although the lower-Ck classes coincide for k ≥ 2, there do exist lower-
C1 functions that are not lower-C2. An example is f(x) = −|x|3/2 on IR1.
This cannot be lower-C2, for that would imply the existence of a C2 function
g on a neighborhood of 0 such that g(x) ≤ f(x) and g(0) = f(0). Then
g′(0) = f ′(0) = 0 too, so that as |x| → 0 one would have g(x)/|x|2 → g′′(0)/2
in contradiction to f(x)/|x|2 → −∞.

Note that the index set and representation used to achieve the stronger
properties asserted in Theorem 10.33 may be different from the ones initially
given in verifying that f is lower-C2. For instance, if f were given as the
pointwise maximum of a finite family of C2 functions it would typically be
necessary to pass to an auxiliary representation involving an infinite family.

10.35 Exercise (calculus of subsmoothness).

(a) If f =
∑m

i=1 λifi on an open set O ⊂ IRn where the functions fi : O →
IR are lower-C1 and λi ≥ 0, then f is lower-C1 on O. Likewise, f is lower-C2 if
every fi is lower-C2.

(b) If f = g◦F , where g is lower-C1 on an open set O ⊂ IRm and the
mapping F : IRn → IRm is C1, then f is lower-C1 on F−1(O). Likewise, f is
lower-C2 on F−1(O) when g is lower-C2 on O and F is C2.
10.36 Exercise (subsmoothness and amenability). A function f is lower-C2
around x̄ if and only if f is strongly amenable at x̄ and x̄ ∈ int(dom f).

Guide. For the ‘if’ direction argue that, in the amenability representation
f = g◦F with its constraint qualification, the finiteness of f around x̄ forces
F (x̄) to belong to the interior of the convex set dom g. Then apply 10.35(b).
For the ‘only if’ direction utilize Theorem 10.33 and Example 10.24(g).

H∗. Coderivative Calculus

So far we have focused on subderivatives and subgradients of functions on IRn,
but the calculus of coderivatives of mappings from IRn to IRm is next. Because
many of the rules come out as inclusions, their statement can be made simpler
by adopting the notation that

H ⊂ H ′ for mappings H and H ′ with gphH ⊂ gphH ′.

Likewise it’s convenient to write H =
⋃

i∈I Hi for a mapping H defined by
gphH =

⋃
i∈I gphHi, and so forth.

10.37 Theorem (coderivative chain rule). Suppose S = S2◦S1 for osc mappings
S1 : IRn →→ IRp and S2 : IRp →→ IRm. Let x̄ ∈ domS, ū ∈ S(x̄), and assume:

(a) the mapping (x, u) �→ S1(x) ∩ S−1
2 (u) is locally bounded at (x̄, ū) (this

being true in particular if either S1 is locally bounded at x̄ or S−1
2 is locally

bounded at ū),
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(b) D∗S2(w̄ | ū)(0) ∩D∗S1(x̄ | w̄)−1(0) = {0} for every w̄ ∈ S1(x̄) ∩ S−1
2 (ū)

(this being true in particular if either S2 is strictly continuous at x̄ or S−1
1 is

strictly continuous at ū).

Then gphS is locally closed at (x̄, ū), and

D∗S(x̄ | ū) ⊂
⋃

w̄∈S1(x̄)∩S−1
2 (ū)

D∗S1(x̄ | w̄)◦D∗S2(w̄ | ū).

When S1 and S2 are graph-convex, S is graph-convex as well and this inclusion
becomes an equation in which the union is superfluous: one has

D∗S(x̄ | ū) = D∗S1(x̄ | w̄)◦D∗S2(w̄ | ū) for any w̄ ∈ S(x̄) ∩ S−1
2 (ū).

Proof. Let C =
{
(x, w, u)

∣∣ (x, w) ∈ gphS1, (w, u) ∈ gphS2

}
. We have

C = F−1(D) for D = (gphS1) × (gphS2) and F : (x, w, u) �→ (x, w, w, u),
whereas gphS = G(C) for G : (x, w, u) �→ (x, u). To gain insights from the
representation gphS = G(C), we can apply 6.43, but we don’t want to do this
to the entire set G(C), just locally around (x̄, ū). Condition (a) ensures that
this is justified. We obtain the local closedness of gphS at (x̄, ū), and

NgphS(x̄, ū) ⊂
⋃

w̄∈S1(x̄)∩S−1
2 (ū)

{
(v,−y)

∣∣∣ (v, 0,−y) ∈ NC(x̄, w̄, ū)
}
.

On the other hand, from the representation C = F−1(D) we get by 6.14 that
NC(x̄, w̄, ū) is included in the union of{

(v,−z + z′,−y)
∣∣∣ (v,−z) ∈ NgphS1

(x̄, w̄), (z′,−y) ∈ NgphS2
(w̄, ū)

}
over all w̄ ∈ S1(x̄)∩S−1

2 (ū), provided that the relations (0,−z) ∈ gphS1(x̄, w̄)
and (z′, 0) ∈ gphS2(w̄, ū) with w̄ ∈ S1(x̄) ∩ S−1

2 (ū) occur only for z = z′ = 0.
In view of the definition of coderivative mappings in terms of normal cones, this
is the condition assumed in (b). Through the two inclusions we have developed
it yields the desired relation for D∗S(x̄ | ū).

When S1 and S2 are graph-convex, the sets C and D in this argument are
convex, hence so is gphS. Theorems 6.43 and 6.14 furnish equations rather
than just inclusions in this case, the union in the one for NgphS(x̄, ū) being
superfluous. The result then has this character too.

10.38 Corollary (Lipschitzian properties under composition). Let S = S2◦S1 for
osc mappings S1 : IRn →→ IRp and S2 : IRp →→ IRm. Let x̄ ∈ domS and ū ∈ S(x̄)
be such that the boundedness condition in 10.37(a) holds, and suppose for all
w̄ ∈ S1(x̄) ∩ S−1

2 (ū) that S1 has the Aubin property at x̄ for w̄, while S2 has
the Aubin property at w̄ for ū. Then S has the Aubin property at x̄ for ū, and

lipS(x̄ | ū) ≤ max
w̄∈S1(x̄)∩S−1

2 (ū)

lipS1(x̄ | w̄)· lipS2(w̄ | ū),
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which in the case of graph-convex S1 and S2 can be sharpened to

lipS(x̄ | ū) ≤ min
w̄∈S1(x̄)∩S−1

2 (ū)

lipS1(x̄ | w̄)· lipS2(w̄ | ū).

In particular, if S1 is strictly continuous at x̄ while S2 is strictly continuous at
every point of S1(x̄), and if the boundedness condition in 10.37(a) holds at x̄
for every ū ∈ S(x̄), then S is strictly continuous at x̄.

If S1 is strictly continuous and locally bounded at x̄, while S2 has these
properties at every point of S1(x̄), then S is strictly continuous and locally
bounded at x̄ with

lip∞S(x̄) ≤ lip∞S1(x̄) ·max
{
lip∞S2(w̄)

∣∣ w̄ ∈ S1(x̄)
}
.

Proof. The assertions follow from Theorem 10.37 via 9.38 and 9.40; S is osc
at x̄ when gphS is locally closed at (x̄, ū) for all ū ∈ S(x̄). Also used is the
fact that |H2◦H1|+ ≤ |H2|+|H1|+ for positive homogeneous mappings Hi.

Neither Theorem 10.37 nor Corollary 10.38 mentions the graphical deriva-
tive mapping DS(x̄ | ū), and that’s for a good reason. The coderivative result
works because, in the two representations utilized in the proof of 10.37, the
normal cone inclusions obtainable from 6.14 and 6.43 go in the same direction.
The tangent cone inclusions in these results go in opposite directions, however,
and can’t be put together helpfully.

10.39 Exercise (outer composition with a single-valued mapping). Let S =
F ◦S0 for osc S0 : IRn →→ IRp and single-valued F : IRp → IRm. Let ū ∈ S(x̄)
and suppose F is strictly continuous at every w̄ ∈ S0(x̄). Suppose also that
the mapping (x, u) �→ S0(x) ∩ F−1(u) is locally bounded at (x̄, ū). Then

D∗S(x̄ | ū) ⊂
⋃

w̄∈S0(x̄)∩F−1(ū)

D∗S0(x̄ | w̄)D∗F (w̄).

If S0 is strictly continuous at x̄, then S is strictly continuous at x̄ as well, and

lipS(x̄ | ū) ≤ max
w̄∈S0(x̄)∩F−1(ū)

lipS0(x̄ | w̄)· lipF (w̄).

If S0 is also locally bounded at x̄, then S too is locally bounded at x̄, with

lip∞S(x̄) ≤ max
w̄∈S0(x̄)

lipS0(x̄ | w̄)· lipF (w̄) ≤ lip∞S0(x̄) · max
w̄∈S0(x̄)

lipF (w̄).

Guide. Derive these facts from 10.37 and 10.38.

In the special case of 10.37 and 10.38 when the inner mapping is single-
valued, in contrast to the outer mapping as in 10.39, additional conclusions can
be drawn.

10.40 Theorem (inner composition with a single-valued mapping). Let S =
S0◦F for an osc mapping S0 : IRn →→ IRp and a single-valued mapping F :
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IRp → IRm that is strictly continuous at x̄. Let ū ∈ S(x̄). Then

D̂∗S(x̄ | ū) ⊃ D̂∗F (x̄)◦D̂∗S0(F (x̄) | ū).

Under the condition that there exists no nonzero vector z ∈ D∗S0(F (x̄) | ū)(0)
with 0 ∈ ∂(zF )(x̄), it is also true that

D∗S(x̄ | ū) ⊂ D∗F (x̄)◦D∗S0(F (x̄) | ū).

This holds in particular when S0 has the Aubin property at F (x̄) for ū, and
then S has the Aubin property at x̄ for ū with

lipS(x̄ | ū) ≤ lipF (x̄)· lipS0(F (x̄) | ū).

Furthermore in that case, if F is semidifferentiable at x̄, one has

DS(x̄ | ū) = DS0(F (x̄) | ū)◦DF (x̄).

If in addition S0 is semidifferentiable at F (x̄) for ū, so too is S at x̄ for ū.

On the other hand, still under the condition that there exists no nonzero
vector z ∈ D∗S0(F (x̄) | ū)(0) with 0 ∈ ∂(zF )(x̄), suppose that S0 is graph-
ically regular at F (x̄) for ū, while the function zF is regular at x̄ for all
z ∈ rgeD∗S0

(
F (x̄) | ū

)
(as holds when F is strictly differentiable at x̄). Then

S likewise is graphically regular at x̄ for ū, and

D∗S(x̄ | ū) = D∗F (x̄)◦D∗S0(F (x̄) | ū).

Proof. For the first inclusion, let v ∈ D̂∗F (x̄)(z) for z ∈ D̂∗S0(F (x̄) | ū)(y).
The latter means by definition that (z,−y) is a regular normal vector to gphS0

at (F (x̄), ū), hence for pairs (F (x), u) ∈ gphS0 that〈
z, F (x)− F (x̄)〉− 〈y, u− ū〉 ≤ o

(|(F (x), u)− (F (x̄), ū)|).
On the other hand we know from 9.24(b) that v ∈ ∂̂(zF )(x̄) and consequently
that

〈
z, F (x)−F (x̄)〉 ≥ 〈v, x−x̄〉+o(|x−x̄|). Also, for x in some neighborhood

of x̄ we have |F (x)−F (x̄)| ≤ κ|x−x̄| for a certain constant κ. The combination
of the preceding inequalities tells us that for (x, u) ∈ gphS one has〈

v, x− x̄〉− 〈y, u− ū〉 ≤ o
(|(x, u)− (x̄, ū)|).

Thus, we have arrived at the inequality that means v ∈ D̂∗S(x̄ | ū)(y).
The second inclusion is immediate from Theorem 10.37 as specialized to

S1 = F and S2 = S0 with the observation that S1(x̄)∩S−1
2 (ū) =

{
F (x̄)

}
. The

Aubin property corresponds by 9.40 to D∗S0(F (x̄) | ū)(0) = {0}, which ensures
that no nonzero vector z of the forbidden kind can exist. Then through the
inclusion for D∗S(x̄ | ū) we get D∗S(x̄ | ū)(0) = {0} and may conclude from 9.40
that S has the Aubin property at x̄ for ū. Further, for a constant κ0 associated
with the Aubin property of S0 at F (x̄) for ū we have
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ΔτS0

(
F (x̄) | ū

)
(p′) ∩ τ−1IB ⊂ ΔτS0

(
F (x̄) | ū

)
(p) + κ0|p′ − p|IB

when τ is sufficiently small. When F is semidifferentiable at x̄, we can join this
to the fact that

ΔτS(x̄ | ū)(w) =
1

τ

[
S(x̄+ τw)− ū] = 1

τ

[
S0

(
F (x̄+ τw)

)− ū]
=

1

τ

[
S0

(
F (x̄) + τ

F (x̄+ τw)− F (x̄
τ

)
− ū
]

= ΔτS0

(
F (x̄) | ū

)(
ΔτF (x̄)(w)

)
to derive as τ ↘ 0 the formula for DS(x̄|ū)(w) as well as, when S0 too is semi-
differentiable, the semidifferentiability of S.

For the last part about regularity, it suffices on the basis of the inclusions
already established to show that

D∗F (x̄)◦D∗S0(F (x̄) | ū) = D̂∗F (x̄)◦D̂∗S0(F (x̄) | ū).

The graphical regularity of S0 gives us D∗S0(F (x̄) | ū) = D̂∗S0(F (x̄) | ū), so we

need only verify that D∗F (x̄)(z) = D̂∗F (x̄)(z) for all z ∈ rgeD∗S0(F (x̄) | ū).
But this is true under our hypothesis because D∗F (x̄)(z) = ∂(zF )(x̄) and

D̂∗F (x̄)(z) = ∂̂(zF )(x̄) by 9.24(b), whereas the equation ∂(zF )(x̄) = ∂̂(zF )(x̄)
is one of the criteria for the subdifferential regularity of zF at x̄; cf. 8.19.

10.41 Theorem (coderivatives of sums of mappings). Suppose S = S1+ · · ·+Sp

for osc mappings Si : IR
n →→ IRm, and let x̄ ∈ domS, ū ∈ S(ū). Assume both

of the following conditions are satisfied.

(a) (boundedness condition): there exist V ∈ N (x̄) and W ∈ N (ū) along
with ρ ∈ IR+ such that whenever x ∈ V , ui ∈ Si(x) and u1 + · · ·+up ∈W , one
has |ui| < ρ for i = 1, . . . , p. (This is true in particular, regardless of the choice
of ū, if all but at most one of the mappings Si are locally bounded at x̄, or more
generally if there are no vectors zi ∈ lim sup∞

x→x̄ Si(x) with z1 + · · · + zp = 0
except for z1 = · · · = zp = 0.)

(b) (constraint qualification):

ui ∈ Si(x̄), u1 + · · ·+ up = ū

vi ∈ D∗Si(x̄ |ui)(0), v1 + . . .+ vp = 0

}
=⇒ vi = 0 for i = 1, . . . , p.

(This is true in particular, regardless of the choice of ū, if all but at most one
of the mappings Si are strictly continuous at x̄).

Then gphS is locally closed at (x̄, ū), and one has

D∗S(x̄ | ū) ⊂
⋃

u1+···+up=ū
ui∈Si(x̄)

D∗S1(x̄ |u1) + · · ·+D∗Sp(x̄ |up).

When every Si is graph-convex, S is graph-convex as well and this inclusion
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becomes an equation in which the union is superfluous: one has

D∗S(x̄ | ū) = D∗S1(x̄ | ū1) + · · ·+D∗Sp(x̄ | ūp)
for any ūi ∈ Si(x̄) with ū1 + · · ·+ ūp = ū.

Proof. Clearly S is F2◦S0◦F1 for S0 : (x1, . . . , xp) �→ S1(x1) × · · · × Sp(xp),
F1 : x �→ (x, . . . , x) (p copies) and F2 : (u1, . . . , up) �→ u1 + · · ·+ up. The result
is obtained by first applying the special chain rule in 10.40 to T = S0◦F1 and
then the one in 10.39 to S = F2◦T .

10.42 Corollary (Lipschitzian properties under addition). Let S = S1+ · · ·+Sp

for osc mappings Si : IR
n →→ IRm, all of which are strictly continuous at x̄. If

the boundedness condition in 10.41(a) is fulfilled for ū ∈ S(x̄), then S has the
Aubin property at x̄ for ū, and

lipS(x̄ | ū) ≤ max
u1+···+up=ū

ui∈Si(x̄)

{
lipS1(x̄ |u1) + · · ·+ lipSp(x̄ |up)

}
,

which can be sharpened for graph-convex mappings Si to

lipS(x̄ | ū) ≤ min
u1+···+up=ū

ui∈Si(x̄)

{
lipS1(x̄ |u1) + · · ·+ lipSp(x̄ |up)

}
,

When the boundedness condition in 10.41(a) holds for all ū ∈ S(x̄), S is strictly
continuous at x̄. If the mappings Si are also locally bounded at x̄, then S too
is locally bounded at x̄, and

lip∞S(x̄) ≤ lip∞S1(x̄) + · · ·+ lip∞Sp(x̄).

Proof. Again we appeal to 9.38 and the criterion in 9.40. The estimate for the
graphical modulus comes via the fact that |H1+· · ·+Hp|+ ≤ |H1|++· · ·+|Hp|+
for positively homogeneous mappings Hi. The assertion in the locally bounded
case is immediate from the rule that (λ1+ · · ·+λp)IB = λ1IB+ · · ·+λpIB when
λi ≥ 0; cf. 2.23.

10.43 Exercise (addition of a single-valued mapping). Suppose S = S0 + F for
S0 : IRn →→ IRm and a single-valued mapping F : IRn → IRm. Let x̄ ∈ domS,
ū ∈ S(x̄), and ū0 = ū− F (x̄).

(a) If F is semidifferentiable at x̄, one has

DS(x̄ | ū)(w) = DS0(x̄ | ū0)(w) +DF (x̄)(w) for all w.

(b) If F is strictly differentiable at x̄, one has

DS(x̄ | ū)(w) = DS0(x̄ | ū0)(w) +∇F (x̄)w for all w,

D∗S(x̄ | ū)(w) = D∗S0(x̄ | ū0)(w) +∇F (x̄)w for all w,

D∗S(x̄ | ū)(y) = D∗S0(x̄ | ū0)(y) +∇F (x̄)∗y for all y.
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Proof. In (a), apply the limit expression for DS(x̄ | ū)(w) directly. This re-
sult specializes to the first formula in (b). Obtain the second formula in (b)
likewise from the limit expression for D∗S(x̄ | ū)(w) and the definition of strict
differentiability of F . For the third formula in (b), get the inclusion ⊂ from
Theorem 10.41. Then apply this result to the representation S0 = S + [−F ] to
get the opposite inclusion.

I∗. Extensions

The special rule for subgradients of sums of functions in 10.10 has an interesting
consequence for subgradient theory itself, when applied to Ekeland’s variational
principle in 1.43.

10.44 Proposition (variational principle for subgradients). Let f : IRn → IR be
lsc with inf f finite, and let x̄ satisfy f(x̄) ≤ inf f + ε, where ε > 0. Then for
any δ > 0 there exists x̃ with |x̃− x̄| ≤ ε/δ and f(x̃) ≤ f(x̄) for which there is
a subgradient ṽ ∈ ∂f(x̃) with |ṽ| ≤ δ.
Proof. The variational principle in 1.43 yields a point x̃ ∈ IB(x̄, ε/δ) such
that f(x̃) ≤ f(x̄) and x̃ ∈ argminx

{
f(x) + δ|x − x̃|}. Then for the Lipschitz

continuous function g(x) := δ|x− x̃| we have 0 ∈ ∂(f+g)(x̃) by the generalized
version of Fermat’s rule in 10.1, hence 0 ∈ ∂f(x̃)+∂g(x̃) by 10.10. But ∂g(x̃) =
δIB by 8.27. Hence there exists ṽ ∈ ∂f(x̃) such that −ṽ ∈ δIB, i.e., |ṽ| ≤ δ.
10.45 Exercise (variational principle for regular subgradients). Let f : IRn → IR
be lsc with inf f finite, and let x̄ satisfy f(x̄) < inf f + ε, where ε > 0. Then
for any δ > 0 there exists x̃ with |x̃− x̄| < ε/δ and f(x̃) < inf f + ε for which

there is a regular subgradient ṽ ∈ ∂̂f(x̃) with |ṽ| < δ.

Guide. Obtain this by combining the fact in 10.44 with the approximation of
general subgradients by regular subgradients in Definition 8.3.

These ideas relate to the following enlargement of the category of limits
that was used in Definition 8.3 to produce the sets ∂f(x̄) and ∂∞f(x̄).

10.46 Proposition (ε-regular subgradients). At points where f : IRn →→ IR is
finite and for arbitrary ε > 0, consider the ε-regular subgradient set

∂̂εf(x̄) : =
{
v
∣∣ f(x) ≥ f(x̄) + 〈v, x− x̄〉 − ε|x− x̄|+ o(|x− x̄|)}

=
{
v
∣∣ df(x̄)(w) ≥ 〈v, w〉 − ε|w| for all w}.

If f is locally lsc at x̄, the conditions xν→f x̄, εν ↘ 0, vν ∈ ∂̂ενf(xν), vν → v,
imply that v ∈ ∂f(x̄); or instead v ∈ ∂∞f(x̄) if λνvν → v with λν ↘ 0. Thus,

lim sup
x→f x̄
ε ↘ 0

∂̂εf(x) = ∂f(x̄) ∪ dir ∂
∞
f(x̄).



I∗. Extensions 459

Proof. The equivalence between the two expressions given for ∂̂εf(x̄) is
elementary; it follows for instance from the formula in 8(7) as applied to
g(x) := f(x) + ε|x − x̄|. Also elementary is the fact that every vector v in
∂f(x̄) or ∂∞f(x̄) can somehow or other be generated as limit of the sort de-

scribed, since in particular ∂̂f(x) ⊂ ∂̂εf(x) for all ε > 0, and limits employing

vectors vν ∈ ∂̂f(xν) are available by Definition 8.3.
It remains only to verify that, when f is locally lsc at x̄, no other kinds

of vectors v can show up as limits. Let gν(x) = f(x) + ε|x − xν |. We have

vν ∈ ∂̂gν(xν), hence vν ∈ ∂gν(xν). The calculus rule in 10.10, in combination
with the formula in 8.27 for the subgradients of the Euclidean norm, then
yields vν ∈ ∂f(xν) + ενIB. This furnishes the existence of v̂ν ∈ ∂f(xν) with
|v̂ν − vν | ≤ εν . Then also v̂ν → v, so v ∈ ∂f(x̄) by definition. The argument
concerning ∂∞f(x̄) is parallel.

Horizon subgradients have been utilized most importantly in expressing
the various ‘constraint qualifications’ that underlie the many subdifferentia-
tion formulas. An advantage is that horizon subgradients can themselves be
calculated through such formulas, which helps materially in achieving a robust
calculus that can be applied not just once but in a series of steps. Furthermore,
the conditions that come up are closely related to Lipschitzian properties and
thus have a side benefit, as viewed in 10.14 and 10.16.

In some situations, however, the conditions that are sufficient in terms of
horizon subgradients in order to reach a desired conclusion may be too strong.
It’s good to know that a refinement in terms of ‘calmness’ may then work
instead. The parametric version of Fermat’s rule in 10.12 provides a focus for
the idea.

10.47 Proposition (calmness as a constraint qualification). For a proper, lsc
function f : IRn × IRm → IR and a vector ū ∈ IRm, consider the problem of
minimizing f(x, ū) over x ∈ IRn. Suppose x̄ is locally optimal and satisfies the
constraint qualification that there exists κ ≥ 0 with

lim inf
u→ū, u
=ū

x→x̄

f(x, u)− f(x̄, ū)
|u− ū| ≥ −κ > −∞, 10(10)

as is true in particular if x̄ is globally optimal and the function p(u) :=
infx f(x, u) is calm from below at ū with constant κ. Then

∃ ȳ with (0, ȳ) ∈ ∂f(x̄, ū), |ȳ| ≤ κ.
Proof. First we note that x̄ being globally optimal corresponds to having
f(x̄, ū) = p(ū), in which case

f(x, u)− f(x̄, ū)
|u− ū| ≥ p(u)− p(ū)

|u− ū| .

Calmness of p from below at ū with constant κ means by definition that the
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quotient on right side of this inequality is bounded from below by −κ for u in
some neighborhood of ū, and then 10(10) must obviously hold.

Turning to the general case where only 10(10) is assumed, we observe that
this condition refers to the existence for any ε > 0 of a δ > 0 such that

f(x, u)− f(x̄, ū)
|u− ū| ≥ −(κ+ ε) when |x− x̄| ≤ δ, |u− ū| ≤ δ.

Taking V = IB(x̄, δ) and W = IB(ū, δ), we get (x̄, ū) ∈ argminx,u gε(x, u) for

gε(x, u) := f(x, u) + (κ+ ε)|u− ū|+ δV ×W (x, u).

The basic version of Fermat’s rule in 10.1 applies to this minimization of gε:
we must have (0, 0) ∈ ∂gε(x̄, ū). But by the rule in 10.10,

∂gε(x̄, ū) ⊂ ∂f(x̄, ū) +
{
(0, y)

∣∣ |y| ≤ κ+ ε
}
.

Hence there exists yε such that (0, yε) ∈ ∂f(x̄, ū) and |yε| ≤ κ+ ε.

Considering now a sequence εν ↘ 0, we get corresponding vectors yεν which
form a bounded sequence having a cluster point ȳ, necessarily with |ȳ| ≤ κ.
The fact that (0, yεν) ∈ ∂f(x̄, ū) ensures through the closedness of subgradient
sets (cf. 8.6) that likewise (0, ȳ) ∈ ∂f(x̄, ū), as required.

The optimization problem in Proposition 10.47 is said to be calm at x̄
(relative to its parameterization in u at ū) when 10(10) holds for some κ > 0.
This is a decidedly weaker constraint qualification for Fermat’s rule than the one
in Example 10.12. That constraint qualification excluded the existence of y = 0
with (0, y) ∈ ∂∞f(x̄, ū). Indeed, when x̄ is globally optimal (as can always be
arranged by restriction of the problem to some neighborhood of x̄), this earlier
condition guarantees that p is Lipschitz continuous on a neighborhood of ū (see
10.14), hence certainly calm at ū from below. That implies 10(10), as we’ve
just seen.

The calmness constraint qualification pushes the existence of a multiplier
vector ȳ in this basic setting to a natural frontier. If it weren’t satisfied at x̄,
there would be sequences xν → x̄, uν → ū and κν →∞ with

f(xν, uν)→ f(x̄, ū) but f(xν , uν) ≤ f(x̄, ū)− κν |uν − ū|.
This means that tiny perturbations of the parameter vector ū make it possible
for tiny perturbations of x̄ to decrease the objective value at an arbitrarily high
rate. Heuristically, a multiplier vector ȳ should reflect something about the rate
of change of the optimal objective value with respect to perturbations of ū (cf.
Theorem 10.13 and the remarks after 10.15), but here the rate is infinite in
a local sense, and an instability is thus revealed which militates against the
existence of such ȳ.

An illustration is provided by the lsc, convex function f : IR × IR → IR
with formula
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f(x, u) :=

{
1
2x

2 − 2
√
xu if x ≥ 0, u ≥ 0,

∞ otherwise,

at (x̄, ū) = (0, 0). The problem of minimizing f(x, ū) = f(x, 0) = 1
2x

2+δIR+
(x)

has the unique globally optimal solution x̄ = 0. But for u > 0 the problem of
minimizing f(x, u) in x has optimal solution xu = u1/3. We have

f(xu, u)− f(0, 0)
u− 0

=
1
2u

2/3 − 2(u1/3u)1/2

u
= − 3

2u1/3
→ −∞ as u ↘ 0.

Therefore, the problem in question isn’t calm at x̄ (relative to its parameteri-
zation in u at ū). In particular, the function p(u) = infx f(x, u) isn’t calm from
below at ū.

The chain rule in Theorem 10.6 leads to a generalized form of the mean-
value theorem, which holds for strictly continuous functions.

10.48 Theorem (mean-value, extended). Suppose f is strictly continuous on an
open, convex set O, and let x0 and x1 be points of O. Then for some τ ∈ (0, 1)
and the corresponding point xτ = (1− τ)x0 + τx1 there is a vector v satisfying

f(x1)− f(x0) =
〈
v, x1 − x0

〉
with v ∈ ∂f(xτ) or − v ∈ ∂(−f)(xτ).

If f is regular on O (as when f is lower-C1, or in particular when f is convex),
this is sure to be true with v ∈ ∂f(xτ ).
Proof. Let ϕ(t) = f

(
F (t)

)−(1−t)f(x0)−tf(x1), where F (t) := (1−t)x0+tx1;
ϕ is Lipschitz continuous on the open interval of t values for which F (t) ∈
O, which includes [0, 1]; it has ϕ(0) = ϕ(1) = 0. Because F is smooth and
∂∞f(x) = {0} for all x ∈ O (by 9.13), the chain rule in 10.6 applies:

∂ϕ(t) ⊂ {〈v, x1 − x0〉 ∣∣ v ∈ ∂f(F (t))}+ f(x0)− f(x1),
∂(−ϕ)(t) ⊂ {〈v, x1 − x0〉 ∣∣ v ∈ ∂(−f)(F (t))}+ f(x0)− f(x1).

By the continuity of ϕ alone, together with the fact that ϕ(0) = ϕ(1) = 0, there
must either be a point τ ∈ (0, 1) where ϕ attains its minimum relative to [0, 1],
or one where ϕ attains its maximum relative to [0, 1]. In the first case one has
0 ∈ ∂ϕ(τ), whereas in the second case the conclusion is that 0 ∈ ∂(−ϕ)(τ).
This argument gives the general result.

With the technical results now available, an extended version of the chain
rule of Theorem 10.6 for f = g◦F can be proved in which the smoothness
of the mapping F is replaced by strict continuity. This opens the door to
applications in which F (x) =

(
f1(x), . . . , fm(x)

)
with component functions fi

that are convex, concave, lower- or upper-C1, and so forth. The extended chain
rule makes use also of the concept of strict differentiability of a mapping F at
x̄ as defined in 9(10) and characterized in 9.25. In a coordinate representation
F (x) =

(
f1(x), . . . , fm(x)

)
, F is strictly differentiable at x̄ if and only if each

component function fi is strictly differentiable at x̄.
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10.49 Theorem (extended chain rule for subgradients). Let f(x) = g
(
F (x)

)
for

a proper, lsc function g : IRm → IR and a strictly continuous vector-valued
function F : IRn → IRm. Let x̄ be a point where f is finite. Then

∂̂f(x̄) ⊃ D̂∗F (x̄)
[
∂̂g
(
F (x̄)

)]
=
⋃{

∂̂(yF )(x̄)
∣∣∣ y ∈ ∂̂g(F (x̄))}.

If the only vector y ∈ ∂∞g(F (x̄)) with 0 ∈ ∂(yF )(x̄) is y = 0, one also has

∂f(x̄) ⊂ D∗F (x̄)
[
∂g
(
F (x̄)

)]
=
⋃{

∂(yF )(x̄)
∣∣∣ y ∈ ∂g(F (x̄))},

∂
∞
f(x̄) ⊂ D∗F (x̄)

[
∂

∞
g
(
F (x̄)

)]
=
⋃{

∂(yF )(x̄)
∣∣∣ y ∈ ∂∞

g
(
F (x̄)

)}
,

and the mapping x �→ D∗F (x)
[
∂g
(
F (x)

)] ∪D∗F (x)
[
∂∞g
(
F (x)

)]
is cosmically

osc at x̄ with respect to f -attentive convergence.

If in addition g is regular at F (x̄) and yF is regular at x̄ for each y ∈ ∂g(x̄)
(as is true if F is strictly differentiable at x̄), then f is regular at x̄ and

∂f(x̄) = D∗F (x̄)
[
∂g
(
F (x̄)

)]
, ∂

∞
f(x̄) = D∗F (x̄)

[
∂

∞
g
(
F (x̄)

)]
.

Proof. To simplify notation in what follows, let Ĉ(x̄) = D̂∗F (x̄)
[
∂g
(
F (x̄)

)]
,

C(x̄) = D∗F (x̄)
[
∂g
(
F (x̄)

)]
, and K(x̄) = D∗F (x̄)

[
∂∞g
(
F (x̄)

)]
. The alterna-

tive formulas for these sets in terms of yF come from 9.24(b). Suppose first

that v ∈ Ĉ(x̄); we have v ∈ ∂̂(yF )(x̄) for some y ∈ ∂̂g(F (x̄)). Then
g
(
F (x)

) ≥ g
(
F (x̄)

)
+
〈
y, F (x)− F (x̄)〉+ o

(|F (x)− F (x̄)|),〈
y, F (x)

〉 ≥ 〈y, F (x̄)〉+ 〈v, x− x̄〉+ o
(|x− x̄|),

where |F (x)− F (x̄)| ≤ κ|x− x̄| for a certain constant κ ≥ 0. These conditions

together yield f(x) ≥ f(x̄) + 〈v, x− x̄〉+ o
(|x− x̄|). Thus v ∈ ∂̂f(x̄), so that

Ĉ(x̄) ⊂ ∂̂f(x̄) as claimed.

Next we apply the coderivative chain rule in 10.40 to the representation
Ef = Eg◦F , where Ef and Eg are the profile mappings associated with f and g
(cf. 5.5). The characterization in 8.35 of the subgradients of f and g in terms of
these profile mappings yields the inclusions ∂f(x̄) ⊂ C(x̄) and ∂∞f(x̄) ⊂ K(x̄).
The assertions about the regular case follow from the corresponding ones in
10.40 as well.

The remaining task is to show that the mapping x �→ C(x) ∪ dirK(x)
is cosmically osc at x̄ with respect to f -attentive convergence. We know that
the mapping u �→ ∂g(u) ∪ dir ∂∞g(u) is cosmically osc at F (x̄) with respect to
g-attentive convergence (see 8.7). Suppose vν ∈ C(xν) and xν→f x̄. There exist
vectors yν ∈ ∂g(F (xν)) such that vν ∈ ∂(yνF )(xν); here F (xν)→g F (x̄). If {yν}
were unbounded, a contradiction could be produced for the assumption that the
only y ∈ ∂∞g(F (x̄) with 0 ∈ (yF )(x̄) is y = 0. We can suppose therefore that
yν converges to some y. If vν converges to a vector v, we have y ∈ ∂g(F (x̄)),
while on the other hand v ∈ ∂(yF )(x̄) by the same argument used earlier, based
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on the estimate ∂(yνF )(xν) ⊂ ∂(yF )(xν) + ∂
(
[yν − y]F )(xν). Then v ∈ C(x̄).

Likewise, if vν → dir v for a vector v = 0 we get by a modification of this
argument that v ∈ K(x̄). The proof that the mapping x �→ K(x) is osc at x̄
with respect to f -attentive convergence is entirely parallel.

As far as subgradients are concerned, the extended chain rule in Theorem
10.49 fully encompasses the one in Theorem 10.6, which can be seen as the case
where F is strictly differentiable everywhere; cf. 9.18.

10.50 Corollary (normals for Lipschitzian constraints). Let C = F−1(D) for a
closed set D ⊂ IRm and a strictly continuous mapping F : IRn → IRm. At any
x̄ ∈ C one has

N̂C(x̄) ⊃
⋃{

∂̂(yF )(x̄)
∣∣∣ y ∈ N̂D

(
F (x̄)

)}
.

If the only vector y ∈ ND

(
F (x̄)

)
with 0 ∈ ∂(yF )(x̄) is y = 0, one also has

NC(x̄) ⊂
⋃{

∂(yF )(x̄)
∣∣∣ y ∈ ND

(
F (x̄)

)}
=: K(x̄),

and the mapping x �→ K(x) is osc. If in addition D is regular at F (x̄) and
yF is regular at x̄ for every y ∈ ND

(
F (x̄)

)
(as is true in particular when F is

strictly differentiable at x̄), then C is regular at x̄ and

NC(x̄) =
⋃{

∂(yF )(x̄)
∣∣∣ y ∈ ND

(
F (x̄)

)}
.

Proof. Apply Theorem 10.49 with g = δD.

This description of normal vectors can be used for example in connection
with the normal cone condition for optimality in 6.12 and 8.15, where a function
f0 is minimized over a set C. To say that C = F−1(D) is to say that C consists
of all vectors x satisfying a constraint system of the form F (x) ∈ D.

10.51 Corollary (pointwise max of strictly continuous functions). Suppose that
f(x) = max{f1(x), . . . , fm(x)} with each fi strictly continuous on IRn, f itself
then being strictly continuous. In denoting by I(x̄) the set of indices i for which
the max is attained for x̄, one has

∂f(x̄) ⊂
⋃{∑

i∈I(x̄)
λivi

∣∣∣ vi ∈ ∂fi(x̄), λi ≥ 0,
∑

i∈I(x̄)
λi = 1

}
.

The inclusion holds as an equation if fi is strictly differentiable at x̄ for each
i ∈ I(x̄), and then f is regular at x̄.

Proof. Apply 10.49 with F (x) =
(
f1(x), . . . , fm(x)

)
and g = vecmax, being

mindful of the subgradient formula for g in 8.26. Because g is convex and finite,
it is strictly continuous and regular; cf. 9.14. To get regularity of f it’s only
necessary to assume strict differentiability of the fi’s with i ∈ I(x̄), because
the other fi’s are out of action in a neighborhood of x̄.
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The chain rule in Theorem 10.49 leads also to a generalization of the
multiplier rule in 10.8 from smooth to strictly continuous mappings F .

10.52 Exercise (nonsmooth Lagrange multiplier rule). For a nonempty, closed
set X ⊂ IRn and strictly continuous functions f0 : IRn → IR and F : IRn → IRm

with F = (f1, . . . , fm), consider the problem

minimize f0(x) + θ
(
F (x)

)
over x ∈ X,

where θ : IRm → IR is proper, lsc and convex with effective domain D. (As a
special case, one could have θ = δD.) Suppose x̄ is a locally optimal solution
at which the following constraint qualification is satisfied:

0 ∈ ∂(yF )(x̄) +NX(x̄), y ∈ ND

(
F (x̄)

)
=⇒ y = 0.

Then there exists a vector ȳ such that

0 ∈ ∂(f0 + ȳF )(x̄) +NX(x̄), ȳ ∈ ∂θ(F (x̄)).
Moreover, the set of such vectors ȳ is compact.

Guide. Represent this as the problem of minimizing f = g◦G over IRn where

G(x) = (f0(x), f1(x), . . . , fm(x), x),

g(w0, w1, . . . , wm, x) = w0 + θ(w1, . . . , wm) + δX(x).

Verify that G is strictly continuous and that ∂∞g(w̄0, w̄1, . . . , w̄m, x̄) and
∂g(w̄0, w̄1, . . . , w̄m, x̄) are respectively the sets{

(0, y1, . . . , ym, v)
∣∣∣ (y1, . . . , ym) ∈ ND(w̄1, . . . , w̄m), v ∈ NX(x̄)

}
,{

(1, y1, . . . , ym, v)
∣∣∣ (y1, . . . , ym) ∈ ∂θ(w̄1, . . . , w̄m), v ∈ NX(x̄)

}
.

This uses the fact that ∂∞θ = ND by convexity; cf. 8.12. Invoke 10.49 and then
apply the basic necessary condition 0 ∈ ∂f(x̄) in 10.1. The cosmic osc property
in 10.49 yields the compactness assertion at the end.

The Lagrange multiplier interpretation in 10.15 could be extended to the
setting of 10.52. This would involve replacing F (x) by F (x) + u.

10.53 Exercise (composition with a strictly continuous mapping). Suppose S =
S0◦F for F : IRn → IRp strictly continuous and S0 : IRp →→ IRm osc, and let
ū ∈ S(x̄). If F is strictly differentiable at x̄ and S0 is graphically regular at
F (x̄) for ū, then S is graphically regular at x̄ for ū, and

D∗S(x̄ | ū) = D∗F (x̄)◦D∗S0(F (x̄) | ū).

Guide. View gphS as G−1(gphS0) under G : (x, u) �→ (F (x), u)), and then
apply 10.50.



I∗. Extensions 465

A fact of interest in connection with Theorem 10.33 and the ways that a
subsmooth function can be represented is the following.

10.54 Proposition (representations of subsmoothness). If f is lower-C1 on an
open set O ⊂ IRn, then there is not only a local representation of the kind in
Definition 10.29 around each point x ∈ O, but, for any compact set B ⊂ O,
a common representation valid at all points x in some open set O′ satisfying
B ⊂ O′ ⊂ O. The same holds for the lower-C2 case.

The proof of this result will make use of a lower bounding property.

10.55 Lemma (smooth bounds on semicontinuous functions). Let O ⊂ IRn be
nonempty and open, and let f : O → IR be lsc with f(x) > −∞ for all x ∈ O.
Then there is a function h : O → IR of class C∞ such that f ≥ h on O.

Proof. First we construct a sequence of compact sets Bν such that Bν ⊂
intBν+1 and

⋃
ν∈IN Bν = O. This can be done by fixing any point x̄ in O

and taking Bν = IB(x̄, ν) ∩ {x ∣∣ dC(x) ≥ 1/ν
}
, where C is the complement

of O; if O = IRn, the simpler formula Bν = IB(x̄, ν) suffices. Next we define
βν = infBν f . From the compactness of Bν we have βν > −∞, because f is
lsc and does not take the value −∞ (one can apply 1.10 to f + δBν ). Since the
assertion of the lemma is trivially true when f ≡ ∞, we can suppose that the
point x̄ chosen in the construction of the sets Bν satisfies f(x̄) < ∞, so that
βν <∞ as well. Clearly βν+1 ≤ βν because Bν+1 ⊃ Bν .

It will suffice now to construct a sequence of C∞ functions ϕν : IRn → [0, 1]
such that ϕν(x) ≡ 0 on Bν but ϕν(x) ≡ 1 outside of intBν+1, since for such a
sequence we can obtain the desired lower bounding function from the formula
h := β1 −

∑∞
ν=1(β

ν − βν+1)ϕν . (Although an infinite series is involved, all but
finitely many terms vanish in a neighborhood of any given point; cf. Figure
10–2.) To simplify the notation, we can concentrate henceforth on the case of
nonempty, compact set B and a nonempty, closed set D not meeting B, and
demonstrate the existence of a C∞ function ϕ : IRn → [0, 1] such that ϕ(x) ≡ 0
on B but ϕ(x) ≡ 1 on D.

1

0

ϕν
Bν

Bν+1

IR

nIR

Fig. 10–2. Construction of an infinitely smooth lower bounding function.

The distance function dD is continuous (cf. 1.20) and by assumption is
positive at every point of the compact set B, so the value δ := minB dD is posi-
tive. The collection of open balls

{
IB(x, δ/2)

}
x∈B

covers B, so by compactness
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a finite subcollection covers B: there exist points xi ∈ B for i = 1, . . . , m such
that B ⊂ ⋃m

i=1 IB(xi, δ/2). Let θ : IR → [0, 1] be a C∞ function such that
θ(t) ≡ 0 for t ≤ 0 but θ(t) ≡ 1 for t ≥ 1. (For instance, one can take

θ(t) = c−1

∫ t

−∞

[
θ0(s) + θ0(1− s)

]
ds with c =

∫ ∞

−∞

[
θ0(s) + θ0(1− s)

]
ds,

where θ0(s) = 0 for s ≤ 0 and θ(s) = exp(−1/s) for s > 0.) Then by defining
ψ(t) = θ

(
2t/δ − 1

)
we get a C∞ function from IR to [0, 1] with ψ(t) ≡ 0 for

t ≤ δ/2 but ψ(t) ≡ 1 for t ≥ δ. The desired function ϕ is obtained finally from
the formula ϕ(x) :=

∏m
i=1 ψ

( |x− xi| ).
Proof of 10.54. For each point w ∈ B we have by assumption a representation

f(x) = max
t∈Tw

fw,t(x) for all x ∈ int IB(w, δw), 10(11)

where fw,t(x) and ∇fw,t(x) depend continuously on (t, x), and the open ball
int IB(w, δw) is included in O. Fixing w, we shall argue first that the functions
fw,t can be modified outside of the smaller ball IB(w, δw/3) and extended to O
in such a way that the continuity properties are maintained, the representation
10(11) persists on IB(w, δw/3), but the maximum gives a value at most f(x)
at all points x ∈ O \ IB(w, δw/3).

Since f is lower-C1, it’s in particular continuous (see 10.31), and by the
preceding lemma we are able to find a C∞ function h such that h ≤ f on O.
Let β be the minimum value of the continuous function (t, x) �→ fw,t(x) on
Tw × IB(w, 2δw/3), and α be the maximum of h on IB(w, 2δw/3). The C∞

function h0 := h − max{α − β, 0} then satisfies not only h0 ≤ f on O but
h0 ≤ fw,t on IB(w, 2δw/3) for all t ∈ Tw. Let ψw : IR→ [0, 1] be a C∞ function
such that ψw(t) ≡ 0 when t ≤ δw/3 but ψw(t) ≡ 1 when t ≥ 2δw/3 (for way to
the construct such a function, see the end of the proof of the preceding lemma).
The functions

f̄w,t(x) :=

{
ψw

(
fw,t(x)− h0(x)

)
+ h0(x) for x ∈ IB(w, 2δw/3),

h0(x) for x /∈ IB(w, 2δw/3),

then have the property that f̄w,t(x) and ∇f̄w,t(x) depend continuously on
(t, x) ∈ Tw ×O and give

max
t∈Tw

f̄w,t(x)

{
= f(x) for all x ∈ IB(w, δw/3),
≥ f(x) for all x ∈ O \ IB(w, δw/3).

10(12)

Moving into the final stage, we now use the compactness of B to extract
from the family of open balls

{
int IB(w, δw/3)

}
w∈B

covering B a finite subcol-
lection that likewise covers B, say for the points w1, . . . , wm. The union of this
finite subcollection of open balls is taken to be the open set O′; it is included
in O because the balls int IB(w, δw) are all in O. For each of the points wi

we construct a modified family of functions f̄wi,t as in 10(12). Defining the
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compact index space T to be the union of (disjoint copies of) the compact
sets Twi

, we let f̄t(x) = f̄wi,t(x) for all x ∈ O′ when t ∈ Twi
. Then f̄t(x) and

∇f̄t(x) depend continuously on (t, x) ∈ T×O′, and they give the representation
f(x) = maxt∈T f̄t(x) for all x ∈ O′. This is what we needed.

The same argument carries over to the case where f is lower-C2. One just
has to observe that the individual families in 10(12) maintain the property of
the second partial derivatives depending continuously on (t, x).

Epi-addition is an important source of subsmooth functions. The next
theorem combines the main result along those lines with another criterion for
Lipschitz continuity.

10.56 Theorem (properties under epi-addition). Let f = g h for a proper, lsc
function g : IRn → IR and a function h : IRn → IR. Suppose that for each
α ∈ IR the mapping x �→ {w ∣∣ g(w) + h(x−w) ≤ α

}
is locally bounded. If h is

strictly continuous, then f is strictly continuous with

lipf(x) ≤ max
w∈P (x)

liph(x− w) for P (x) := argmin
w∈IRn

{
g(w) + h(x− w)}.

If h is upper-C1, then f is upper-C1, while if h is upper-C2 then f is upper-C2.
Proof. We have f(x) = infw k(w, x) and P (x) = argminw k(w, x) for the
function k(w, x) = g(w) + h(x − w). The assumptions ensure that k is lsc
and proper, and that k(w, x) is level-bounded in w locally uniformly in x.
Also, k(w, x) is continuous in x for fixed w. From basic results on parametric
minimization (cf. 1.17 and 10.13) we conclude that f is finite and continuous
on IRn, while P is nonempty-valued as well as osc and locally bounded, with

f(x) = min
w∈IRn

{
g(w) + h(x− w)} = g(w̄) + h(x− w̄) when w̄ ∈ P (x). 10(13)

Fix any x̄ ∈ IRn and any compact neighborhood V ∈ N (x̄). Let

T =
{
(z, w)

∣∣ z ∈ V, w ∈ P (z)},
ft(x) = f(z)− h(z − w) + h(x− w) for t = (z, w) ∈ T.

The set T is compact because of the properties cited for P : it is closed because
V is closed and P is osc, and it is bounded because V is bounded and P is
locally bounded. For any point x and any t = (z, w) ∈ T we have by 10(13)
that h(x − w) ≥ f(x) − g(w) whereas f(z) = g(w) + h(z − w), and from this
it follows that ft(x) ≤ f(x). Furthermore, we get ft(x) = f(x) by taking
z = x, w ∈ P (x). We thus have a representation f(x) = mint∈T ft(x) in which
lipft(x) = liph(x− w) for each t = (z, w) ∈ T and x ∈ IRn.

Under the assumption that h is strictly continuous we obtain from the
last part of Proposition 9.10 on the behavior of strictly continuity under the
pointwise min operation that

lipf(x̄) ≤ kV (x̄) := max
t∈T

liph(x̄− w) = max
w∈P (V )

liph(x̄− w).
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The maximum in this expression is finite and attained because the function
liph is usc (see 9.2). This establishes in particular that f is strictly continuous
at x. Because the estimate for lipf(x̄) is valid for any compact neighborhood
V of x̄, and the mapping is P is osc and locally bounded, it follows that the
estimate actually holds with V replaced by {x̄}. The estimate given for lipf
in the theorem is therefore correct.

We consider now the case where h is upper-C1. Relative to a com-
pact neighborhood V of a point x̄, we again take the representation f(x) =
mint∈T ft(x) constructed above, writing it as

f(x) = min
t∈T

{
f(z)− h(z − w) + h(x− w)} 10(14)

and noting that as the index t = (z, w) ranges over T , w ranges over the set
P (V ), which we know to be compact because V is compact while P is osc and
locally bounded (see 5.15, 5.25(a)). Let B = V − P (V ); this is the set over
which the argument x−w ranges in 10(14), and as the difference of two compact
sets it too is compact (cf. 3.12). The upper-C1 property of h implies not only
the existence of local representations of h as required by Definition 10.29, but
according to 10.54, such a representation on some open set O ⊃ B: one has
h(w) = mins∈S ls(w) for all w ∈ O, where S is a compact space and both ls(w)
and ∇ls(w) depend continuously on (s, w) ∈ S×O. With this substituted into
10(14) we arrive at the expression

f(x) = min
s∈S, t∈T

{
f(z)− h(z − w) + ls(x− w)

}
for all x ∈ V,

where as always t denotes the pair (z, w). By defining a new index set R =
S × T , again compact, and setting gr(x) = f(z) − h(z − w) + ls(x − w) for
r = (s, t) = (t, z, w), we get a representation f(x) = minr∈R gr(x) for all x ∈ V ,
where gr(x) and ∇gr(x) depend continuously on (r, x). This demonstrates that
f is upper-C1.

For the upper-C2 case the argument is the same, except for the observation
that at each step one also has the continuity of the second derivatives of the
functions in the representations.

10.57 Example (subsmoothness of distance functions). For a nonempty, closed
set C ⊂ IRn, the function d2C is upper-C2. On the complement of C, the
function dC itself is upper-C2.
Detail. For d2C this is the case of 10.56 where f = δC . The assertion for dC
follows by taking the square root.

The example of Moreau envelopes already treated in 10.32 fits as a special
case of Theorem 10.56 too.

10.58 Theorem (subsmoothness in parametric optimization). Let

p(u) := infx f(x, u), P (u) := argminx f(x, u),
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for a proper, lsc function f : IRn× IRm → IR such that f(x, u) is level-bounded
in x locally uniformly in u. Let ū ∈ dom p and suppose there are open sets
W ∈ N (ū) and V ⊃ P (ū) such that ∇uf(x, u) exists for (x, u) ∈ V ×W and,
along with f(x, u), depends continuously on (x, u). Then p is upper-C1 on W
and is strictly differentiable on a subset D ⊂W with W \D negligible.

Here u ∈ D if and only if the set Y (u) :=
{∇uf(x, u)

∣∣x ∈ P (u)
}
is a

singleton. In terms of ∇p(u) := {y ∣∣ ∃uν→D u with ∇p(uν)→ y
}
, one has

dp(ū)(z) = min
y∈∇p(ū)

〈
y, z
〉

= min
y∈Y (ū)

〈
y, z
〉
,

∂p(ū) = ∇p(ū) ⊂ Y (ū),

with con∇p(ū) = conY (ū). In particular, ∂p(ū) = Y (ū) when ū ∈ D.

Proof. The assumptions guarantee through Theorems 1.17 and 5.22 that the
mapping P is osc and locally bounded on W . There exists then by 5.19 a
compact neighborhood B of ū within W such that P (u) ⊂ V for all u ∈ B.
Let X = P (B). The set X ⊂ V is compact by 5.15 and 5.25(a). For each
x ∈ X the function fx := f(x, ·) is C1 on O := intB, with fx(u) and ∇fx(u)
depending continuously on the pair (x, u) ∈ X ×O. The representation p(u) =
minx∈X fx(u) for u ∈ O thus fits the pattern in Definition 10.29 for p to be
upper-C1 on O. The claims are justified then through application of Theorem
10.31 to −p.

On a final note, we record a useful fact about convex functions that follows
from the rules for calculating subgradients.

10.59 Proposition (minimization estimate for a convex function). For a proper,
lsc, convex function f : IRn → IR with argmin f = ∅ and any x ∈ IRn, one has

f(x)− inf f ≤ d
(
x, argminf

)
d
(
0, ∂f(x)

)
.

Proof. We have inf f finite by assumption. Fix any x̄ ∈ IRn and let ρ =
d
(
0, ∂f(x̄)

)
. The aim is to show that f(x̄) ≤ inf f + ρd

(
x, argmin f

)
. This is

trivially true when ρ = ∞, so suppose ρ < ∞, i.e., ∂f(x̄) = ∅. Since ∂f(x̄)
is closed, there exists v̄ ∈ ∂f(x̄) with |v̄| = ρ. Then v̄ ∈ ∂f(x̄) ∩ ρIB, so
0 ∈ ∂f(x̄) + ρIB. Let g(x) = f(x) + ρ|x − x̄|. We have ∂g(x̄) = ∂f(x̄) + ρIB
by 10.9 and 8.27, hence 0 ∈ ∂g(x̄), so that x̄ ∈ argmin g by 10.1. Thus,
g(x̄) ≤ g(x) for all x, or in other words, f(x̄) ≤ f(x)+ρ|x−x̄| for all x ∈ IRn. In
particular this says that f(x̄) ≤ inf f +ρ|x− x̄| for all x ∈ argmin f . Therefore,
f(x̄)− inf f ≤ ρd(x̄, argminf), as required.

Commentary

Fermat did more than formulate his famous ‘theorem’ about numbers. He was in-
volved in the very early exploration of concepts of calculus, in particular in the recog-
nition that the minimum or maximum values of a function can be detected by looking
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for the points of the function’s graph that exhibit a horizontal tangent line. It’s this
principle, as translated to epigraphs and their normal vectors, that has propelled
many of the developments in variational analysis and distinguished them from the
efforts of other schools of generalized differentiation. The theory of distributions,
for instance, features ‘almost everywhere’ statements which suppress the exceptional
points where a maximum or minimum might be attained, instead of seeking them
out.

The idea of looking for exceptions in the behavior of a function or mapping
has also been the motive for investigating critical points and singularities, earlier for
instance in the theory of Morse [1976], still in the pattern of smoothness without
constraints, but nowadays in variational analysis also in terms of the generalized
‘stationary points.’ Such points arise from the extended version of Fermat’s principle
in 10.1 and its many elaborations into variational inequalities, multiplier rules, and
the like.

In all cases, the need for a calculus is clear. This is also the prerequisite to
successful application of results such as those treating Lipschitzian properties and
metric regularity. The notion that such a calculus is feasible and valuable, despite
the unprecedented hurdle of set-valuedness, goes back to the early days of convex
analysis in Rockafellar [1963].

Level sets are intimate partners to constraint representation. Formulas for nor-
mal and tangent cones to level sets of convex functions were derived in Rockafellar
[1970a] and in convexified Clarke mode in Rockafellar [1979a], [1985a], with the 1979
reference providing the characterization of epi-Lipschitzian sets in 10.4. The formulas
of 10.3 in their full scope are new, however. The condition on f at the end of 10.4
was taken in Rockafellar [1981a] as describing a type of ‘nonstationarity’ especially
relevant to algorithms for minimizing strictly continuous functions.

The results for separable functions in 10.5 are elementary and straightforward,
but the observation that only an inclusion is available for ∂

∞
f(x̄) hasn’t been made

before. The analogous relation in Clarke mode does hold as an equation; cf. Rock-
afellar [1985a].

Chain rules for f = g◦F as in 10.6, 10.19 and 10.49 mark an major boundary
between the territory covered by convex analysis and the convexified subgradient
sets of Clarke in comparison to the new territory that could satisfyingly be covered
once convexification was relinquished. Convex analysis itself could only handle the
composition of convex functions g with linear (or affine) mappings F , and this was
well addressed for instance in Rockafellar [1970a], [1974a]. Beyond that, a chain rule
essentially focusing on the inclusion ‘⊃’ for regular subgradients was furnished by
Penot [1978]. Subgradient inclusions of the harder type ‘⊂’ in the composition of
nonconvex functions g with nonlinear mappings F were obtained in the Clarke mode
by Aubin and Clarke [1979] for g and F Lipschitz continuous, and by Rockafellar
[1979a], [1985a], more broadly. But such results had inherent limitations.

Ioffe [1984b] produced the first unconvexified version, although it was formu-
lated with assumptions resembling the ones in the convexified case. Mordukhovich
[1984], [1988] came up with a corresponding result on the level of the chain rule in
10.49 in its assumptions, and this even allowed for F to be multivalued in a sense.
Further advances were made by Ioffe [1989] and by Jourani and Thibault [1993]. The
statements in 10.37, 10.39 and 10.40 on graphical coderivatives in the composition of
multivalued mappings correspond largely to Mordukhovich [1994d]. For extensions
see Mordukhovich and Shao [1996b], [1997a], and Jourani and Thibault [1997].
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The tactic of relying on a chain rule to deduce rules for subgradients of a sum,
partial subgradients, and related normal cone formulas, was developed by Rockafellar
[1979a], [1985a], although within the context of convexified subgradients that pre-
vailed then. The opposite tactic, of first proving a rule for addition and using that
to get a chain rule, can be effective as well and was the standard pattern in convex
analysis. In a contination of that pattern, see Ioffe [1984b], [1989], for example, and
more recently Ioffe and Penot [1996], for a family of more subtle results in which the
‘constraint qualification’ in the hypothesis is replaced by a distance condition. For
supplementary rules of calculus that put more emphasis on various tangent cones
and subderivatives, see Ward and Borwein [1987] and Ward [1991]. Other results of
subgradient calculus, special to convex functions, are in the survey of Hiriart-Urruty,
Moussaoui, Seeger and Volle [1995].

The parametric version of Fermat’s rule in 10.12 can in essence already be found
in Theorem 5.1 of Rockafellar [1985a]. There it’s expressed in terms of convexified
subgradient sets, because that was the language then, but the proof actually covers
the sharper, unconvexified formulation now given to this result. Likewise coming
from that paper is the connection in 10.13 between the multiplier vectors in this
rule and subgradients of the marginal function p(u) = infx f(x, u). The case where
f(x, u) is convex in (x, u) has a longer history, going back to Rockafellar [1970a],
[1974a]. Beyond the convex case, but in the context of nonlinear programming, the
analysis of multiplier vectors as subgradients first surfaced in Rockafellar [1982a].
The subdifferential interpretation of multiplier vectors in 10.14 and 10.15 comes from
these works as well.

The Lipschitzian meaning given in 10.16 for the constraint qualification in the
general statement of Fermat’s rule in 10.12 is freshly provided here. But the close tie
between constraint qualifications and the Lipschitzian behavior of certain set-valued
mappings has well been elucidated in other, related contexts by Mordukhovich [1994c].

Constraint qualifications in terms of ‘calmness’ were introduced by Clarke
[1976a], but the limit version in 10.47 was devised by Rockafellar [1985a]. The for-
mula in 10.18 for the subgradients of an epi-sum of functions likewise comes from the
latter paper.

Piecewise linear-quadratic functions and fully amenable functions were intro-
duced by Rockafellar [1988] for the sake of developments in the theory of second-
order subdifferentiation, and they will be important in that role in Chapter 13. The
terminology of ‘amenability’ actually came later; it was adopted in works of Poliquin
and Rockafellar [1992], [1993]. Most of the facts in 10.21, 10.24, 10.25 and 10.26 were
exposed in those papers.

The semidifferentiability results in 10.27 and the eigenvalue application of them
in 10.28 appear not to have been made explicit before. Most discussions of such
matters have concerned one-sided directional derivatives taken along half-lines, rather
than with varying direction, as here. For such derivatives, however, a chain rule
like the one in 10.27(b) isn’t available. This is one of the major incentives behind
semidifferentiability, along with the fact that in practice this stronger property is
often present anyway. Subgradients of eigenvalue functions have been determined by
Lewis [1996]. For results on the variational analysis of eigenvalues of matrices that
aren’t symmetric, see Burke and Overton [1994].

The subsmooth functions of 10.29 originated in Rockafellar [1982b], and the
results about them in 10.33, 10.34 and 10.54 were established there as well along with
the generic strict differentiability in 10.31. (The ‘subsmooth’ name was introduced
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in Rockafellar [1983].) To some degree, though, this concept formalizes the operation
of pointwise maximization of smooth functions, and in this way it relates to the
calculus of subderivatives and subgradients under that operation. Many of the facts
in 10.31 can be traced in that sense to Clarke [1975]; this is also the source of 10.51,
where the functions in the maximization aren’t smooth. Even earlier, the existence of
one-sided directional derivatives for functions defined by pointwise maximization of a
compactly parameterized family of smooth functions was proved by Danskin [1967];
see also Pshenichnyi [1971]. (Those researchers overlooked the stronger property
of semidifferentiability.) Functions expressible locally as a convex function minus a
quadratic function were briefly considered by Janin [1973], but he didn’t identify that
property with a lower-C2 representation, as in 10.33. The characterization of the
upper subgradient set −∂(−f)(x̄) in 10.31 for a lower-C1 function f is new.

The ‘upper’ subsmoothness of Moreau envelopes in 10.32 hasn’t previously been
noted or exploited as such, although some of its consequences have been known.

For convex functions, the subgradient variational principle in 10.44 predates
Ekeland’s principle 1.43, from which we’ve derived it here. It was proved in that
case by Brøndsted and Rockafellar [1965]. An extension to nonconvex functions,
with convexified subgradient sets, was given by Rockafellar [1985a], but the present,
unconvexified version hasn’t been stated before, nor has the variant in 10.45.

The ε-regular subgradient facts in 10.46 relate to the way this notion was utilized
in early work of Kruger and Mordukhovich [1980]. The extended mean-value theorem
in 10.48 goes back essentially to those authors as well, cf. Mordukhovich [1988], but
for convexified subgradient sets it has a major precedent in Lebourg [1975]. That
version was long influential in sustaining convexification as the seemingly right mode
for subdifferential calculus. Other mean-value theorems that don’t require strict
continuity have since been evolving; see Zagrodny [1988], [1992], Gajek and Zagrodny
[1995], and Loewen [1995].



11. Dualization

In the realm of convexity, almost every mathematical object can be paired with
another, said to be dual to it. The pairing between convex cones and their po-
lars has already been fundamental in the variational geometry of Chapter 6 in
relating tangent vectors to normal vectors. The pairing between convex sets
and sublinear functions in Chapter 8 has served as the vehicle for expressing
connections between subgradients and subderivatives. Both correspondences
are rooted in a deeper principle of duality for ‘conjugate’ pairs of convex func-
tions, which will emerge fully here.

On the basis of this duality, close connections between otherwise disparate
properties are revealed. It will be seen for instance that the level boundedness
of one function in a conjugate pair corresponds to the finiteness of the other
function around the origin. A catalog of such surprising linkages can be put
together, and lists of dual operations and constructions to go with them.

In this way the analysis of a given situation can often be translated into
an equivalent yet very different context. This can be a major source of in-
sights as well as a means of unifying seemingly divergent parts of theory. The
consequences go far beyond situations ruled by pure convexity, because many
problems, although nonconvex, have crucial aspects of convexity in their struc-
ture, and the dualization of these can already be very fruitful. Among other
things, we’ll be able to apply such ideas to the general expression of optimality
conditions in terms of a Lagrangian function, and even to the dualization of
optimization problems themselves.

A. Legendre-Fenchel Transform

The general framework for duality is built around a ‘transform’ that gives an
operational form to the envelope representations of convex functions. For any
function f : IRn → IR, the function f∗ : IRn → IR defined by

f∗(v) := supx
{〈v, x〉 − f(x)} 11(1)

is conjugate to f , while the function f∗∗ = (f∗)∗ defined by

f∗∗(x) := supv
{〈v, x〉 − f∗(v)

}
11(2)
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is biconjugate to f . The mapping f �→ f∗ from fcns(IRn) into fcns(IRn) is the
Legendre-Fenchel transform.

The significance of the conjugate function f∗ can easily be understood in
terms of epigraph relationships. Formula 11(1) says that

(v, β) ∈ epi f∗ ⇐⇒ β ≥ 〈v, x〉 − α for all (x, α) ∈ epi f.

If we write the inequality as α ≥ 〈v, x〉− β and think of the affine functions on
IRn as parameterized by pairs (v, β) ∈ IRn × IR, we can express this as

(v, β) ∈ epi f∗ ⇐⇒ lv,β ≤ f, where lv,β(x) := 〈v, x〉 − β.
Since the specification of a function on IRn is tantamount to the specification
of its epigraph, this means that f∗ describes the family of all affine functions
majorized by f . Simultaneously, though, our calculation reveals that

β ≥ f∗(v) ⇐⇒ β ≥ lx,α(v) for all (x, α) ∈ epi f,

In other words, f∗ is the pointwise supremum of the family of all affine functions
lx,α for (x, α) ∈ epi f . By the same token then, formula 11(2) means that f∗∗

is the pointwise supremum of all the affine functions majorized by f .

epi f

(ν,β)(x, )α

l αx,
(a) (b)

epi f*

l βv,

Fig. 11–1. (a) Affine functions majorized by f . (b) Affine functions majorized by f∗.

Recalling the facts about envelope representations in Theorem 8.13 and
making use of the notion of the convex hull con f of an arbitrary function
f : IRn → IR (see 2.31), we can summarize these relationships as follows.

11.1 Theorem (Legendre-Fenchel transform). For any function f : IRn → IR
with con f proper, both f∗ and f∗∗ are proper, lsc and convex, and

f∗∗ = cl con f.

Thus f∗∗ ≤ f , and when f is itself proper, lsc and convex, one has f∗∗ = f .
Anyway, regardless of such assumptions, one always has

f∗ = (con f)∗ = (cl f)∗ = (cl con f)∗.

Proof. In the light of the preceding explanation of the meaning of the
Legendre-Fenchel transform, this is immediate from Theorem 8.13; see 2.32
for the properness of cl f when f is convex and proper.
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11.2 Exercise (improper conjugates). For a function f : IRn → IR with con f
improper in the sense of taking on −∞, one has f∗ ≡ ∞ and f∗∗ ≡ −∞, while
cl con f has the value −∞ on the set cl dom(con f) but the value ∞ outside
this set. For the improper function f ≡ ∞, one has f∗ ≡ −∞ and f∗∗ ≡ ∞.

Guide. Make use of 2.5.

The Legendre-Fenchel transform obviously reverses ordering among the
functions to which it is applied:

f1 ≤ f2 =⇒ f∗
1 ≥ f∗

2 .

The fact that f = f∗∗ when f is proper, lsc and convex means that the
Legendre-Fenchel transform sets up a one-to-one correspondence in the class of
all such functions: if g is conjugate to f , then f is conjugate to g:

f ←→∗ g when

{
g(v) = supx

{〈v, x〉 − f(x)},
f(x) = supv

{〈v, x〉 − g(v)}.
This is called the conjugacy correspondence. Every property of one function in
a conjugate pair must mirror some property of the other function. Every con-
struction or operation must have its conjugate counterpart. This far-reaching
principle of duality allows everything to be viewed from two different angles,
often with remarkable consequences.

An initial illustration of the duality of operations is seen in the following
relations, which immediately fall out of the definition of conjugacy. In each
case the expression on the left gives a function of x while the one on the right
gives the corresponding function of v under the assumption that f ←→∗ g:

f(x)− 〈a, x〉 ←→∗ g(v + a),

f(x+ b) ←→∗ g(v)− 〈v, b〉,
f(x) + c ←→∗ g(v)− c,
λf(x) ←→∗ λg(λ−1v) (for λ > 0),

λf(λ−1x) ←→∗ λg(v) (for λ > 0).

11(3)

Interestingly, the last two relations pair multiplication with epi-multiplication:

(λf)∗ = λ�f∗, (λ�f)∗ = λf∗,

for positive scalars λ. (An extension to λ = 0 will come out in Theorem 11.5.)
Later we’ll see a similar duality between addition and epi-addition of functions
(in Theorem 11.23(a)).

One of the most important dualization rules operates on subgradients. It
stems from the fact that the subgradients of a convex function correspond to
its affine supports (as described after 8.12). To say that the affine function lv̄,β̄
supports f at x̄, with ᾱ = f(x̄), is to say that the affine function lx̄,ᾱ supports
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f∗ at v̄, with β̄ = f∗(v̄); cf. Figure 11–1 again. This gives us a relationship
between subgradients of f and those of f∗.

11.3 Proposition (inversion rule for subgradient relations). For any proper, lsc,
convex function f , one has ∂f∗ = (∂f)−1 and ∂f = (∂f∗)−1. Indeed,

v̄ ∈ ∂f(x̄) ⇐⇒ x̄ ∈ ∂f∗(v̄) ⇐⇒ f(x̄) + f∗(v̄) = 〈v̄, x̄〉,
whereas f(x) + f∗(v) ≥ 〈v, x〉 for all x, v. Hence gph ∂f is closed and

∂f(x̄) = argmaxv
{〈v, x̄〉 − f∗(v)

}
, ∂f∗(v̄) = argmaxx

{〈v̄, x〉 − f(x)}.
Proof. The argument just given would suffice, but here’s another view of why
the relations hold. From the first formula in 11(3) we know that for any v̄ the
points x̄ furnishing the minimum of the convex function fv̄(x) := f(x)−〈v̄, x〉,
if any, are the ones such that f(x̄)−〈v̄, x〉 = −f∗(v̄), finite. But by the version
of Fermat’s principle in 10.1 they are also the ones such that 0 ∈ ∂fv̄(x̄), this
subgradient set being the same as ∂f(x̄)− v̄ (cf. 8.8(c)). Thus, f(x̄) + f∗(v̄) =
〈v̄, x̄〉 if and only if v̄ ∈ ∂f(x̄). The rest follows now by symmetry.

v

x

x

v

(a) (b)

gph f*6gph f6

Fig. 11–2. Subgradient inversion for conjugate functions.

Subgradient relations, with normal cone relations as a special case, are
widespread in the statement of optimality conditions. The inversion rule in
11.3 (illustrated in Figure 11–2) is therefore a key to writing such conditions
in alternative ways and gaining other interpretations of them. That pattern
will be prominent in our work with generalized Lagrangian functions and dual
problems of optimization later in this chapter.

B. Special Cases of Conjugacy

Before proceeding with other features of the Legendre-Fenchel transform, let’s
observe that Theorem 11.1 covers, as special instances of the conjugacy cor-
respondence, the fundamentals of cone polarity in 6.21 and support function
theory in 8.24. This confirms that those earlier modes of dualization fit squarely
in the picture now being unveiled.
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11.4 Example (support functions and cone polarity).

(a) For any set C ⊂ IRn, the conjugate of the indicator function δC
is the support function σC . On the other hand, for any positively homo-
geneous function h on IRn the conjugate h∗ is the indicator δC of the set
C =

{
x
∣∣ 〈v, x〉 ≤ h(v) for all v

}
. In this sense, the correspondence between

closed, convex sets and their support functions is imbedded within conjugacy:

δC ←→∗ σC for C a closed, convex, set.

Under this correspondence one has

v̄ ∈ NC(x̄) ⇐⇒ x̄ ∈ ∂σC(v̄) ⇐⇒ x̄ ∈ C, 〈v̄, x̄〉 = σC(v̄). 11(4)

(b) For a cone K ⊂ IRn, the conjugate of the indicator function δK is the
indicator function δK∗ . In this sense, the polarity correspondence for closed,
convex cones is imbedded within conjugacy:

δK ←→∗ δK∗ for K a closed, convex cone.

Under this correspondence one has

v̄ ∈ NK(x̄) ⇐⇒ x̄ ∈ NK∗(v̄) ⇐⇒ x̄ ∈ K, v̄ ∈ K∗, x̄ ⊥ v̄. 11(5)

Detail. The formulas for the conjugate functions immediately reduce in these
ways, and then 11.3 can be applied.

In particular, the orthogonal subspace correspondenceM ↔M⊥ is imbed-
ded within conjugacy through δ∗M = δM⊥ .

The support function correspondence has a bearing on the Legendre-
Fenchel transform from a different angle too, namely in characterizing the
effective domains of functions conjugate to each other.

11.5 Theorem (horizon functions as support functions). Let f : IRn → IR be
proper, lsc and convex. The horizon function f∞ is then the support function
of dom f∗, whereas f∗∞ is the support function of dom f .

Proof. We have (f∗)∗ = f (by 11.1), and because of this symmetry it suffices
to prove that the function f∗∞ = (f∗)∞ is the support function of D := dom f .
Fix any v0 ∈ dom f∗. We have for arbitrary v ∈ IRn and τ > 0 that

f∗(v0 + τv) = sup
x∈D

{〈v0 + τv, x〉 − f(x)}
≤ sup

x∈D

{〈v0, x〉 − f(x)}+ τ sup
x∈D
〈v, x〉 = f∗(v0) + τσD(v),

hence
[
f∗(v0 + τv) − f∗(v0)

]
/τ ≤ σD(v) for all v ∈ IRn, τ > 0. Through 3(4)

this guarantees that f∗∞ ≤ σD. On the other hand, for v ∈ IRn and β ∈ IR
with f∗∞(v) ≤ β one has f∗(v0 + τv) ≤ f∗(v0) + τβ for all τ > 0, hence for
any x ∈ IRn that
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f(x) ≥ 〈v0 + τv, x〉 − f∗(v0 + τv)

≥ 〈v0, x〉 − f∗(v0) + τ
(〈v, x〉 − β) for all τ > 0.

This implies that 〈v, x〉 ≤ β for all x with f(x) < ∞, so D ⊂ {
x
∣∣ 〈v, x〉 ≤ β

}
.

Thus σD(v) ≤ β, and we conclude that also σD ≤ f∗∞, so σD = f∗∞.

Another way that support functions come up in the dualization of prop-
erties of f and f∗ is seen in connection with level sets. For simplicity in the
following, we look only at 0-level sets, since lev≤α f can be studied as lev≤0 fα
for fα = f − α, with f∗

α = f∗ + α by 11(3).

11.6 Exercise (support functions of level sets). If C =
{
x
∣∣ f(x) ≤ 0

}
for a

finite, convex function f such that inf f < 0, then

σC(v) = inf
λ>0

λf∗(λ−1v) for all v �= 0.

Guide. Let h denote the function of v on the right side of the equation; take
h(0) = 0. Show in terms of the ‘pos’ operation defined ahead of 3.48 that h
is a positively homogeneous, convex function for which the points x satisfying
〈v, x〉 ≤ h(v) for all v are the ones such that f∗∗(x) ≤ 0. Argue that f∗∗ = f
and hence via support function theory that σC = cl h. Verify through 11.5 that
f∗∞ = δ{0} and in this way deduce from 3.48(b) that cl h = h.

Note that the roles of f and f∗ in 11.6 could be reversed: the support
functions for the level sets of f∗, when that function is finite, can be derived
from f (as long as the convex function f is proper and lsc, so that (f∗)∗ = f .)

While the polarity of cones is a special case of conjugacy of functions, the
opposite is true as well, in a certain sense. This is not only interesting but
valuable for certain theoretical purposes.

11.7 Exercise (conjugacy as cone polarity). For proper functions f and g on
IRn, consider in IRn+2 the cones

Kf =
{
(x, α,−λ)

∣∣∣λ > 0, (x, α) ∈ λ epi f ; or λ = 0, (x, α) ∈ epi f∞
}
,

Kg =
{
(v,−μ, β)

∣∣∣μ > 0, (v, β) ∈ μ epi g; or μ = 0, (v, β) ∈ epi g∞
}
.

Then f and g are conjugate to each other if and only if Kf and Kg are polar
to each other.

Guide. Verify that Kf is convex and closed if and only if f is convex and
lsc; indeed, Kf is then the cone representing epi f in the ray space model
for csm IRn+1. The cone Kg has a similar interpretation with respect to g,
except for a reversal in the roles of last two components. Use the definition of
conjugacy along with the relationships in 11.5 to analyze polarity.

How does the duality between f and f∗ affect situations where f represents
a problem of optimization? Here are the central facts.
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11.8 Theorem (dual properties in minimization). The properties of a proper,
lsc, convex function f : IRn → IR are paired with those of its conjugate function
f∗ in the following manner.

(a) inf f = −f∗(0) and argmin f = ∂f∗(0).
(b) argmin f = {x̄} if and only f∗ is differentiable at 0 with ∇f∗(0) = x̄.

(c) f is level-coercive (or level-bounded) if and only if 0 ∈ int(dom f∗).
(d) f is coercive if and only if dom f∗ = IRn.

Proof. The first property in (a) simply re-expresses the definition of f∗(0),
while the second comes from 11.3 and the fact that argmin f consists of the
points x such that 0 ∈ ∂f(x); cf. 10.1. In (b) this is elaborated through the fact
that ∂f∗(0) = {x̄} if and only if f∗ is strictly differentiable at 0, this by 9.18
and the fact that because f∗ is itself proper, lsc and convex, f is regular with
∂∞f∗(0) = ∂f∗(0)∞ (see 7.27 and 8.11). The regularity of f∗ implies further
that f∗ is strictly differentiable wherever it’s differentiable (cf. 9.20).

In (c) we recall that f is level-coercive if and only if f∞(w) > 0 for all
w �= 0 (see 3.26(a)), whereas the convex set D = dom f∗ has 0 ∈ intD if and
only if σD(w) > 0 for all w �= 0 (see 8.29(a)). The equivalence comes from 11.5,
where f∞(w) is identified with σD(w). (Recall too that a convex function is
level-bounded if and only if it is level-coercive; 3.27.) Similarly, in (d) we are
seeing an instance of the fact that a convex set is the whole space if and only if
it isn’t contained in any closed half-space, i.e., its support function is δ{0}.

The dualizations in 11.8 can be extended through elementary conjugacy
relations like the ones in 11(3). Thus, one has

infx
{
f(x)− 〈a, x〉} = −f∗(a), argminx

{
f(x)− 〈a, x〉} = ∂f∗(a), 11(6)

the argmin being {b} if and only if f∗ is differentiable at a with ∇f∗(a) = b.
The function f − 〈a, ·〉 is level-coercive if and only if a ∈ int(dom f∗).

So far, little has been said about how f∗ can effectively be determined
when f is given. Because of conjugacy’s abstract uses in analysis and the
dualization of properties for purposes of understanding them better, a formula
for f beyond the defining one in 11(1) isn’t always needed, but what about
the times when it is? Ways of constructing f∗ out of the conjugates of other
functions that are part of the make up of f can be very helpful (and will be
occupy our attention in due course), but somewhere along the line it’s crucial
to have a repertory of examples that can serve as building blocks, much as
power functions, exponentials, logarithms and trigonometric expressions serve
in classical differentiation and integration.

We’ve observed in 11.4(a) that f∗ can sometimes be identified as a support
function (here examples like 8.26 and 8.27 can be kept in mind), or in reverse
as the indicator of a convex set defined by the system of linear constraints
associated with a sublinear function (cf. 8.24) when f exhibits sublinearity. In
this respect the results in 11.5 and 11.6 can be useful, and further also the
subderivative-subgradient relations in Chapter 8 for functions that are subdif-
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ferentially regular. Then again, as in 11.4(b), f∗ might be the indicator of a
polar cone. For instance, the polar of IRn

+
is IRn

−, and the polar of a subspace
M is M⊥. The Farkas lemma in 6.45 and the relations between tangent cones
and polar cones can provide assistance as well.

C. The Role of Differentiability

Beyond special cases such as these, there is the possibility of generating ex-
amples directly from the formula in 11(1) for f∗ in terms of f . This may be
intimidating, though, because it not only demands the calculation of a global
supremum (the solution of a certain optimization problem), but requires this
to be done parametrically—the supremum must be expressed as a function of
the v element. For functions on IR1, ‘brute force’ may succeed, but elsewhere
some guidelines are needed. The next three examples will present important
cases where f∗ can be calculated from f by use of derivatives alone.

As long as f is convex and differentiable everywhere, one can hope to get
the supremum in formula 11(1), and thereby the value of f∗(v), by setting
the gradient (with respect to x) of the expression 〈v, x〉 − f(x) equal to 0 and
solving that equation for x. This is justified because the expression is concave
with respect to x; the vanishing of its gradient corresponds therefore to the
attainment of the global maximum. The equation in question is v−∇f(x) = 0,
and its solutions are the vectors x, if any, belonging to (∇f)−1(v). An x
identified in this manner can be substituted into 〈v, x〉 − f(x) to get f∗(v).
Pitfalls gape, however, in the fact that the range of the mapping ∇f might
not be all of IRn. For v /∈ rge∇f , the supremum would need to be determined
through additional analysis. It might be∞, with the meaning that v /∈ dom f∗,
or it might be finite, yet not attained.

Putting such troubles aside to get a picture first of the nicest circum-
stances, one can ask what happens when ∇f is a one-to-one mapping from IRn

onto IRn, so that (∇f)−1 is single-valued everywhere. Understandably, this is
the historical case in which conjugate functions first attracted interest.

11.9 Example (classical Legendre transform). Let f be a finite, coercive, convex
function of class C2 (twice continuously differentiable) on IRn whose Hessian
matrix ∇2f(x) is positive-definite for every x. Then the conjugate g = f∗

is likewise a finite, coercive, convex function of class C2 on IRn with ∇2g(v)
positive-definite for every v and g∗ = f . The gradient mapping ∇f is one-to-
one from IRn onto IRn, and its inverse is ∇g; one has

g(v) =
〈
(∇f)−1(v), v

〉− f((∇f)−1(v)
)
,

f(x) =
〈
(∇g)−1(x), x

〉− g((∇g)−1(x)
)
.

11(7)

Moreover the matrices ∇2f(x) and ∇2g(v) are inverse to each other when
v = ∇f(x), or equivalently x = ∇g(v) (then x and v are conjugate points).
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Detail. The assumption on second derivatives makes f strictly convex (see
2.14). Then for a fixed a ∈ IRn in 11(6) we not only have through coercivity
the attainment of the infimum but its attainment at a unique point x (by 2.6).
Then ∇f(x)−a = 0 by Fermat’s principle. This line of reasoning demonstrates
that for each v ∈ IRn there is a unique x with ∇f(x) = v, i.e., the mapping
∇f is invertible. The first equation in 11(7) is immediate, and the rest of the
assertions can then be obtained from 11.8(d) and differentiation of g, using the
standard inverse mapping theorem.

f

α)(x,
lv,β

g

β)(y,

lx,α

Fig. 11–3. Conjugate points in the classical setting.

The next example fits the pattern of the preceding one in part, but also
illustrates how the approach to calculating f∗ from the derivatives of f can be
followed a bit more flexibly.

11.10 Example (linear-quadratic functions). Suppose

f(x) = 1
2〈x,Ax〉+ 〈a, x〉+ α

with A ∈ IRn×n symmetric and positive-semidefinite, so that f is convex. If A
is nonsingular, the conjugate function is

f∗(v) = 1
2

〈
v − a, A−1(v − a)〉− α.

At the other extreme, if A = 0, so that f is merely affine, the conjugate function
is given by f∗(v) = δ{a}(v)− α.

In general, the column space of A (the range of x �→ Ax) is a linear
subspace L, and there is a unique symmetric, positive-semidefinite matrix A†

(the pseudo-inverse of A) having A†A = AA† = [orthogonal projector on L].
The conjugate function is given then by

f∗(v) =
{

1
2

〈
v − a, A†(v − a)〉− α when v − a ∈ L,

∞ when v − a �∈ L.
Detail. The nonsingular case fits the pattern of 11.9, while the affine case is
obvious on its own. The general case is made simple by reducing to a = 0 and
α = 0 through the relations 11(3) and invoking a change of coordinates that
diagonalizes the matrix A.



482 11. Dualization

11.11 Example (self-conjugacy). The function f(x) =
1
2 |x|2 on IRn has f∗ = f

and is the only function with this property.

Detail. The self-conjugacy of this function is evident as the special case of
11.10 in which A = I, a = 0. Its uniqueness in this respect is seen as follows.
If f = f∗, then f∗∗ = f by 11.1, and f is proper by 11.2. Formula 11(1)
gives in this case f(v) + f(x) ≥ 〈v, x〉 for all x and v, hence with x = v that
f(x) ≥ 1

2 |x|2 for all x. Passing to conjugates in this inequality, one sees on the
other hand that f∗(v) ≤ 1

2 |v|2 for all v, hence from f∗ = f that f(x) ≤ 1
2 |x|2

for all x. Therefore, f(x) =
1
2 |x|2 for all x.

The formula in 11.6 for the support function of a level set can be illustrated
through Example 11.10. For a convex set of the form

C =
{
x
∣∣ 1
2 〈x,Ax〉+ 〈a, x〉+ α ≤ 0

}
with A symmetric and positive-definite, and such that the inequality is satisfied
strictly by at least one x, one necessarily has 〈a, A−1a〉 − 2α > 0 (by 11.8(a)
because this quantity is 2f∗(0)), and thus the expression

σC(v) = β
√
〈v, A−1v〉 − 〈b, v〉 for b = A−1a, β =

√
〈a, A−1a〉 − 2α.

In general, if one of the functions in a general conjugate pair is finite
and coercive, so too must be the other function; this is clear from 11.8(d).
Otherwise, at least one of the two functions in a conjugate pair must take on
the value ∞ somewhere and thus have some convex set other than IRn itself
as its effective domain. The support function relation in 11.5 shows in these
cases how dom f∗ relates to properties of f through the horizon function f∞.
For the same reason, since f∗∗ = f (when f is proper, lsc and convex), dom f
relates to properties of f∗ through the way it determines f∗∞. Information
about effective domains facilitates the calculation of conjugates in many cases.

The following example illustrates this principle as an extension of the
method for calculating f∗ from the derivatives of f .

11.12 Example (log-exponential function and entropy). For f(x) = logexp(x),
the conjugate f∗ is the entropy function g defined for v = (v1, . . . , vn) by

g(v) =

{∑n
j=1 vj log vj when vj ≥ 0,

∑n
j=1 vj = 1,

∞ otherwise,

with 0 log 0 = 0. The support function of the set C =
{
x
∣∣ logexp(x) ≤ 0

}
is

the function h : IRn → IR defined under the same convention by

h(v) =

{∑n
j=1 vj log vj −

(∑n
j=1 vj

)
log

(∑n
j=1 vj

)
when vj ≥ 0,

∞ otherwise.

Detail. The horizon function of f(x) = logexp(x) is f∞(x) = vecmax x by
3(5), and this is the support function of the unit simplex C consisting of the
vectors v ≥ 0 with v1+ · · ·+vn = 1, as already noted in 8.26. Since f is a finite,
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convex function (cf. 2.16), it’s in particular a proper, lsc, convex function (cf.
2.36). We may conclude from 11.5 that dom f∗ has the same support function
as C and therefore has cl(dom f∗) = C (cf. 8.24). Hence in terms of relative
interiors (cf. 2.40),

rint(dom f∗) = rintC =
{
v
∣∣ vj > 0,

∑n
j=1vj = 1

}
.

From the formula ∇f(x) = σ(x)−1(ex1 , . . . , exn) for σ(x) := ex1 + · · ·+exn it is
apparent that each v̄ ∈ rintC is of the form ∇f(x̄) for x̄ = (log v̄1, . . . , log v̄n).
The inequality f(x) ≥ f(x̄) + 〈∇f(x̄), x− x̄〉 in 2.14(b) yields

supx
{〈x,∇f(x̄)〉 − f(x)} = 〈x̄,∇f(x̄)〉 − f(x̄),

which is the same as

supx
{〈x, v̄〉 − f(x)} =

∑n
j=1(log v̄j)v̄j − log

(∑n
j=1v̄j

)
= g(v̄).

Thus f∗ = g on rintC. The closure formula in 2.35 as translated to the context
of relative interiors shows then that these functions agree on all of C, therefore
on all of IRn.

The function h is pos g, where g(0) = ∞ and inf f = −∞; cf. 11.8(a).
According to 11.6, h is then the support function of lev≤0 f .

With minor qualifications on the boundaries of domains, differentiability
itself dualizes under the Legendre-Fenchel transform to strict convexity.

11.13 Theorem (strict convexity versus differentiability). The following prop-
erties are equivalent for a proper, lsc, convex function f : IRn → IR and its
conjugate function f∗:

(a) f is almost differentiable, in the sense that f is differentiable on the
open, convex set int(dom f), which is nonempty, but ∂f(x) = ∅ for all points
x ∈ dom f \ int(dom f), if any;

(b) f∗ is almost strictly convex, in the sense that f∗ is strictly convex on
every convex subset of dom ∂f∗ (hence on rint(dom f∗), in particular).

Likewise, the function f∗ is almost differentiable if and only if f is almost
strictly convex.

Proof. Since f = (f∗)∗ under our assumptions (by 11.1), there’s symmetry
between the first equivalence asserted and the one claimed at the end. We can
just as well work at verifying the latter. As seen from 11.8 (and its extension
explained after the proof of that result), f∗ is almost differentiable if and only
if, for every a ∈ IRn such that the set argminx

{
f(x) − 〈a, x〉} = ∂f∗(a) is

nonempty, it’s actually a singleton. Our task is to show that this holds if and
only if f is almost strictly convex.

Certainly if for some a this minimizing set, which is convex, contained
two different points x0 and x1, it would contain xτ := (1 − τ)x0 + τx1 for
all τ ∈ (0, 1). Because xτ ∈ ∂f∗(a) we would have a ∈ ∂f(xτ ) by 11.3, so
the line segment joining x0 and x1 would lie in dom ∂f . From the fact that
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infx
{
f(x) − 〈a, x〉} = −f∗(a), we would have f(xτ ) − 〈a, xτ〉 = −f∗(a) for

τ ∈ (0, 1). This implies f(xτ ) = (1 − τ)f(x0) + τf(x1) for τ ∈ (0, 1), since
〈a, xτ〉 = (1− τ)〈a, x0〉+ τ〈a, x1〉. Then f isn’t almost strictly convex.

Conversely, if f fails to be almost strictly convex there must exist x0 �= x1
such that the points xτ on the line segment joining them belong to dom ∂f and
satisfy f(xτ ) = (1− τ)f(x0) + τf(x1). Fix any τ̄ ∈ (0, 1) and any a ∈ ∂f(xτ̄).
From 11.3 and formula 11(1) for f∗ in terms of f , we have

f(xτ ) ≥ 〈a, xτ 〉 − f∗(a) for all τ ∈ (0, 1), with equality for τ = τ̄ .

The affine function ϕ(τ) := f(xτ ) on (0, 1) thus attains its minimum at the
intermediate point τ̄ . But then ϕ has to be constant on (0, 1). In other words,
for all τ ∈ (0, 1) we must have f(xτ ) = 〈a, xτ 〉 − f∗(a), hence xτ ∈ ∂f∗(a) by
11.3. In this event ∂f∗(a) isn’t a singleton.

The property in 11.13(a) of being almost differentiable can be identified
with the single-valuedness of the mapping ∂f relative to its domain (see 9.18,
recalling from 7.27 that proper, lsc, convex functions are regular). It implies f
is continuously differentiable—smooth—on int(dom f); cf. 9.20.

D. Piecewise Linear-Quadratic Functions

Differentiability isn’t the only tool available for understanding the nature of
conjugate functions, of course. A major class of nondifferentiable functions
with nice behavior under the Legendre-Fenchel transform consists of the convex
functions that are piecewise linear (see 2.47) or more generally piecewise linear-
quadratic (see 10.20).

11.14 Theorem (piecewise linear-quadratic functions in conjugacy). Suppose
that f : IRn → IR be proper, lsc and convex. Then

(a) f is piecewise linear if and only if f∗ has this property;

(b) f is piecewise linear-quadratic if and only if f∗ has this property.

For proving part (b) we’ll need a lemma, which is of some interest in itself.
We take care of this first.

11.15 Lemma (linear-quadratic test on line segments). In order that f be linear-
quadratic relative to a convex set C ⊂ IRn, in the sense of being expressible by
a formula of type f(x) = 1

2 〈x,Ax〉 + 〈a, x〉 + α for x ∈ C, it is necessary and
sufficient that f be linear-quadratic relative to every line segment in C.

Proof. The condition is trivially necessary, so the challenge is proving its
sufficiency. Without loss of generality we can focus on the case where intC �= ∅
(cf. 2.40 and the discussion preceding it). It’s enough actually to demonstrate
that the condition implies f is linear-quadratic relative to intC, because the
formula obtained on intC must then extend to the rest of C through the fact
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that when a boundary point x of C is joined by a line segment to an interior
point, all of the segment except x itself lies in intC (see 2.33).

We claim next that if f is linear-quadratic in some neighborhood of each
point of intC, then it’s linear-quadratic relative to intC. Consider any two
points x0 and x1 of intC. We’ll show that the formula around x0 must agree
with the formula around x1.

The line segment [x0, x1] is a compact set, every point of which has an open
ball relative to which f is linear-quadratic, and it can therefore be covered by a
finite collection of such open balls, say Ok for k = 1, . . . , r, each with a formula
f(x) = 1

2〈x,Akx〉+〈ak, x〉+αk. If two sets Ok1
and Ok2

overlap, their formulas
have to agree on the intersection; this implies that Ak1

= Ak2
, ak1

= ak2
and

αk1
= αk2

. But as one moves along [x0, x1] from x0 to x1, each transition out of
one set Ok and into another passes through a region of overlap (again because
of the line segment principle for convex sets, or more generally because line
segments are connected sets). Thus, all the formulas for k = 1, . . . , r agree.

Having reduced the task to proving that f is linear-quadratic relative to
a neighborhood of each point of intC, we can take such neighborhoods to be
cubes. The question then is whether, if f is linear-quadratic on every line
segment in a certain cube, it must be linear-quadratic relative to the cube.

A cube in IRn is a product of n intervals, so an induction argument can be
contemplated in which the product grows by one interval at a time until the
cube is built up, and at each stage the linear-quadratic property of f relative to
the partial product is verified. For a single interval, as the starter, the property
holds by hypothesis.

To validate the induction argument we only have to show that if U and
V are convex neighborhoods of the origin in IRp and IRq respectively, and if a
function f on U × V is such that f(u, v) is linear-quadratic in u for fixed v,
linear-quadratic in v for fixed u, and moreover f is linear-quadratic relative to
all line segments in U × V , then f is linear-quadratic relative to U × V as a
whole. We go about this by first using the property in u to express

f(u, v) = 1
2

〈
u,A(v)u

〉
+

〈
a(v), u

〉
+ α(v) for u ∈ U when v ∈ V. 11(8)

We’ll demonstrate next, invoking the linear-quadratic property of f(u, v) in v,
that α(v) and each component of the vector a(v) and the matrix A(v) must
be linear-quadratic as a function of v ∈ V . For α(v) this is clear from having
α(v) = f(0, v). In the case of A(v) we observe that〈

u′, A(v)u
〉

= f(u+ u′, v)− f(u, v)− f(u′, v) + α(v)

for any u and u′ in IRp small enough that they and u+ u′ belong to U . Hence
〈u′, A(v)u〉 is linear-quadratic in v ∈ V for any such u and u′. Choosing u and
u′ among εe1, . . . , εep for small ε > 0 and the canonical basis vectors ek for IRp

(where ek has 1 in kth position and 0’s elsewhere), we deduce that for every
row i and column j the component Aij(v) is linear-quadratic in v. By writing
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〈
a(v), u

〉
= f(u, v)− 1

2

〈
u,A(v)u

〉− α(v),
where the right side is now known to be linear-quadratic in v ∈ V , we see that
〈a(v), u〉 has this property for each u sufficiently near to 0. Again by choosing
u from among εe1, . . . , εep we are able to conclude that each component aj(v)
of a(v) is linear-quadratic in v ∈ V .

When such linear-quadratic expressions in v for α(v), a(v) and A(v) are
introduced in 11(8), a polynomial formula for f(u, v) is obtained in which there
are no terms of degree higher than 4. We have to show that there really aren’t
any terms of degree higher than 2, i.e., that f is linear-quadratic relative to
U × V as a whole. We already know that α(v) has no higher-order terms, so
the issue concerns a(v) and A(v).

This is where we bring in the last of our assumptions, that f is linear-
quadratic on all line segments in U×V . We’ll only need to look at line segments
that join an arbitrary point (ū, v̄) ∈ U×V to (0, 0). The assumption means then
that f(θū, θv̄) is linear-quadratic in θ ∈ [0, 1]. The argument just presented for
reducing to individual components can be repeated by looking at f(θ[ū+ ū′])
with the vectors ū and ū′ chosen from among εe1, . . . , εep, and so forth, to see
that θ2Aij(θv̄) and θaj(θv̄) are polynomials of at most degree 2 in θ for every
choice of v̄ ∈ V . In the linear-quadratic expressions for Aij(v) and aj(v) as
functions of v, it is obvious then that Aij(v) has to be constant in v, while
aj(v) can at most have first-order terms in v. This finishes the proof.

Proof of 11.14. The justification of (a) is relatively easy on the basis of earlier
results. When the convex function f is piecewise linear, it can be expressed in
the manner of 3.54: for some choice of vectors ai and scalars ci,

f(x) =

⎧⎨
⎩

infimum of t1c1 + · · ·+ tmcm + tm+1cm+1 + · · ·+ trcr
subject to t1a1 + · · ·+ tmam + tm+1am+1 + · · ·+ trar = x
with ti ≥ 0 for i = 1, . . . , r,

∑m

i=1
ti = 1.

From f∗(v) = supx
{〈v, x〉−f(x)} we get f∗(v) = maxi=1,...,m

{〈v, ai〉−ci}+δC
for the polyhedral set C :=

{
v
∣∣ 〈v, ai〉 ≤ ci for i = m+1, . . . , r

}
. This signifies

by 2.49 that f∗ is piecewise linear. On the other hand, if f∗ is piecewise linear,
then so is f∗∗ by this argument; but f∗∗ = f .

For (b), suppose now that f is piecewise linear-quadratic: for D := dom f
there are polyhedral sets Ck, k = 1, . . . , r, such that D =

⋃r
k=1Ck and

f(x) = 1
2〈x,Akx〉+ 〈ak, x〉+ αk when x ∈ Ck. 11(9)

Our task is to show that f∗ has a similar representation. We’ll base our argu-
ment on the fact in 11.3 that

f∗(v) = 〈v, x〉 − f(x) for any x with v ∈ ∂f(x). 11(10)

This requires careful investigation of the structure of the mapping ∂f .
Recall from 10.21 that the convex set D = dom f , as the union of finitely

many polyhedral sets Ck, is itself polyhedral. Any polyhedral set may be
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represented as the intersection of a finite collection of closed half-spaces, so
we can contemplate a finite collection H of closed half-spaces in IRn such that
(1) each of the sets D, C1, . . . , Cr is the intersection of a subcollection of the
half-spaces in H, and (2) for every H ∈ H the opposite closed half-space H ′

(meeting H in a shared hyperplane) is likewise in H.
Let Jx =

{
H ∈ H ∣∣x ∈ H for each x ∈ D. Let J consist of all J ⊂ H such

that J = Jx for some x ∈ D, and for each J ∈ J let DJ be the intersection of
the half-spaces H ∈ J . It is clear that each DJ is a nonempty polyhedral set
contained in D; in fact, the half-spaces in H that intersect to form Ck belong
to Jx if x ∈ Ck), so that DJ ⊂ Ck when J = Jx for any x ∈ Ck.

For each J ∈ J , let FJ = rintDJ , recalling that then DJ = clFJ . We
claim that J = Jx if and only if x ∈ FJ . For the half-spaces H ∈ Jx, there
are only two possibilities: either x ∈ intH or x lies on the boundary of H,
which corresponds to having both H and the opposite half-space H ′ belong to
Jx. Thus, for J = Jx, DJ is the intersection of various hyperplanes along with
some closed half-spaces having x in their associated open half-spaces. That
intersection is the relatively open set FJ . Hence x ∈ FJ . On the other hand,
for any x′ in this set FJ , and in particular DJ , we have Jx′ ⊃ J = Jx. If there
were a half-space H in Jx′\Jx, then x would have to lie outside of H, or more
specifically, in the interior of the opposite half-space H ′ (likewise belonging to
H). In that case, however, intH ′ is one of the open half-spaces that includes FJ ,
and hence contains x′, in contradiction to x′ being in H. Thus, any x′ ∈ FJ

must have Jx′ = J . Indeed, we see from this that
{
FJ

∣∣ J ∈ J }
is a finite

partition of D, comprised in effect of the equivalence classes under the relation
that x′ ∼ x when Jx′ = Jx. Moreover, if any FJ touches a sets Ck, it must lie
entirely in Ck, and the same is true then for its closure, namely DJ . In other
words, the index set K(x) =

{
k
∣∣x ∈ Ck

}
is the same set K(J) for all x ∈ FJ .

It was shown in the proof of 10.21 that df(x) is piecewise linear with
dom df(x̄) = TD(x) =

⋃
k∈K(x)

TCk
(x) and df(x)(w) = 〈Akx + ak, w〉 when

w ∈ TCk
(x). Because f , being a proper, lsc, convex function, is regular (cf.

7.27), we know that ∂f(x) consists of the vectors v such that 〈v, w〉 ≤ df(x)(w)
for all w ∈ IRn (see 8.30). Hence

∂f(x) =
⋂

k∈K(x)

{
v
∣∣∣ 〈v − Akx− ak, w〉 ≤ 0 for all w ∈ TCk

(x)
}

=
⋂

k∈K(x)

{
v
∣∣∣ v − Akx− ak ∈ NCk

(x)
}
.

In this we appeal to the polarity between TCk
(x) and NCk

(x), which results
from Ck being convex (cf. 6.24). Observe next that the normal cone NCk

(x)
(polyhedral) must be the same for all x in a given FJ . That’s because having
v ∈ NCk

(x) corresponds to the maximum of 〈v, x′〉 over x′ ∈ Ck being attained
at x, and by virtue of FJ being relatively open, that can’t happen unless this
linear function is constant on FJ (and therefore attains its maximum at every
point of FJ ). This common normal cone can be denoted by Nk(J), and in
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terms of the common index set K(x) = K(J) for x ∈ FJ , we then have

〈v, x′〉 = 〈v, x〉 for all x, x′ ∈ FJ when v ∈ Nk(J), k ∈ K(J), 11(11)

along with ∂f(x) =
{
v
∣∣ v−ak−Akx ∈ Nk(J) for all k ∈ K(J)

}
when x ∈ FJ .

Consider for each J ∈ J the polyhedral set

GJ =
{
(x, v)

∣∣x ∈ DJ and v − ak − Akx ∈ Nk(J) for all k ∈ K(J)
}
,

which is the closure of the analogous set with FJ in place of DJ . Because
gph ∂f is closed (cf. 11.3), it follows now that gph ∂f =

⋂
J∈J GJ .

For each J ∈ J let EJ be the image of GJ under (x, v) �→ v, which like
GJ is polyhedral by 3.55(a), therefore closed. Since dom∂f∗ = rge ∂f (by the
inversion rule in 11.3), it follows that dom ∂f∗ =

⋃
J∈J EJ . Hence dom ∂f∗

is closed, because the union of finitely many closed sets is closed. But since
f∗ is lsc and proper, dom ∂f∗ is dense in dom f∗ (see 8.10). The union of the
polyhedral sets EJ is thus dom f∗.

All that’s left now is to show f∗ is linear-quadratic relative to each set
EJ . We’ll appeal to Lemma 11.15. Consider any v0 and v1 in a given EJ ,
coming from GJ , and choose any x0 and x1 such that (x0, v0) and (x1, v1)
belong to GJ . Then the pair (xτ , vτ ) := (1− τ)(x0, v0) + τ(x1, v1) belongs to
GJ too, so that vτ ∈ ∂f(xτ). From 11(9) and 11(10) we get, for any k ∈ K(J),
that f∗(vτ ) = 〈vτ , xτ 〉 − f(xτ ) = 〈vτ − Akxτ − ak, xτ 〉 − αk +

1
2 〈xτ , Akxτ 〉 =

〈vτ − Akxτ − ak, x0〉 − αk + 1
2 〈xτ , Akxτ 〉, where the last equation is justified

through the fact that xτ = x0 + τ(x1 − x0) but 〈vτ −Akxτ − ak, x1 − x0〉 = 0
by 11(11). This expression for f∗(vτ ), being linear-quadratic in τ ∈ [0, 1], gives
us what was required.

The fact that f∗ is piecewise linear-quadratic only if f is piecewise linear-
quadratic follows now by symmetry, because f = f∗∗.

11.16 Corollary (minimum of a piecewise linear-quadratic function). For any
proper, convex, piecewise linear-quadratic function f : IRn → IR, if inf f is
finite, then argmin f is nonempty and polyhedral.

Proof. We apply 11.8(a) with the knowledge that f∗ is piecewise linear-
quadratic like f , so that when 0 ∈ dom f∗ the set ∂f∗(0) must be nonempty
and polyhedral (cf. 10.21).

11.17 Corollary (polyhedral sets in duality).

(a) A closed, convex set C is polyhedral if and only if its support function
σC is piecewise linear.

(b) A closed, convex cone K is polyhedral if and only if its polar cone K∗

is polyhedral.

Proof. This specializes 11.14(b) to the correspondences in 11.4. A convex
indicator δC is piecewise linear if and only if C is polyhedral. The cone fact
could also be deduced right from the Minkowski-Weyl theorem in 3.52.
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The preservation of the piecewise linear-quadratic property in passing to
the conjugate of a given function, as in Theorem 11.14(b), is illustrated in
Figure 11–4. As the figure suggests, this duality is closely tied to a property
of the associated subgradient mappings through the inversion rule in 11.3. It
will later be established in 12.30 that a convex function is piecewise linear-
quadratic if and only if its subgradient mapping is piecewise polyhedral as
defined in 9.57. The inverse of a piecewise polyhedral mapping is obviously
still piecewise polyhedral.

(a) (b)

(c) (d)
v

v

x v

x

f*f

x
f6 f*6

Fig. 11–4. Conjugate piecewise linear-quadratic functions.

An important application of the conjugacy in Theorem 11.14 comes up in
the following class of functions θ : IRm → IR, which are useful in setting up
‘penalty’ expressions θ

(
f1(x), . . . , fm(x)

)
in composite formats of optimization.

11.18 Example (piecewise linear-quadratic penalties). For a nonempty polyhe-
dral set Y ⊂ IRm and a symmetric positive-semidefinite matrix B ∈ IRm×m

(possibly B = 0), the function θY,B : IRn → IR defined by

θY,B(u) := sup
y∈Y

{〈
y, u

〉− 1
2

〈
y, By

〉}

is proper, convex and piecewise linear-quadratic. When B = 0, it is piecewise
linear; θY,0 = σY (support function). In general,

dom θY,B = (Y ∞ ∩ kerB)∗ =: DY,B , where kerB :=
{
y
∣∣By = 0

}
;
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this is a polyhedral cone, and it is all of IRm if and only if Y ∞ ∩ kerB = {0}.
The subgradients of θY,B are given by

∂θY,B(u) = argmax
y∈Y

{〈
y, u

〉− 1
2

〈
y, By

〉}
=

{
y
∣∣u−By ∈ NY (y)

}
= (NY +B)−1(u),

∂
∞
θY,B(u) =

{
y ∈ Y ∞ ∩ kerB

∣∣ 〈y, u〉 = 0
}
= NDY,B

(u),

these sets being polyhedral as well, while the subderivative function dθY,B is
piecewise linear and expressed by the formula

dθY,B(u)(z) = sup
{〈y, z〉 ∣∣ y ∈ (NY +B)−1(u)

}
.

Detail. We have θY,B = (δY + jB)
∗ for jB(y) := 1

2 〈y, By〉. The function
δY + jB is proper, convex and piecewise linear-quadratic, and θY,B therefore
has these properties as well by 11.14. In particular, the effective domain of
θY,B is a polyhedral set, hence closed. The support function of this effective
domain is (δY + jB)

∞ by 11.5, and

(δY + jB)
∞ = δ∞

Y + j∞B = δY ∞ + δkerB = δY ∞∩kerB.

Hence by 11.4, dom θY,B must be the polar cone (Y ∞ ∩ kerB)∗, which is IRm

if and only if Y ∞ ∩ kerB is the zero cone.
The argmax formula for ∂θY,B(u) specializes the argmax part of 11.3. The

maximum of the concave function h(y) = 〈y, u〉− 1
2 〈y, By〉 over Y is attained at

y if and only if the gradient ∇h(y) = u−By belongs to NY (y); cf. 6.12. That
yields the other expressions for ∂θY,B(u). We know from the convexity of θY,B
that ∂∞θY,B(u) = NDY,B

(u); cf. 8.12. Since the cones DY,B and Y ∞ ∩ kerB
are polar to each other, we have from 11.4(b) that y ∈ NDY,B

(u) if and only if
u ∈ DY,B , y ∈ Y ∞ ∩ kerB, and u ⊥ y.

On the basis of 10.21, the sets ∂θY,B(u) and ∂
∞θY,B(u) are polyhedral and

the function dθY,B(u) is piecewise linear. The formula for dθY,B(u)(z) merely
expresses the fact that this is the support function of ∂θY,B(u).

E. Polar Sets and Gauges

While most of the major duality correspondences, like convex sets versus sub-
linear functions, or polarity of convex cones, fit directly within the framework
of conjugate convex functions as in 11.4, others, like polarity of convex sets
that aren’t necessarily cones but contain the origin, fit obliquely. In the next
example we draw on the notion of the gauge γC of a set C in 3.50.

11.19 Example (general polarity of sets). For any set C ⊂ IRn with 0 ∈ C, the
polar of C is the set
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C◦ :=
{
v
∣∣ 〈v, x〉 ≤ 1 for all x ∈ C}

,

which is closed and convex with 0 ∈ C◦; when C is a cone, C◦ agrees with the
polar cone C∗. The bipolar of C, which is the set

C◦◦ := (C◦)◦ =
{
x
∣∣ 〈v, x〉 ≤ 1 for all v ∈ C◦},

agrees always with cl(conC). Thus, C◦◦ = C when C is a closed, convex set
containing the origin, so the transformation C �→ C◦ maps that class of sets
one-to-one onto itself. This correspondence is connected to conjugacy through
the associated gauges, which obey the rule that

γC = σC◦ ←→∗ δC◦ , γC◦ = σC ←→∗ δC .

When two convex sets are polar to each other, one says that their gauges are
polar to each other as well.

Detail. The facts about C◦ and C◦◦ are evident from the envelope description
of convex sets in 6.20. Clearly C◦◦ is the intersection of all the closed half-spaces
that include C and have the origin in their interior.

Because the gauge γC is proper, lsc and sublinear (cf. 3.50), we know from
8.24 that it’s the support function of a certain nonempty, closed, convex set,
namely the one consisting the vectors v such that 〈v, x〉 ≤ γC(x) for all x. But
in view of the definition of γC (in 3.50) this set is C◦. Thus γC = σC◦ , and
since C◦◦ = C also by symmetry γC◦ = σC . These functions are conjugate to
δC◦ and δC respectively by 11.4(a).

11.20 Exercise (dual properties of polar sets). Let C be a closed, convex subset
of IRn containing the origin, and let C◦ be its polar as defined in 11.19.

(a) C is bounded if and only if 0 ∈ intC◦; likewise, C◦ is bounded if and
only if 0 ∈ intC.

(b) C is polyhedral if and only if C◦ is polyhedral.

(c) C∞ = (posC◦)∗ and (C◦)∞ = (posC)∗.

Guide. In (a) and (b), rely on the gauge interpretation of polarity in 11.19;
apply 11.8(c) and 11.14. Argue the second equation in (c) from the intersection
rule in 3.9 and the definition of C◦ as an intersection of half-spaces. Obtain
the other equation in (c) then by symmetry.

Polars of convex sets other than cones are employed most notably in the
study of norms. Any closed, bounded, convex set B ⊂ IRn that’s symmetric
(−B = B) with nonempty interior (and hence has the origin in this interior)
corresponds to a certain norm ‖ · ‖, given by its gauge γB, cf. 3.50. The polar set
B◦ is likewise a closed, bounded, convex set that’s symmetric with nonempty
interior. Its gauge γB◦ gives the norm ‖ · ‖◦ polar to ‖ · ‖. Of particular note
is the famous rule for polarity in the family of lp norms in 2.17, namely

‖ · ‖◦p = ‖ · ‖q when 1 < p <∞, 1 < q <∞, p−1 + q−1 = 1,

‖ · ‖◦1 = ‖ · ‖∞, ‖ · ‖◦∞ = ‖ · ‖1.
11(12)
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This can be derived from the next result, which furnishes additional examples
of conjugate convex functions. The argument will be sketched after the proof.

11.21 Proposition (conjugate composite functions from polar gauges). Consider
the gauge γC of a closed, convex set C ⊂ IRn with 0 ∈ C and any lsc, convex
function θ : IR → IR with θ(−r) = θ(r). Under the convention θ(∞) = ∞ one
has the conjugacy relation

θ
(
γC(x)

) ←→∗ θ∗
(
γC◦(v)

)
.

In particular, for any norm ‖ · ‖ and its polar norm ‖ · ‖◦, one has

θ
(‖x‖) ←→∗ θ∗

(‖v‖◦).
Proof. Let f(x) = θ

(
γC(x)

)
. The function θ has to be nondecreasing on IR+

since for any r > 0 in dom θ we have θ(−r) = θ(r) <∞ and consequently

θ
(
(1− τ)(−r) + τr

) ≤ (1− τ)θ(−r) + τθ(r) = θ(r) for 0 < τ < 1,

so that θ(r′) ≤ θ(r) for all r′ ∈ (−r, r). This monotonicity ensures that f is
convex and enables us to write f(x) = inf

{
θ(λ)

∣∣λ ≥ γC(x)
}
. In calculating

the conjugate we then have

f∗(v) = sup
{
〈v, x〉 − θ(λ)

∣∣∣ (x, λ) ∈ epi γC

}
= sup

λ≥0
λ∈dom θ

sup
{
〈v, x〉 − θ(λ)

∣∣∣x ∈ lev≤λ γC

}

= sup
λ≥0

λ∈dom θ

{
λσC(v)− θ(λ) for λ > 0
δC∞∗(v) for λ = 0

}

= sup
λ≥0

λ∈dom θ

{
λγC◦(v)− θ(λ) for λ > 0
δ
cl
(
dom γC◦

)(v) for λ = 0

}
= θ∗

(
γC◦(v)

)
,

relying here on lev≤0 γC = C∞ and C∞∗ = cl(domσC); cf. the end of 8.24.

An illustration of the possibilities in Proposition 11.21 is furnished by the
case of composition with the dual functions

θp(r) =
1

p
|r|p ←→∗ θ∗q(s) =

1

q
|s|q

when 1 <p <∞, 1 < q <∞, p−1 + q−1 = 1.

11(13)

This one-dimensional conjugacy can be used to deduce from Proposition 11.21
the polarity rule for the lp-norms in 11(12). The argument proceeds as follows
for p ∈ (1,∞). The function f(x) := θp(x1) + · · ·+ θp(xn) is convex, so the set
IBp =

{
x
∣∣ f(x) ≤ p−1

}
is convex; also, it’s closed and symmetric about 0. The

function h := ‖ · ‖p = (pf)1/p is nonnegative, lsc and positively homogeneous
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with lev≤1 h = IBp. This implies that ‖ · ‖p = γIBp
and also that ‖ · ‖p is convex

(hence truly is a norm); furthermore f = θp◦γIBp
. In parallel, the function

g(v) := θq(v1) + · · · θq(vn) agrees with g = θq◦γIBq
, with ‖ · ‖q = γIBq

. But f
and g are conjugate to each other, as seen directly through 11(13). It follows
then from Proposition 11.21 that ‖ · ‖p and ‖ · ‖q must be polar to each other.
(For p = 1 and p =∞ the polarity in 11(12) can be deduced more simply from
11.19 and the fact that ‖ · ‖1 is the support function of IB∞ = [−1, 1]n.)

F. Dual Operations

With a wealth of examples of conjugate convex functions now in hand, we
turn to the question of how to dualize other functions generated from these
by various operations. The effects of some elementary operations have already
been compiled in 11(3), but we now take up the topic in earnest.

11.22 Proposition (conjugation in product spaces). For proper functions fi
on IRni , the function conjugate to f(x1, . . . , xm) = f1(x1) + · · · + fm(xm)
is f∗(v1, . . . , vm) = f∗

1 (v1) + · · ·+ f∗
m(vm).

Proof. This is elementary from the definition of the transform.

11.23 Theorem (dual operations).

(a) (addition/epi-addition). For proper functions fi, if f = f1 f2, then
f∗ = f∗

1 + f∗
2 . Dually, if f = f1 + f2 for proper, lsc, convex functions fi such

that dom f1 meets dom f2, then f
∗ = cl

(
f∗
1 f∗

2

)
. Here the closure operation

is superfluous when 0 ∈ int(dom f1 − dom f2), as is true in particular when
dom f1 meets int(dom f2) or when dom f2 meets int(dom f1).

(b) (composition/epi-composition). If g = Af for f : IRn → IR and
A ∈ IRm×n, where (Af)(u) := inf

{
f(x)

∣∣Ax = u
}
, then g∗ = f∗A∗, where

(f∗A∗)(y) := f∗(A∗y) (with A∗ the transpose of A). Dually, if f = gA for a
proper, lsc, convex function g : IRm → IR such that the subspace rgeA meets
dom g, then f∗ = cl(A∗g∗). Here the closure operation is superfluous when
0 ∈ int(dom g − rgeA), as is true in particular when rgeA meets int(dom g).

(c) (restriction/inf-projection). If p(u) = infx f(x, u) for a proper function
f : IRn × IRm → IR, then p∗(y) = f∗(0, y). Dually, if f is also convex and
lsc, then ϕ(x) = f(x, ū) for some ū ∈ U :=

{
u
∣∣ ∃x, f(x, u) < ∞}

, one has

ϕ∗ = cl q for the function q(v) = infy
{
f∗(v, y) − 〈y, ū〉}. Here the closure

operation is superfluous when actually ū ∈ intU .

(d) (pointwise sup/inf). For a family of functions fi, if f = inf i∈I fi, then
f∗ = supi∈I f

∗
i . Dually, if f = supi∈I fi with fi proper, lsc and convex, and if

f is proper, then f∗ = cl con
(
inf i∈I f

∗
i

)
.

Proof. The first relation in (a) falls out of the definition of f∗ and the formula
for f1 f2 in 1(12). It implies that (f∗

1 f∗
2 )

∗ = f∗∗
1 + f∗∗

2 , the latter being the
same as f1 + f2 when each fi is proper, lsc and convex. When that is true and
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dom f1 ∩ dom f2 �= ∅, so that f = f1 + f2 is proper, we get f∗ = (f∗
1 f∗

2 )
∗∗ =

cl con(f∗
1 f∗

2 ) by 11.1. The convex hull operation is superfluous because the
convexity of f∗

i implies that of f∗
1 f∗

2 (cf. 2.24). The closure operation can be
omitted when f∗

1 f∗
2 is lsc, which holds when the set epi f∗

1+epi f∗
2 is closed (cf.

1.28), a property guaranteed by the absence of any nonzero (v, β) ∈ (epi f∗
1 )

∞

with (−v,−β) ∈ (epi f∗
2 )

∞ (cf. 3.12).
Because (epi f∗

i )
∞ is the epigraph of f∗∞

i , which we have identified in 11.5
with the support function of Di = dom fi, this condition translates to the
nonexistence of v �= 0 such that σD1

(v) ≤ −σD2
(−v). But this is equivalent by

8.29(b) to having 0 ∈ int(D1 −D2). Obviously int(D1 −D2) includes the sets
D1 − (intD2) and (intD1)−D2, since these are open.

For (b) the same pattern works. It’s easily seen from the definitions that
(Af)∗ = f∗A∗. For the same reason, (A∗g∗)∗ = g∗∗A∗∗ = gA when g is proper,
lsc and convex. When rgeA meets dom g, so that gA is proper, we obtain from
11.1 that (gA)∗ = (A∗g∗)∗∗ = cl conA∗g∗. The convex hull operation can be
omitted because the convexity of A∗g∗ accompanies that of g∗ by 2.22(b). The
closure operation can be omitted when A∗g∗ is lsc, which holds when the set
L(epi g∗) is closed for the linear mapping L(y, α) = (A∗y, α); cf. 1.31. This
is implied by the absence of any nonzero (y, α) in L−1(0, 0) ∩ (epi g∗)∞, i.e.,
the absence of any y �= 0 such that A∗y = 0, g∗∞(y) ≤ 0. Identifying g∗∞

with the support function of dom g through 11.5, and identifying the indicator
of the null space

{
y
∣∣A∗y = 0

}
with the support function of the range space

rgeA, we translate this condition into the absence of any y �= 0 such that
σdom g(y) ≤ −σrgeA(−y). By 8.29(b), this means 0 ∈ int(dom g − rgeA). Here
int(dom g − rgeA) includes the open set int(dom g)− rgeA.

Likewise in (c), the definitions of p and p∗ give

p∗(y) = supu
{〈y, u〉 − infx f(x, u)

}
= supx,u

{〈
(0, y), (x, u)

〉− f(x, u)} = f∗(0, y).

For parallel reasons, q∗(x) = f∗∗(x, ū). When f is proper, lsc and convex,
we have f∗∗ = f , so q∗ = ϕ. But the convexity of f∗ implies that of q by
2.22(a). Hence as long as ū ∈ U , so that ϕ is proper, we have ϕ∗ = cl q by
11.1. To omit the closure operation as well, we can look to cases where q is
known to be lsc. One such case, furnished by 3.31, is associated with having
f∗∞(0, y)− 〈y, ū〉 > 0 when y �= 0. But if f is proper and convex, f∗∞ is the
support function of dom f by 11.5, and f∗∞(0, ·) is then the support function
of the image U of dom f under the projection (x, u) �→ u. The condition that
f∗∞(0, y) − 〈y, ū〉 > 0 when y �= 0 translates therefore to the condition that
σU (y) > 0 when y �= 0, which by 8.29(a) is equivalent to having 0 ∈ intU .

The first relation in (d) is immediate from the definition of f∗. It implies
that (infi∈I f

∗
i )

∗ = supi∈I f
∗∗
i . When f = supi∈I fi with fi proper, lsc and

convex, so that fi = f∗∗
i by 11.1, and f is proper (in addition to being convex

by 2.9), we obtain from 11.1 that f∗ = (infi∈I f
∗
i )

∗∗ = cl con(infi∈I f
∗
i ).

In part (a) of Theorem 11.23, the condition 0 ∈ int(dom g − rgeA) is
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equivalent to the nonexistence of a ‘separating hyperplane’ for C1 and C2 (see
2.39). Likewise in part (b), the condition 0 ∈ int(dom g − rgeA) means that
dom g can’t be separated from rgeA, even improperly.

11.24 Corollary (rules for support functions).

(a) If D = λC with C �= ∅ and λ > 0, then σD = λσC .

(b) If C = C1 + C2 with Ci �= ∅, then σC = σC1
+ σC2

.

(c) If D =
{
Ax

∣∣x ∈ C}
with A ∈ IRm×n, then σD(y) = σC(A

∗y).
(d) If C =

{
x
∣∣Ax ∈ D}

for a closed, convex set D ⊂ IRm, and if C �= ∅,
then σC = clA∗σD, where (A∗σD)(v) := inf

{
σD(y)

∣∣A∗y = v
}
. Here the

closure operation is superfluous when 0 ∈ int(D−rgeA), as is true in particular
when the subspace rgeA meets intD.

(e) If C = C1 ∩ C2 �= ∅ with each set Ci convex and closed, then σC =
cl(σC1

σC2
). Here the closure operation is superfluous when 0 ∈ int(C1−C2),

as is true in particular when C1 meets intC2 or C2 meets intC1.

(f) If C =
⋃

i∈I Ci, then σC = supi∈I σCi
.

Proof. These six rules correspond to the cases where (a) δD = λ�δC , (b)
δC = δC1

δC2
, (c) δD = AδC , (d) δC = δDA, (e) δC = δC1

+ δC2
, and (f)

δC = infi∈I δCi
. All except (a) are covered by Theorem 11.23 through 11.4(a),

while (a) simply comes from 11(3)—but is best listed here.

11.25 Corollary (rules for polar cones).

(a) If K = K1 + K2 for cones Ki, then K∗ = K∗
1 ∩ K∗

2 . Likewise, if
K =

⋃
i∈I Ki one has K∗ =

⋂
i∈I K

∗
i .

(b) If K = K1 ∩K2 for closed, convex cones Ki, then K
∗ = cl(K∗

1 +K∗
2 ).

The closure operation is superfluous when 0 ∈ int(K1 −K2).

(c) If H =
{
Ax

∣∣x ∈ K
}

for A ∈ IRm×n and a cone K ⊂ IRn, then

H∗ =
{
y
∣∣A∗y ∈ K∗}.

(d) If K =
{
x
∣∣Ax ∈ H}

for A ∈ IRm×n and a closed, convex cone H ⊂
IRm, then K∗ = cl

{
A∗y

∣∣ y ∈ H∗}. The closure operation is superfluous when
0 ∈ int(H − rgeA).

Proof. In (a) we apply 11.23(a) to δK = δK1
δK2

, or 11.23(d) to δK =
infi∈I δKi

, whereas in (b) we apply 11.23(a) to δK = δK1
+ δK2

, each time
making the observation in 11.4(b). In (c) and (d) it’s the same story in applying
11.23(b) with δH = AδK in the first case and δK = δHA in the second.

11.26 Example (distance functions, Moreau envelopes and proximal hulls).

(a) For any nonempty, closed, convex set C ⊂ IRn, the functions dC and
σC + δIB are conjugate to each other.

(b) For any proper, lsc, convex function f : IRn → IR and any λ > 0, the
functions eλf and f∗ + λ

2
| · |2 are conjugate to each other. This entails

e
λ
f(x) + eλ−1f∗(λ−1x) =

1

2λ
|x|2 for all x ∈ IRn, λ > 0.
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(c) For any f : IRn → IR, not necessarily convex, the Moreau envelope eλf
and proximal hull hλf for each λ > 0 are expressed by

eλf(x) = λ−1j(x)− (f + λ−1j)∗(λ−1x)

hλf(x) = (f + λ−1j)∗∗(x)− λ−1j(x)

}
for j = 1

2 | · |2.

Here (f +λ−1j)∗∗ can be replaced by con(f + λ−1j) when f is lsc, proper and
prox-bounded with threshold λf > λ. Then domhλf = con(dom f), and on
the interior of this convex set the function hλf must be lower-C2.

(d) A proper function f : IRn → IR is λ-proximal, in the sense that hλf = f ,
if and only if f is lsc and f + 1

2λ
| · |2 is convex.

Detail. In (a) we have dC = δC | · | by 1(13), where the Euclidean norm | · |
is the support function σIB, as recorded in 8.27, and σ∗

IB = δIB by 11.4(a). Then
d∗C = δ∗C + σ∗

IB
by 11.23(b), with δ∗C = σC by 11.4(a). Because dC is finite,

hence continuous (cf. 2.36), we have d∗∗C = dC (by 11.1).

In (b) the situation is similar. In terms of j(x) = 1
2 |x|2 we have eλf =

f λ−1j by 1(13), with eλf finite and convex by 2.25. Here λ−1j is the same
as λ�j and is conjugate to λj by 11.11 and the rules in 11(3). The conjugate
function (eλf)

∗ is calculated then from 11.23(a) to be f∗+λj. But to say that
eλf is conjugate to f∗ + λj is to say that for all x one has

eλf(x) = supw

{
〈w, x〉 − f∗(w)− λ

2
|w|2

}
=

1

2λ
|x|2 − infw

{
f∗(w) +

λ

2
|w − λ−1x|2

}
=

1

2λ
|x|2 − eλ−1f∗(λ−1x).

This gives the identity claimed in (b).
The same calculation produces the first identity in (c), and the second then

follows from the formula for hλf in 1.44. Justification for replacing (f+λ−1j)∗∗

by con(f + λ−1j) comes from 3.28 and 3.47; f + λ−1j is coercive when λ ∈
(0, λf ). The domain assertion is then obvious. The claim about hλf being
lower-C2 on the interior is supported by 10.33. To get (d), we merely invoke
the rule from (c) that hλf = f if and only if (f + λ−1j)∗∗ = (f + λ−1j).

11.27 Exercise (proximal mappings and projections as gradient mappings).

(a) For any proper, lsc, convex function f : IRn → IR and any λ > 0 the
proximal mapping Pλf is ∇g for g = λ�

(
eλ−1f∗).

(b) For any nonempty, closed, convex set C ⊂ IRn, the projection mapping
PC is ∇g for g = e1σC = σC

1
2 | · |2.

Guide. Derive the first expression from the formula for ∇eλf in 2.26 using
the identity in 11.26(b). Then derive the second expression by specializing to
f = δC and λ = 1; cf. 11.4.

11.28 Example (piecewise linear-quadratic envelopes).

(a) For f : IRn → IR proper, convex and piecewise linear-quadratic and for
any λ > 0, the convex function eλf is piecewise linear-quadratic.
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(b) For C ⊂ IRn nonempty and polyhedral, the convex function d2C is piece-
wise linear-quadratic.

Detail. The assertion in (a) is justified by the conjugacy rules in 11.14(a) and
11.26(b). The one in (b) specializes this to f = δC ; then eλf = 1

2λ
d2C .

The use of several dualizing rules during the course of a calculation is
illustrated by the next example, which concerns adjoints of sublinear mappings
as defined in 8(27) and 8(28). Relations are obtained between the outer and
inner norms for such mappings that were introduced in 9(4) and 9(5).

11.29 Example (norm duality for sublinear mappings). The outer norm |H|+
and inner norm |H|− of a sublinear, osc mapping H : IRn →→ IRm are related
to those of its upper adjoint H∗+ and lower adjoint H∗− by

|H|+ = |H∗+|− = |H∗−|−, |H|− = |H∗+|+ = |H∗−|+.
In addition, one has d

(
0, H(w)

)
= σH∗+(IB)(w) and σH(IB)

(y) = d
(
0, H∗−(y)

)
.

As a special case, if a mapping S : IRn →→ IRm is graphically regular at x̄
for ū, one has∣∣D∗S(x̄ | ū)

∣∣+ =
∣∣DS(x̄ | ū)

∣∣−, ∣∣D∗S(x̄ | ū)−1
∣∣+ =

∣∣DS(x̄ | ū)−1
∣∣−.

Detail. This can be derived by using the support function rules in 11.24 along
with the rules of cone polarity. From the definition of |H|+ in 9(4) and the
description of the Euclidean norm in 8.27 we have

|H|+ = sup
z∈H(IB)

|z| = sup
z∈H(IB), y∈IB

〈y, z〉 = sup
y∈IB

σ
H(IB)

(y).

To prove that this equals |H∗+|−, hence also |H∗−|− (inasmuch as H∗−(y) =
−H∗+(−y)), it’s enough now to demonstrate that σH(IB)(y) = d

(
0, H∗−(y)

)
.

In terms of the projection A : IRn × IRm → IRm the set H(IB) has the repre-
sentation AC for C = C1 ∩ C2 with C1 = IB × IRm and C2 = gphH. From
11.24(c) we get σH(IB)(y) = σC(A

∗y) = σC
(
(0, y)

)
. On the other hand we have

C2 ∩ intC1 �= ∅, so σC
(
(0, y)

)
= min(w,u)

{
σC1

(
(0, y)− (w, u)

)
+ σC2

(
(w, u)

)}
by 11.24(e). Next we note that σC1

(
(w, u)

)
= |w|+ δ{0}(u) (cf. 8.27), whereas

σC2
= δ(gphH)∗ by 11.4(b), so that σC2

(
(w, u)

)
= δgphH∗−

(
(−w, u)) by the

definition of H∗− in 8(28). Therefore,

σH(IB)(y) = min
(w,u)

{
|0− w|+ δ{0}(y − u) + δ

gphH∗−
(
(−w, u))}

= min
−w∈H∗−(y)

|w| = d
(
0, H∗−

(y)
)
.

Thus, |H|+ = |H∗+|− is confirmed. To get the remaining formulas, we merely
have to apply the ones already obtained to G = H∗+, since G∗− = H.

The application at the end is based on having, in the presence of graphical
regularity, D∗S(x̄ | ū) = DS(x̄ | ū)∗− and likewise D∗S−1(x̄ | ū) = DS−1(x̄ | ū)∗−;
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cf. 8.40. It’s elementary that one always has |D∗S−1(x̄ | ū)|+ = |D∗S(x̄ | ū)−1|+
and |DS−1(x̄ | ū)|− = |DS(x̄ | ū)−1|−.
11.30 Exercise (uniform boundedness of sublinear mappings). If a family H of
osc, sublinear mappings H : IRn →→ IRm has supH∈H d

(
0, H(w)

)
<∞ for each

w ∈ IRn, it must actually have supH∈H |H|− <∞.

Guide. Make use of 11.29, arguing that h(w) = supH∈H d
(
0, H(w)

)
is the

support function of the set
⋃

H∈HH∗+(IB).

11.31 Exercise (duality in calculating adjoints of sublinear mappings).

(a) For sublinear mappings H : IRn →→ IRm and G : IRm →→ IRp with
rint(rgeH) ∩ rint(domG) �= ∅, one has

(G◦H)∗+
= H∗+◦G∗+

, (G◦H)∗−
= H∗−◦G∗−

.

(b) For sublinear mappings H : IRn →→ IRm and G : IRn →→ IRm with
rint(domH) ∩ rint(domG) �= ∅, one has

(H +G)∗+
= H∗+

+G∗+
, (H +G)∗−

= H∗−
+G∗−

.

(c) For a sublinear mapping H : IRn →→ IRm and arbitrary λ > 0, one has

(λH)∗+
= λH∗+

, (λH)∗−
= λH∗−

.

Guide. In (a), gph(G◦H) = L(K) for K =
[
gphH × IRp

] ∩ [
IRn × gphG

]
and L the projection of IRn × IRm × IRp onto IRn × IRp. Apply the rules in
11.25(b)(c), relating the polars gphH, gphG and gph(G◦H), to the graphs of
the adjoint mappings by way of definitions 8(27) and 8(28).

In (b) use the representation gph(H + G) = L2

(
L−1
1 (K)

)
for the cone

K = (gphH)× (gphG), the linear mapping L1 : (x, y, z) �→ (x, y, x, z) and the
linear mapping L2 : (x, y, z) �→ (x, y + z). Apply the rules in 11.25(c)(d). Get
the elementary fact in (c) straight from the definitions of H∗+ and H∗−.

For the pairs of operations in Theorem 11.23 to be fully dual to each other,
closures had to be taken, but a readily verifiable condition was provided under
which this was superfluous. Another common case where it can be omitted
comes up when the functions are piecewise linear-quadratic.

11.32 Proposition (operations on piecewise linear-quadratic functions).

(a) If f = f1 f2 with fi proper, convex and piecewise linear-quadratic,
then f is proper, convex and piecewise linear-quadratic, unless f is improper
with dom f a polyhedral set on which f ≡ −∞. Either way, f is lsc.

(b) If g(u) = (Af)(u) = infx
{
f(x)

∣∣Ax = u
}
for A ∈ IRm×n and f proper,

convex and piecewise linear-quadratic on IRn, then g is proper, convex and
piecewise linear-quadratic on IRm, unless g is improper with dom g a polyhedral
set on which g ≡ −∞. Either way, g is lsc.

(c) If p(u) = infx f(x, u) for a proper, convex, piecewise linear-quadratic
function f : IRn × IRm → IR, then p is proper, convex and piecewise linear-
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quadratic, unless p is improper with dom p a polyhedral set on which p ≡ −∞.
Either way, p is lsc.

Proof. Let’s deal with (c) first; it will be leveraged into the other assertions.
Because f is convex, its inf-projection p is convex; cf. 2.22(a). The set dom p
is the image of dom f under the projection mapping (x, u) �→ u, and dom f
is polyhedral. Hence dom p is itself polyhedral and in particular closed; cf.
3.55(a). The function conjugate to p is known from 11.23(c) to be f∗(0, ·),
which is not only convex but piecewise linear-quadratic by 10.22(c), due to the
fact that f∗ inherits being piecewise linear-quadratic from f by 11.14(b). As
long as f∗(0, ·) is proper, which is equivalent by 11.1 to p being proper, it
follows further by 11.14(b) that p∗∗, as the function conjugate to f∗(0, ·), is
piecewise linear-quadratic too. The claim in (c) can be established therefore in
showing that p∗∗ = p unless p is improper with no values other than ±∞.

Suppose p is finite at ū. The function ϕ := f( · , ū), whose infimum over IRn

is p(ū), is convex and piecewise linear-quadratic, hence its minimum is attained
at some x̄; cf. 11.16. Then 0 ∈ ∂ϕ(x̄). But ∂ϕ(x̄) = {

v
∣∣ ∃ y, (v, y) ∈ ∂f(x̄, ū)}

by 10.22(c). Hence there exists ȳ with (0, ȳ) ∈ ∂f(x̄, ū). Through convexity
this subgradient condition can be written as

f(x, u) ≥ f(x̄, ū) +
〈
(0, ȳ), (x, u)− (x̄, ū)

〉
for all (x, u)

(see 8.12), which gives us p(u) ≥ p(ū) + 〈ȳ, u − ū〉 for all u, implying that p
is proper on IRm and lsc at ū. Thus, unless p ≡ −∞ on dom p, p is a proper,
convex function which is lsc at every point of dom p. Since dom p is closed, we
conclude that p is lsc everywhere, so p∗∗ = p. This proves (c).

We get (b) now as the case of (c) where Af = p for p(u) = infx f̄(x, u)
with f̄(x, u) = f(x) + δM (x, u) and M =

{
(x, u)

∣∣Ax = u
}
. Because δM ,

like f , is convex and piecewise linear-quadratic (the set M being affine, hence
polyhedral; cf. 2.10), f̄ is piecewise linear-quadratic by 10.22.

Finally, (a) specializes (b) to f1 f2 = Ag with g(x1, x2) = f1(x1)+f2(x2)
on IRn × IRn and A the matrix of the linear mapping (x1, x2) �→ x1 + x2.

11.33 Corollary (conjugate formulas in piecewise linear-quadratic case).

(a) If f = f1 + f2 with fi proper, convex and piecewise linear-quadratic,
and if f �≡ ∞, then f∗ = f∗

1 f∗
2 .

(b) If f = gA with A ∈ IRm × IRn and g proper, convex and piecewise
linear-quadratic, and if f �≡ ∞, then f∗ = A∗g∗.

(c) If ϕ(x) = f(x, ū) with f proper, convex and piecewise linear-quadratic
on IRn × IRm, and if ϕ �≡ ∞, then ϕ∗(v) = infy

{
f∗(v, y)− 〈y, ū〉}.

Proof. We apply 11.23 in the light of the additional conditions furnished by
11.32 for the dual operations to produce a lower semicontinuous function, so
that the closure operation can be omitted.
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G. Duality in Convergence

Switching to another topic, we look next at how the Legendre-Fenchel transform
behaves with respect to the epi-convergence studied in Chapter 7.

11.34 Theorem (epi-continuity of the Legendre-Fenchel transform; Wijsman). If
the functions fν and f on IRn are proper, lsc, and convex, one has

fν→e f ⇐⇒ fν∗→e f∗.

More generally, as long as e-lim infν f
ν nowhere takes on −∞ and a bounded

set B exists with lim supν [infB f
ν ] <∞, one has

e-lim infν f
ν ≥ f ⇐⇒ e-lim supν f

ν∗ ≤ f∗,
e-lim supν f

ν ≤ f ⇐⇒ e-lim infν f
ν∗ ≥ f∗.

Proof. For any λ > 0 we have through 7.37 that fν→e f if and only if
eλf

ν→p eλf . Likewise, fν∗→e f if and only if eλf
ν∗→p eλf

∗. In particular we
can take λ = 1 in these conditions. But from 11.26 we have

e1f
ν(x) + e1f

ν∗(x) = 1
2 |x|2 = e1f(x) + e1f

∗(x).

Thus, the two conditions are equivalent.
The assumption about B in the more general case means the existence of

β ∈ IR such that epi fν ∩ (B× (−∞, β]) �= ∅ for all ν in some index set in N∞.
This ensures that no subsequence of {fν}ν∈IN can escape epigraphically to the
horizon; cf. 7.5. Then every subsequence has an epi-convergent subsequence by
7.6, but on the other hand, the epi-limit of such a sequence can’t take on −∞
because of the assumption about e-lim infν f

ν . We are therefore in a setting
where every subsequence of {fν}ν∈IN has a subsequence that epi-converges to
some proper, lsc function g, which must of course be convex. Through the
cluster description of outer limits in 4.19 as applied to epigraphs, we see that
e-lim infν f

ν ≥ f if and only if g ≥ f for every such function g; likewise in terms
of inner limits, we have e-lim supν f

ν ≤ f if and only if g ≥ f for every such
g. It remains only to invoke for these epi-convergent sequences the continuity
property established in the main part of the theorem.

11.35 Corollary (convergence of support functions and polar cones).

(a) For nonempty, closed, convex sets Cν and C in IRn, one has

Cν → C ⇐⇒ σ
Cν →e σ

C
,

and if the sets are bounded this is equivalent to having σ
Cν (v) → σ

C
(v) for

each v. More generally, as long as lim supν d(0, C
ν) <∞ one has

lim supν C
ν ⊂ C ⇐⇒ e-lim supν σCν ≤ σC ,

lim infν C
ν ⊃ C ⇐⇒ e-lim infν σCν ≥ σC .

(b) For closed, convex cones Kν and K in IRn, one has
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Kν → K ⇐⇒ Kν∗ → K∗,

and more generally,

lim supν K
ν ⊂ K ⇐⇒ lim infν K

ν∗ ⊃ K∗,
lim infν K

ν ⊃ K ⇐⇒ lim supν K
ν∗ ⊂ K∗.

Proof. We apply Theorem 11.34 in the setting of 11.4. The case of bounded
Cν , in which the support functions are finite-valued, appeals also to 7.18.

The Legendre-Fenchel transform isn’t just continuous; it’s an isometry
with respect to a suitable choice of metric on the space of proper, lsc, convex
functions on IRn. We’ll establish that by developing isometric properties of
the polarity correspondence in 6.24 and 11.4(b) and then appealing to the way
that conjugate functions can be associated with polar cones, as in 11.7. In this
geometric context, the set metric dl in 4(12) will be apt.

11.36 Theorem (cone polarity as an isometry; Walkup-Wets). For any cones
K1, K2 ⊂ IRn that are convex, one has

dl(K1, K2) = dl(K∗
1 , K

∗
2 ).

Proof. It can be assumed that K1 and K2 are closed, since dl(K1, K2) =
dl(clK1, clK2) with clKi convex and [clKi]

∗ = K∗
i . Then [K∗

i ]
∗ = Ki by

11.4(b). We have dl(K1, K2) = dl1(K1, K2) = d̂l1(K1, K2) and dl(K∗
1 , K

∗
2 ) =

dl1(K
∗
1 , K

∗
2) = d̂l1(K

∗
1 , K

∗
2 ) by 4.44. Thus, we need only demonstrate that

dl1(K1, K2) ≤ d̂l1(K
∗
1 , K

∗
2 ) and dl1(K

∗
1 , K

∗
2 ) ≤ d̂l1(K1, K2); but the latter is

just the former as applied to K∗
1 and K∗

2 , so the former suffices. Because of the
way that K1 and K2 enter symmetrically in the definition of dl1(K1, K2) and

d̂l1(K
∗
1 , K

∗
2) in 4(11), our task reduces simply to verifying for η > 0 that

dK1
≤ dK2

+ η on IB =⇒ K∗
1 ∩ IB ⊂ K∗

2 + ηIB. 11(14)

The convex functions dK1
and dK2

are positively homogeneous, so the left side
of 11(14) corresponds to the inequality dK1

≤ dK2
+ η| · | holding on IRn, or

equivalently d∗K1
≥ (dK2

+ η| · |)∗. Here dK1
= δK1

| · | and dK2
= δK2

| · |
(cf. 1.20), while | · | = σIB (cf. 8.27) and η| · | = σηIB, so the inequality in
11(14) dualizes to δ∗K1

+ σ∗
IB ≥ [δ∗K2

+ σ∗
IB ] σ∗

ηIB through the rules in 11.23(a).
By 11.4, this is the same as δK∗

1
+ δIB ≥ [δK∗

2
+ δIB ] δηIB, or in other words

K∗
1 ∩ IB ⊂ [K∗

2 ∩ IB] + ηIB, which implies the right side of 11(14).

Theorem 11.36 can be applied to convex cones in the ray space model of
cosmic space, most fruitfully to the cones in IRn+2 that represent the epigraphs
in IRn+1 of convex functions on IRn. Since the cosmic metric dlcsm for functions
on IRn, as defined in 7(28), is based on the set distance between such cones,
the following result is obtained.

11.37 Corollary (Legendre-Fenchel transform as an isometry). For functions
f1, f2 : IRn → IR that are convex and proper, one has
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dlcsm(f1, f2) = dlcsm(f∗
1 , f

∗
2 ).

Proof. This comes out of the characterization of conjugate functions in terms
of polar cones in 11.7. The cosmic epi-distances correspond to cone distances,
and the isometry is apparent then from the one for cones in Theorem 11.36.

It might be puzzling that this result is based on the cosmic epi-metric
dlcsm, which is known from 7.59 to characterize total epi-convergence, whereas
the ‘homeomorphism’ in Theorem 11.34 refers to ordinary epi-convergence,
which according to 7.58 is characterized by the ordinary epi-metric dl. The
seeming discord vanishes when one recalls that, for sequences of convex func-
tions, epi-convergence implies total epi-convergence (cf. 7.53). On the space of
convex functions within lsc-fcns �≡∞(IRn), the metrics dl and dlcsm are actually
equivalent topologically. Theorem 11.34 could equally well be stated in terms
of total epi-convergence, but only dlcsm produces an isometry.

H. Dual Problems of Optimization

The rest of this chapter will be occupied with the important question of how
optimization problems can be dualized. It will be shown that any optimization
problem of convex type, when provided with a scheme of perturbation that re-
spects convexity, is paired with a certain other optimization problem of convex
type, which is provided in turn with a dual scheme of perturbation. The two
problems are related to each other in remarkable ways. Even for problems that
aren’t of convex type, something analogous can be built up, although not as
powerfully and not with full symmetry.

Hints of such duality are already present in the formulas we’ve been de-
veloping, and we’ll work our way into the subject by looking there first. In
principle, the value of the conjugate of a given function can be calculated at a
given point by maximization in terms of the defining expression 11(1). But the
formulas developed in 11.23, and more specially in 11.34, furnish an alternative
approach to calculating the same value by minimization. This idea is captured
most succinctly by the operation of inf-projection.

11.38 Lemma (dual calculations in parametric optimization). For any function
f : IRn × IRm → IR, one has

p(0) = infx ϕ(x)

p∗∗(0) = supy ψ(y)

}
for

⎧⎪⎨
⎪⎩
p(u) = infx f(x, u)

ϕ(x) = f(x, 0)

ψ(y) = −f∗(0, y).

Proof. This is immediate from 11.23(c).

The circumstances under which p(0) = p∗∗(0), and therefore inf ϕ = supψ
in this scheme, are of course governed in general by 11.1 and 11.2 and are rich in
possibilities. The focus in 11.38 on u = 0 enhances symmetry and corresponds
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to interpreting u as a perturbation parameter. Much will be made of this
perturbation idea as we proceed.

The next theorem develops out of 11.38 a symmetric framework in which
some of the most distinguishing features of optimization problems of convex
type find expression. Later we’ll explore the extent to which dualization can
be effective through 11.38 even for problems involving nonconvexities.

11.39 Theorem (dual problems of optimization). Let f : IRn × IRm → IR be
proper, lsc and convex, and consider the primal problem

minimize ϕ on IRn, ϕ(x) := f(x, 0),

along with the dual problem

maximize ψ on IRm, ψ(y) := −f∗(0, y),

where ϕ is convex and lsc, but ψ is concave and usc. Let p(u) = infx f(x, u)
and U = dom p, while q(v) = infy f

∗(v, y) and V = dom q; these sets and
functions are convex.

(a) The inequality infx ϕ(x) ≥ supy ψ(y) holds always, and infx ϕ(x) <∞
if and only if 0 ∈ U , whereas supy ψ(y) > −∞ if and only if 0 ∈ V . Moreover,

infx ϕ(x) = supy ψ(y) if either 0 ∈ intU or 0 ∈ intV.

(b) The set argmaxy ψ(y) is nonempty and bounded if and only if 0 ∈ intU
and the value infx ϕ(x) = p(0) is finite, in which case argmaxy ψ(y) = ∂p(0).

(c) The set argminx ϕ(x) is nonempty and bounded if and only if 0 ∈ intV
and the value supy ψ(y) = −q(0) is finite, in which case argminx ϕ(x) = ∂q(0).

(d) Optimal solutions are characterized jointly through primal and dual
forms of Fermat’s rule:

x̄ ∈ argminx ϕ(x)

ȳ ∈ argmaxy ψ(y)

infx ϕ(x) = supy ψ(y)

⎫⎪⎬
⎪⎭ ⇐⇒ (0, ȳ) ∈ ∂f(x̄, 0) ⇐⇒ (x̄, 0) ∈ ∂f∗(0, ȳ).

ϕ(x) := f(x, 0) p(u) := infx f(x, u) U := dom p

↑ ∗ ↓ ∗
q(v) := infy f

∗(v, y) − ψ(y) := f∗(0, y) V := dom q

Fig. 11–5. Notation for dual problems of convex type.

Proof. The convexity in the preamble is obvious from that of f and f∗. (The
preservation of convexity under inf-projection is attested to by 2.22(a).)
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We apply 11.23(c) in the context of 11.38, noting from 11.1 and 11.2 that
p(0) = p∗∗(0) in particular when 0 ∈ intU . The latter condition in combination
with p(0) > −∞ is equivalent by 11.8(c) to −ψ being proper and level-bounded.
But a proper, lsc, convex function is level-bounded if and only if its argmin set
is nonempty and bounded; cf. 3.27 and 1.9. Then too, ∂p(0) = argmin p∗ =
argmaxψ by 11.8(a).

Next we invoke the same facts with f replaced by f∗, using the relation
f∗∗ = f . This gives − supψ = q(0) ≥ q∗∗(0) = − inf ϕ with ϕ = q∗, where
q(0) = q∗∗(0) in particular when 0 ∈ intV . The latter condition in combination
with q(0) > −∞ corresponds by parallel argument to having argminϕ being
nonempty and bounded. It also gives ∂q(0) = argmin q∗ = argminϕ.

Turning to (d), we note that through 11.3 the relations (0, ȳ) ∈ ∂f(x̄, 0)
and (x̄, 0) ∈ ∂f∗(0, ȳ) are equivalent to each other and to having ϕ(x̄) = ψ(ȳ).
Since inf ϕ ≥ supψ in general by (a), they are equivalent further to having
ϕ(x̄) = inf ϕ = supψ = ψ(ȳ).

11.40 Corollary (general best-case primal-dual relations). In the context of
Theorem 11.39, the following conditions are equivalent to each other and serve
to guarantee that −∞ < minϕ = maxψ <∞:

(a) 0 ∈ intU and 0 ∈ intV ;

(b) 0 ∈ intU , and argminϕ is nonempty and bounded;

(c) 0 ∈ intV , and argmaxψ is nonempty and bounded;

(d) argminϕ and argmaxψ are nonempty and bounded.

The relation argmaxψ = ∂p(0) in 11.39(b) shows the significance of opti-
mal solutions ȳ to the dual problem. In the situation in 11.39(b), the convex
function p is finite on a neighborhood of 0, so the relation tells us that

dp(0)(w) = max
{〈ȳ, w〉 ∣∣ ȳ ∈ argmaxψ

}
(cf. 8.30, 7.27) and further that a unique optimal solution ȳ to the dual problem
corresponds to having ∇p(0) = ȳ (cf. 9.18, 9.14). All this has to be seen in the
light of p(0) being the optimal value in the given ‘primal’ problem of minimizing
ϕ, with p(u) the optimal value obtained when this problem is perturbed by the
amount u in the way prescribed by the chosen parametric representation.

This kind of interpretation of the dual elements ȳ accompanying the primal
elements x̄ resembles one that was discussed in parametric minimization more
generally (cf. 10.14 and 10.15), but without a dual problem being brought
in for a supplementary description of the vectors ȳ as optimal in their own
right: ȳ ∈ argmaxψ. In the present setup, fortified by convexity and the
relation argminϕ = ∂q(0) in 11.39(c), the roles of x̄ and ȳ can be interchanged.
Remarkably, the solutions x̄ ∈ argminϕ to the primal problem gain a parallel
interpretation relative to perturbations to the dual problem, namely:

dq(0)(z) = max
{〈x̄, z〉 ∣∣ x̄ ∈ argminϕ

}
.

Because f∗∗ = f , everything is completely symmetric between primal and
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dual, apart from the sign convention in designating whether a problem should
be viewed in maximization or minimization mode. The dualization scheme
proceeds from a primal problem with perturbation vector u to a dual problem
with perturbation vector v, and it does so in such a way that the dual of the
dual problem is identical to the primal problem.

11.41 Example (Fenchel-type duality scheme). Consider the two problems

minimize ϕ on IRn, ϕ(x) := 〈c, x〉+ k(x) + h(b− Ax),
maximize ψ on IRm, ψ(y) := 〈b, y〉 − h∗(y)− k∗(A∗y − c),

where k : IRn → IR and h : IRm → IR are proper, lsc and convex, and one has
A ∈ IRm×n, b ∈ IRm, and c ∈ IRn. These problems fit the format of 11.39 with

f(x, u) = 〈c, x〉+ k(x) + h(b− Ax+ u),

f∗(v, y) = −〈b, y〉+ h∗(y) + k∗(A∗y − c+ v).

The assertions of 11.39 and 11.40 are valid then in the context of having

0 ∈ intU ⇐⇒ b ∈ int
(
A dom k + domh

)
,

0 ∈ intV ⇐⇒ c ∈ int
(
A∗domh∗ − dom k∗

)
.

Furthermore, optimal solutions are characterized by

x̄ ∈ argminϕ

ȳ ∈ argmaxψ

inf ϕ = supψ

⎫⎪⎬
⎪⎭ ⇐⇒

{
ȳ ∈ ∂h(b− Ax̄)
A∗ȳ − c ∈ ∂k(x̄)

}
⇐⇒

{
x̄ ∈ ∂k∗(A∗ȳ − c)
b− Ax̄ ∈ ∂h∗(ȳ)

}
.

Detail. The function f is proper, lsc (by 1.39, 1.40) and convex (by 2.18,
2.20). The function p, defined by p(u) := infx f(x, u), has nonempty effective
domain U = A dom k + domh− b. Direct calculation of f∗ yields

f∗(v, y) = supx,u

{〈
v, x

〉
+

〈
y, u

〉− 〈
c, x

〉− k(x)− h(b− Ax+ u)
}

= supx,w

{〈
v, x

〉
+

〈
y, w − b+Ax

〉− 〈
c, x

〉− k(x)− h(w)}
= supx

{〈
A∗y − c+ v, x

〉− k(x)}+ supw

{〈
y, w

〉− h(w)}− 〈
y, b

〉
= k∗(A∗y − c+ v) + h∗(y)− 〈

y, b
〉

as claimed. The effective domain of the function q(v) = infy f
∗(v, y) is then

V = dom k∗ −A∗ domh∗ + c.
To determine ∂f(x, u) so as to verify the optimality condition claimed, we

write f = g◦F for g(x, w) = 〈c, x〉+k(x)+h(b+w) and F (x, u) = (x,−Ax+u),
noting that F is linear and nonsingular. We observe then that ∂g(x, w) ={
(c + v, y)

∣∣v ∈ ∂k(x), y ∈ ∂h(b + w)
}
, and therefore through 10.7 that we

have ∂f(x, u) =
{
(c + v − A∗y, y)

∣∣v ∈ ∂k(x), y ∈ ∂h(b − Ax + u)
}
. The

condition (0, ȳ) ∈ ∂f(x̄, 0) in 11.39(d) reduces to having A∗ȳ − c ∈ ∂k(x̄) for
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ȳ ∈ ∂h(b − Ax̄). The alternate expression of optimality in terms of ∂k∗ and
∂h∗ comes immediately then from the inversion principle in 11.3.

11.42 Theorem (piecewise linear-quadratic optimization). For a proper, convex
and piecewise linear-quadratic function f : IRn×IRm → IR, consider the primal
and dual problems

minimize ϕ on IRn, ϕ(x) := f(x, 0),

maximize ψ on IRm, ψ(y) :=−f∗(0, y),

along with the functions p(u) = infx f(x, u) and q(v) = infy f
∗(v, y).

If either of the values inf ϕ or supψ is finite, then both are finite and both
are attained. Moreover in that case one has inf ϕ = supψ and

(argminϕ)× (argmaxψ) =
{
(x̄, ȳ)

∣∣ (0, ȳ) ∈ ∂f(x̄, 0)}
=

{
(x̄, ȳ)

∣∣ (x̄, 0) ∈ ∂f∗(0, ȳ)
}

= ∂q(0)× ∂p(0).
Proof. This parallels Theorem 11.39, but in coming up with circumstances in
which p∗∗(0) = p(0), or q∗∗(0) = q(0), it relies on the piecewise linear-quadratic
nature of p and q in 11.32 instead of properties of general convex functions.

11.43 Example (linear and extended linear-quadratic programming). The prob-
lems in the Fenchel duality scheme in 11.41 fit the framework of piecewise
linear-quadratic optimization in 11.42 when the convex functions k and h are
piecewise linear-quadratic. A particular case of this, called extended linear-
quadratic programming, concerns the primal and dual problems

minimize 〈c, x〉+ 1
2 〈x, Cx〉+ θY,B(b−Ax) over x ∈ X,

maximize 〈b, y〉 − 1
2〈y, By〉 − θX,C(A

∗y − c) over y ∈ Y,
where the sets X ⊂ IRn and Y ⊂ IRm are nonempty and polyhedral, the
matrices C ∈ IRn×n and B ∈ IRm×m are symmetric and positive-semidefinite,
and the functions θY,B and θX,C have expressions as in 11.18:

θY,B(u) = sup
y∈Y

{
〈y, u〉 − 1

2 〈y, By〉
}
, θX,C(v) = sup

x∈X

{
〈v, x〉 − 1

2 〈x, Cx〉
}
.

When C = 0 and B = 0, while X and Y are cones, these primal and dual
problems reduce to the linear programming problems

minimize 〈c, x〉 subject to x ∈ X, b−Ax ∈ Y ∗,
maximize 〈b, y〉 subject to y ∈ Y, A∗y − c ∈ X∗.

If in addition X = IRn
+
and Y = IRm

+
, the linear programming problems have

the form
minimize 〈c, x〉 subject to x ≥ 0, Ax ≥ b,
maximize 〈b, y〉 subject to y ≥ 0, A∗y ≤ c.
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More generally, if X = IRr
+ × IRn−r and Y = IRs

+ × IRm−s these linear pro-
gramming problems have mixed inequality and equality constraints.

Detail. When k and h are piecewise linear-quadratic in the Fenchel scheme in
11.41, so too is f by the calculus in 10.22. Then Theorem 11.42 is applicable.
In the special case described, we have k = δX + jC for jC(x) := 1

2 〈x, Cx〉,
whereas h = (δY + jB)

∗; cf. 11.18.

Between linear programming and extended linear-quadratic programming
in 11.43 is quadratic programming , where the primal problem takes the form

minimize 〈c, x〉+ 1
2 〈x, Cx〉 subject to x ∈ X, b− Ax ∈ Y ∗,

for some choice of polyhedral cones X ⊂ IRn, Y ⊂ IRm (such as X = IRn
+
,

Y = IRm
+
) and a positive semidefinite matrix C ∈ IRn×n. This corresponds to

the primal problem of extended linear-quadratic programming of 11.43 in the
case of B = 0 and dualizes to

maximize 〈b, y〉 − θX,C(A
∗y − c) over y ∈ Y.

Thus, the dual of a quadratic programming problem isn’t another quadratic
programming problem, except in the linear programming subcase.

The general duality framework in Theorem 11.39 can be useful also in the
derivation of conjugacy formulas. The next example shows this while demon-
strating how the criteria in 11.39 can be verified in a particular case.

11.44 Example (dualized composition). Let g : IRn → IR and θ : IR → IR be
lsc, proper and convex with dom θ ⊂ IR+ and limλ→∞ θ(λ)/λ > −g(0). With
g∞(z) replacing λg(λ−1z) when λ = 0, one has for all z ∈ IRn that

inf
λ≥0

{
θ(λ) + λg(λ−1z)

}
= (θ∗◦g∗)∗(z).

Detail. The assumption on dom θ is equivalent to θ∗ being nondecreasing; cf.
8.51. In particular, therefore, θ∗◦g∗ is another convex function; cf. 2.20(b).

Fixing any z, define f(λ, u) to be θ(λ) + h(λ, z + u), with h(λ, w) =
λg(λ−1w) when λ > 0 but g∞(w) when λ = 0; set h(λ, w) = ∞ when λ < 0.
The left side of the claimed formula is then the optimal value in the problem
of minimizing ϕ(λ) = f(λ, 0) over λ ∈ IR1.

The function f is lsc, proper and convex by 3.49(c), so we’re in the territory
of Theorem 11.39. To proceed, we have to determine f∗. Calculating from the
definition (with μ as the variable dual to λ), we get

f∗(μ, y) = sup
λ,u

{〈
(μ, y), (λ, u)

〉− f(λ, u)}
= sup

λ

{
μλ− θ(λ) + sup

w

{〈y, w − z〉 − h(λ, w)}}, 11(15)

where the inner supremum only has to be analyzed for λ ≥ 0, inasmuch as
dom θ ⊂ IR+. For λ > 0 it comes out as
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sup
w

{〈y, w − z〉 − (λ�g)(w)
}
= λg∗(y)− 〈y, z〉,

cf. 11(3). For λ = 0, we use the fact in 11.5 that g∞ is the support function of
D = dom g∗ in order to see that the inner supremum is

sup
w

{〈y, w − z〉 − σD(w)
}
= δclD(y)− 〈y, z〉,

cf. 11.4(a). Substituting these into the last part of 11(15), we find that

f∗(μ, y) = θ∗
(
g∗(y) + μ

)− 〈y, z〉
(with θ∗(∞) interpreted as ∞). The dual problem, which consists of maxi-
mizing ψ(y) = −f∗(0, y) over y ∈ IRn, therefore has optimal value supψ =
(θ∗◦g∗)∗(z), which is the value on the right side of the claimed formula.

We can obtain the desired conclusion by verifying that inf ϕ = supψ.
A criterion is provided for this purpose in 11.39(a): it suffices to know that
0 ∈ int

{
μ
∣∣∃ y with g∗(y)+μ ∈ dom θ∗

}
. Because θ∗ is nondecreasing, dom θ∗

is an interval that’s unbounded below; its right endpoint (maybe ∞) is θ∞(1)
by 11.5. What we need to have is inf g∗ < θ∞(1). But inf g∗ = −g(0) by
11.8(a) as applied to g∗. The criterion thus means −g(0) < θ∞(1). Since
θ∞(1) = limλ↗∞ θ(λ)/λ, we’ve reached our goal.

I. Lagrangian Functions

Duality in the elegant style of Theorem 11.39 and its accompaniment is a feature
of optimization problems of convex type only. In general, for an optimization
problem represented as minimizing ϕ = f( · , 0) over IRn for a function f :
IRn×IRm → IR, regardless of convexity, we speak of the problem of maximizing
ψ = −f∗(0, ·) over IRn as the associated dual problem, in contrast to the given
problem as the primal problem, but the relationships might not be as tight as
the ones we’ve been seeing. The issue of whether inf ϕ = supψ comes down
to whether p(0) = p∗∗(0) for p(u) = infx f(x, u), as observed in 11.38. The
trouble is that in the absence of p being convex—which is hard to guarantee
without simply assuming f is convex—there’s no strong handle on whether
p(0) = p∗∗(0). We’ll nonetheless eventually uncover some facts of considerable
power about nonconvex duality and how it can be put to use.

An important step along the way is the study of general ‘Lagrangian func-
tions’. That has other motivations as well, most notably in the expression
of optimality conditions and the development of methods for computing opti-
mal solutions. Although tradition merely associates Lagrangian functions with
constraint systems, their role can go far beyond just that.

The key idea is that a Lagrangian arises through partial dualization of a
given problem in relation to a particular choice of perturbation parameters.
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11.45 Definition (Lagrangians and dualizing parameterizations). For a problem
of minimizing ϕ on IRn, a dualizing parameterization is a representation ϕ =
f( · , 0) in terms of a proper function f : IRn× IRm → IR such that f(x, u) is lsc
convex in u. The associated Lagrangian l : IRn × IRm → IR is given by

l(x, y) := infu

{
f(x, u)− 〈y, u〉

}
. 11(16)

This definition has its roots in the Legendre-Fenchel transform: for each
x ∈ IRn the function −l(x, ·) is conjugate to f(x, ·) on IRm. The conditions
on f have the purpose of ensuring that f(x, ·) is in turn conjugate to −l(x, ·):

f(x, u) = supy

{
l(x, y) + 〈y, u〉

}
. 11(17)

Indeed, they require f(x, ·) to be proper, lsc and convex, unless f(x, ·) ≡ ∞;
either way, f(x, ·) then coincides with its biconjugate by 11.1 and 11.2.

The convexity of f(x, u) in u is a vastly weaker requirement than con-
vexity in (x, u), although it’s certainly implied by the latter. The parametric
representations in 11.39, 11.41, and 11.42 are dualizing parameterizations in
particular. Before going any further with those cases, however, let’s look at
how Definition 11.45 captures the notion of a Lagrangian function as a vehicle
for conditions about Lagrange multipliers. It does so with such generality that
the multipliers aren’t merely associated with constraints but equally well with
penalties and other features of composite modeling structure in optimization.

11.46 Example (multiplier rule in Lagrangian form). Consider the problem

minimize f0(x) + θ
(
f1(x), . . . , fm(x)

)
over x ∈ X

for a nonempty, closed set X ⊂ IRn, smooth functions fi : IRn → IR, and a
proper, lsc, convex function θ : IRm → IR. Taking F (x) =

(
f1(x), . . . , fm(x)

)
,

identify this with the problem of minimizing ϕ(x) = f(x, 0) over x ∈ IRn for

f(x, u) = δX(x) + f0(x) + θ
(
F (x) + u

)
.

This furnishes a dualizing parameterization for which the Lagrangian is

l(x, y) = δX(x) + f0(x) +
〈
y, F (x)

〉− θ∗(y)
(with ∞−∞ = ∞ on the right). The optimality condition in the extended
multiplier rule of 10.8, namely,

−[∇f0(x̄) +∇F (x̄)∗ȳ] ∈ NX(x̄) for some ȳ ∈ ∂θ(F (x̄)),
can then be written equivalently in the Lagrangian form

0 ∈ ∂xl(x̄, ȳ), 0 ∈ ∂y[−l](x̄, ȳ).

As a particular case, when θ = θY,B for a closed, convex set Y ⊂ IRm and a
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symmetric, positive-semidefinite matrix B ∈ IRm×m as in 11.18, possibly with
B = 0 , the Lagrangian specializes to

l(x, y) = δX(x) + L(x, y)− δY (y)
for L(x, y) = f0(x) +

〈
y, F (x)

〉− 1
2

〈
y, By

〉
,

and then the Lagrangian form of the multiplier rule specializes to

−∇xL(x̄, ȳ) ∈ NX(x̄), ∇yL(x̄, ȳ) ∈ NY (ȳ).

The case of θ = δK for a closed, convex cone corresponds to B = 0 and Y = K∗.

Detail. It’s elementary that Definition 11.45 yields the expression claimed for
l(x, y). (The convention about infinities reconciles what happens when both
x /∈ X and y /∈ dom θ∗; we have f(x, ·) ≡ ∞ when x /∈ X , so the conjugate
function −l(x, ·) is then correctly the constant function −∞, i.e., we have
l(x, ·) ≡ ∞.) Subgradient inversion through 11.3 turns the multiplier rule into
the condition on subgradients of l.

When θ = θY,B as in 11.18, we have θ = (δY + jB)
∗ for jB(y) :=

1
2 〈y, By〉,

hence θ∗ = δY + jB by 11.1. The subgradient condition calculates out then to
the one stated in terms of ∇xL(x̄, ȳ) and ∇yL(x̄, ȳ); cf. 8.8(c).

The possibility of expressing conditions for optimality in Lagrangian form
is useful for many purposes, such as the design of numerical methods. The
Lagrangian brings out properties of the problem that otherwise might be ob-
scured. This is seen in Example 11.46 when θ is a function of type θY,B, which
may lack continuous derivatives through the incorporation of various penalty
terms. From some perspectives, such nonsmoothness could be a handicap in
contemplating how to minimize f0(x) + θ

(
F (x)

)
directly. But in working with

the Lagrangian L(x, y), one has a finite, smooth function on a relatively simple
product set X × Y , and that may be more approachable.

Problems of extended linear-quadratic programming fit Example 11.46
with f0(x) = 〈c, x〉 + 1

2 〈x, Cx〉, F (x) = b − Ax and θ = θY,B. Their La-
grangians can also be viewed as specializing the ones associated with problems
in the Fenchel scheme.

11.47 Example (Lagrangians in the Fenchel scheme). In the problem formula-
tion of 11.41, the Lagrangian function is given by

l(x, y) = 〈c, x〉+ k(x) + 〈b, y〉 − h∗(y)− 〈y, Ax〉
(with∞−∞ =∞ on the right). The optimality conditions at the end of 11.41
can be written equivalently in the Lagrangian form

0 ∈ ∂xl(x̄, ȳ), 0 ∈ ∂y[−l](x̄, ȳ).
For the special case of extended linear-quadratic programming described in
11.43, the Lagrangian reduces to
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l(x, y) = δX(x) + L(x, y)− δY (y)
for L(x, y) = 〈c, x〉+ 1

2〈x, Cx〉+ 〈b, y〉 − 1
2〈y, By〉 − 〈y, Ax〉,

and the optimality condition translates then to

−∇xL(x̄, ȳ) ∈ NX(x̄), ∇yL(x̄, ȳ) ∈ NY (ȳ),

or in other words,

−c− Cx̄+ A∗ȳ ∈ NX(x̄), b− Ax̄−Bȳ ∈ NY (ȳ).

Detail. The Lagrangian can be calculated right from Definition 11.45. The
convention about ∞−∞ comes in because the formula makes l(x, y) have the
value ∞ when k(x) = ∞, even if h∗(y) = ∞. The Lagrangian form of the
optimality condition merely restates the conditions at the end of 11.41 in an
alternative manner.

Here l(x, y) is convex in x and concave in y. This is characteristic of the
convex duality framework in general.

11.48 Proposition (convexity properties of Lagrangians). For any dualizing pa-
rameterization ϕ = f( · , 0), the associated Lagrangian l(x, y) is usc concave in
y. It is convex in x besides if and only if f(x, u) is convex in (x, u) rather than
just with respect to u. In that case, one has

(v, y) ∈ ∂f(x, u) ⇐⇒ v ∈ ∂xl(x, y), u ∈ ∂y[−l](x, y),
the value l(x, y) in these circumstances being finite and equal to f(x, u)−〈y, u〉.
Proof. The fact that l(x, y) is usc concave in y is obvious from −l(x, ·) being
conjugate to f(x, ·). If f(x, u) is convex in (x, u), so too for any y ∈ IRm

is the function fy(x, u) := f(x, u) − 〈y, u〉, and then infu fy(x, u) is convex
because the inf-projection of any convex function is convex; cf. 2.22. But
infu fy(x, u) = l(x, y) by definition. Thus, the convexity of f(x, u) in (x, u)
implies the convexity of l(x, y) in x.

Conversely, if l(x, y) is convex in x, the function ly(x, u) := l(x, y)+ 〈y, u〉
is convex in (x, u). But according to 11(17), f is the pointwise supremum of the
collection of functions ly as y ranges over IRm. Since the pointwise supremum of
a collection of convex functions is convex, we conclude that in this case f(x, u)
is convex in (x, u).

To check the equivalence in subgradient relations for particular x0, u0, v0
and y0, observe from 11.3 and the conjugacy between f(x0, ·) and −l(x0, ·)
that the conditions y0 ∈ ∂uf(x0, u0) and u0 ∈ ∂y[−l](x0, y0) are equivalent to
each other and to having l(x0, y0) = f(x0, u0) − 〈y0, u0〉 (finite). When f is
convex, we can appeal to 8.12 to write the full condition (v0, y0) ∈ ∂f(x0, u0)
as the inequality

f(x, u) ≥ f(x0, u0) + 〈v0, x− x0〉+ 〈y0, u− u0〉 for all x, u,
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cf. 8.12. From the case of x = x0 we see that this entails y0 ∈ ∂uf(x0, u0) and
therefore is equivalent to having u0 ∈ ∂y[−l](x0, y0) along with

infu
{
f(x, u)− 〈y0, u〉

} ≥ f(x0, u0)− 〈y0, u0〉+ 〈v0, x− x0〉 for all x.

But the latter translates to l(x, y0) ≥ l(x0, y0) + 〈v0, x − x0〉 for all x, which
by 8.12 and the convexity of l(x, y0) in x means that v0 ∈ ∂xl(x0, y0). Thus,
(v0, y0) ∈ ∂f(x0, u0) if and only if v0 ∈ ∂xl(x0, y0) and u0 ∈ ∂y[−l](x0, y0).

Whenever l(x, y) is convex in x as well as concave in y, the Lagrangian
condition in 11.46 and 11.47 can be interpreted through the following concept.

11.49 Definition (saddle points). A vector pair (x̄, ȳ) is said to be a saddle
point of the function l on IRn × IRm (in the minimax sense, and under the
convention of minimizing in the first argument and maximizing in the second)
if infx l(x, ȳ) = l(x̄, ȳ) = supy l(x̄, y), or in other words

l(x, ȳ) ≥ l(x̄, ȳ) ≥ l(x̄, y) for all x and y. 11(18)

The set of all such saddle points (x̄, ȳ) is denoted by argminimax l, or in more
detail by argminimaxx,y l(x, y).

Likewise in the case of a function L on a product set X × Y , a pair (x̄, ȳ)
is said to be a saddle point of L with respect to X × Y if{

x̄ ∈ X, ȳ ∈ Y, and

L(x, ȳ) ≥ L(x̄, ȳ) ≥ L(x̄, y) for all x ∈ X, y ∈ Y. 11(19)

The notation for the saddle point set is then

argminimax
X,Y

L, or argminimax
x∈X, y∈Y

L(x, y).

11.50 Theorem (minimax relations). Let l : IRn×IRm → IR be the Lagrangian
for a problem of minimizing ϕ on IRn with dualizing parameterization ϕ =
f( · , 0), f : IRn × IRm → IR. Let ψ = −f∗(0, ·) on IRm. Then

ϕ(x) = supy l(x, y), ψ(y) = infx l(x, y), 11(20)

infx ϕ(x) = infx
[
supy l(x, y)

] ≥ supy
[
infx l(x, y)

]
= supy ψ(y), 11(21)

and furthermore

x̄ ∈ argminx ϕ(x)

ȳ ∈ argmaxy ψ(y)

infx ϕ(x) = supy ψ(y)

⎫⎪⎪⎬
⎪⎪⎭ ⇐⇒ (x̄, ȳ) ∈ argminimaxx,y l(x, y)

⇐⇒ ϕ(x̄) = ψ(ȳ) = l(x̄, ȳ).

11(22)

The saddle point condition (x̄, ȳ) ∈ argminimaxx,y l(x, y) always entails the
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subgradient condition

0 ∈ ∂xl(x̄, ȳ), 0 ∈ ∂y[−l](x̄, ȳ), 11(23)

and is equivalent to it whenever l(x, y) is convex in x and concave in y, in which
case it is also the same as having (0, ȳ) ∈ ∂f(x̄, 0).

Proof. The expression for ϕ in 11(20) comes from 11(17) with u = 0, while
the one for ψ is based on the observation that the formula

−f∗(v, y) = infx,u
{
f(x, u)− 〈v, x〉 − 〈y, u〉}

can be rewritten through 11(16) as

−f∗(v, y) = infx
{
l(x, y)− 〈v, x〉}. 11(24)

From 11(20) we immediately get 11(21), since inf ϕ = p(0) and supψ = p∗∗(0)
for p(u) := infx f(x, u); cf. 11.38 with u = 0. We then have 11(22), whose
right side is now seen to be just another way of writing ϕ(x̄) = ψ(ȳ). The final
assertion about subgradients dualizes 11(23) through the relation in 11.48.

An interesting consequence of Theorem 11.50 is the fact that the set of
saddle points is always a product set:

argminimax l =

{
(argminϕ)× (argmaxψ) if inf ϕ = supψ,
∅ if inf ϕ > supψ.

11(25)

Moreover, l is constant on argminimax l. This constant is called the saddle
value of l and is denoted by minimax l.

The crucial question of whether inf ϕ = supψ in our Lagrangian setting
is that of whether p(0) = p∗∗(0) for p(u) := infx f(x, u), as we know already
from 11.38. We’ll return to this presently.

11.51 Corollary (saddle point conditions for convex problems). Consider a
problem of minimizing ϕ(x) over x ∈ IRn in the convex duality framework
of 11.39, and let l(x, y) be the corresponding Lagrangian. Suppose 0 ∈ intU ,
or merely that 0 ∈ U but f is piecewise linear-quadratic.

Then for x̄ to be an optimal solution it is necessary and sufficient that
there exist a vector ȳ such that (x̄, ȳ) is a saddle point of the Lagrangian l on
IRn × IRm. Furthermore, ȳ appears in this role with x̄ if and only if ȳ is an
optimal solution to the dual problem of maximizing ψ(y) over y ∈ IRm.

Proof. From 0 ∈ intU we have inf ϕ = supψ < ∞ by 11.39(a) along with
the further fact in 11.39(b) that argmaxψ contains a vector ȳ if inf ϕ > −∞.
When x̄ ∈ argminϕ, ϕ(x̄) is finite (by the definition of ‘argmin’). The claims
follow then from the equivalences at the end of Theorem 11.50; cf. the preceding
discussion. The piecewise linear-quadratic case substitutes the stronger results
in 11.42 for those in 11.39.
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For instance, saddle points of the Lagrangian in 11.46 characterize optimal-
ity in the Fenchel scheme in 11.41 when b ∈ int

(
A dom k+domh

)
. When k and

h are piecewise linear-quadratic, the sharper form of 11.51 is applicable—no
constraint qualification is needed.

J∗. Minimax Problems

Problems of minimizing ϕ and maximizing ψ, in which ϕ and ψ are derived from
some function l on IRn×IRm by the formulas in 11(18), are well known in game
theory. It’s interesting to see that the circumstances in which such problems
also form a primal-dual pair arising out of a dualizing parameterization are
completely described by the foregoing. All we need to know is that l(x, y) is
concave and usc in y, and that for each x either l(x, ·) < ∞ or l(x, ·) ≡ ∞.
These conditions ensure that in defining f by 11(17) we get ϕ = f( · , 0) for a
dualizing parameterization such that the associated Lagrangian is l.

11.52 Example (minimax problems). Consider nonempty, closed, convex sets
X ⊂ IRn, Y ⊂ IRm, and a continuous function L : X × Y → IR with L(x, y)
convex in x ∈ X for y ∈ Y and concave in y ∈ Y for x ∈ X . Let

l(x, y) =

⎧⎨
⎩
L(x, y) for x ∈ X , y ∈ Y ,
−∞ for x ∈ X , y /∈ Y ,
∞ for x /∈ X ,

ϕ(x) =

{
supy∈Y L(x, y) for x ∈ X ,

∞ for x /∈ X ,

ψ(x) =

{
infx∈X L(x, y) for y ∈ Y ,
−∞ for y /∈ Y .

The saddle point set argminimaxX,Y L, which is closed and convex, coincides
then with argminimax l and has the product structure in 11(25); on this set,
L is constant, the saddle value minimaxX,Y L being minimax l.

Indeed, l is the Lagrangian for the problem of minimizing ϕ over IRn under
the dualizing parameterization furnished by

f(x, u) =

{
supy∈Y

{
L(x, y) + 〈y, u〉} for x ∈ X ,

∞ for x /∈ X .
.

The function f is lsc, proper, and convex with

−f∗(v, y) =
{
infx∈X

{
L(x, y)− 〈v, x〉} for y ∈ Y ,

−∞ for y /∈ Y ,
.

so the corresponding dual problem is that of maximizing ψ over IRm.

If L is smooth on an open set that includes X × Y , argminimaxX,Y L
consists of the pairs (x̄, ȳ) ∈ X × Y satisfying
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−∇xL(x̄, ȳ) ∈ NX(x̄), ∇yL(x̄, ȳ) ∈ NY (ȳ).

The equivalent conditions in 11.40 are necessary and sufficient for this saddle
point set to be nonempty and bounded. In particular, the saddle point set is
nonempty and bounded when X and Y are bounded.

Detail. Obviously f(x, 0) = ϕ(x). For x ∈ X , the function −l(x, ·) is lsc,
proper and convex with conjugate f(x, ·), while for x /∈ X it is the constant
function −∞, whereas f(x, ·) is the constant function ∞. Hence −l(x, ·) is the
conjugate of f(x, ·) for all x ∈ IRn. Thus, f furnishes a dualizing parameteri-
zation for the problem of minimizing ϕ on IRn, and the associated Lagrangian
is l. We have l(x, y) convex in x and concave in y, so f is convex by 11.48.
The continuity of L on X × Y ensures that −l(x, ·) depends epi-continuously
on x ∈ X , and the same then holds for f(x, ·) by Theorem 11.34. It follows
that f is lsc on IRn × IRm. The rest is clear then from 11.50. When X and Y
are bounded, the sets U and V in 11.40 are all of IRn and IRm.

A powerful rule about the behavior of optimal values in parameterized
problems of convex type comes out of this principle.

11.53 Theorem (perturbation of saddle values; Golshtein). Consider nonempty,
closed, convex sets X ⊂ IRn and Y ⊂ IRm, and an interval [0, T ] ⊂ IR. Let
L : [0, T ] × X × Y → IR be continuous, with L(t, x, y) convex in x ∈ X and
concave in y ∈ Y , and suppose that the saddle point set

X0 × Y0 = argminimax
x∈X, y∈Y

L(0, x, y)

is nonempty and bounded. Then, relative to t in an interval [0, ε] for some
ε > 0, the saddle point set argminimaxX,Y L(t, ·, ·) is nonempty and bounded,
the mapping t �→ argminimaxX,Y L(t, ·, ·) is osc and locally bounded at t = 0,
and the saddle value

λ(t) := minimax
x∈X, y∈Y

L(t, x, y)

converges to λ(0) as t↘ 0. If in addition the limit

L′
+(0, x, y) := lim

t ↘ 0
x′→

X x

y′→
Y y

L(t, x′, y′)− L(0, x′, y′)
t

11(26)

exists for all (x, y) ∈ X0 × Y0, then the value L′
+(0, x, y) is continuous relative

to (x, y) ∈ X0 × Y0, convex in x ∈ X0 for each y ∈ Y0, and concave in y ∈ Y0
for each x ∈ X0. Indeed, the right derivative λ′

+
(0) exists and is given by

λ′+(0) = minimax
x∈X0, y∈Y0

L′
+(0, x, y).

Proof. We put ourselves in the picture of Example 11.52 and its detail, but
with everything depending additionally on t ∈ [0, T ], in particular f(t, x, u).
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In extension of the earlier argument, the mapping (t, x) �→ f(t, x, ·) is epi-
continuous relative to [0, T ] × X . From this it follows that the mapping
t �→ f(t, ·, ·) is epi-continuous as well. The convex functions p(t, ·) defined
by p(t, u) = infx f(t, x, u) and the convex sets U(t) = dom p(t, ·) then have

p(0, ·) = e-lim
t ↘ 0

p(t, ·), U(0) ⊂ lim inf
t ↘ 0

U(t),

by 7.57 and 7.4(h). Similarly, in using f∗(t, ·, ·) to denote the convex func-
tion conjugate to f(t, ·, ·), we have the epi-continuity of t �→ f∗(t, ·, ·) by
Theorem 11.34 and thus, for the convex functions q(t, ·) defined by q(t, v) =
infy f

∗(t, v, y) and the convex sets V (t) = dom q(t, ·) that
q(0, ·) = e-lim

t ↘ 0
q(t, ·), V (0) ⊂ lim inf

t ↘ 0
V (t).

Our assumption that argminimaxX,Y L(0, ·, ·) is nonempty and bounded corre-
sponds by 11.40 to having 0 ∈ intU(0) and 0 ∈ intV (0). The inner limit inclu-
sions for these sets imply then by 4.15 that also 0 ∈ intU(t) and 0 ∈ intV (t)
for all t in some interval [0, ε]. Hence by 11.40 we have argminimaxL(t, ·, ·)
nonempty and bounded for t in this interval. We know further from Theorem
11.39, via 11.50 and 11.52, that

argminimaxX,Y L(t, ·, ·) = ∂up(t, 0)× ∂vq(t, 0) for t ∈ [0, ε].

The epi-convergence of p(t, ·) to p(0, ·) guarantees by the convexity of these
functions that, as t↘ 0, uniform convergence on a neighborhood of u = 0;
cf. 7.17. Likewise, q(t, ·) converges uniformly to q(0, ·) around v = 0. The
subgradient bounds in 9.14 imply that the mapping

t �→ ∂up(t, 0)× ∂vq(t, 0) on [0, ε]

is osc and locally bounded at t = 0. And thus, the constant value λ(t) that
L(t, ·, ·) has on ∂up(t, 0)×∂vq(t, 0) must converge as t ↘ 0 to the constant value
λ(0) that L(0, ·, ·) has on ∂up(0, 0)× ∂vq(0, 0).

The fact that the limit in 11(26) is taken over x′→X0
x and y′→Y0

y guaran-
tees that L′

+
(0, x, y) is continuous relative to (x, y) ∈ X0 × Y0. The convexity-

concavity of L′
+(0, ·, ·) on X0 × Y0 follows immediately from that of L(t, ·, ·)

and the constancy of L(0, ·, ·) on X0 × Y0. Because the sets X0 and Y0 are
closed and bounded, we know then from 11.52 that the saddle point set for
L′

+
(0, ·, ·) on X0 × Y0 is nonempty. Let μ = minimaxX0,Y0

L′
+
(0, ·, ·). We have

to demonstrate that

lim
t ↘ 0

1

t

(
λ(t)− λ(0)) = μ.

Henceforth we can suppose for simplicity that ε = T and write the set
argminimaxX,Y L(t, ·, ·) as Xt × Yt; the mappings t �→ Xt and t �→ Yt are
nonempty-valued, and they are osc and locally bounded at t = 0. Consider any
(x̄, ȳ) ∈ X0 × Y0 and, for t ∈ (0, T ], pairs (x̄t, ȳt) ∈ Xt × Yt. As t↘ 0, (x̄t, ȳt)



J∗. Minimax Problems 517

stays bounded, and any cluster point (x0, y0) belongs to X0 × Y0. The saddle
point conditions imply that

L(0, x̄t, ȳ) ≥ L(0, x̄, ȳ) ≥ L(0, x̄, ȳt), L(0, x̄, ȳ) = λ(0),

L(t, x̄, ȳt) ≥ L(t, x̄t, ȳt) ≥ L(t, x̄t, ȳ), L(t, x̄t, ȳt) = λ(t).

Using these relations, we consider any sequence tν ↘ 0 such that ȳtν converges
to some y0 and estimate that

lim sup
ν→∞

λ(tν)− λ(0)
tν

= lim sup
ν→∞

L(tν , x̄tν , ȳtν )− L(0, x̄, ȳ)
tν

≤ lim sup
ν→∞

L(tν , x̄, ȳtν )− L(0, x̄, ȳtν )
tν

= L′
+
(0, x̄, y0) ≤ sup

y∈Y0

L′
+
(0, x̄, y).

Since x̄ was an arbitrary point of X0, this yields the bound

lim sup
t ↘ 0

λ(t)− λ(0)
t

≤ inf
x∈X0

[
sup
y∈Y0

L′
+(0, x, y)

]
= μ.

A parallel argument with the roles of x and y switched shows also that

lim inf
t ↘ 0

λ(t)− λ(0)
t

≥ sup
y∈Y0

[
inf

x∈X0

L′
+(0, x, y)

]
= μ.

Thus, [λ(t)− λ(0)]/t does tend to μ as t↘ 0.

11.54 Example (perturbations in extended linear-quadratic programming). In
the format and assumptions of 11.43, but with dependence additionally on a
parameter t, consider for each t ∈ [0, T ] the primal and dual problems

minimize
〈
c(t), x

〉
+

1
2

〈
x, C(t)x

〉
+ θY,B(t)

(
b(t)−A(t)x) over x ∈ X,

maximize
〈
b(t), y

〉− 1
2

〈
y, B(t)y

〉− θX,C(t)

(
A(t)∗y − c(t)) over y ∈ Y,

denoting their optimal solution sets by Xt and Yt. Suppose that X0 and Y0 are
nonempty and bounded.

If c(t), C(t), b(t), B(t), and A(t) depend continuously on t, there exists
ε > 0 such that, relative to t ∈ [0, ε], the mappings t �→ Xt and t �→ Yt are
nonempty-valued and, at t = 0, are osc and locally bounded. Then too, the
common optimal value in the two problems, denoted by λ(t), behaves contin-
uously at t = 0. If in addition the right derivatives

c0 := c′+(0), C0 := C′
+(0), b0 := b′+(0), B0 := B′

+(0), A0 := A′
+(0),

exist, then the right derivative λ′
+
(0) exists and is the common optimal value

in the problems
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minimize 〈c0, x〉+ 1
2 〈x, C0x〉+ θY0,B0

(b0 − A0x) over x ∈ X0,

maximize 〈b0, y〉 − 1
2 〈y, B0y〉 − θX0,C0

(A∗
0y − c0) over y ∈ Y0.

Detail. This specializes Theorem 11.53 to the Lagrangian setup for extended
linear-quadratic programming in 11.47.

Note that the matrices B0 and C0 in Example 11.54, although symmetric,
might not be positive definite, so the subproblem giving the rate of change of
the optimal value might not be one of extended linear-quadratic programming
strictly as described in 11.43. But it’s clear from the convexity-concavity of
L′

+(0, ·, ·) in Theorem 11.55 that the expression
1
2 〈x, C0x〉 is convex with respect

to x ∈ X0, while
1
2〈y, B0y〉 is convex with respect to y ∈ Y0. The primal and

dual subproblems for λ′
+
(0) are thus of convex type nonetheless. (The notion of

piecewise linear-quadratic programming can readily be refined in this direction.
The special features of duality in Theorem 11.42 persist, and in 11.18 all that
changes is the description of the effective domains of the θ functions.)

K∗. Augmented Lagrangians and Nonconvex Duality

The question of the extent to which the duality relation inf ϕ = supψ might
hold for problems of nonconvex type, beyond the framework in 11.39, has its
answer in a closer examination of the relationships in 11.38. The general situ-
ation is shown in Figure 11–6, where the notation is still that of ϕ = f( · , 0),
ψ = −f∗(0, ·), and p(u) = infx f(x, u). By the definition of p∗∗, the value
supψ = p∗∗(0) is the supremum of the intercepts on the vertical axis that are
achievable by affine functions majorized by p; the vectors ȳ ∈ argmaxψ, if any,
correspond to the affine functions that are ‘highest’ in this sense.

p

0 u

inf ϕ

sup ψ

p(0) + <y, >.
_

�

Fig. 11–6. Duality gap in minimization problems lacking adequate convexity.

A duality gap inf ϕ > supψ arises precisely when the intercepts are pre-
vented from getting as high as the value inf ϕ = p(0). A lack of convexity can
evidently be the source of such a shortfall. (Of course, a duality gap can also
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occur even when p is convex if p fails to be lsc at 0 or if p takes on −∞ but
0 �∈ cl(dom p); cf. 11.2.) In particular, it’s clear that

inf ϕ = supψ

ȳ ∈ argmaxψ

}
⇐⇒

{
p(u) ≥ p(0) + 〈ȳ, u〉 for all u,

with p(0) �= −∞. 11(27)

This picture suggests that a duality gap might be avoided if the dual
problem could be set up to correspond not to pushing affine functions up
against epi p, but some other class of functions capable of penetrating possible
‘dents’. This turns out to be attainable with only a little extra effort.

11.55 Definition (augmented Lagrangian functions). For a primal problem of
minimizing ϕ(x) over x ∈ IRn and any dualizing parameterization ϕ = f( · , 0)
for a choice of f : IRn×IRm → IR, consider any augmenting function σ; by this
is meant a proper, lsc, convex function

σ : IRm → IR with minσ = 0, argminσ = {0}.
The corresponding augmented Lagrangian with penalty parameter r > 0 is then
the function l : IRn × IRm × (0,∞)→ IR defined by

l (x, y, r) := infu

{
f(x, u) + rσ(u)− 〈y, u〉

}
.

The corresponding augmented dual problem consists of maximizing over all
(y, r) ∈ IRm × (0,∞) the function

ψ(y, r) := infx,u

{
f(x, u) + rσ(u)− 〈y, u〉

}
.

p

0 u

σ.p(0)+<y, > _ r

Fig. 11–7. Duality gap removed by an augmenting function.

The notion of the augmented Lagrangian grows from the idea of replacing
the inequality in 11(27) by one of the form

p(u) ≥ p(0) + 〈ȳ, u〉 − rσ(u) for all u
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for some augmenting function σ (as just defined) and a parameter value r > 0
sufficiently high, as in Figure 11–7. What makes the approach successful in
modifying the dual problem to get rid of the duality gap is that this inequality
is identical to

prσ(u) ≥ prσ(0) + 〈ȳ, u〉 for all u

where prσ(u) := infx frσ(x, u) for the function frσ(x, u) := f(x, u) + rσ(u).
Indeed, prσ(u) = p(u) + rσ(u) and prσ(0) = p(0), because σ(0) = 0.

We have ϕ = frσ( · , 0) as well as ϕ = f( · , 0). Moreover because σ is
proper, lsc and convex, the representation of ϕ in terms of frσ, like that in
terms of f , is a dualizing parameterization. The Lagrangian associated with
frσ is lrσ(x, y) = l (x, y, r), as seen from the definition of l (x, y, r) above. The
resulting dual problem, which consists of maximizing ψrσ = −f∗

rσ(0, ·) over
y ∈ IRm, has ψrσ(y) = ψ(y, r). We can apply the theory already developed to
this modified setting, where frσ replaces f , and capture powerful new features.

Before translating this argument into a theorem about duality, we record
some general consequences of Definition 11.55 for background, and we look at
a couple of examples.

11.56 Exercise (properties of augmented Lagrangians). For any dualizing pa-
rameterization f and augmenting function σ, the augmented Lagrangian
l (x, y, r) is concave and usc in (y, r) and nondecreasing in r. It is convex in x
if f(x, u) is actually convex in (x, u). If σ is finite everywhere, the augmented
Lagrangian is given in terms of the ordinary Lagrangian l(x, y) by

l (x, y, r) = supz

{
l(x, y − z)− rσ∗(r−1z)

}
. 11(28)

Likewise, the augmented dual expression ψ(y, r) is concave and usc in (y, r)
and nondecreasing in r. In the case of f(x, u) convex in (x, u) and σ finite
everywhere, it is given in terms of the ordinary dual expression ψ(y) by

ψ(y, r) = supz

{
ψ(y − z)− rσ∗(r−1z)

}
. 11(29)

Then in fact, (ȳ, r̄) maximizes ψ if and only if ȳ maximizes ψ; the value of
r̄ > 0 can be chosen arbitrarily.

Guide. Derive the properties of l straight from the formula in 11.55, using
2.22(a) for the convexity in x. Develop 11(28) out of the fact that −l (x, · , r)
is conjugate to f(x, ·) + rσ, taking note of 11.23(a). Handle ψ similarly. The
final assertion about maximizing pairs (ȳ, r̄) falls out of 11(29).

The monotonicity of l (x, y, r) and ψ(y, r) in r is consistent with r being a
penalty parameter, an interpretation that will become clearer as we proceed. It
lends special character to the augmented dual problem. In maximizing ψ(y, r)
in y and r, the requirement that r > 0 doesn’t act like a real constraint. There’s
no danger of having to move toward r = 0 to get higher values of ψ(y, r).

The fact at the end of 11.56, that, in the convex case, solutions to the
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augmented dual problem correspond simply to solutions to the ordinary dual
problem, is reassuring. Augmentation doesn’t destroy duality that may exist
without it. This doesn’t mean, though, that augmented Lagrangians have
nothing to offer in the convex duality framework. Quite to the contrary, some
of the main features of augmentation, for instance in achieving ‘exact penalty
representations’ (as described below in 11.60), are most easily accessed in that
special framework.

11.57 Example (proximal Lagrangians). An augmented Lagrangian generated
with the augmenting function σ(u) = 1

2 |u|2 is a proximal Lagrangian. Then

l (x, y, r) = infu

{
f(x, u) +

r

2
|u|2 − 〈y, u〉

}
= supz

{
l(x, y − z)− 1

2r
|z|2

}
= supz

{
l(x, z)− 1

2r
|z − y|2

}
.

As an illustration, consider the case of Example 11.46 in which θ = δD for a
closed, convex, set D �= ∅. This calculates out to

l (x, y, r) = f0(x) +
r

2

[
dD

(
r−1y + F (x)

)2 − |r−1y|2
]
,

which for y = 0 gives the standard quadratic penalty function for the constraint
F (x) ∈ D. When D = {0}, one gets

l (x, y, r) = f0(x) +
〈
y, F (x)

〉
+
r

2

∣∣F (x)∣∣2.
Detail. These specializations are obtained from the first of the formulas for
l (x, y, r) in writing (r/2)|u|2 − 〈y, u〉 as (r/2)(|u− r−1y|2 − |r−1y|2).
11.58 Example (sharp Lagrangians). An augmented Lagrangian generated with
augmenting function σ(u) = ‖u‖ (any norm ‖ · ‖) is a sharp Lagrangian. Then

l (x, y, r) = infu

{
f(x, u) + r‖u‖ − 〈y, u〉

}
= supz

{
l(x, y − z)− δrB◦(z)

}
= sup

‖z−y‖◦≤r

l(x, z),

where ‖ · ‖◦ is the polar norm and B◦ its unit ball. For Example 11.46 in the
case of θ = δD for a closed, convex set D, one gets

l (x, y, r) = f0(x) + sup
‖z−y‖◦≤r

{〈
z, F (x)

〉− σD(z)
}
,

which can be calculated out completely for instance when D is a box and
‖ · ‖ = ‖ · ‖1, so that ‖ · ‖◦ = ‖ · ‖∞. Anyway, for y = 0 one has the standard
linear penalty representation of the constraint F (x) ∈ D:

l (x, 0, r) = f0(x) + rdD
(
F (x)

)
(distance in ‖ · ‖).

For general y but D = {0} one obtains
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l (x, y, r) = f0(x) +
〈
y, F (x)

〉
+ r‖F (x)‖.

Outfitted with these background facts and examples, we return now to the
derivation of a duality theory in terms of augmented Lagrangians that is able
even to cover certain nonconvex problems.

11.59 Theorem (duality without convexity). For a problem of minimizing ϕ on
IRn, consider the augmented Lagrangian l (x, y, r) associated with a dualizing
parameterization ϕ = f( · , 0), f : IRn × IRm → IR, and some augmenting func-
tion σ : IRm → IR. Suppose that f(x, u) is level-bounded in x locally uniformly
in u, and let p(u) := infx f(x, u). Suppose further that infx l (x, y, r) > −∞
for at least one (y, r) ∈ IRm × (0,∞). Then

ϕ(x) = supy,r l (x, y, r), ψ(y, r) = infx l (x, y, r),

where actually ϕ(x) = supy l (x, y, r) for every r > 0, and in fact

infx ϕ(x) = infx
[
supy,r l (x, y, r)

]
= supy,r

[
infx l (x, y, r)

]
= supy,r ψ(y, r).

11(30)

Moreover, optimal solutions to the primal and augmented dual problems are
characterized as saddle points of the augmented Lagrangian:

x̄ ∈ argminx ϕ(x) and (ȳ, r̄) ∈ argmaxy,r ψ(y, r)

⇐⇒ infx l (x, ȳ, r̄) = l (x̄, ȳ, r̄) = supy,r l (x̄, y, r),
11(31)

the elements of argmaxy,r ψ(y, r) being the pairs (ȳ, r̄) with the property that

p(u) ≥ p(0) + 〈ȳ, u〉 − r̄ σ(u) for all u. 11(32)

Proof. Most of this is evident from the monotonicity with respect to r in
11.56 and the explanation after Definition 11.55 of how 11(27) and Theorem
11.50 can be applied. The crucial new fact needing justification is the equality
in the middle of 11(30), in place of merely the automatic ‘≥’.

By hypothesis there’s at least one pair (ỹ, r̃) such that ψ(ỹ, r̃) is finite. To
get the equality in question, it will suffice to demonstrate that ψ(ỹ, r) → p(0)
as r → ∞, since p(0) = infx ϕ(x). We can utilize along the way the fact that
p is proper and lsc by virtue of the level boundedness assumption placed on f
(cf. 1.17). From the definition of ψ in 11.55 we have for all r > 0 that

ψ(ỹ, r) = infu
{
p(u) + rσ(u)− 〈ỹ, u〉}.

Let p̃(u) := p(u)+r̃σ(u)−〈ỹ, u〉, noting that p̃(0) = p(0) because σ(0) = 0. This
function is bounded below by ψ(ỹ, r̃), and like p it is proper and lsc because σ
is proper and lsc. We can write

ψ(ỹ, r̃ + s) = infu
{
p̃(u) + sσ(u)

}
for s > 0
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and concentrate on proving that the limit of this as s → ∞ is p̃(0). Because
σ is convex with argminσ = {0}, it’s level-coercive (by 3.27), and so too then
is p̃ + sσ, due to p̃ being bounded below. The positivity of σ away from 0
guarantees that p̃+ sσ increases pointwise as s → ∞ to the function δ{0} + γ
for the constant γ = p̃(0). In particular then p̃ + sσ epi-converges to δ{0} + γ
in the setting of Theorem 7.33 (see also 7.4(f)), and we are able to conclude
that inf(p̃+ sσ)→ inf(δ{0} + γ) = γ. This was what we needed.

The importance of the solutions to the augmented dual problem is found
in the following idea.

11.60 Definition (exact penalty representations). In the augmented Lagrangian
framework of 11.55, a vector ȳ is said to support an exact penalty representation
for the problem of minimizing ϕ on IRn if, for all r > 0 sufficiently large, this
problem is equivalent to minimizing l̄( · , ȳ, r) on IRn in the sense that

infx ϕ(x) = infx l̄(x, ȳ, r), argminx ϕ(x) = argminx l̄(x, ȳ, r).

Specifically, a value r̄ > 0 is said to serve as an adequate penalty threshold in
this respect if the property holds for all r ∈ (r̄,∞).

11.61 Theorem (criterion for exact penalty representations). In the notation
and assumptions of Theorem 11.59, a vector ȳ supports an exact penalty rep-
resentation for the primal problem if and only if there exist W ∈ N (0) and
r̂ > 0 such that

p(u) ≥ p(0) + 〈ȳ, u〉 − r̂σ(u) for all u ∈W. 11(33)

This criterion is equivalent in turn to the existence of an r̄ > 0 with (ȳ, r̄) ∈
argmaxy,r ψ(y, r), and moreover such values r̄ are the ones serving as adequate
penalty thresholds for the exact penalty property with respect to ȳ.

Proof. As a starter, note that the assumptions of Theorem 11.59 guarantee
that p is lsc and proper and hence that the condition in 11(33), and for that
matter the one in 11(32), can’t hold unless the value p(0) = inf ϕ is finite.

First we argue that the condition (ȳ, r̄) ∈ argmaxy,r ψ(y, r) is both neces-
sary and sufficient for ȳ to support an exact penalty representation with r̄ as
an adequate penalty threshold. For the necessity, note that the latter condi-
tions imply through Definition 11.60 that ψ(ȳ, r) = inf ϕ for all r ∈ (r̄,∞) and
hence, because ψ is usc (by 11.56), that ψ(ȳ, r̄) ≥ inf ϕ. Since supψ = inf ϕ
by 11(31), it follows that (ȳ, r̄) maximizes ψ.

For the sufficiency, recall from the end of Theorem 11.59 that the condition
(ȳ, r̄) ∈ argmaxy,r ψ(y, r) corresponds to the inequality 11(32) holding. When
r̄ is replaced in 11(32) by any higher value r, this inequality becomes strict for
u �= 0, because σ(0) = 0 but σ(u) > 0 for u �= 0. Then

argminu

{
p(u) + rσ(u)− 〈ȳ, u〉

}
= {0}.
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Fixing such r > r̄, consider the function g(x, u) := f(x, u) + rσ(u) − 〈ȳ, u〉
and its associated inf-projections h(u) := infx g(x, u) and k(x) := infu g(x, u),
noting that h(u) = p(u) + rσ(u)− 〈ȳ, u〉 whereas k(x) = l (x, ȳ, r). According
to the interchange rule in 1.35, one has

ū ∈ argminu h(u)

x̄ ∈ argminx g(x, ū)

}
⇐⇒

{
x̄ ∈ argminx k(x)

ū ∈ argminu g(x̄, u)

We’ve just seen that argminu h(u) = {0}. The pairs (x̄, ū) on the left of this rule
are thus the ones with ū = 0 and x̄ ∈ argminx g(x, 0) = argminx ϕ(x). These
are then also the pairs on the right; in other words, in minimizing l (x, ȳ, r) in
x one obtains exactly the points x̄ ∈ argminx ϕ(x), and then in maximizing
for any such x̄ the expression f(x̄, u) + rσ(u) − 〈ȳ, u〉 in u one finds that the
maximum is attained uniquely at 0. In particular, the sets argminx ϕ(x) and
argminx l (x, ȳ, r) are the same.

To complete the proof of the theorem we need only show now that when
11(33) holds there must exist r̄ ∈ (r̂,∞) such that the stronger condition
11(32) holds. In assuming 11(33) there’s no loss of generality in taking W to
be a ball εIB, ε > 0. Obviously 11(33) continues to hold when r̂ is replaced by a
higher value r̄, so the question is whether, once r̄ is high enough, we will have,
in addition, the inequality in 11(32) holding for all |u| > ε. By hypothesis
(inherited from Theorem 11.59) there exists (ỹ, r̃) ∈ IRm × (0,∞) such that
ψ(ỹ, r̃) is finite; then for α := ψ(ỹ, r̃) we have

p(u) ≥ α+ 〈ỹ, u〉 − r̃σ(u) for all u.

It will suffice to show that, when r̄ is chosen high enough, one will have

α+ 〈ỹ, u〉 − r̃σ(u) > p(0) + 〈ȳ, u〉 − r̄σ(u) when |u| > ε.

This amounts to showing that for high enough values of r̄ one will have{
u
∣∣ (r̄ − r̃)σ(u) ≤ 〈ȳ − ỹ, u〉+ p(0)− α} ⊂ εIB.

The issue can be simplified by working with s = r̄−r̃ > 0 and letting λ := |ȳ−ỹ|
and μ := p(0)− α. Then we only need to check that the set

C(s) :=
{
u
∣∣ sσ(u) ≤ λ|u|+ μ

}
lies in εIB when s is chosen high enough.

We know σ is level-coercive, because argminσ = {0} (cf. 3.23, 3.27), hence
there exist γ > 0 and β such that σ(u) ≥ γ|u|+β for all u (cf. 3.26). Let s0 > 0
be high enough that s0γ−λ > 0. For u ∈ C(s0) we have s0(γ|u|+β) ≤ λ|u|+μ,
hence |u| ≤ ρ := (μ−s0β)/(s0γ−λ). But C(s) ⊂ C(s0) when s > s0, inasmuch
as σ(u) ≥ 0 for all u. Therefore

C(s) ⊂ {
u
∣∣σ(u) ≤ (λρ+ μ)/s

}
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when s > s0. On the other hand, because σ(u) = 0 only for u = 0, the level
set

{
u
∣∣σ(u) ≤ δ

}
must lie in εIB for small δ > 0. Taking such a δ and noting

that (λρ+ μ)/s ≤ δ when s exceeds a certain s1, we conclude that C(s) ⊂ εIB
when s > s1.

11.62 Example (exactness of linear or quadratic penalties).

(a) Consider the proximal Lagrangian of 11.57 under the assumption that
infx l(x, y, r) > −∞ for at least one choice of (y, r). Then a necessary and
sufficient condition for a vector ȳ to support an exact penalty representation is
that ȳ be a proximal subgradient of the function p(u) = infx f(x, u) at u = 0.

(b) Consider the sharp Lagrangian of 11.58 under the assumption that
infx l(x, 0, r) > −∞ for some r. Then a necessary and sufficient condition
for the vector ȳ = 0 to support an exact penalty representation is that the
function p(u) = infx f(x, u) be calm from below at u = 0.

Detail. These results specialize Theorem 11.61. Relation 11(33) corresponds
in (a) to the definition of a proximal subgradient (see 8.45), whereas in (b) it
means calmness from below (see the material around 8.32).

L∗. Generalized Conjugacy

The notion of conjugate functions can be generalized in a number of ways,
although none achieves the full power of the Legendre-Fenchel transform. Con-
sider any nonempty sets X and Y and any function Φ : X × Y → IR. (The
‘ordinary case’, corresponding to what we have been involved with until now,
has X = IRn, Y = IRn, and Φ(x, y) = 〈x, y〉.) For any function f : X → IR,
the Φ-conjugate of f on Y is the function

fΦ(y) := sup
x∈X

{
Φ(x, y)− f(x)},

while the Φ-biconjugate of f back on X is the function

fΦΦ(x) := sup
y∈Y

{
Φ(x, y)− fΦ(y)

}
.

Likewise, for any function g : Y → IR, the Φ-conjugate of g on X is the function

gΦ(x) := sup
y∈Y

{
Φ(x, y)− g(y)},

while the Φ-biconjugate of g back on Y is the function

gΦΦ(y) := sup
x∈X

{
Φ(x, y)− gΦ(x)

}
.

Define the Φ-envelope functions on X to be the functions expressible as the
pointwise supremum of some collection of functions of the form Φ( · , y)+constant
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for various choices of y ∈ Y , and define the Φ-envelope functions on Y analo-
gously. (In the ‘ordinary case’, the proper Φ-envelope functions are the proper,
lsc, convex functions.) Note that in circumstances where X = Y but Φ(x, y)
isn’t symmetric in the arguments x and y, two different kinds of Φ-envelope
functions might have to be distinguished on the same space.

11.63 Exercise (generalized conjugate functions). In the scheme of Φ-conjugacy,
for any function f : X → IR, fΦ is a Φ-envelope function on Y , while fΦΦ is the
greatest Φ-envelope function on X majorized by f . Similarly, for any function
g : Y → IR, gΦ is a Φ-envelope function on X , while gΦΦ is the greatest Φ-
envelope function on Y majorized by g.

Thus, Φ-conjugacy sets up a one-to-one correspondence between all the
Φ-envelope functions f on X and all the Φ-envelope functions g on Y , with

g(y) = sup
x∈X

{
Φ(x, y)− f(x)}, f(x) = sup

y∈Y

{
Φ(x, y)− g(y)}.

Guide. Derive all this right from the definitions by elementary reasoning.

11.64 Example (proximal transform). For fixed λ > 0, pair IRn with itself under

Φ(x, y) = − 1

2λ
|x− y|2 =

1

λ
〈x, y〉 − 1

2λ
|x|2 − 1

2λ
|y|2.

Then for any function f : IRn → IR and its Moreau envelope eλf and λ-proximal
hull hλf one has

fΦ = −eλf, fΦΦ(x) = −eλ[−eλf ] = hλf.

In this case the Φ-envelope functions are the λ-proximal functions, defined as
agreeing with their λ-proximal hull.

A one-to-one correspondence f ↔ g in the collection of all proper functions
of such type is obtained in which

g = −eλf, f = −eλg.
Detail. This follows from the definitions of fΦ and fΦΦ along with those of
eλf in 1.22 and hλf ; see 1.44 and also 11.26(c). The symmetry of Φ in its two
arguments yields the symmetry of the correspondence that is obtained.

For the next example we recall from 2(13) the notation IRn×n
sym for the space

of all symmetric real matrices of order n.

11.65 Example (full quadratic transform). Pair IRn with IRn × IRn×n
sym under

Φ(x, y) = 〈v, x〉 − jQ(x) for y = (v,Q), with jQ(x) =
1

2
〈x,Qx〉.

In this case one has for any function f : IRn → IR that
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fΦ(v,Q) = (f + jQ)
∗(v),

fΦΦ(x) =

{
(cl f)(x) if f is prox-bounded,
−∞ otherwise.

Here fΦ ≡ −∞ if f ≡ ∞, whereas fΦ ≡ ∞ if f fails to be prox-bounded;
otherwise fΦ is a proper, lsc, convex function on the space IRn × IRn×n

sym .

Thus, Φ-conjugacy of this kind sets up a one-to-one correspondence f ↔ g
between the proper, lsc, prox-bounded functions f on IRn and certain proper,
lsc, convex functions g on IRn × IRn×n

sym .

Detail. The formula for fΦ is immediate from the definitions, and the one for
fΦΦ follows then from 1.44. The convexity of fΦΦ comes from the linearity of
Φ(x, y) with respect to the y argument for fixed x.

11.66 Example (basic quadratic transform). Pair IRn with IRn × IR under

Φ(x, y) = 〈v, x〉 − rj(x) for y = (v, r), with j(x) = 1
2 |x|2.

In this case one has for any function f : IRn → IR that

fΦ(v, r) = (f + rj)∗(v), fΦΦ(x) =

{
(cl f)(x) if f is prox-bounded,
−∞ otherwise.

Here fΦ ≡ −∞ if f ≡ ∞, whereas fΦ ≡ ∞ if f fails to be prox-bounded; aside
from those extreme cases, fΦ is a proper, lsc, convex function on IRn × IR.
Thus, Φ-conjugacy of this kind sets up a one-to-one correspondence f ↔ g
between the proper, lsc, prox-bounded functions f on IRn and certain proper,
lsc, convex functions g on IRn × IR.
Detail. This restricts the conjugate function in the preceding example to the
subspace of IRn×n

sym consisting of the matrices of form Q = rI. The biconjugate
function is unaffected by this restriction because the derivation of its formula
only relied on such special matrices, through 1.44.

Yet another way that problems of optimization can be meaningfully be
paired with one another is through the interchange rule for minimization in
1.35. In this framework the duality relations take the form of ‘min = min’
instead of ‘min = max’. The idea is very simple. For comparison with the
duality schemes in this chapter, it can be formulated as follows.

Given arbitrary nonempty sets X and Y and any function l : X×Y �→ IR,
consider the problems,

minimize ϕ(x) over x ∈ X, where ϕ(x) := infy l(x, y),

minimize ψ(y) over y ∈ Y, where ψ(y) := infx l(x, y).

It’s obvious that infX ϕ = infY ψ; both values coincide with infX×Y l.
In contrast to the duality theory of convex optimization in 11.39, the two

problems in this scheme aren’t related to each other through perturbations,
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and the solutions to one problem can’t be interpreted as ‘multipliers’ for the
other. Rather, the two problems represent intermediate stages in an overall
problem, namely that of minimizing l(x, y) with respect to (x, y) ∈ X × Y .
Nonetheless, the scheme can be interesting in situations where a way exists
for passing directly from one problem to the other without writing down the
function l, especially if a correspondence between more than optimal values
emerges. This is seen in the case of a Fenchel-type format resembling 11.41,
where however the functions ϕ and ψ being minimized generally aren’t convex.

11.67 Theorem (double-min duality in optimization). Consider any primal
problem of the form

minimize ϕ(x) over x ∈ IRn, with ϕ(x) = 〈c, x〉+ k(x)− h(Ax− b),
for convex functions k on IRn and h on IRm such that k is proper, lsc, fully
coercive and almost strictly convex, while h is finite and differentiable. Pair
this with the dual problem

minimize ψ(y) over y ∈ IRm, with ψ(y) = 〈b, y〉+ h∗(y)− k∗(A∗y − c);
this similarly has h∗ lsc, proper, fully coercive and almost strictly convex, while
k∗ is finite and differentiable. The objective functions ϕ and ψ in these two
problems are amenable, and the two optimal values always agree: inf ϕ = inf ψ.
Furthermore, in terms of

S : =
{
(x, y)

∣∣ y = ∇h(Ax− b), A∗y − c ∈ ∂k(x)}
=
{
(x, y)

∣∣x = ∇k∗(A∗y − c), Ax− b ∈ ∂h∗(y)},
one has the following relations, which tie not only optimal solutions but also
generalized stationary points of either problem to those of the other problem:

0 ∈ ∂ϕ(x̄) ⇐⇒ ∃ ȳ with (x̄, ȳ) ∈ S,
0 ∈ ∂ψ(ȳ) ⇐⇒ ∃ x̄ with (x̄, ȳ) ∈ S,
(x̄, ȳ) ∈ S =⇒ ϕ(x̄) = ψ(ȳ).

Proof. In the general format described before the theorem, these problems
correspond to l(x, y) = 〈c, x〉+ k(x) + 〈b, y〉+ h∗(y)− 〈y, Ax〉.

The claim that h∗ is fully coercive and almost strictly convex is justified
by 11.5 and 3.27 for the coercivity and 11.13 for the strict convexity. The same
results, in reverse implication, support the claim that k∗ is finite and differen-
tiable. Because convex functions that are finite and differentiable actually are
C1 (by 9.20), the functions h0(x) = −h(Ax− b) and k0(y) = −k∗(A∗y− c) are
C1, and consequently ϕ and ψ are amenable by 10.24(g). Then also

∂ϕ(x) = ∂k(x) +∇h0(x) with ∇h0(x) = −A∗∇h(Ax− b),
∂ψ(y) = ∂h∗(y) +∇k0(x) with ∇k0(x) = −A∇k∗(A∗y − c),
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from which the characterizations of 0 ∈ ∂ϕ(x̄) and 0 ∈ ∂ψ(ȳ) are evident,
the equivalence between the two expressions for S being a consequence of the
subgradient inversion rule in 11.3. Pairs (x̄, ȳ) ∈ S satisfy h(Ax̄− b) + h∗(ȳ) =
〈Ax̄− b, ȳ〉 and k(x̄) + k∗(A∗ȳ− c) = 〈x̄, A∗ȳ − c〉 (again on the basis of 11.3),
and these equations give ϕ(x̄) = ψ(ȳ).

A case worth noting in 11.67 is the one in which k(x) = δX(x) + 1
2 〈x, Cx〉

and h(u) = θY,B(u) (cf. 11.18) for polyhedral sets X and Y and symmetric
positive-definite matrices C and B. Then in minimizing ϕ one is minimizing
the smooth piecewise linear-quadratic function

ϕ0(x) = 〈c, x〉+ 1
2〈x, Cx〉 − θY,B(Ax− b)

subject to the linear constraints represented by x ∈ X , whereas in minimizing
ψ one is minimizing the smooth piecewise linear-quadratic function

ψ0(y) = 〈b, y〉+ 1
2 〈y, By〉 − θX,C(A

∗y − c)
subject to the linear constraints represented by y ∈ Y . The functions ϕ0 and ψ0

needn’t be convex, because the θ-expressions are subtracted rather than added
as they were in 11.43, so this is a form of nonconvex extended linear-quadratic
programming duality.

Commentary

A description of the ‘Legendre transform’ can be found in any text on the calcu-
lus of variations, since it’s the means of generating the Hamiltonian functions and
Hamiltonian equations that are crucial to that subject. The treatments in such texts
often fall short in rigor, however. They revolve around inverting a gradient mapping
∇f as in 11.9, but typically without serious attention being paid to the mapping’s
domain and range, or to the conditions needed to ensure its global single-valued in-
vertibility, such as (for most cases in practice) the strict convexity of f . The beauty
of the Legendre-Fenchel transform, devised by Fenchel [1949], [1951], is that gradient
inversion is replaced by an operation of maximization. Moreover, convexity proper-
ties are embraced from the start. In this way, a much more powerful tool is created
which, interestingly, is perhaps the first in mathematical analysis to have relied on
minimization/maximization in its very definition.

Mandelbrojt [1939] had earlier developed a limited case of conjugacy for func-
tions of a single real variable. In the still more special context of nondecreasing
convex functions on IR+, similar notions were explored by Young [1912] and utilized
in the theory of Banach spaces and beyond; cf. Birnbaum and Orlicz [1931] and Kras-
nosel’skii and Rutitskii [1961]. None of this captured the n-dimensional character of
the Legendre transform, however, or allowed for the kind of focus on domains that’s
essential to handling constraints in the process of dualization.

Fenchel formulated the basic result in Theorem 11.1 in terms of pairs (C, f)
consisting of a finite convex function f on a nonempty convex set C in IRn. His trans-
form was extended to infinite-dimensional spaces by Moreau [1962] and Brøndsted
[1964] (publication of a dissertation written under Fenchel’s supervision), with Moreau
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adopting the pattern of extended-real-valued functions f defined on all the whole
space. The details of the Legendre case in 11.9 were worked out by Rockafellar
[1967d]. All these authors were, in some way, aware of the facts in 11.2–11.4.

Rockafellar [1966b] discovered the support function meaning of horizon functions
in 11.5 as well as the formula in 11.6 for the support function of a level set and
the dualizations of coercivity and level-coercivity in 11.8(c)(d). The dualizations of
differentiability in 11.8(b) and 11.13 were developed in Rockafellar [1970a], which
is also the source for the connection in 11.7 between conjugate functions and cone
polarity (probably known to Fenchel), and for the linear-quadratic examples in 11.10
and 11.11 and the log-exponential example in 11.12.

In the important case of convex functions on IR1, special techniques can be used
for determining the conjugate functions, for instance by ‘integrating’ right or left
derivatives; for a thorough treatment see Chapter 8 of Rockafellar [1984b]. The one-
dimensional version of Theorem 11.14, that f∗ inherits from f the property of being
piecewise linear, or piecewise linear-quadratic, can be found there as well.

In the full, n-dimensional version of Theorem 11.14, part (a) is new in its state-
ment about the preservation of piecewise linearity when passing from a convex func-
tion to its conjugate, but this property corresponds through 2.49 to the fact that if
epi f is polyhedral, the same is true also of epi f∗. In that form, the observation goes
back to Rockafellar [1963]. The assertion in 11.17(a) about the support functions of
polyhedral sets being piecewise linear has similar status. The fact in 11.17(b), that
the polar of a polyhedral cone is polyhedral, was recognized by Weyl [1935].

As for part (b) of Theorem 11.14, concerning the self-duality of the class of piece-
wise linear-quadratic functions, this was proved by Sun [1986], but with machinery
from the theory of monotone mappings. Without the availability of that machinery
in this chapter (it won’t be set up until Chapter 12), we had to invent a different,
more direct proof. The line segment test in 11.15, on which it rests, doesn’t seem to
have been formulated previously.

The consequent fact in 11.16, about piecewise linear-quadratic convex functions
f : IRn → IR attaining their minimum value when that value is finite, can be compared
to the result of Frank and Wolfe [1956] that a linear-quadratic convex function f0
achieves its minimum relative to any polyhedral convex set C on which it’s bounded
from below. The latter can be identified with the case of 11.16 where f = f0 + δC .

The general polarity correspondence in 11.19, for sets that contain the origin but
aren’t necessarily cones, was developed first for bounded sets by Minkowski [1911],
whose insights extended to the dualizations in 11.20. The formula for conjugate
composite functions in 11.21 comes from Rockafellar [1970a].

The dual operations in 11.22 and 11.23 were investigated in various degrees by
Fenchel [1951], Rockafellar [1963] and Moreau [1967]. The special cases in 11.24 for
support functions and in 11.25 for cones were known much earlier. Moreau [1965]
established the dual envelope formula in 11.26(b) (for λ = 1) and also the gradient
interpretation in 11.27 for the proximal mappings associated with convex functions.

The results on the norms of sublinear mappings in 11.29 and 11.30 are new, but
the adjoint duality for operations on such mappings in 11.31 was already disclosed in
Rockafellar [1970a]. The special results in 11.32 and 11.33 on duality for operations
on piecewise linear-quadratic functions are original as well.

The epi-continuity of the Legendre-Fenchel transform in Theorem 11.34 was
discovered by Wijsman [1964], [1966], who also reported the corresponding behavior
of support functions and polar cones in 11.35. The ‘epi-semicontinuity’ results in
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Theorem 11.34, which provide inequalities for dualizing e-liminf and e-limsup, are
actually new, and likewise for the support function version in 11.35(a). The inner
and outer limit relations for cone polarity in 11.35(b) were noted by Walkup and
Wets [1967], however. Those authors, in the same paper, established the polar cone
isometry in Theorem 11.36, moreover not just for IRn but any reflexive Banach space.
The proof of this isometry that we give here in terms of the duality between addition
and epi-addition of convex functions is new. It readily generalizes to any norm and
its polar, not only the Euclidean norm and unit ball, in setting up cone distances,
and it too could therefore be followed in the Banach space setting.

The application in 11.37, showing that the Legendre-Fenchel transform is an
isometry with respect to cosmic epi-distances, is new, but an isometry result with re-
spect to a different metric, based instead on uniform convergence of Moreau envelopes
on bounded sets, was obtained by Attouch and Wets [1986]. The technique of pass-
ing through cones and the continuity of the polar operation in 11.36 for purposes of
investigating duality in the epi-convergence of convex functions (apart from questions
of isometry), and thereby developing extensions of Wijsman’s theorem, began with
Wets [1980]. That approach has been followed more recently in infinite dimensions by
Penot [1991] and Beer [1993]. Other epi-continuity results for the Legendre-Fenchel
transform in spaces beyond IRn can be found in those works and in earlier papers of
Mosco [1971], Joly [1973], Back [1986] and Beer [1990].

Many researchers have been fascinated by dual problems of optimization. The
most significant early example was linear programming duality (cf. 11.43), which was
laid out by Gale, Kuhn and Tucker [1951]. This duality grew out of the theory of
minimax problems and two-person, zero-sum games that was initiated by von Neu-
mann [1928]. Fenchel [1951], while visiting at Princeton where Gale and Kuhn were
Ph.D. students of Tucker, sought to set up a parallel theory of dual problems in which
the primal problem consisted of minimizing h(x) + k(x), for what we now call lsc,
proper, convex functions h and k on IRn, while the dual problem consisted of maxi-
mizing −h∗(y)− k∗(−y). Fenchel’s duality theorem suffered from an error, however.
Rockafellar [1963], [1964a], [1966c], [1967a], fixed the error and incorporated a linear
mapping into the problem statement so as to obtain the scheme in 11.41. Perturba-
tions played a role in that duality, but the scheme in 11.39 and 11.40, explicitly built
around primal and dual perturbations, didn’t emerge until Rockafellar [1970a].

Extended linear-quadratic programming was developed by Rockafellar and Wets
[1986] along with the duality results in 11.43; further details were added by Rockafellar
[1987]. It was in those papers that the dualizing penalty expressions θY,B in 11.18
made their debut. The application to dualized composition in 11.44 is new.

The Lagrangian perturbation format in 11.45 came out in Rockafellar [1970a],
[1974a], for the case of f(x, u) convex in (x, u). The associated minimax theory in
11.50–11.52 was developed there also. The extension of Lagrangian dualization to the
case of f(x, u) convex merely in u started with Rockafellar [1993a], and that’s where
the multiplier rule in 11.46 was proved.

The formula in 11.48, relating the subgradients of f(x, u) to those of l(x, y) for
convex f , can be interpreted as a generalization of the inversion rule in 11.3 through
the fact that the functions f(x, ·) and −l(x, ·) are conjugate to each other. Instead of
full inversion one has a partial inversion along with a change of sign in the residual
argument. A similar partial inversion rule is known classically for smooth f with
respect to taking the Legendre transform in the u argument, this being essential to
the theory of Hamiltonian equations in the ‘calculus of variations’. One could ask



532 11. Dualization

whether a broader formula of such type can be established for nonsmooth functions
f that might only be convex in u, not necessarily in x and u jointly. Rockafellar
[1993b], [1996], has answered this in the affirmative for particular function structures
and more generally in terms of a partial convexification operation on subgradients.

The results on perturbing saddle values and saddle points in Theorem 11.53 are
largely due to Golshtein [1972]. The linear programming case in Example 11.54 was
treated earlier by Williams [1970]. The application here to linear-quadratic program-
ming is new. For some nonconvex extensions of such perturbation theory that instead
utilize augmented Lagrangians, see Rockafellar [1984a].

Augmented Lagrangians were introduced in connection with numerical methods
for solving problems in nonlinear programming, and they have mainly been viewed in
that special context; see Rockafellar [1974b], [1993a], Bertsekas [1982], and Golshtein
and Tretyakov [1996]. They haven’t been considered before with the degree of gen-
erality in 11.55–11.61. Exact penalty representations of the linear type in 11.62(b)
have a separate history; see Burke [1991] for this background.

The generalized conjugacy in 11.64 was brought to light by Moreau [1967], [1970].
Something similar was noted by Weiss [1969], [1974], and also by Elster and Nehse
[1974]. Such ideas were utilized by Balder [1977] in work related to augmented La-
grangians; this expanded on the strategy in Rockafellar [1974b], where the basic
quadratic transform in 11.66 was implicitly utilized for this purpose. For related work
see also Dolecki and Kurcyusz [1978]. The basic quadratic transform was fleshed out
by Poliquin [1990], who put it to work in nonsmooth analysis; he demonstrated by
this means, for instance, that any proper, lsc function f : IRn → IR that’s bounded
from below can be expressed as a composite function g◦F with g lsc convex and F of
class C∞. The full quadratic transform in 11.65 was set up earlier by Janin [1973]. He
observed that its main properties could be derived as consequences of known features
of the Legendre-Fenchel transform.

The earliest duality theory of the double-min variety as in 11.67 is due to Toland
[1978], [1979]. He concentrated on the difference of two convex functions; there was
no linear mapping, as associated here with the matrix A. The particular content
of Theorem 11.67, in adding a linear transformation and drawing on facts in 11.8
(coercivity versus finiteness) and in 11.13 (strict convexity versus differentiability)
hasn’t been furnished before. The idea of relating ‘extremal points’ of one problem
to those of another was carried forward on a broader front by Ekeland [1977], who,
like Toland, was motivated by applications in the calculus of variations.

Also in the line of duality for nonconvex problems of optimization, the work of
Aubin and Ekeland [1976] deserves special mentions. They constructed quantitative
estimates of the ‘lack of convexity’ of a function and showed how these estimates can
be utilized to get bounds on the size of the duality gap (between primal and dual
optimal values) in a Fenchel-like format.

Although we haven’t taken it up here, there is also a concept of conjugacy for
convex-concave functions; see Rockafellar [1964b], [1970a]. A theory of dual mini-
max problems has been developed in such terms by McLinden [1973], [1974]. Epi-
convergence isn’t the right convergence for such functions and must be replaced by
epi-hypo-convergence; see Attouch and Wets [1983a], Attouch, Azé and Wets [1988].
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A valuable tool in the study of gradient and subgradient mappings, solution
mappings, and various other mappings of importance in variational analysis,
both single-valued and set-valued, is the following concept of monotonicity.

12.1 Definition (monotonicity). A mapping T : IRn →→ IRn is called monotone
if it has the property that〈

v1 − v0, x1 − x0
〉 ≥ 0 whenever v0 ∈ T (x0), v1 ∈ T (x1),

and strictly monotone if this inequality is strict when x0 �= x1.

When T is single-valued, the monotonicity property takes the form of
requiring that 〈T (x1)− T (x0), x1 − x0〉 ≥ 0 for all x0 and x1.

A. Monotonicity Tests and Maximality

The monotonicity inequality holds for T = ∇f when f is a differentiable convex
function, as observed in 2.14(a). We’ll see in 12.17 that monotonicity is ex-
hibited also by the subgradient mappings of nondifferentiable convex functions.
Many other connections between monotonicity and convexity will come to light
as well. First, though, we’ll look at more general sources of monotonicity and
a concept of ‘maximal’ monotone mappings.

12.2 Example (positive semidefiniteness). An affine mapping L(x) = Ax + a
for a vector a ∈ IRn and a matrix A ∈ IRn×n, not necessarily symmetric, is
monotone if and only if A is positive-semidefinite: 〈x,Ax〉 ≥ 0 for all x. It is
strictly monotone if and only if A is positive-definite: 〈x,Ax〉 > 0 for all x �= 0.
In particular, the identity mapping I is strictly monotone.

Detail. The monotonicity inequality in 12.1 reduces to the requirement that
〈A(x1 − x0), (x1 − x0)〉 ≥ 0 for all x0 and x1, which obviously means that A
is positive-semidefinite. The same goes for strict monotonicity versus positive
definiteness.

As a sidelight on the property in 12.2, recall that any matrix A ∈ IRn×n

can be written as

A = As +Aa with As =
1
2 (A+ A∗) and Aa = 1

2 (A− A∗), 12(1)
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where As is the symmetric part of A (satisfying A∗
s = As) and Aa the an-

tisymmetric part of A (satisfying A∗
a = −Aa). The positive semidefiniteness

of A is simply the positive semidefiniteness of its symmetric part As, because
〈x,Ax〉 = 〈x,Asx〉 always. The antisymmetric part Aa has no role in this.
In particular, the linear mapping x 	→ Ax associated with any antisymmetric
matrix A is monotone (since then As = 0).

12.3 Proposition (monotonicity of differentiable mappings). A differentiable
mapping F : IRn → IRn is monotone if and only if for each x the Jacobian
matrix ∇F (x) (not necessarily symmetric) is positive-semidefinite. It is strictly
monotone if the matrix ∇F (x) is positive-definite for each x (but this condition
is only sufficient, not necessary).

Proof. When F is monotone, one has〈
F (x+ τw)− F (x), (x+ τw)− x〉 ≥ 0 for all τ > 0, x, w.

Dividing this by τ and taking the limit as τ ↘ 0, we get 〈w,∇F (x)w〉 ≥ 0 for all
choices of x and w. This is the claimed positive semidefiniteness of ∇F (x) for
all x. (Strict monotonicity of F wouldn’t yield positive definiteness of ∇F (x),
though, because the strict inequality might not remain strict in the limit.)

Assuming conversely that ∇F (x) is positive-semidefinite for all x, consider
arbitrary points x0 and x1 and the function ϕ(τ) := 〈x1 − x0, F (xτ )− F (x0)〉
with xτ := (1− τ)x0+ τx1. We want to show that ϕ(1) ≥ 0. We have ϕ(0) = 0
and ϕ′(τ) =

〈
x1−x0,∇F (xτ )(x1−x0)

〉
, so ϕ is nondecreasing. Hence ϕ(1) ≥ 0

as desired. The same argument under the assumption that ∇F (x) is positive-
definite everywhere yields ϕ(1) > 0 when x1 �= x0 and gives the conclusion that
F is strictly monotone.

From the perspective of 12.3, monotonicity can be regarded as the natural
generalization of positive semidefiniteness from linear to nonlinear and possibly
even multivalued mappings. So far, only monotone mappings that are single-
valued have been viewed, but for various theoretical reasons multivaluedness
will be quite important. In fact, multivalued monotone mappings already arise
from single-valued ones, as above, through various monotonicity-preserving op-
erations like taking inverses.

12.4 Exercise (operations that preserve monotonicity).

(a) If T : IRn →→ IRn is monotone, then so too is T−1.

(b) If T : IRn →→ IRn is monotone, then so too is λT for any λ > 0. The
same holds for strict monotonicity.

(c) If T1 : IRn →→ IRn and T2 : IRn →→ IRn are monotone, then T1 + T2 is
monotone. If in addition either T1 or T2 is strictly monotone, then T1 + T2 is
strictly monotone.

(d) If S : IRm →→ IRm is monotone, then for any matrix A ∈ IRm×n and
vector a ∈ IRm the mapping T (x) = A∗S(Ax+ a) is monotone. If in addition
S is strictly monotone and A has rank n, then T is strictly monotone.
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Guide. Use Definition 12.1 directly. Note that in (d) there is no assumption
of positive semidefiniteness on A.

The most powerful features of monotonicity for mappings T : IRn →→ IRn

only come forward in the presence of a companion property of ‘maximality’. To
make use of these features, a given mapping may need to be enlarged, and this
is a process that can well lead to imbedding a single-valued mapping within a
multivalued mapping, although the multivaluedness turns out to be of a very
special kind.

12.5 Definition (maximal monotonicity). A monotone mapping T : IRn →→ IRn

is maximal monotone if no enlargement of its graph is possible in IRn × IRn

without destroying monotonicity, or in other words, if for every pair (x̂, v̂) ∈
(IRn × IRn) \ gphT there exists (x̃, ṽ) ∈ gphT with 〈v̂ − ṽ, x̂− x̃〉 < 0.

More generally, T is maximal monotone locally around (x̄, v̄), a point of
gphT , if there is a neighborhood V of (x̄, v̄) such that for every pair (x̂, v̂) ∈
V \ gphT there exists (x̃, ṽ) ∈ V ∩ gphT with 〈v̂ − ṽ, x̂− x̃〉 < 0.

The study of monotone mappings can largely be reduced to that of maxi-
mal monotone mappings on the following principle.

12.6 Proposition (existence of maximal extensions). For any monotone map-
ping T : IRn →→ IRn there is a maximal monotone mapping T : IRn →→ IRn (not
necessarily unique) such that gph T ⊃ gph T .

Proof. Let T denote the collection of all monotone mappings T ′ : IRn →→ IRn

such that gphT ′ ⊃ gphT , and consider T under the partial ordering induced
by graph inclusion. According to Zorn’s lemma, there’s a maximal linearly
ordered subset T0 of T . Let T be the mapping whose graph is the union of
the graphs of the mappings T ′ ∈ T0. It’s evident that T is monotone, and that
there can’t be a monotone mapping T ′ with gphT ⊂ gphT ′, T �= T ′. Hence
T is maximal monotone.

12.7 Example (maximality of continuous monotone mappings). If a continuous
mapping F : IRn → IRn is monotone, it is maximal monotone. In particular,
every differentiable monotone mapping is maximal monotone, and so too is
every affine monotone mapping.

Detail. Suppose (x̂, v̂) has the property that 〈v̂ − F (x), x̂− x〉 ≥ 0 for all x.
Does this imply that v̂ = F (x̂), as demanded by maximality? Taking x = x̂+εu
with ε > 0 and arbitrary u ∈ IRn, we see that 〈v̂ − F (x̂ + εu), u〉 ≥ 0. The
assumed continuity of F guarantees that F (x̂ + εu) → F (x̂) as ε ↘ 0, so that
〈v̂ − F (x̂), u〉 ≥ 0. This can’t hold for all u ∈ IRn unless v̂ − F (x̂) = 0.

Although maximal monotonicity is an automatic property for continuous
monotone mappings, it isn’t automatic for monotone mappings T of other
kinds. Its presence is associated with powerful properties of a geometric nature,
especially of the graph of T . The following list is merely a beginning.
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12.8 Exercise (graphs and images under maximal monotonicity).

(a) T is maximal monotone if and only if T−1 is maximal monotone.

(b) If T is maximal monotone, gphT is closed; thus, T is osc.

(c) If T is maximal monotone, both T and T−1 are closed-convex-valued.

Guide. These facts are elementary consequences of Definition 12.5. For the
convex-valuedness, it’s enough to show that when vτ = (1 − τ)v0 + τv1 with
v0 ∈ T (x̄) and v1 ∈ T (x̄), one has 〈v − vτ , x− x̄〉 ≥ 0 for all τ ∈ (0, 1) and all
(x, v) ∈ gphT ; the maximality then forces (x̄, vτ ) ∈ gphT .

While monotonicity is readily perceived to persist under operations like
the ones in 12.4(c)(d), maximal monotonicity need not persist unless certain
‘constraint qualifications’ are satisfied by the domains. Such matters will be
taken up in 12.43–12.47.

The graph of a monotone mapping T : IRn → IRn lies in IR2n and therefore
can’t be pictured for n > 1. In the special case of n = 1, however, it lies in
IR2 and, when maximal, has the striking sort of appearance in Figure 12–1. In
particular, the properties in 12.8 are confirmed.

gph T

IR

IR

Fig. 12–1. A maximal monotone mapping in one dimension.

12.9 Exercise (maximal monotonicity in one dimension).

(a) A mapping T : IR →→ IR is monotone if and only if gphT is totally
ordered as a subset of IR2 with respect to the partial ordering induced by the
cone IR2

+
, or in other words, for every (x0, v0) ∈ gphT and (x1, v1) ∈ gphT ,

either one has x0 ≤ x1 and v0 ≤ v1, or one has x1 ≤ x0 and v1 ≤ v0.
(b) A mapping T : IR →→ IR is maximal monotone if and only if there is a

nondecreasing function ϕ : IR→ IR with ϕ �≡ ∞ and ϕ �≡ −∞ such that

T (x) =
{
v ∈ IR ∣∣ϕ(x−) ≤ v ≤ ϕ(x+)

}
for

ϕ(x−) := lim
x′ ↗ x

ϕ(x′), ϕ(x+) := lim
x′ ↘ x

ϕ(x′).

Guide. Verify (a) right from Definition 12.1, noting that maximal monotonic-
ity corresponds then to gphT being a totally ordered subset of IR2 to which
no pair (x̄, v̄) can be added without destroying the total orderedness. In (b),
start from the assumption that T has a representation of the kind described
and argue that gphT has this property of maximal total orderedness. For the
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converse in (b), take gphT to be a maximal totally ordered subset of IR2 and
introduce the functions

ϕ+(x) = inf
{
v′
∣∣∃x′ > x with v′ ∈ T (x′)},

ϕ−(x) = sup
{
v′
∣∣ ∃x′ < x with v′ ∈ T (x′)}.

Show that ϕ−(x0) ≤ ϕ+(x0) ≤ ϕ−(x1) ≤ ϕ+(x1) when x0 < x1, and that T (x)
must include all finite values in the interval

[
ϕ−(x), ϕ+(x)

]
, if any. Construct ϕ

by choosing the value ϕ(x) (not necessarily finite) arbitrarily from this interval
for each x, and demonstrate that a representation of T of the kind in (b) is
thereby achieved, moreover with ϕ+(x) = ϕ(x+) and ϕ−(x) = ϕ(x−).

For dimensions n > 1 there’s no analog of the ordering property in 12.9(a),
but much of the special geometry in Figure 12–1 will carry over nonetheless.
For maximal monotone mappings, multivaluedness is very particular. Such
mappings are remarkably ‘function-like’. Our initial goal is the development of
this aspect of monotonicity.

B. Minty Parameterization

The next result opens the technical terrain for establishing the main facts
about the geometry of graphs of general maximal monotone mappings. Recall
from 9.4 that a single-valued mapping S : D → IRn, with D ⊂ IRn, is called
nonexpansive if it is Lipschitz continuous with constant 1, or in other words,
satisfies

∣∣S(z1) − S(z0)
∣∣ ≤ |z1 − z0| for all z0 and z1 in D; it is contractive

if the inequality is strict when z1 �= z0. Nonexpansivity is closely connected
with monotonicity in a certain way, but in order to see this clearly it will be
helpful to think of a single-valued mapping S : D → IRn as a special case of a
set-valued mapping S : IRn →→ IRn with domS = D. From either perspective
the graph of S, as a subset of IRn × IRn, is the same.

We therefore now cast the definition in graphical terms by saying that a
mapping S : IRn →→ IRn is nonexpansive if

|w1 − w0| ≤ |z1 − z0| whenever w1 ∈ S(z1), w0 ∈ S(z0),
and contractive if the inequality is strict when z1 �= z0. Obviously this condition
entails having w1 = w0 when z1 = z0. Thus, it entails the single-valuedness of
S on domS and amounts to the same thing as the condition previously used
to express these concepts.

12.10 Exercise (operations that preserve nonexpansivity). For nonexpansive
mappings S0 : IRn →→ IRn and S1 : IRn →→ IRn, one has that

(a) S1◦S0 is nonexpansive;

(b) λ0S0 + λ1S1 is nonexpansive if |λ0|+ |λ1| ≤ 1.

12.11 Proposition (monotone versus nonexpansive mappings). The one-to-one
linear transformation J : IRn × IRn → IRn × IRn with J(x, v) = (v + x, v − x)
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induces a one-to-one correspondence between mappings T : IRn →→ IRn and
mappings S : IRn →→ IRn through

gphS = J(gphT ), gphT = J−1(gphS),

in which S is nonexpansive if and only if T is monotone, and on the other hand,
S is contractive if and only if T is strictly monotone as well as single-valued
on domT . Under this correspondence one has

S = I − 2I◦(I + T )−1, T = (I − S)−1◦2I − I. 12(2)

Proof. We calculate for (z0, w0) = J(x0, v0) and (z1, w1) = J(x1, v1) that

|z1 − z0|2 − |w1 − w0|2 =
〈
(z1 − z0) + (w1 − w0), (z1 − z0)− (w1 − w0)

〉
=

〈
(z1 + w1)− (z0 + w0), (z1 − w1)− (z0 − w0)

〉
= 〈2v1 − 2v0, 2x1 − 2x0〉 = 4〈v1 − v0, x1 − x0〉

and therefore

|w1 − w0| ≤ |z1 − z0| ⇐⇒ 〈v1 − v0, x1 − x0〉 ≥ 0. 12(3)

Since this holds for all corresponding pairs (zi, wi) ∈ gphS and (xi, vi) ∈ gphT ,
nonexpansivity of S is equivalent to monotonicity of T .

Further, we note that S is contractive if and only if the inequality on the
left side of 12(3) is strict when (z0, w0) �= (z1, w1). At the same time, T is
strictly monotone and also single-valued on domT if and only if the inequality
in the right side of 12(3) is strict when (x0, v0) �= (x1, v1).

To obtain the equivalence of the first formula in 12(2) with having gphS =
J(gphT ), observe that the condition (z, w) ∈ J(gphT ) means that for some
x and some v ∈ T (x) one has z = v + x and w = v − x. This is the same as
requiring the existence of x such that z ∈ (I+T )(x) and w = (z−x)−x = z−2x.
Thus, w ∈ S(z) if and only if w = z − 2x for some x ∈ (I + T )−1(z), which
says that S = I − 2I◦(I + T )−1, as claimed.

Then we have (I−S) = 2I◦(I+T )−1, hence (I+T ) = (I−S)−1◦2I, which
is the second formula in 12(2).

S

T

Fig. 12–2. Graph relationship between nonexpansive and monotone mappings.
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The transformation J in Proposition 12.11 can be visualized in the case
of n = 1 as a clockwise rotation of IR × IR by π/4 followed by an expansion
(relative to the origin) by a factor of

√
2. The expansion isn’t essential but

simplifies the formulas in 12(2).

12.12 Theorem (maximality and single-valued resolvants). Let T : IRn →→ IRn

be monotone, and let λ > 0. Then (I + λT )−1 is monotone and nonexpansive.

Moreover, T is maximal monotone if and only if rge(I + λT ) = IRn, or
equivalently, dom(I + λT )−1 = IRn. In that case (I + λT )−1 is maximal
monotone too, and it is a single-valued mapping from all of IRn into itself.

Proof. Like T , the mapping λT is monotone, and it’s maximal if and only
if T is maximal. Without loss of generality we can replace T by λT , or what
amounts to the same thing, assume that λ = 1. The monotonicity of T implies
that of I+T by 12.4(c) and the monotonicity of I in 12.1, hence that of (I+T )−1

by 12.4(a). According to Proposition 12.11 we have (I + T )−1 = 1
2(I − S) for

a certain nonexpansive mapping S. Since I is nonexpansive, so too is 1
2I − 1

2S
by 12.10(b). Thus, (I + T )−1 is nonexpansive; on D = dom(I + T )−1 it’s
single-valued and Lipschitz continuous with constant 1.

In the framework of Proposition 12.11, T is a maximal monotone map-
ping if and only if S is a maximal nonexpansive mapping—its graph can’t be
enlarged without losing the nonexpansive property. But by Theorem 9.58 any
nonexpansive mapping can be extended to all of IRn. Thus, S is a maximal
nonexpansive mapping if and only if domS = IRn, which according to our for-
mulas is the same as dom(I+T )−1 = IRn. Since (I+T )−1 is single-valued and
continuous on dom(I+T )−1 as well as monotone, it follows that T is maximal
monotone; cf. 12.7.

The mappings (I + λT )−1 for λ > 0 in Theorem 12.12 are called the
resolvants of T . Their graphs are obtained from that of T by what amounts to
just a linear change of coordinates in the graph space:

gph(I + λT )−1 = Jλ(gphT ) for Jλ : (x, v) 	→ (x+ λv, x). 12(4)

This is true because x = (I + λT )−1(z) if and only if λ−1(z − x) ∈ T (x).

gph T

v

x

λ −1−1gph ( I + T )

Fig. 12–3. Yosida λ-regularization.
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12.13 Example (Yosida regularization). For any mapping T : IRn →→ IRn and
any λ > 0, the corresponding Yosida λ-regularization of T is the mapping

(λI + T−1)−1 = (I + λ−1T−1)−1◦λ−1I.

As λ ↘ 0, (λI +T−1)−1 converges graphically to clT , hence to T itself when T
is osc, as when T is maximal monotone.

In the maximal monotone case, (λI + T−1)−1 is not only maximal mono-
tone but single-valued and Lipschitz continuous globally with constant λ−1.

Detail. It’s elementary for any mapping S that λI + S →g clS as λ ↘ 0 (with
clS defined to be the mapping whose graph is cl(gphS)). Applying this to
S = T−1 and using the continuity of the inverse operation with respect to
graph convergence, one sees that (λI+T−1)−1 →g clT as λ ↘ 0. The remaining
assertions follow from Theorem 12.12 as applied to T−1 (cf. 12.8); the resolvant
(I + λ−1T−1)−1 is maximal monotone and nonexpansive.

Through the identity derived next, the resolvants of T will provide a pa-
rameterization of gphT that reveals how this graph must always resemble the
graph of a Lipschitz continuous mapping.

12.14 Lemma (inverse-resolvant identity). Every mapping T : IRn →→ IRn obeys
the identity

I − (I + T )−1 = (I + T−1)−1.

Indeed, the Yosida regularizations of T are related to the resolvants of T by

(λI + T−1)−1 = λ−1[I − (I + λT )−1
]
for any λ > 0.

Proof. The first identity is the special case of the second where λ = 1, so we
concentrate on the second identity. By direct manipulation we have

z ∈ λ−1
[
I − (I + λT )−1

]
(w)

⇐⇒ λz ∈ w − (I + λT )−1(w)

⇐⇒ w − λz ∈ (I + λT )−1(w)

⇐⇒ w ∈ (w − λz) + λT (w − λz)
⇐⇒ z ∈ T (w − λz) ⇐⇒ w − λz ∈ T−1(z)

⇐⇒ w ∈ (λI + T−1)(z) ⇐⇒ z ∈ (λI + T−1)−1(w),

and this is what was required.

It’s interesting to think of 12.13 and 12.14 as combining to give a sort of
differentiation formula for the resolvants of T . Merely under the assumption
that T is osc, one has g-limλ ↘ 0 λ

−1
[
(I + λT )−1 − I] = −T.

12.15 Theorem (Minty parameterization of a graph). Let T : IRn →→ IRn be
maximal monotone. Then the mappings

P = (I + T )−1, Q = (I + T−1)−1,
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are single-valued, in fact maximal monotone and nonexpansive, and the map-
ping z 	→ (

P (z), Q(z)
)
is one-to-one from IRn onto gphT . This provides a

parameterization of gphT that is Lipschitz continuous in both directions:(
P (z), Q(z)

)
= (x, v) ⇐⇒ z = x+ v, (x, v) ∈ gphT.

Proof. We know from 12.4(a) that T−1, like T , is maximal monotone, and
therefore from 12.12 that P and Q are single-valued, maximal monotone and
nonexpansive, hence Lipschitz continuous. Furthermore, P +Q = I by Lemma
12.14. When

(
P (z), Q(z)

)
= (x, v) we consequently have x + v = z and z ∈

(I + T )(x), so that z − x ∈ T (x), i.e., (x, v) ∈ gph T .
Conversely, if (x, v) ∈ gphT and x + v = z we have z − x ∈ T (x), or

z ∈ (I + T )(x), so that x = P (z). By symmetry, v = Q(z). The mapping
z 	→ (

P (z), Q(z)
)
is Lipschitz continuous because P and Q are; cf. 9.8(d). The

mapping (x, v) 	→ x+ v is Lipschitz continuous because it’s linear; cf. 9.3.

gph T

(P(z),Q(z))

x+v=z

x

v

Fig. 12–4. Minty parameterization.

The special resolvants (I + T )−1 and (I + T−1)−1 are called the Minty
mappings associated with T and T−1. Other resolvants similarly yield Lipschitz
continuous parameterizations of gph T when T is maximal monotone, although
with formulas that lack symmetry. For instance, in terms of the λ-resolvant
Pλ = (I + λT )−1 and the Yosida λ-regularization Qλ = (λI + T−1)−1 one has(

Pλ(z), Qλ(z)
)
= (x, v) ⇐⇒ z = x+ λv, (x, v) ∈ gphT.

This form of parameterization relies on the identity in Lemma 12.14, which
says that Pλ + λQλ = I. Otherwise the proof is virtually the same.

Along with the mappings P = (I + T )−1 and Q = (I + T−1)−1 being
nonexpansive by Theorem 12.15, the mapping S = Q−P has this property as
well. Indeed, S is the nonexpansive mapping associated with T by Proposition
12.11, as seen from the first identity in Lemma 12.14.

12.16 Exercise (displacement mappings). For any nonexpansive mapping F :
IRn → IRn, the displacement mapping I − F , giving the difference between x
and its image under F , is maximal monotone.
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Guide. Argue by 12.11 that the mapping T0 := (I − F )−1◦2I − I is maximal
monotone. Express I − F in terms of T0 and apply 12.15 to T0.

The powerful insight gained through these parameterization results is that
a maximal monotone mapping T : IRn →→ IRn, despite its potential multival-
uedness, has a graph that is a sort of full n-dimensional Lipschitz manifold
within the 2n-dimensional space IR2n. This is clear from 12.15 and provides
an extension of the picture in Figure 12–1 beyond the case of n = 1. What
is more, T actually has the property of being graphically Lipschitzian in the
sense defined in 9.66, namely that gphT can be transformed, under a change
of coordinates in IR2n, into the graph of a single-valued Lipschitz continuous
mapping from IRn into IRn. Indeed, the change of coordinates in 12.11 affords
that perspective on the graphical geometry and does so globally, not just in
some neighborhood of each point of gphT .

C. Connections with Convex Functions

In the theorem coming next, the monotonicity of the gradient mappings asso-
ciated with smooth convex functions (in 2.14) is generalized to the subgrad-
ient mappings associated with possibly nonsmooth, extended-real-valued con-
vex functions. In the statement of this theorem it should be recalled from 11.13
that a convex function f is almost strictly convex if it is strictly convex along
every line segment included in dom ∂f . When thinking of ∂f as a set-valued
mapping IRn →→ IRn, we use the convention that

∂f(x) := ∅ for all x /∈ dom f. 12(5)

12.17 Theorem (monotonicity versus convexity). For any proper, convex func-
tion f : IRn → IR, the mapping ∂f : IRn →→ IRn is monotone.

Indeed, a proper, lsc function f is convex if and only if ∂f is monotone,
in which case ∂f is maximal monotone. Such a function f is almost strictly
convex if and only if ∂f is strictly monotone.

Proof. Suppose first that f is convex. If v0 ∈ ∂f(x0) and v1 ∈ ∂f(x1), we
have from the subgradient inequality in 8.12 both f(x1) ≥ f(x0)+〈v0, x1−x0〉,
and f(x0) ≥ f(x1)+ 〈v1, x0−x1〉, where the values f(x0) and f(x1) are finite.
In adding these relations together and cancelling the term f(x0) + f(x1) from
both sides, we get 0 ≥ 〈v0, x1 − x0〉+ 〈v1, x0 − x1〉, which is equivalent to the
inequality in Definition 12.1. Thus, ∂f is monotone.

Assume now instead that f is proper and lsc with ∂f monotone. Add
temporarily the assumption that f is prox-bounded, the threshold of prox-
boundedness being λf = ∞. For any λ ∈ (0, λf ) we have Pλf ⊂ (I + λ∂f)−1

by 10.2. Here domPλf = IRn by 1.25, and hence also dom (I+λ∂f)−1 = IRn.
Then ∂f is maximal monotone by Theorem 12.12, and Pλf is single-valued.
Invoking the subgradient formula in 10.32 for the continuous function −eλf , we
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see that at every point x this function has a unique subgradient and therefore
is differentiable everywhere (by 9.18). In fact we get

∇eλf(x) = −λ−1
[
Pλf(x)− x

]
= λ−1

[
I − (I + λ∂f)−1

]
(x) =

(
λI + ∂f−1

)−1
(x),

with the final equation coming from Lemma 12.14. The monotonicity of ∂f
implies that of ∂f−1, hence that of λI + ∂f−1 and its inverse (λI + ∂f−1)−1;
cf. 12.4(a)(b)(c). The gradient mapping ∇eλf is therefore monotone. But then
eλf must be convex; cf. 2.14(a). Because this is true for any λ ∈ (0, λf ), and
eλf(x)↗f(x) as λ↘ 0, we conclude that f itself is convex.

It remains to remove the additional assumption that f is prox-bounded.
Suppose merely that f is lsc and proper. For each ρ > 0 let fρ = f + gρ with
gρ(x) := (ρ2−|x|2)−1 when |x| < ρ, but gρ(x) =∞ when |x| ≥ ρ. The function
gρ is convex and smooth on its effective domain, which is the open ball ρ int IB,
so that (once ρ is large enough that this ball meets dom f) the function fρ is
proper and lsc with

∂fρ(x) =

{
∂f(x) +∇gρ(x) when |x| < ρ,
∅ when |x| ≥ ρ,

The convexity of gρ makes∇gρ be monotone, hence ∂fρ is monotone by 12.4(c).
But fρ is bounded from below inasmuch as dom fρ ⊂ ρIB (see 1.10), so fρ is
prox-bounded (see the end of 1.24). Thus, the monotonicity of ∂fρ implies the
convexity of fρ by the argument already given. We have fρ(x) ↘ f(x) as ρ↗∞,
so the convexity of fρ implies the convexity of f . Then f is prox-bounded after
all (3.27, 3.28), and we conclude once more that ∂f is maximal.

For f lsc, proper and convex, if f isn’t almost strictly convex there is
a line segment [x0, x1] ⊂ dom ∂f on which f is affine. Then for any x̄ ∈
rint[x0, x1] and any v ∈ ∂f(x̄) we must have v ∈ ∂f(x0) ∩ ∂f(x1), in which
case 〈v1 − v0, x1 − x0〉 ≥ 0 for v0 = v1 = v. Hence ∂f isn’t strictly monotone.
Conversely, if 〈v1−v0, x1−x0〉 = 0 for some v0 ∈ ∂f(x0), v1 ∈ ∂f(x1), x0 �= x1,
one sees from the inequality argument at the beginning of the present proof that
f(x1)− f(x0) = 〈v0, x1−x0〉. Then by the convexity of f and the subgradient
inequality satisfied by v0 (cf. 8.12), f must be affine on the segment [x0, x1],
hence not almost strictly convex.

12.18 Corollary (normal cone mappings). For a closed, convex set C �= ∅ in
IRn, the mapping NC : IRn →→ IRn is maximal monotone; here

NC(x) := ∅ for all x /∈ C. 12(6)

Proof. The function f = δC is proper, lsc, and convex with ∂f = NC .

12.19 Proposition (proximal mappings). For a proper, lsc function f : IRn → IR
and any λ > 0, the proximal mapping Pλf : IRn →→ IRn is monotone.

If f is also convex, then Pλf is maximal monotone and nonexpansive
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(hence single-valued) with

I − Pλf = Pλf
∗, when λ = 1

so that gph ∂f has the Lipschitz continuous parameterization(
P1f(z), P1f

∗(z)
)
= (x, v) ⇐⇒ z = x+ v, v ∈ ∂f(x).

More generally in the possible absence of convexity, the following conditions
on a given λ > 0 are equivalent:

(a) Pλf is maximal monotone,

(b) f + λ−1j is convex for j =
1
2 | · |2,

(c) I + λ∂f is monotone.

These conditions imply that Pλf = (I + λ∂f)−1 and that, for all μ ∈ (0, λ),
the mapping Pμf is Lipschitz continuous with constant λ/[λ− μ].
Proof. The properties asserted for convex f can be obtained at once from
10.2, 12.15, and the maximal monotonicity of ∂f in 12.17. The connection
with f∗ comes from the fact that ∂f∗ = (∂f)−1, cf. 11.3.

For the general situation, observe that vectors x̄ and w̄ satisfy x̄ ∈ Pλf(w̄)
if and only if f(x̄) + (1/2λ)|x̄ − w̄|2 ≤ f(x) + (1/2λ)|x − w̄|2 for all x, and
that in terms of g = j + λf this inequality can be cast in the form g(x) ≥
g(x̄) + 〈w̄, x− x̄〉 for all x. The latter is equivalent in turn to having

w̄ ∈ ∂ḡ(x̄) and ḡ(x̄) = g(x̄) for ḡ := cl(con g).

It follows that (Pλf)
−1 ⊂ ∂ḡ, where the mapping ∂ḡ is maximal monotone

by 12.17. In particular (Pλf)
−1 is monotone, hence Pλf is monotone too.

Furthermore, these mappings are maximal monotone if and only if ḡ(x) =
g(x) for all x ∈ dom ∂ḡ. But dom ḡ ⊃ dom ∂ḡ ⊃ rint dom ḡ. This condition
therefore requires g to agree with ḡ on rint(dom ḡ). That’s the same as g
itself being convex, inasmuch as g is lsc while ḡ, being convex, lsc and proper,
is completely determined by its values on rint(dom ḡ) (cf. 2.35). Thus, the
maximal monotonicity in (a) corresponds to the convexity in (b). On the other
hand, the convexity of g is equivalent by 12.17 to the monotonicity of ∂g, which
is I+λ∂f (by the subgradient addition rule in 10.9), so the equivalence between
(b) and (c) is correct too.

According to 10.2, it’s always true that Pλf ⊂ (I+λ∂f)−1, so the maximal
monotonicity of Pλf in (a) and the monotonicity of (I + λ∂f)−1, implied by
(c), necessitate Pλf = (I + λ∂f)−1. For μ ∈ (0, λ) we then have the convexity
of f + μ−1j = f + λ−1j + [μ−1 − λ−1]j. This gives us

(Pμf)
−1 = I + μ∂f = μλ−1

[
(μ−1λ− 1)I + (I + λ∂f)

]
with I + λ∂f = (Pλf)

−1. Consequently for τ = μ−1λ − 1 > 0 we obtain
Pμf = [τI + (Pλf)

−1]−1◦μ−1λI. But [τI + (Pλf)
−1]−1 is the Yosida τ -

regularization of the maximal monotone mapping (Pλf)
−1, so it’s Lipschitz
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continuous with constant τ−1 by 12.13. Then Pμf is Lipschitz continuous with

constant τ−1μ−1λ = λ/(λ− μ).
12.20 Corollary (projection mappings). For a nonempty, closed set C ⊂ IRn,
the mapping PC : IRn →→ C is monotone and the following are equivalent:

(a) C is convex;

(b) PC is single-valued;

(c) PC is nonexpansive;

(d) PC is maximal monotone;

(e) NC + ρI is monotone for some ρ.

Proof. The function f = δC is proper and lsc with ∂f = NC , and it’s convex
if and only if C is convex. For any λ > 0 we have λNC = NC (because NC(x)
is a cone when nonempty, i.e., when x ∈ C), whereas Pλf = PC . Applying
Proposition 12.19, we get the monotonicity of PC . The equivalent conditions
(a), (b) and (c) of 12.19 correspond respectively to conditions (d), (a) and (e)
here. (Monotonicity of NC+ρI for some ρ ∈ (−∞,∞) implies its monotonicity
for some ρ ∈ (0,∞), and that property is identical to the monotonicity of the
mapping I+ρ−1NC = I+NC .) Thus, the present (d), (a) and (e) are equivalent.
We also know from the statement of 12.19 that (a) yields (c) here. Clearly (c)
implies (b). But PC is osc and locally bounded (cf. 7.44(b)), so (b) ensures
that PC is actually continuous (see 5.20). This yields (d) through 12.7 and
confirms that the equivalence of (d), (a) and (e) extends to (c) and (b).

The special parameterization of gph ∂f by proximal mappings in 12.19
works out in the context of 12.20 to a parameterization of gphNC in terms of
the projection mapping PC . It was observed in 6.17 that for a convex set C one
has PC = (I + NC)

−1. The Minty parameterization of Theorem 12.15 in the
case of the graph of T = NC (a mapping which by 12.18 is maximal monotone
when C is convex and closed) is effected therefore by

z 	→ (
PC(z), QC(z)

)
with QC = I − PC = PλσC for λ = 1.

12.21 Example (projections on subspaces). For any linear subspace M ⊂ IRn

and its orthogonal complement M⊥, the mapping

NM (x) =

{
M⊥ when x ∈M ,
∅ when x /∈M ,

is maximal monotone with gphNM =M ×M⊥ ⊂ IRn × IRn and inverse

N−1
M (v) =

{
M when v ∈M⊥,
∅ when v /∈M⊥.

The linear projection mapping onto M is PM = (I +NM )−1, whereas the one
onto M⊥ is PM⊥ = (I + N−1

M )−1. These projection mappings are maximal
monotone and nonexpansive.

Detail. This specializes 12.18 and 12.20 from a convex set to a subspace.
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12.22 Exercise (projections on a polar pair of cones). With respect to a closed,
convex cone K ⊂ IRn and its polar K∗, any point z ∈ IRn can be represented
uniquely in the form

z = x+ v with x ∈ K, v ∈ K∗, x ⊥ v,
namely with x = PK(z) and v = PK∗(z), the projections of z on K and K∗.
These projection mappings are maximal monotone and nonexpansive.

Guide. Take C = K in 12.18 and 12.20. Use the fact that the mappings NK

and N∗
K are inverse to each other because δK and δK∗ are conjugate to each

other (see 11.3, 11.4).

K*

0

v

x

z

K

Fig. 12–5. Spatial decomposition with respect to polar cones.

12.23 Exercise (Moreau envelopes and Yosida regularizations). For any proper,
lsc, convex function f : IRn → IRn, the Yosida regularization of the subgradient
mapping ∂f for any λ > 0 is the gradient mapping ∇eλf associated with the

Moreau envelope eλf : one has ∇eλf =
(
λI + (∂f)−1

)−1
.

This mapping is maximal monotone, single-valued and Lipschitz continu-
ous globally on IRn with constant λ−1. Consequently, eλf is of class C1+.

Guide. Work with the facts in Example 12.13 and Theorem 12.17 using the
gradient formula in 2.26. Apply the rule in Lemma 12.14.

Theorem 12.17 characterizes the subgradient mappings associated with
convex functions within the class of all subgradient mappings associated with
proper, lsc functions f : IRn → IR. It doesn’t provide such a characterization
within the class of all set-valued mappings T : IRn →→ IR, however. Maximal
monotonicity is identified as being necessary in order that T = ∂f for a proper,
lsc, convex function f , but it’s certainly not sufficient. For example, a linear
mapping L(x) = Ax with A antisymmetric (A∗ = −A) is maximal monotone
by 12.2 and 12.7, but it can’t be the subgradient mapping for any locally
lsc function f unless A = 0. (If it were, f would have to be smooth with
∇f(x) = Ax, cf. 9.13, but then df(x)(w) = 〈w,Ax〉 = 0 for all x and w, in
which case f must be constant, hence A = 0.)
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For this reason we have to look further than maximal monotonicity if we
wish to find a way of recognizing the mappings T that are the subgradient
mappings of proper, lsc, convex functions. A stronger form of monotonicity
turns out to be what is needed.

12.24 Definition (cyclical monotonicity). A mapping T : IRn →→ IRn is cyclically
monotone if for any choice of points x0, x1, . . . xm (for arbitrary m ≥ 1) and
elements vi ∈ T (xi), one has〈

v0, x1 − x0
〉
+

〈
v1, x2 − x1

〉
+ · · ·+ 〈

vm, x0 − xm
〉 ≤ 0. 12(7)

It is maximal cyclically monotone if it is cyclically monotone and its graph
cannot be enlarged without destroying this property.

Note that the inequality in 12(7) reduces to the one in Definition 12.1 when
m = 1. Every cyclically monotone mapping is thus monotone in particular. It
doesn’t immediately follow that every maximal cyclically monotone mapping
is maximal monotone, but that’s implied by the next theorem in conjunction
with Theorem 12.17.

12.25 Theorem (characterization of convex subgradient mappings). A mapping
T : IRn →→ IRn has the form T = ∂f for some proper, lsc, convex function
f : IRn → IR if and only if T is maximal cyclically monotone. Then f is
determined by T uniquely up to an additive constant.

Proof. If f is a proper convex function and vi ∈ ∂f(xi) for i = 0, 1, . . . , m, we
have f(xi+1) ≥ f(xi)+ 〈vi, xi+1−xi〉 by the subgradient inequality for convex
functions in 8.12, with xm+1 interpreted as x0, hence

m∑
i=0

〈
vi, xi+1 − xi

〉 ≤ m∑
i=0

[
f(xi+1)− f(xi)

]
= 0.

Thus, ∂f is cyclically monotone. If f is also lsc, ∂f must be maximal cycli-
cally monotone, because ∂f is maximal monotone by 12.17, and any cyclically
monotone enlargement of ∂f would also be a monotone enlargement.

Conversely, if T : IRn →→ IRn is any cyclically monotone mapping and
(x0, v0) is any vector pair in gphT , define the function f : IRn → IR by

f(x) = sup
(xi,vi)∈gphT

i=1,...,m

{
〈vm, x− xm〉+ 〈vm−1, xm − xm−1〉+ · · ·+ 〈v0, x1 − x0〉

}
,

where the supremum is over all choices of m as well as all choice of the pairs
(xi, vi) for i > 0. This formula expresses f as the pointwise supremum of a
collection of affine functions of x, so f is convex and lsc (cf. 1.26, 2.9). The
cyclic monotonicity of T is equivalent to having f(x0) = 0, so f is proper
too, and hence by what we have just seen, the mapping ∂f is itself cyclically
monotone. For any pair (x̄, v̄) ∈ gph T we have from the definition of f that
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f(x) ≥ sup
(xi,vi)∈gphT

i=1,...,m

{
〈v̄, x− x̄〉+ 〈vm, x̄− xm〉

+ 〈vm−1, xm − xm−1〉+ · · ·+ 〈v0, x1 − x0〉
}

= f(x̄) + 〈v̄, x− x̄〉,
and this says that v̄ ∈ ∂f(x̄) (again by 8.12). Thus, gphT ⊂ gph ∂f . If T is
maximal cyclically monotone, it follows that gphT = gph ∂f , i.e., T = ∂f .

Finally, if f1 and f2 are proper, lsc, convex functions such that ∂f1 = ∂f2,
then the mappings Pλf1 and Pλf2, which by 10.2 equal (I + λ∂f1)

−1 and
(I+λ∂f2)

−1, must coincide for any λ > 0. But a proper, lsc, convex function is
determined uniquely up to an additive constant by any of its proximal mappings
(see 3.37). Hence f1 and f2 can differ only by a constant.

12.26 Exercise (cyclical monotonicity in one dimension). Every maximal mono-
tone mapping T : IR1 →→ IR1 is maximal cyclically monotone. The maximal
monotone mappings T : IR1 →→ IR1 are precisely the subgradient mappings ∂f
of the proper, lsc, convex functions f : IR→ IR:

T (x) =

{{
v ∈ IR ∣∣ f ′

−(x) ≤ v ≤ f ′
+(x)

}
for x ∈ dom f ,

∅ for x /∈ dom f .

Guide. Starting from 12.25, relate these claims to 12.9(b) and 8.52.

Observe that the proximal mappings Pλf associated with proper, lsc, con-
vex functions f and the projection mappings PC associated with nonempty,
closed, convex sets aren’t just maximal monotone, in accordance with 12.19
and 12.20; they are maximal cyclically monotone as well. This follows from
Theorem 12.25 through the fact that (Pλf)

−1 = ∂g for g =
1
2 | · |2 + λf (see

12.19), whereas PC = Pλf for f = δC .

Although a monotone mapping can’t actually be the subgradient mapping
for some function unless that function is convex, an important class of monotone
mappings arises in close association with the subgradients of certain nonconvex
functions.

12.27 Example (monotone mappings from convex-concave functions). As an
extended-real-valued function of (x, y) ∈ IRn × IRm, let l(x, y) be convex in
x for fixed y, but concave in y for fixed x. Then l gives rise to a monotone
mapping T : IRn × IRm →→ IRn × IRm through the formula

T (x, y) = ∂xl(x, y)× ∂y[−l](x, y).
In the Lagrangian case where l(x, y) = infu

{
f(x, u) − 〈y, u〉} for a proper,

convex function f : IRn × IRm that is lsc, T is maximal monotone.

Detail. Suppose (vi, ui) ∈ T (xi, yi) for i = 0, 1. We have the subgradient
inequalities
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l(x1, y0) ≥ l(x0, y0) + 〈v0, x1 − x0〉,
l(x0, y1) ≥ l(x1, y1) + 〈v1, x0 − x1〉,
−l(x0, y1) ≥ −l(x0, y0) + 〈u0, y1 − y0〉,
−l(x1, y0) ≥ −l(x1, y1) + 〈u1, y0 − y1〉,

where the function values have to be finite. Adding these up, we get

0 ≥ 〈v0, x1 − x0〉+ 〈v1, x0 − x1〉 − 〈u0, y0 − y1〉 − 〈u1, y1 − y0〉,
which works out to 0 ≤ 〈

(v1, u1) − (v0, u0), (x1, y1) − (x0, y0)
〉
. This means

that T is monotone.

When l comes from a convex function f as described, we have by 11.48
that (v, u) ∈ T (x, y) if and only if (v, y) ∈ ∂f(x, u). Then T , as the ‘partial
inverse’ of ∂f , inherits the maximal monotonicity of the latter. Indeed, if T ′

were a monotone mapping with graph properly larger than that of T , its partial
inverse T ′′ : (x, u) 	→ {

(v, y)
∣∣ (v, u) ∈ T ′(x, y)

}
would be a monotone mapping

with graph properly larger than that of ∂f , which is impossible by 12.17.

Another connection between monotonicity and the subgradient mappings
of nonconvex functions is found in ‘hypomonotonicity’.

12.28 Example (hypomonotone mappings). A mapping T : IRn →→ IRn is hy-
pomonotone at x̄ if there exist V ∈ N (x̄) and ρ ∈ IR+ such that T + ρI is
monotone on V , or in other words,〈

v1 − v0, x1 − x0
〉 ≥ −ρ|x1 − x0|2 when xi ∈ V, vi ∈ T (xi) for i = 0, 1.

It is hypomonotone on O if it is hypomonotone at each x̄ ∈ O. Cyclical
hypomonotonicity is defined analogously.

(a) Any single-valued, strictly continuous mapping F : O → IRn on an open
set O ⊂ IRn is hypomonotone on O.

(b) A subgradient mapping ∂f for a proper, lsc function f is hypomonotone
at x̄ if and only if there exists ρ ∈ IR+ such that f + 1

2ρ| · |2 is convex on a
neighborhood of x̄, and then ∂f is cyclically hypomonotone at x̄.

(c) A function f is lower-C2 on an open set O if and only if f is finite and
lsc on O with ∂f nonempty-valued and hypomonotone on O.

Detail. In (a), if κ is a constant of Lipschitz continuity for F on a neighborhood
V of x̄, then the mapping G = F + κI has on V the property that〈

G(x1)−G(x0), x1 − x0
〉
=

〈
F (x1)− F (x0), x1 − x0

〉
+ κ|x1 − x0|2

≥ −|F (x1)− F (x0)||x1 − x0|+ κ|x1 − x0|2 ≥ 0,

so G is monotone on V . The facts in (b) are evident from 12.17 and 12.25; to
apply these results locally, add to f the indicator of a closed, convex neighbor-
hood of x̄. The characterization in (c) falls out of (b) and 10.33, since a convex
function has subgradients at every point of an open set where it is finite.
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Hypomonotonicity will be a key property in the second-order analysis of
subgradient mappings ∂f in Chapter 13 (cf. 13.36).

Recall from 9.57 that a mapping is piecewise polyhedral if its graph is the
union of a finite collection of polyhedral sets. This property, akin to piecewise
linearity, has an interesting role in the present setting.

12.29 Proposition (monotonicity of piecewise polyhedral mappings). Suppose
that T : IRn → IRn is maximal monotone. Then T is piecewise polyhedral if
and only if, for some λ > 0, the resolvant mapping (I + λT )−1 is piecewise
linear, in which case this is true for every λ > 0.

Proof. The graph of (I +λT )−1 corresponds to that of T under the invertible
linear transformation Jλ in 12(4). Hence if one of these graphs is the union
of finitely many polyhedral sets the other must have that form as well. But
by Theorem 12.12, (I + λT )−1 is single-valued when T is maximal monotone.
A single-valued mapping is piecewise polyhedral if and only if it’s piecewise
linear; see 2.48.

12.30 Proposition (subgradients of piecewise linear-quadratic functions). For a
proper, lsc, convex function f : IRn → IR and any value λ > 0 the following
properties are equivalent:

(a) the function f is piecewise linear-quadratic,

(b) the subgradient mapping ∂f is piecewise polyhedral,

(c) the envelope function eλf is piecewise linear-quadratic,

(d) the proximal mapping Pλf is piecewise linear.

Proof. The equivalence between (b) and (d) is evident from the preceding
proposition, since Pλf = (I + λ∂f)−1. The equivalence between (d) and (c)
comes from the formula∇eλf = λ−1[I−Pλf ] in 2.26; the mapping λ−1[I−Pλf ]
is piecewise linear if and only if Pλf is piecewise linear, whereas the smooth
function eλf is piecewise linear-quadratic if and only if∇eλf is piecewise linear.
According to 11.14, the property of a convex function being piecewise linear-
quadratic is preserved under the Legendre-Fenchel transform. The function
conjugate to eλf under this transform is f∗ + 1

2λ| · |2 by 11.24(b), and the
latter is piecewise linear-quadratic if and only if f∗ itself is. Putting these facts
together, we conclude that (c) is equivalent to (a).

12.31 Example (piecewise linear projections). For C ⊂ IRn nonempty, closed
and convex, the following properties are equivalent:

(a) the set C is polyhedral,

(b) the normal cone mapping NC is piecewise polyhedral,

(c) the function d2C is piecewise linear-quadratic,

(d) the projection mapping PC is piecewise linear.

Detail. Apply Proposition 12.30 to f = δC .
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D. Graphical Convergence

The connections between monotone mappings and nonexpansive mappings lead
to a special theory of graphical convergence.

12.32 Theorem (graphical convergence of monotone mappings). If a sequence
of monotone mappings T ν : IRn →→ IRn converges graphically, the limit mapping
T must be monotone. Moreover, if the mappings T ν are maximal monotone,
then T is maximal monotone.

In general for maximal monotone mappings T ν and T , one has for any
choice of λ > 0 that

T ν→g T ⇐⇒ (I + λT ν)−1→p (I + λT )−1.

Then, for any sequence λν → λ with λ, λν > 0, the single-valued mappings
(I + λνT ν)−1 converge uniformly to (I + λT )−1 on all bounded sets.

Proof. Suppose T = g-limν T
ν with T ν monotone, and consider vi ∈ T (xi),

i = 0, 1. Because T = g-lim infν T
ν in particular, there exist sequences xνi → xi

and vνi → vi such that vνi ∈ T ν(xνi ). For each ν we have by assumption that
〈vν1−vν0 , xν1−xν0〉 ≥ 0. Hence in the limit as ν →∞ we get 〈v1−v0, x1−x0〉 ≥ 0,
which means that T is monotone.

Next take the mappings T ν to be maximal monotone and, with λ fixed,
let P ν

λ := (I + λT ν)−1. By 12.12, P ν
λ is single-valued and nonexpansive. We

have x = P ν
λ (z) if and only if λ−1(z−x) ∈ T ν(x), so the graph of P ν

λ is related
to that of T ν by gphP ν

λ = Jλ(gphT
ν) for the one-to-one linear transformation

Jλ : (x, v) 	→ (x + λv, x). Therefore, T ν→g T if and only if P ν
λ →g Pλ, where

Pλ := (I+λT )−1. But the mappings P ν
λ are Lipschitz continuous with constant

1, hence equicontinuous on IRn, so graphical convergence P ν
λ →g Pλ is equivalent

to pointwise convergence P ν
λ →p Pλ (by 5.40) and entails uniform convergence

on all bounded sets (cf. 5.45, 5.43). As a by-product, if T ν→g T one must have
domPλ = IRn, making T be maximal monotone by 12.12.

For a sequence λν → λ, this convergence picture can be extended to P ν
λν =

(I + λνT ν)−1 through the observation that JλνJ−1
λ → I.

12.33 Corollary (convergent subsequences). If a sequence of maximal monotone
mappings T ν : IRn →→ IRn does not escape to the horizon, it has a subsequence
that converges graphically to some maximal monotone mapping T : IRn →→ IRn.

Proof. This follows from Theorem 12.32 by way of the compactness property
in Theorem 5.36.

12.34 Exercise (maximal monotone limits).

(a) If g-lim inf T ν ⊃ T with T ν monotone and T maximal monotone, then
actually T ν→g T .

(b) If T ν →p T with T ν maximal monotone and the sequence {T ν}ν∈IN is
asymptotically equi-osc, then T is maximal monotone.
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Guide. For (a), use 12.33 and the characterization of inner limits in 4.19. To
get (b), combine 12.32 with 5.40.

Especially important is the connection between graphical convergence of
subdifferential mappings and epi-convergence of the functions themselves, when
the functions are convex.

12.35 Theorem (subgradient convergence for convex functions; Attouch). For
proper, lsc, convex functions fν and f , and any value λ > 0, the following
properties are equivalent:

(a) the functions fν epi-converge to f ;

(b) the mappings ∂fν converge graphically to ∂f , and for some choice of
v̄ν ∈ ∂fν(x̄ν) and v̄ ∈ ∂f(x̄) with (x̄ν , v̄ν)→ (x̄, v̄), one has fν(x̄ν)→ f(x̄);

(c) the proximal mappings Pλf
ν converge pointwise to Pλf , and for some

choice of x̃ and a sequence x̃ν → x̃ one has eλf
ν(x̃ν)→ eλf(x̃).

Then, for any sequence λν → λ with λ, λν > 0, the single-valued mappings
Pλνfν converge to Pλf uniformly on all bounded sets, and likewise the functions
eλνfν converge to eλf uniformly on all bounded sets.

Proof. If (a) holds, the functions eλf
ν converge pointwise to eλf by 7.37, in

fact uniformly on all bounded sets. The argument for that result, based on
7.33, shows equally well that the mappings Pλf

ν converge pointwise to Pλf ,
although it wasn’t mentioned at the time. Thus, (a) implies (c). But conversely,
if (c) holds the mappings must converge uniformly on all bounded sets because
they are equicontinuous; they are the nonexpansive mappings (I + λ∂fν)−1;
cf. 10.32 and 12.32 along with 12.19. Thus, (c) implies (a).

Because Pλf = (I +λ∂f)−1, the convergence Pλf
ν→p Pλf in (c) is equiv-

alent through 12.32 to the convergence ∂fν→g ∂f in (b). At the same time
there is a correspondence between sequences x̃ν → x̃ in (c) and sequences
(x̄ν , v̄ν)→ (x̄, v̄) as described in (b), which is given by

x̃ν = x̄ν + λv̄ν ←→
{
x̄ν = Pλf

ν(x̃ν),
v̄ν = λ−1

[
I − Pλf

ν
]
(x̃ν),

and similarly for x̃, x̄, and v̄. Under this correspondence we have

eλf
ν(x̃ν) = fν(x̄ν) +

1

2λ
|x̄ν − x̃ν |2, eλf(x̃) = f(x̄) +

1

2λ
|x̄− x̃|2,

so that eλf
ν(x̃ν) → eλf(x̃) if and only if fν(x̄ν) → f(x̄). This shows that (c)

is equivalent to (b). The additional claims about uniform convergence follow
now via 12.32 and the gradient formula for envelope functions in 2.26.

The assertion in 12.35(b) about convergence of function values is supple-
mented by the following fact.

12.36 Exercise (convergence of convex function values). Let fν : IRn → IR be
proper, lsc and convex, and suppose fν→e f and vν ∈ ∂fν(xν) with xν → x̄
and vν → v̄. Then fν(xν)→ f(x̄) and fν∗(vν)→ f∗(v̄).
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Guide. The crux of the matter is demonstrating that lim supν f
ν(xν) ≤ f(x̄).

Get this by applying the subgradient inequality for fν at xν while appealing
to the existence of at least one sequence x̄ν → x̄ having fν(x̄ν) → f(x̄) (as
guaranteed by the meaning of epi-convergence). Then dualize by 11.3.

E. Domains and Ranges

Returning to the study of maximal monotone mappings in general, we now use
this convergence theory to gain deep insights about domains and ranges.

12.37 Theorem (normal vectors to domains). Let T : IRn →→ IRn be maximal
monotone, and let D = cl(domT ). Then D is convex, and for all x ∈ domT
one has T (x)∞ = ND(x). Furthermore

λT →g ND as λ ↘ 0,

and as this happens the mappings (I+λT )−1 converge uniformly on all bounded
sets to (I +ND)−1 = PD, the projection mapping onto D.

Proof. Let T+ := g-lim supλ ↘ 0 λT and T− := g-lim infλ ↘ 0 λT . Observe
that these mappings have 0 ∈ T−(x) ⊂ T+(x) for all x ∈ D, whereas T−(x) =
T+(x) = ∅ for all x /∈ D. In particular, no sequence T ν = λνT with λν ↘ 0
escapes to the horizon. Furthermore, any mapping T0 that is a cluster point
of such a sequence (as must exist under graphical convergence by 12.33) has
T−1
0 (0) = D. But such a limit mapping T0 is maximal monotone by 12.32,

and this implies that T−1
0 (v) is convex for every v by 12.8(c). Therefore D is

convex. Hence (I +ND)−1 = PD by 6.17.

Next note that because of maximal monotonicity we have for any point x̄
an expression for T (x̄) as the set of solutions to a system of linear inequalities:

T (x̄) =
{
v̄
∣∣ 〈v̄, x− x̄〉 ≤ 〈v, x− x̄〉 for all (x, v) ∈ gphT

}
.

Then from the horizon cone formula in 3.24 we have, as long as T (x̄) �= ∅,
T (x̄)∞ =

{
v̄
∣∣ 〈v̄, x− x̄〉 ≤ 0 for all (x, v) ∈ gphT

}
=

{
v̄
∣∣ 〈v̄, x− x̄〉 ≤ 0 for all x ∈ D}

= ND(x̄)

by the characterization of the normal cone of a convex set in 6.9.

Due to the convexity of T (x) for all x (as noted in 12.8 but also seen in the
constraint representation just constructed), this fact gives us T (x) +ND(x) =
T (x) for all x, hence λT (x) + ND(x) = λT (x) for all x when λ > 0. It’s
obvious then that T−(x̄) ⊃ ND(x̄) for all x̄. On the other hand, if v̄ ∈ T+(x̄)
there exist λν ↘ 0, xν → x̄ and vν ∈ T (xν) with λνvν → v̄. For every pair
(x, v) ∈ gph T we have 〈vν − v, xν − x〉 ≥ 0, hence 〈λνvν − λνv, xν − x〉 ≥ 0
and in the limit 〈v̄, x̄− x〉 ≥ 0. In other words, we have 〈v̄, x− x̄〉 ≤ 0 for all
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x ∈ domT , hence for all x ∈ D, which means that v̄ ∈ ND(x̄). This establishes
that T+(x̄) ⊂ ND(x̄) for all x̄ and consequently that T− = T+ = ND.

The last assertion of the theorem is justified then by 12.32.

12.38 Corollary (local boundedness of monotone mappings). A maximal mono-
tone mapping T : IRn →→ IRn is locally bounded at x̄ if and only if x̄ is
not a boundary point of cl(domT ). Indeed, T is locally bounded at a point
x̄ ∈ domT if and only if T (x̄) is a bounded set.

Proof. The mapping T fails to be locally bounded at x̄ if and only if there are
sequences xν → x̄, vν ∈ T (xν) and λν ↘ 0, such that λνvν converges to some
v̄ �= 0. This is the same as saying that the mapping T+ := lim supλ ↘ 0 λT has
a vector v̄ �= 0 in T+(x̄). By 12.37, this is the case if and only if such a vector
belongs to ND(x̄), where D = cl(domT ). Normal cones are nontrivial precisely
at boundary points; cf. 6.19.

12.39 Corollary (full domains and ranges). Let T : IRn →→ IRn be maximal
monotone. Then

(a) domT = IRn if and only if T is locally bounded everywhere, as is true
in particular when rgeT is bounded;

(b) rgeT = IRn if and only if T−1 is locally bounded everywhere, as is true
in particular if domT is bounded.

Proof. According to 12.38, T is locally bounded everywhere if and only if
cl(domT ) \ int(domT ) = ∅. Since domT �= ∅, this means that domT = IRn.
This gives (a), and then (b) follows by symmetry.

For more on local boundedness of set-valued mappings and how it may be
verified, see Chapter 5 (starting from 5.14).

12.40 Exercise (uniform local boundedness in convergence).

(a) Let x̄ ∈ int(domT ) and T ν→g T with T ν : IRn →→ IRn maximal mono-
tone. Then there exist V ∈ N (x̄), N ∈ N∞ and bounded B ⊃ T (V ) such that
B ⊃ T ν(V ) for all ν ∈ N . If T (x̄) is a singleton, then actually T ν(xν)→ T (x̄)
as xν → x̄.

(b) Let x̄ ∈ int dom f with f(x̄) finite and fν→e f with fν : IRn → IR
lsc, proper and convex. Then there exist V ∈ N (x̄), N ∈ N∞ and bounded
B ⊃ ∂f(V ) such that B ⊃ ∂fν(V ) for all ν ∈ N . If f is differentiable at x̄,
then actually ∂fν(xν)→ {∇f(x̄)} as xν → x̄.

Guide. Derive (b) from (a) using 12.17 and 12.35 with 9.18 and 9.20. To
get (a) via 12.32 and 12.38, consider a neighborhood con{a0, a1, . . . , an} of x̄
within int domT and argue (through graphical convergence and the simplex
technology in 2.28) the existence of ρ0, ε > 0 and N ∈ N∞ such that, for any
ν ∈ N , one can find aνi ∈ ρ0IB and bi ∈ T (aνi ) ∩ ρ0IB with IB(x̄, 2ε) ⊂ Cν :=
con{aν0 , aν1 , . . . , aνn}. Estimate next that for any x ∈ V := IB(x̄, ε) and v ∈ T (x)
one has 〈v, aνi − x〉 ≤ 〈bνi , aνi − x〉 ≤ ρ0(ρ0 + ε). Deduce then that the support
function of T ν(x) is bounded above by ρ0(ρ0 + ε) on Cν − x and hence on εIB,
and show by 12.8(c) that this implies T ν(V ) ⊂ ρIB for ρ := ρ0(ρ0 + ε)/ε.
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12.41 Theorem (near convexity of domains and ranges). For any maximal
monotone mapping T : IRn →→ IRn, the set domT is nearly convex, in the
sense that there is a convex set C such that C ⊂ domT ⊂ clC. The same
applies to the set rgeT .

Proof. Since rgeT = domT−1 and T−1 is maximal monotone like T (cf. 12.8),
we need only concern ourselves with the near convexity of domains. Let D =
cl(domT ), a set which we know from 12.37 to be convex as well as nonempty,
and let C = rintD. Then C is a convex set such that clC = D; cf. 2.40. Our
task can therefore be accomplished by demonstrating that C ⊂ domT .

Consider first the case where D is n-dimensional, so that C = intD, and
any x̄ ∈ C. It must be shown that x̄ ∈ domT . We have T is locally bounded
at x̄ by 12.38. Then there is an open neighborhood V ∈ N (x̄) within C such
that T (V ) is bounded, say T (V ) ⊂ B where B is compact. Because T is osc
(cf. 12.8), T−1(B) is closed (cf. 5.25(b)). But domT ⊃ T−1(B) ⊃ V ∩ domT ,
whereas cl[V ∩domT ] ⊃ V ∩D = V . Therefore domT ⊃ V , hence x̄ ∈ domT .

For the general case we resort to a dimension-reducing argument. Let M
be the affine hull of D. There is no loss of generality in supposing that 0 ∈ D,
so that M is a linear subspace of IRn. Then ND(x) ⊃ M⊥ for all x ∈ D, so
T (x) + M⊥ = T (x) for all x ∈ domT . By an affine change of coordinates
if necessary, we can reduce to the case where IRn = IRn1 × IRn2 and M is
identified with the factor IRn1 . Then for x = (x1, x2) the set T (x) is empty
when x2 �= 0, and otherwise it has the (still possibly empty) form T1(x1)×M⊥

for a certain mapping T1 : IRn → IRn1 . It’s easy to see that T1 inherits maximal
monotonicity from T . We have domT =

{
(x1, x2)

∣∣x1 ∈ domT1, x2 = 0
}
, so

the near convexity of domT comes down to that of domT1. But the set
D1 = domT1 is n1-dimensional in IRn1 by our construction. The preceding
argument can therefore be used to reach the desired conclusion.

With the support of Theorem 12.41, we are allowed, in the case of any
maximal monotone mapping T , to speak of the relative interiors

rint(domT ), rint(rgeT ),

these being nonempty convex sets that coincide with the relative interiors of
the convex sets cl(domT ) and cl(rgeT ) and thus have those as their closures.

These results about domains and ranges apply through 12.17 in particular
to the subgradient mapping T = ∂f associated with a proper, lsc, convex
function f . Even then, however, it’s possible for domT not actually to be
convex, just nearly convex as described.

For instance, in terms of the convex function ϕ on IR given by ϕ(t) = 1−√
1− t2 when |t| ≤ 1 but ϕ(t) =∞ when |t| > 1, define f on IR2 by f(x1, x2) =

max{ϕ(x1), |x2|}. Then dom f is the closed strip [−1, 1] × (−∞,∞), while
rint(dom f) = int(dom f) is the open strip (−1, 1)× (−∞,∞), but dom ∂f is
the nonconvex set consisting of the union of (−1, 1)× (−1, 1), [−1, 1]× [1,∞)
and [−1, 1] × (−∞,−1]. This union is nearly convex, though, because it lies
between the open strip and the closed strip.
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12.42 Corollary (ranges and growth). Let T : IRn →→ IRn be maximal monotone
and let R = cl(rgeT ). For any choice of x̄ ∈ IRn, one has

g-lim
τ ↗∞

Tτ = ∂σ
R

for Tτ (w) := T (x̄+ τw), τ > 0.

In particular, for any sequence τν ↗∞ one has
⋃

{wν→w}lim supν T (x̄+τ
νwν) =

∂σR(w) for all w, where the union is taken over all sequences {wν}ν∈IN such
that wν → w. Equivalently, this means that

lim sup
x→dirw

T (x) = argmax
v∈R

〈v, w〉 for all w �= 0.

Thus, whenever the linear function 〈·, w〉 is unbounded from above on R, or is
bounded from above on R without achieving its maximum, the set T (x) must
escape to the horizon as x→ dirw.

Proof. Since R = cl(domT−1), the mappings T−1
τ = τ−1(T−1 − x̄) converge

graphically as τ ↗∞ to the normal cone mapping NR; see 12.37. Hence the
mappings Tτ converge graphically to N−1

R . The set R is convex by 12.41, so
N−1

R (w) = ∂σR(w) = argmaxv∈R〈v, w〉; cf. 8.25, 11.3, 11.4. For any w �= 0, the
sequences xν → dirw are the ones that can be written in the form xν = x̄+τνwν

with wν → w and 0 < τν ↗∞. This yields all.

F∗. Preservation of Maximality

It was relatively easy to see that the sum of two monotone mappings is again
monotone; cf. 12.4. But is the sum of two maximal monotone mappings again
maximal monotone? That isn’t automatic and requires closer analysis. Con-
straint qualifications involving the relative interiors of domains will be required.
(Such relative interiors exist on the basis of the domains being nearly convex,
as noted above after the proof of 12.41.)

It’s expedient to begin with the question of maximality for mappings gener-
ated by composition in the sense of 12.4(d). Other operations can be construed
as special instances of composition.

12.43 Theorem (maximal monotonicity under composition). Suppose T (x) =
A∗S(Ax + a) for a maximal monotone mapping S : IRm →→ IRm, a matrix
A ∈ IRm×n, and a vector a ∈ IRm. If (rgeA+ a) ∩ rint(domS) �= ∅, then T is
maximal monotone.

Proof. Without loss of generality we can take a = 0 and suppose that 0 ∈
rint(domS), 0 ∈ S(0), since these properties can be arranged by translation.
We can arrange also that the smallest subspace of IRm that includes the convex
set D := cl(domS) along with the subspace rgeA is IRm itself. (Otherwise we
could replace IRm by a space of lower dimension.)



F∗. Preservation of Maximality 557

For λ > 0 let Sλ stand for the Yosida regularization (λI + S−1)−1. Note
that 0 ∈ Sλ(0) because 0 ∈ S(0). According to 12.13, Sλ is monotone, single-
valued and continuous. Define Tλ(x) := A∗Sλ(Ax). The mapping Tλ is single-
valued and continuous, and by 12.4(d) it inherits monotonicity from Sλ as well.
Therefore it’s maximal monotone by 12.7. Also, 0 ∈ Tλ(0).

For some sequence λν ↘ 0, the sequence of mappings Tλν converges graph-
ically to a maximal monotone mapping T0; this is assured by 12.33, inasmuch
as the sequence is precluded from escaping to the horizon by having 0 ∈ Tλν (0).
By establishing that gphT0 ⊂ gphT we will be able to conclude that T itself
must be maximal (and hence actually that Tλ→g T as λ ↘ 0).

Suppose v̄ ∈ T0(x̄). There exist xν → x̄ and vν → v̄ with vν ∈ Tλν (xν).
The latter means that vν = A∗yν for yν = Sλν (Axν). If the sequence of vectors
yν has a cluster point ȳ, we have v̄ = A∗ȳ but also ȳ ∈ S(Ax̄) by the graphical
convergence of Sλν to S, so that v̄ ∈ T (x̄) as required. Otherwise we must
have |yν| → ∞. We’ll demonstrate that this case runs into a conflict with our
relative interior assumption.

Even though |yν| → ∞, the sequence of vectors λνyν converges, because
λνyν =

[
I − (I + λνS)−1](Axν) by the formula in 12.14, with Axν → Ax̄

and with the mappings (I + λνS)−1 converging uniformly on bounded sets to
the projection PD on D := cl(domS); cf. 12.37. Using the fact that Sλν =
(λνI + S−1)−1 it’s also possible to rewrite yν = Sλν (Axν) as meaning yν ∈
S(Axν−λνyν), where we now recognize that the points uν := Axν−λνyν must
converge to a certain point ū.

Take μν = 1/|yν|, so that μν ↘ 0. We have μνvν → 0, but the sequence
of vectors μνyν has a cluster point ỹ �= 0. From vν = A∗yν we get 0 = A∗ỹ,
hence ỹ ⊥ rgeA (and in particular rgeA �= IRm), with

〈ỹ, ū〉 = limν〈μνyν , Axν − λνyν〉 = 〈y, Ax̄〉 − limν〈μνyν , λνyν〉 ≤ 0.

We have μνyν ∈ (μνS)(uν), but from 12.37 we know that μνS→g ND for D =
cl(domS). Therefore ỹ ∈ ND(ū). The hyperplane H =

{
u
∣∣ 〈ỹ, u − ū〉 = 0

}
then separates D from the subspace rgeA. This is impossible by 2.39 under
our assumption that rgeA meets the set rint(domS) = rintD, unless actually
D ⊂ rgeA, which can’t be the case because we’ve arranged that no proper
subspace of IRn includes both D and rgeA.

12.44 Corollary (maximal monotonicity under addition). Let T = T1 + T2 for
Ti : IR

n →→ IRn maximal monotone. If rint(domT1)∩ rint(domT2) �= ∅, then T
is maximal monotone.

Proof. We apply the theorem to S(x1, x2) := T1(x1) × T2(x2) and the linear
mapping x 	→ (x, x).

12.45 Example (truncation). Let T : IRn →→ IRn be maximal monotone.

(a) For any compact, convex set B ⊂ IRn such that intB meets domT ,
the mapping S = T + NB is maximal monotone and agrees with T on intB.
Furthermore, rgeS = IRn.
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(b) For any compact, convex set B ⊂ IRn such that intB meets rgeT , the
mapping S = (T−1 +NB)

−1 is maximal monotone, and S−1 agrees with T−1

on intB. Furthermore, domS = IRn.

Detail. We haveNB maximal monotone by 12.18, and domNB = B. The con-
dition that domT∩intB �= ∅ is thus the same as rint(domT )∩rint(domNB) �=
∅. We get (a) then from the maximality criterion in 12.44 and the observation
about bounded domains in 12.39(b). Part (b) follows then by symmetry.

T

B

B

T B
-1 -1S=(T +N )

S=T+NB

Fig. 12–6. Maximality-preserving truncations of a monotone mapping.

12.46 Exercise (restriction of arguments). Let T : IRn1 × IRn2 →→ IRn1 × IRn2

be maximal monotone. Fix any x̄2 ∈ IRn2 and define T1 : IRn1 →→ IRn1 by

T1(x1) =
{
v1

∣∣ ∃ v2 with (v1, v2) ∈ T (x1, x̄2)
}
.

If x̄2 is such that there exists x̄1 ∈ IRn1 with (x̄1, x̄2) ∈ rint(domT ), then T1 is
maximal monotone.

Guide. Deduce this from 12.43 with the affine mapping x1 	→ (x1, x̄2).

12.47 Example (monotonicity along lines). Let T : IRn →→ IRn be maximal
monotone, and consider any point x ∈ rint(domT ). For any vector w �= 0
define the mapping Tx,w : IR1 →→ IR1 by Tx,w(τ) =

{〈v, w〉 ∣∣ v ∈ T (x + τw)
}
.

Then Tx,w is maximal monotone and thus has the form in 12.9(b) with respect
to some nondecreasing function ϕ : IR→ IR.

Detail. This is the case of 12.43 in which T is composed with the affine
mapping τ 	→ x+ τw from IR1 into IRn.
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G∗. Monotone Variational Inequalities

Generalized equations, as described in Example 5.2, often involve monotone
mappings, especially when they relate to optimality conditions. The funda-
mental problem of such type is this:

given T : IRn →→ IRn, find x̄ such that T (x̄) � 0. 12(8)

The solutions, if any, are obviously the elements of the set T−1(0).
In some situations it’s useful to take a parametric stance and consider

finding, for each choice of v̄ ∈ IRn, one or all of the vectors x̄, if any, such that
T (x̄) � v̄. In this case the focus is on the entire mapping T−1. The issue then
is how to understand properties of T−1 well enough to be able to appreciate
the existence and nature of solutions and the manner of their dependence on
parameters such as v̄, and to use this understanding in the design of numerical
methods for computing such solutions.

Obviously, if T happens to be maximal monotone, a great deal of in-
formation is at our disposal, because T−1 is maximal monotone too, and
its graph, domain and range have the geometric character revealed in the
many results above. An immediate example is T = ∂f with f proper,
lsc, and convex. Then in solving T (x̄) � 0 we are looking for the points
x̄ ∈ argmin f ; cf. 10.1. More generally, the solution set to T (x̄) � v̄ in this
case is argminx{f(x)− 〈v̄, x〉} = ∂f∗(v̄); cf. 11.3, 11.8. Other examples relate
to the first-order optimality conditions developed in 6.12 and the variational
inequalities in 6.13.

C

x
_

N (x)C

_

__ F(x)

Fig. 12–7. The geometry of a variational inequality.

12.48 Example (monotonicity in variational inequalities). For a closed, convex
set C �= ∅ in IRn and a mapping F : C → IRn, the associated variational
inequality at a point x̄ can be expressed as the condition T (x̄) � 0 for the
mapping T : IRn →→ IRn defined by

T (x) = F (x) +NC(x) (with T (x) = ∅ when x /∈ C).
This mapping T is maximal monotone when F is continuous and monotone
relative to C, i.e., has

〈
F (x1)−F (x0), x1−x0

〉 ≥ 0 for all x0 and x1 in C, and
in that case the (possibly empty) solution set T−1(0) is closed and convex.
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Moreover, T is strictly monotone when F is strictly monotone relative to
C. Then the solution set can have no more than one element.

Detail. The monotonicity of T follows from that of F as a special case of the
addition rule in 12.4(b) (with F identified with a set-valued mapping IRn →→ IRn

that happens to have C as its effective domain). Here we use the monotonicity
of NC in 12.18. For the rest, a reduction can be made (via the affine hull of C)
to the case where intC �= ∅.

Let T be any maximal monotone extension of T , as exists by 12.6. Is
T = T , so that T is itself maximal? Obviously the convex set D := cl(domT )
includes the convex set domT = C. For all x ∈ C we have NC(x) = T (x)∞ ⊂
T (x)∞ = ND(x); cf. 12.37. But the latter implies that every boundary point
of C is a boundary point of D (since boundary points x of C are distinguished
precisely by having NC(x) be nontrivial). Therefore D = C. To verify that
T = T , it suffices therefore to fix any x̄ ∈ C, v̄ ∈ T (x̄), and demonstrate that
v̄ ∈ T (x̄), or equivalently, that v̄ − F (x̄) ∈ NC(x̄).

Consider arbitrary x ∈ C and let xτ := x̄ + τ(x − x̄) for τ ∈ (0, 1). We
have xτ ∈ C and therefore F (xτ ) ∈ T (xτ ) ⊂ T (xτ ) (because 0 ∈ NC(xτ )), so
that 〈F (xτ )− v̄, xτ − x̄〉 ≥ 0 by the monotonicity of T . But xτ − x̄ = τ(x− x̄).
It follows that 〈F (xτ ) − v̄, x − x̄〉 ≥ 0. This being true for any τ ∈ (0, 1),
we may take the limit as τ ↘ 0 and conclude from the continuity of F that
〈F (x̄)− v̄, x− x̄〉 ≥ 0. The choice of x ∈ C was arbitrary, so by invoking once
more the characterization in 6.9 of normal vectors to convex sets, we find that
v̄ − F (x̄) ∈ NC(x̄), as required.

Incidentally, the maximal monotonicity in this example generalizes that in
12.7, which can be regarded now as the case of 12.48 where C = IRn.

12.49 Exercise (alternative expression of a variational inequality). A point x̄
satisfies the variational inequality for a closed, convex set C �= ∅ and a contin-
uous, monotone mapping F if and only if

x̄ ∈ C, 〈
F (x), x̄− x〉 ≤ 0 for all x ∈ C.

Guide. Show that this condition is equivalent to having
〈
0− v, x̄−x〉 ≥ 0 for

all (x, v) ∈ gphT for the mapping T in Example 12.48. Appeal to the maximal
monotonicity of T .

It’s noteworthy that 12.49 describes the set of solutions to the variational
inequality for F and C as the set of solutions to a certain system of linear
inequalities. When F is the mapping ∇f0 from a C1 function f0 on IRn, this
description reduces to the first-order necessary condition for f0 to achieve its
minimum over C at x̄ (which is sufficient as well when f0 is convex); cf. 6.12.

12.50 Example (variational inequalities for saddle points). Let X ⊂ IRn and
Y ⊂ IRm be nonempty, closed, convex sets, and let L : IRn× IRm → IR be a C1
function such that L(x, y) is convex in x ∈ X for each y ∈ Y , but concave in
y ∈ Y for each x ∈ X . Then the saddle point condition
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x̄ ∈ X, ȳ ∈ Y, L(x, ȳ) ≥ L(x̄, ȳ) ≥ L(x̄, y) for all x ∈ X, y ∈ Y,
is equivalent to the variational inequality on (x̄, ȳ) with respect to

C = X × Y, F : (x, y) 	→ (∇xL(x, y),−∇yL(x, y)
)
.

It corresponds to T (x̄, ȳ) � (0, 0) for the maximal monotone mapping

T (x, y) =
(∇xL(x, y) +NX(x), −∇yL(x, y) +NY (y)

)
.

Detail. Here C is closed and convex withNC(x, y) = NX(x)×NY (y) (by 6.41),
while F is continuous and monotone relative to C. (For the monotonicity, apply
12.27 to l(x, y)+ δX(x)− δY (y) or appeal to an extension of the rule in 2.14: if
a smooth function f is convex relative to a convex set D, then ∇f is monotone
relative to D.) The indicated mapping T is thus F +NC as in 12.48. We have
T (x̄, ȳ) � (0, 0) if and only if

∇xL(x̄, ȳ) +NX(x̄) � 0, −∇yL(x̄, ȳ) +NY (ȳ) � 0,

where the first condition is equivalent to x̄ ∈ argminx∈X L(x, ȳ) and the sec-
ond is equivalent to ȳ ∈ argmaxy∈Y L(x̄, y) in accordance with the first-order
optimality rules in 6.12.

Example 12.50 recalls the minimax framework of 11.52 and ties in with
the Lagrangian expressions of optimality in 11.46—11.51. It indicates how
monotone variational inequalities arising from convex-concave functions and
saddle point conditions characterize the primal-dual solution pairs in the dual-
ity schemes of Chapter 11.

Next, we look at a fundamental existence theorem.

12.51 Theorem (solutions to a monotone generalized equation). For a maximal
monotone mapping T : IRn →→ IRn, consider the (closed, convex) solution set
T−1(0) to the generalized equation T (x̄) � 0.

(a) T−1(0) ∩ ρIB is nonempty if 〈v, x〉 ≥ 0 when v ∈ T (x), |x| > ρ.

(b) T−1(0) is nonempty and bounded if and only if{
for each nonzero w ∈ (domT )∞ (if any)
there exists v ∈ rgeT with 〈v, w〉 > 0.

Here (domT )∞ consists, for any a ∈ rint(domT ), of the vectors w such that
a+ τw ∈ domT for all τ > 0.

Proof. (a) Since T is osc, the set T (ρIB) is closed; cf. 5.25(a). We have to
show that it contains 0 when the stated condition holds. For each ν ∈ IN we
know from 12.12 that the mapping (I + νρT )−1 is single-valued and has all
of IRn as its domain. Let xν = (I + νρT )−1(0), so that 0 ∈ xν + νρT (xν),
or in other words, vν ∈ T (xν) for vν := −xν/νρ. If |xν | > ρ, our condition
would imply that 〈vν , xν〉 ≥ 0. But 〈vν , xν〉 = −|xν |2/νρ < −ρ/ν, so this is
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impossible. Therefore xν ∈ ρIB, vν ∈ T (ρIB) and |vν | ≤ 1/ν. Then vν → 0,
and it follows that 0 ∈ T (ρIB), as needed.

(b) From applying 12.38 to T−1, we see that T−1(0) is nonempty and
bounded if and only if 0 belongs to the interior of the set domT−1 = rgeT .
This set is nonempty and nearly convex in the sense given in 12.41, so its
interior contains 0 if and only if its support function is positive away from the
origin; cf. 8.29(a). Thus, T−1(0) is nonempty and bounded if and only if, for
every w �= 0, there exists v ∈ rgeT such that 〈v, w〉 > 0.

It remains only to demonstrate that the latter condition is sure always
to be satisfied when w /∈ (domT )∞. Consider any point a ∈ rint(domT ).
Through the property of domT being almost convex, we know that for any
w �= 0 the half-line

{
a + τw

∣∣ τ ≥ 0
}
intersects domT in a line segment; cf.

2.33, 2.41. Moreover, in consequence of 3.6, (domT )∞ consists of the vectors
w such that this segment is unbounded, i.e., such that a + τw ∈ domT for
all τ ∈ [0,∞). If w /∈ (domT )∞, therefore, the segment is bounded. The
maximal monotone mapping Ta,w : IR1 →→ IR1 in 12.47 then has its effective
domain bounded on the right. In view of the properties in 12.9, the values
〈v, w〉 realized by elements v and w with v ∈ T (a + τw), τ ≥ 0, can’t in that
case even be bounded from above.

12.52 Exercise (existence of solutions to variational inequalities). For a closed,
convex set C �= ∅ in IRn and a continuous, monotone mapping F : C → IRn,
let XC,F stand for the set of solutions x̄ to the variational inequality for C and
F . Let a ∈ C. Then

(a) XC,F ∩ IB(a, ρ) is nonempty if 〈F (x), x−a〉 ≥ 0 for x ∈ C, |x−a| > ρ;

(b) XC,F is nonempty and bounded if and only if{
for each nonzero w ∈ C∞ (if any),
there exists x ∈ C with 〈F (x), w〉 > 0.

Guide. Apply Theorem 12.51 in the setting of 12.48, making a shift of domain
in the case of part (a). Determine that when w belongs to the set (domT )∞ =
C∞, one has in particular that w ∈ TC(x) for all x ∈ C, and then 〈v, w〉 ≤ 0
for all v ∈ NC(x).

The existence result in Theorem 12.51 is complemented by the fact that
if T is strictly monotone the solution set T−1(0) can’t contain more than one
point, as is obvious from Definition 12.1. In the context of 12.52, the strict
monotonicity of T comes down to the strict monotonicity of F relative to C.

H∗. Strong Monotonicity and Strong Convexity

For numerical purposes in solving generalized equations, strict monotonicity is
significant in guaranteeing uniqueness of solutions, as just remarked. But the
following concept is even more potent in numerical work, because it provides a
simple test of existence and uniqueness simultaneously.
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12.53 Definition (strong monotonicity). A mapping T : IRn →→ IRn is strongly
monotone if there exists σ > 0 such that T − σI is monotone, or equivalently:〈

v1 − v0, x1 − x0
〉 ≥ σ|x1 − x0|2 whenever v0 ∈ T (x0), v1 ∈ T (x1).

The equivalence in the definition is clear from writing the inequality in the
form

〈
[v1 − σx1]− [v0 − σx0], x1 − x0

〉 ≥ 0.

12.54 Proposition (consequences of strong monotonicity). If a maximal mono-
tone mapping T : IRn →→ IRn is strongly monotone with constant σ > 0, then
T is strictly monotone and there is a unique point x̄ such that T (x̄) � 0. In
fact T−1 is everywhere single-valued and is Lipschitz continuous globally with
constant κ = 1/σ.

Proof. The implication to strict monotonicity is obvious. The strong mono-
tonicity of T with constant σ is equivalent to the monotonicity of T0 = T −σI,
and we have T−1 = (σI + T0)

−1. When T is maximal monotone, T0 must be
maximal as well; for otherwise a proper monotone extension T 0 of T0 would
yield a proper monotone extension T 0 + σI of T . Then (σI + T0)

−1 is single-
valued and Lipschitz continuous globally with constant 1/σ because it’s the
Yosida σ-regularization of T−1

0 ; cf. 12.13.

12.55 Corollary (inverse strong monotonicity). If T : IRn →→ IRn is maximal
monotone and T−1 is strongly monotone with constant σ > 0, i.e.,〈

v1 − v0, x1 − x0
〉 ≥ σ|v1 − v0|2 whenever v0 ∈ T (x0), v1 ∈ T (x1),

then T must be single-valued and Lipschitz continuous with constant 1/σ.

Proof. Apply 12.54 to T−1.

Strong monotonicity is especially important in generating contractive map-
pings whose fixed points solve a given variational inequality.

12.56 Theorem (contractions from strongly monotone mappings). If the map-
ping T : IRn →→ IRn is maximal monotone, then each of the mappings

Pτ := I − τ(I + T−1)−1 = (1− τ)I + τ(I + T )−1 for τ ∈ (0, 2]

is single-valued and nonexpansive, having T−1(0) as its set of fixed points.

In fact, if T is strongly monotone with constant σ > 0, the mappings Pτ

for τ ∈ (0, 2) are contractive with Lipschitz modulus satisfying

lipPτ ≤
{
1− τσ

1 + σ
when 0 < τ ≤ τ̄

τ − 1 when τ̄ ≤ τ < 2

}
for τ̄ = 1 +

1

1 + 2σ
, 12(9)

the lowest of these bounds being lipPτ̄ ≤ 1/(1 + 2σ). Thus the mapping
P = (I + T )−1, which is Pτ for τ = 1, is contractive with lipP ≤ 1/(1 + σ).

Proof. The two forms of expression for Pτ agree by the identity in 12.14.
The mappings (I + T )−1 and (I + T−1)−1 are single-valued by 12.12, so Pτ is
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single-valued everywhere. Let wi = Pτ (zi) for i = 0, 1, where z1 �= z0. Then
wi − (1− τ)zi = τ(I + T )−1(zi), so that zi ∈ (I + T )

(
τ−1wi + (1− τ−1)zi

)
, or

equivalently τ−1(zi −wi) ∈ T
(
τ−1wi + (1− τ−1)zi

)
. The strong monotonicity

of T gives us then the inequality〈 1

τ
(z1 − w1)−1

τ
(z0 − w0),

(1
τ
w1 +

(
1− 1

τ

)
z1
)− (1

τ
w0 +

(
1− 1

τ

)
z0
)〉

≥ σ
∣∣∣(1
τ
w1 +

(
1− 1

τ

)
z1
)− (1

τ
w0 +

(
1− 1

τ

)
z0
)∣∣∣2.

Multiplying through by τ2 and rearranging, we obtain in terms ofΔw = w1−w0

and Δz = z1 − z0 that

0 ≥
〈
σ[Δw + (τ − 1)Δz]−Δz +Δw, [Δw + (τ − 1)Δz]

〉
=

〈
[1 + σ]Δw − [1 + σ(1− τ)]Δz, [Δw − (1− τ)Δz]

〉
= [1 + σ]|Δw|2 − [1 + (1 + 2σ)(1− τ)]〈Δw,Δz〉

+ [1 + σ(1− τ)](1− τ)|Δz|2
≥ [1 + σ]|Δw|2 − |1 + (1 + 2σ)(1− τ)||Δw||Δz|

+ [1 + σ(1− τ)](1− τ)|Δz|2

and hence for the ratio ρ = |Δw|/|Δz| = |w1 − w0|/|z1 − z0| that
0 ≥ [1 + σ]ρ2 − |1 + (1 + 2σ)(1− τ)|ρ+ [1 + σ(1− τ)](1− τ).

The larger of the two roots of this quadratic polynomial in ρ gives an upper
bound for ρ. This root is

ρmax =
|1 + (1 + 2σ)(1− τ)|+√α

2(1 + σ)
,

where

α = |1 + (1 + 2σ)(1− τ)|2 − 4(1 + σ)[1 + σ(1− τ)](1− τ)
= 1 + 2(1 + 2σ)(1− τ) + (1 + 2σ)2(1− τ)2 − 4(1 + σ)

[
(1− τ) + σ(1− τ)2]

= 1 +
[
2(1 + 2σ)− 4(1 + σ)

]
(1− τ) + [

(1 + 2σ)2 − 4σ(1 + σ)
]
(1− τ)2

= 1− 2(1− τ) + (1− τ)2 =
[
1− (1− τ)]2 = τ2.

Therefore

ρ ≤ |1 + (1 + 2σ)(1− τ)|+ τ

2(1 + σ)
. 12(10)

The value τ̄ in 12(9) gives the threshold for the absolute value in the numerator:

|1 + (1 + 2σ)(1− τ)| =
{

1 + (1 + 2σ)(1− τ) when 0 < τ ≤ τ̄ ,
−1− (1 + 2σ)(1− τ) when τ̄ ≤ τ < 2.
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In the first case the numerator in 12(10) reduces to 2(1 + σ) − 2στ and the
ratio comes out as 1−τσ(1+σ)−1, which verifies the first of the alternatives in
12(9). In the second case the numerator in 12(10) is −[1+(1+2σ)(1−τ)]+τ =
2(1 + σ)(τ − 1) and the ratio is simply τ − 1. This yields the second of the
alternatives in 12(9).

The case of τ = 1, giving Pτ = P , is covered by the first of the alternatives
in 12(9) with the bound 1/(1+σ). In general, the right side of 12(9) is piecewise
linear in τ . It decreases over (0, τ̄ ] but increases over [τ̄ , 2), so its minimum is
attained at τ̄ , where its value is τ̄ − 1 = 1/(1 + 2σ).

12.57 Example (contractions in solving variational inequalities). Suppose T =
F+NC for a nonempty, closed, convex set C ⊂ IRn and a continuous, monotone
mapping F : C → IRn, as in 12.48. Then, for any τ ∈ (0, 2), the mapping Pτ

in 12.56 is nonexpansive, its fixed points being the solutions to the variational
inequality for C and F . The iteration scheme xν+1 = Pτ (x

ν) takes the form:{
calculate x̄ν by solving the variational inequality for C and F ν,

where F ν(x) := F (x) + x− xν ; then let xν+1 := (1− τ)xν + τ x̄ν .

If F is strongly monotone relative to C with constant σ, the sequence {xν}ν∈IN

generated from any starting point converges to x̄, the unique solution to the
variational inequality for C and F , and it does this at a linear rate:∣∣xν+1 − x̄∣∣ ≤ κτ

∣∣xν − x̄∣∣ for all ν ∈ IN, with κτ ∈ (0, 1),

where κτ stands for the expression on the right side of the inequality in 12(9).

Detail. These facts are immediate from Theorem 12.56 in the context of
Example 12.48.

Next we explore connections between strong monotonicity and an en-
hanced form of convexity.

12.58 Definition (strong convexity). A proper function f : IRn → IR is strongly
convex if there is a constant σ > 0 such that

f
(
(1− τ)x0 + τx1

) ≤ (1− τ)f(x0) + τf(x1)− 1
2στ(1− τ)|x0 − x1|2

for all x, x′ when τ ∈ (0, 1).

12.59 Exercise (strong monotonicity versus strong convexity). For a function
f : IRn → IR and a value σ > 0, the following properties are equivalent:

(a) ∂f is strongly monotone with constant σ;

(b) f is strongly convex with constant σ;

(c) f − 1
2σ| · |2 is convex.

Guide. First verify the equivalence of (b) with (c) by applying the usual
convexity inequality to f − 1

2σ| · |2 and working out what it means for f . Then
apply 12.17 to get the connection with (a).
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12.60 Proposition (dualization of strong convexity). For a proper, lsc, convex
function f : IRn → IR and a value σ > 0 the following properties are equivalent:

(a) f∗ is strongly convex with constant σ;

(b) f is differentiable and ∇f is Lipschitz continuous with constant 1/σ;

(c) 〈v1− v0, x1−x0〉 ≥ σ|v1− v0|2 whenever v0 ∈ ∂f(x0) and v1 ∈ ∂f(x1);
(d) f = f0

1
2σ

−1| · |2 for some convex function f0;

(e) f is differentiable and satisfies

f(x′) ≤ f(x) + 〈∇f(x), x′ − x〉+ 1

2σ
|x′ − x|2 for all x, x′.

Proof. Condition (a) is equivalent by 12.59 to having f∗ = g + (σ/2)| · |2 for
a proper, lsc, convex function g. The latter is equivalent in turn by 11.23(a) to
having (d) for f0 = g∗. Also, (a) means by 12.59 that ∂f∗ is strongly monotone
with constant σ, but ∂f∗ = (∂f)−1 by 11.3, so this is the same as (c). Since
∂f is maximal monotone by 12.17, we see further through 12.55 that condition
(c) implies (b) (where we recall that the single-valuedness of ∂f corresponds
to the differentiability of f ; cf. 9.18).

Next we observe that on the basis of (b) we get for any x and x′ that the
function ϕ(t) = f

(
x + t(x′ − x)) has ϕ′(t) = 〈∇f(x + t(x′ − x)), x′ − x〉 and

ϕ′(t)− ϕ′(0) ≤ (t/σ)|x′ − x|2. Then

f(x′)− f(x) = ϕ(1)− ϕ(0) =
∫ 1

0

ϕ′(t)dt

≤
∫ 1

0

[
ϕ′(0) +

t

σ
|x′ − x|2

]
dt = 〈∇f(x), x′ − x〉+ 1

2σ
|x′ − x|2,

so we obtain (e). Finally we verify that (e) implies (a). We have

f∗(v) = sup
x′

{〈v, x′〉 − f(x′)}
= sup

x,x′

{
〈v, x′〉 − f(x)− 〈∇f(x), x′ − x〉 − 1

2σ
|x′ − x|2

}

= sup
x,u

{
〈v, u+ x〉 − f(x)− 〈∇f(x), u〉 − 1

2σ
|u|2

}

= sup
x

{
〈v, x〉 − f(x) + sup

u

{
〈v −∇f(x), u〉 − 1

2σ
|u|2

}}
= sup

x

{
〈v, x〉 − f(x) + σ

2

∣∣v −∇f(x)∣∣2} =
σ

2
|v|2 + g(v)

for the function

g(v) := sup
x

{〈
v, x− σ∇f(x)〉+ σ

2

∣∣∇f(x)∣∣2}.
This function is the pointwise supremum of a collection of affine functions of
v, so it is lsc and convex. From having f∗(v) − (σ/2)|v|2 = g(v) we conclude
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that f∗ is strongly convex with constant σ as stipulated by (a).

Parallel in many ways to the theory of strongly convex functions is that
of the λ-proximal functions in 1.44, which are ‘hypoconvex’ because of their
characterization in 11.26(d). Here are some elementary properties.

12.61 Exercise (hypoconvexity properties of proximal functions). For a proper,
lsc function f : IRn → IR and a value λ > 0, the following are equivalent:

(a) f is λ-proximal, or in other words, hλf = f ;

(b) ∂f + λ−1I is monotone;

(c) f
(
(1− τ)x0 + τx1

) ≤ (1− τ)f(x0) + τf(x1) +
1
2λ

−1τ(1− τ)|x0 − x1|2
for all x, x′ when τ ∈ (0, 1).

Guide. Derive these equivalences from 12.17 and 11.26(d).

The Lasry-Lions double envelope functions in Example 1.46 fit into this
pattern of ‘hypoconvexity’ as follows.

12.62 Proposition (hypoconvexity and subsmoothness of double envelopes). For
a proper, lsc function f : IRn → IR that is prox-bounded with threshold λf and
any values 0 < μ < λ < λf , the double envelope eλ,μf is μ-proximal, while
−eλ,μf is [λ− μ]-proximal. Moreover, eλ,μf is of class C 1+.

Proof. We know from 1.46 that eλ,μf = hμ[eλ−μ], while−eλ,μf = −eλ−μ[hλf ].
The first equation tells us that eλ,μ is μ-proximal (because hμ[hμg] = hμg] for
any function g), while the second says that −eλ,μf is (λ − μ)-proximal (be-
cause hα[−eαg] = −eα[−eα[−eαg]] = −eα[hαg] = −eαg by the rules in 1.44
and 1.46). Now let g = −eλf and g0 = g + 1

2λ | · |2. Because g is λ-proximal
(as just argued), g0 is convex by 11.26(d). (This convexity can also be seen
directly from the formula for eλf in 1.22.) We have

−eλ−μf(x) = infw

{
g0(w)− 1

2λ
|w|2 + 1

2μ
|x− w|2

}
.

Taking η = λμ/(λ− μ), so that η−1 = μ−1 − λ−1, we can reorganize this as

−eλ−μf(x) = infw

{
g0(w) +

1

2η

∣∣∣ η
μ
x− w

∣∣∣2}− η

2λμ
|x|2

= g1

( η
μ
x
)
− 1

2(λ− μ) |x|
2 for g1 = eηg0.

The function g1, as the η-envelope of a convex function, is of class C1+ by 12.23,
so −eλ,μ must belong to this class as well.

I∗. Continuity and Differentiability

Maximal monotone mappings have special properties of continuity and even dif-
ferentiability. These are enjoyed by the mappings ∂f associated with proper,
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lsc, convex functions f in particular, since such mappings are maximal mono-
tone by 12.17.

12.63 Theorem (continuity properties). For any maximal monotone mapping
T : IRn →→ IRn, the following properties hold.

(a) If a sequence of points xν ∈ domT converges to a point x̄ from some
direction dirw and has lim supν T (x

ν) �= ∅, then x̄ ∈ domT and

lim supν T (x
ν) ⊂ argmax

v∈T (x̄)

〈
v, w

〉
=

{
v ∈ T (x̄) ∣∣w ∈ NT (x̄)(v)

}
.

(b) If a sequence of points xν ∈ domT converges to some x̄ ∈ domT from
a direction dirw with w ∈ intTdomT (x̄), then the sets T (xν) must eventually
be nonempty and form a bounded sequence, so lim supν T (x

ν) �= ∅.
(c) T is continuous at a point x̄ ∈ domT if and only if T is single-valued

at x̄, in which case necessarily x̄ ∈ int(domT ).

Proof. If xν converges to x̄ from the direction dirw, we can write xν =
x̄ + τνwν with τν ↘ 0 and wν → w. If, for ν in some index set N ∈ N#

∞,
there exist vν ∈ T (xν) with vν→N v̄, we have v̄ ∈ T (x̄) because T is osc by its
maximality. Then for any v ∈ T (x̄) the monotonicity inequality gives us

0 ≤ (1/τν)
〈
vν − v, (x̄+ τνwν)− x̄〉 =

〈
vν − v, wν

〉 →
N

〈
v̄ − v, w〉.

Hence 〈v̄, w〉 ≥ 〈v, w〉 for all v ∈ T (x̄). This proves the inclusion in (a). The
subsequent equation comes then from the convexity of T (x̄) in 12.8(c) and the
characterization of normals to convex sets in 6.9.

For (b), suppose x̄ ∈ domT and w ∈ intTdomT (x̄). Let D = cl(domT );
then TdomT (x̄) = TD(x̄), so that w ∈ intTD(x̄). Since D is convex (by 12.37),
this means that x̄ + εw ∈ intD for some ε > 0; cf. the description of tangent
cones to convex sets in 6.9. Hence there existsN ∈ N∞ such that, for ν ∈ N , we
have x̄+εwν ∈ intD and τν < ε. The point xν = x̄+τνwν belongs then to intD
as well (through the line segment principle in 2.33). But intD = int(domT )
because of the near convexity of domT (cf. 12.41). Thus, for all ν ∈ N , we
have xν ∈ int(domT ), hence T (xν) nonempty and bounded by 12.38. We must
show further now that in fact ∪ν∈NT (x

ν) is bounded.
If this weren’t true, there would exist, for ν in an index set N ′ ∈ N#

∞
within N , vectors vν ∈ T (xν) and scalars λν ↘ 0 such that λνvν→N′ ṽ �= 0.
Then ṽ ∈ ND(x̄), since λT →g ND as λ↘ 0; cf. 12.37. Because w ∈ intTD(x̄)
and TD(x̄)∗ = ND(x̄) (by the convexity of D), we must then have 〈ṽ, w〉 < 0 by
the polarity rule in 6.22. But a contradiction to this is reached by considering
any v ∈ T (x̄) and calculating as above that

0 ≤ (λν/τν)
〈
vν − v, (x̄+ τνwν)− x̄〉 =

〈
λνvν − λνv, wν

〉 →
N′

〈
ṽ, w

〉
.

To get (c), we note first that T can’t be continuous at a point x̄ ∈ domT
unless actually x̄ ∈ int(domT ), in which case T is locally bounded at x̄ by
12.38 and in particular T (x̄) is compact. We then appeal to (a) and the fact
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that a nonempty, compact, convex set is a singleton if and only if it has the
same argmax ‘face’ from all directions dirw.

Next we take note of the special nature of proto-differentiability in this
setting of maximal monotonicity.

12.64 Exercise (proto-derivatives of monotone mappings). If a maximal mono-
tone mapping T : IRn →→ IRn is proto-differentiable at x̄ for some v̄ ∈ T (x̄), its
graphical derivative mapping DT (x̄ | v̄) : IRn →→ IRn is maximal monotone as
well. The same holds for maximal cyclic monotonicity.

Proto-differentiability of T at x̄ for v̄ is equivalent, for any λ > 0, to
semidifferentiability of the resolvant Rλ = (I+λT )−1 at the point z̄λ = x̄+λv̄.
That corresponds in turn to single-valuedness of the mapping DRλ(z̄λ), which
is given always by

DRλ(z̄λ) =
(
I + λDT (x̄ | v̄)

)−1
.

In particular, Rλ is differentiable at z̄λ if and only if DT (x̄ | v̄) is a generalized
linear mapping in the sense that its graph is a linear subspace of IRn × IRn,
the subspace then necessarily being n-dimensional.

Guide. Obtain the first fact from Theorem 12.32. Get the second by way of
Theorems 12.25 and 12.35. For the resolvants, draw on the principle that proto-
differentiability corresponds to geometric derivability of graphs and appeal to
the linear transformation in IR2n that converts between gphT and gphRλ and
at the same time between gphDT (x̄ | v̄) and gphDRλ(z̄λ). Make use then of
the equivalence of proto-differentiability with semidifferentiability in the case
of a Lipschitz continuous mapping like Rλ; cf. 9.50(b). In connection with the
single-valuedness of DRλ(z̄λ), look to 9.25(a).

Finally, identify the differentiability of Rλ at z̄ with the case where the
graph of DRλ(z̄) is a linear subspace of IRn × IRn; see also 9.25(b).

Because a maximal monotone mapping T is graphically Lipschitzian every-
where, as observed after 12.16, its graph ‘can be linearized almost everywhere’
in consequence of Rademacher’s theorem (in 9.60). In other words, at almost
every point (x̄, v̄) of gphT in the n-dimensional sense of the Minty parameteri-
zation of this graph, T must be proto-differentiable with DT (x̄ | v̄) ‘generalized
linear’ as described in 12.64. The extent to which this property translates to
actual differentiability of T will come out of the next theorem and its corollary.

Recall from the definition after 8.43 that T is differentiable at x̄ if there
exist v̄ ∈ IRn, A ∈ IRn×n and V ∈ N (x̄) such that

∅ �= T (x) ⊂ v̄ +A[x− x̄] + o(|x− x̄|)IB when x ∈ V.
Then T (x̄) = {v̄}, and the matrix A is denoted by ∇T (x̄). This reduces to the
usual definition of differentiability when T is a single-valued mapping.

12.65 Theorem (differentiability and semidifferentiability). Consider a maximal
monotone mapping T : IRn →→ IRn and any x̄ ∈ domT and v̄ ∈ T (x̄). For any
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λ > 0, let Rλ = (I+λT )−1 and z̄λ = x̄+λv̄. Then the following properties are
equivalent and necessitate T being continuous at x̄ with T (x̄) = {v̄} while the
mappingDT (x̄ | v̄) = DT (x̄), also maximal monotone, is everywhere continuous
and such that T (x) ⊂ T (x̄) +DT (x̄)(x− x̄) + o(|x− x̄|)IB:

(a) T is semidifferentiable at x̄ for v̄;

(b) DT (x̄ | v̄) is single-valued;
(c) Rλ is semidifferentiable at z̄λ with DRλ(z̄λ) bijective.

Indeed, the following, more special properties are equivalent as well:

(a′) T is differentiable at x̄;

(b′) DT (x̄ | v̄) is a linear mapping;

(c′) Rλ is differentiable at z̄λ with ∇Rλ(z̄λ) nonsingular.

Proof. (a) ⇒ (b). Semidifferentiability of T at x̄ for v̄ implies by 8.43
that DT (x̄ | v̄) is a continuous mapping. But semidifferentiability also en-
tails proto-differentiability, so it also implies by 12.64 that DT (x̄ | v̄) is max-
imal monotone. Then by 12.63(c), DT (x̄ | v̄) has to be single-valued at ev-
ery point of domDT (x̄ | v̄) and thus in particular at 0. In that case we have
0 ∈ int(domDT (x̄ | v̄)) through 12.38, and because DT (x̄ | v̄) is positively ho-
mogeneous we conclude that domDT (x̄ | v̄) is all of IRn. Hence DT (x̄ | v̄) must
be single-valued everywhere.

(b) ⇒ (a). By definition, DT (x̄ | v̄) is the outer graphical limit of the
maximal monotone mappings ΔτT (x̄ | v̄) as τ ↘ 0. Thus, if a sequence τν ↘ 0 is
such that the corresponding sequence of mappings ΔτνT (x̄ | v̄) has a mapping
H as a cluster point with respect to graphical convergence, then H ⊂ DT (x̄ | v̄).
In that situation, though, H too must be maximal monotone by 12.34(a), so
this inclusion with DT (x̄ | v̄) single-valued requires H to be locally bounded
everywhere, hence by 12.38 nonempty-valued everywhere. ThenH = DT (x̄ | v̄).
In particular, DT (x̄ | v̄) must itself be maximal monotone and, by virtrue of its
single-valuedness, be continuous everywhere; cf. 12.63(c).

On the other hand, since 0 ∈ ΔτνT (x̄ | v̄)(0), no sequence {ΔτνT (x̄ | v̄)}ν∈IN

can escape to the horizon. It follows from the compactness property in 12.33
that, no matter how the sequence τν ↘ 0 is chosen, every subsequence of
{ΔτνT (x̄ | v̄)}ν∈IN has a subsubsequence converging graphically to DT (x̄ | v̄).
This means that ΔτT (x̄ | v̄)→g DT (x̄ | v̄) as τ ↘ 0, which is the property of T
being proto-differentiable at x̄ for v̄.

Next we call upon the uniform local boundedness in 12.40(a): the graphical
convergence of ΔτT (x̄ | v̄) to DT (x̄ | v̄), with domDT (x̄ | v̄) = IRn, implies the
existence of ε > 0, δ > 0 and ρ > 0 such that

ΔτT (x̄ | v̄)(δIB) ⊂ ρIB when τ ∈ (0, ε).

That’s the same as T (x̄+ τw) ⊂ v̄ + τρIB when |w| ≤ δ and τ ∈ (0, ε), and we
therefore have

T (x) ⊂ v̄ + (ρ/δ)|x− x̄|IB when |x− x̄| < εδ,
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as seen by setting x = x̄ + τw and taking τ ∈ (|x − x̄|/δ, ε). This condition
ensures also that T (x) �= ∅ for all x in some neighborhood of x̄, since it makes
T be locally bounded at x̄ and that requires x̄ ∈ int(domT ) by 12.38.

Thus, we have deduced from (b) that T exhibits the properties in 8.43(e)
at x̄ for v̄. According to the equivalences in 8.43, this not only guarantees the
semidifferentiability of T at x̄ for v̄, hence (a), but also provides the expansion
T (x) ⊂ v̄ +DT (x̄ | v̄)(x− x̄) + o(|x− x̄|)IB that has been claimed here.

Having established that (a) ⇔ (b), we pass now to (c). Utilizing the
relation DRλ(z̄λ) = (I + λDT (x̄ | v̄))−1 in 12.64 in the equivalent form
DRλ(z̄λ)

−1 = I + λDT (x̄ | v̄), we identify the single-valuedness of DRλ(z̄λ)
−1

with that of DT (x̄ | v̄). It’s immediate then that (c) implies (b). But also, the
combination of (a) and (b) yields (c) in turn by 12.64.

To get the equivalence of (a′), (b′) and (c′), we need only now specialize to
the case of DT (x̄ | v̄) being a generalized linear mapping as covered at the end
of 12.64. Such a mapping IRn →→ IRn, its graph a linear subspace of dimension
n, is a linear mapping if and only if it is single-valued.

12.66 Corollary (generic single-valuedness from monotonicity). For a maximal
monotone mapping T : IRn →→ IRn, the following properties hold.

(a) The set of points of int(domT ) where T fails to be differentiable is
negligible. In particular, T is single-valued almost everywhere on int(domT ).

(b) The set of points of int(rgeT ) where T−1 fails to be differentiable is
negligible. In particular, T−1 is single-valued almost everywhere on int(rgeT ).

Proof. Let E be the set of points where T is differentiable; at such points we
have T single-valued in particular. Also, E ⊂ int(domT ). Let R = (I + T )−1.
According to Theorem 12.65, x ∈ E if and only if x = R(z) for some z at
which R is differentiable with ∇R(z) nonsingular. Since R is nonexpansive
(and therefore Lipschitz continuous), the set of such points x has negligible
complement within rgeR = domT by 9.65. This gives (a). And (b) follows
from the same argument applied to T−1.

12.67 Theorem (structure of maximal monotone mappings). Let T : IRn →→ IRn

be maximal monotone with int(domT ) �= ∅. Let E be the subset of int(domT )
on which T is single-valued, and let E0 be any dense subset of E; in particular,
E0 can be taken to be E itself or the subset of E on which T is differentiable.
Define the mapping T0 : IRn →→ IRn by

T0(x) =
{
v
∣∣ ∃xν→E0

x with T (xν)→ v
}
.

Then T0 is single-valued on all of E and agrees there with T , and one has
domT = domT0 ⊂ clE0 = cl(domT ) with

T (x) = cl conT0(x) +NclE0
(x) for all x ∈ IRn.

Proof. We know from 12.63(c) that T is continuous on E and from 12.66
that the set of points where T is differentiable is a subset of E that is dense in
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domT . Therefore T0 is single-valued and continuous on E, coinciding on that
set with T , and we have clE0 = clE = cl(domT0) = cl(domT ). Denote this
set by D for simplicity and let S(x) := cl conT0(x). The formula to be verified
can be written then as T = S +ND.

Through its maximal monotonicity, T is closed-convex-valued and osc.
Hence S(x) ⊂ T (x) and domS ⊂ domT ⊂ D. According to 12.37, the closed
set D is convex and, at every point x ∈ domT , we have T (x)∞ = ND(x);
then S(x)∞ ⊂ ND(x) as well. Since T (x) + T (x)∞ = T (x) by 3.6, we get
S(x) +ND(x) ⊂ T (x).

Now fix any x̄ ∈ domT and let C(x̄) := S(x̄) + ND(x̄). We must show
that T (x̄) ⊂ C(x̄). The set C(x̄) is convex. Provided C(x̄) is also closed, as
will be established next, the inclusion T (x̄) ⊂ C(x̄) is equivalent to the support
function inequality σT (x̄) ≤ σC(x̄), cf. 8.24.

We don’t yet know that C(x̄) �= ∅, but if so, then not only is C(x̄) closed
but also C(x̄)∞ = ND(x̄). This comes from the criterion in 3.12 and the fact
that S(x̄)∞ ⊂ ND(x̄) = ND(x̄)∞, with the cone ND(x) being pointed since,
by 12.41, intD = int(domT ) �= ∅. Under the assumption that C(x̄) �= ∅, we
can apply the dualization rule in 11.5, as specialized to support functions and
cones in the manner of 11.4, to see that polars of the convex cones domσC(x̄)

and domσT (x̄) are C(x̄)∞ and T (x̄)∞, hence both equal to ND(x̄). Then
cl[domσT (x̄)[= cl[domσC(x̄)] = ND(x̄)∗ = clTD(x̄), and it follows that

int[domσT (x̄)] = int[domσC(x̄)] = intTD(x̄)

=
{
w
∣∣∃ τ > 0 with x̄+ τw ∈ intD

}
,

12(11)

where the description of intTD(x̄) comes from 6.9. A proper, lsc, convex
function f is completely determined by its values on int(dom f) when that’s
nonempty (cf. 2.36), so to confirm that σT (x̄)(w) ≤ σC(x̄)(w) for all w it’s
enough to check that this holds when w belongs to the open set in 12(11).
Indeed, because a convex function f is continuous on int(dom f), we need only
deal with points w belonging to a dense subset of this open set. The dense
subset that we focus on is

A :=
{
w
∣∣∇σT (x̄)(w) exists

}
.

Its density is given by Rademacher’s theorem (in 9.60), since a convex function
is strictly continuous on an open set where it is finite (cf. 9.14).

We therefore fix now a vector w̄ ∈ A, bearing in mind that in this case
x̄ + τw̄ ∈ intD = int(domT ) for all τ in some interval (0, ε), ε > 0. In
particular, w̄ ∈ intTdomT (x̄). Our goal is to demonstrate that

σT (x̄)(w̄) ≤ σC(x̄)(w̄).

By accomplishing this without assuming outright that C(x̄) �= ∅, we will be
able to conclude that C(x̄) �= ∅, since if C(x̄) were empty we would have
σC(x̄)(w̄) = −∞, whereas we know that σT (x̄)(w̄) > −∞ since T (x̄) �= ∅.
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In general, the set ∂σT (x̄)(w̄) equals argmax
{〈v, w̄〉 ∣∣ v ∈ T (x̄)}; cf. 8.25.

Here ∂σT (x̄)(w̄) is the singleton consisting of v̄ := ∇σT (x̄)(w̄), so that

argmax
{〈v, w̄〉 ∣∣ v ∈ T (x̄)} = {v̄}, σT (x̄)(w̄) = 〈v̄, w̄〉.

If we can establish that v̄ ∈ T0(x̄), we will have v̄ ∈ C(x̄) and consequently
σT (x̄)(w̄) ≤ σC(x̄)(w̄) as required.

For this we can utilize the continuity properties in 12.63. Selecting τν ∈
(0, ε) arbitrarily with τν ↘ 0, we obtain a sequence of points x̄ν = x̄ + τνw̄ ∈
int(domT ) with x̄ν converging to x̄ from the direction dir w̄. On the basis
of the density fact in 12.66(a), we can approximate x̄ν by some xν ∈ E0 for
each ν and do this in such a manner that xν likewise converges to x̄ from the
direction dir w̄. Then lim supν T (x

ν) ⊂ T0(x̄), but also lim supν T (x
ν) �= ∅ by

12.63(b), inasmuch as x̄ ∈ domT and w̄ ∈ intTdomT (x̄). At the same time,
lim supν T (x

ν) ⊂ argmax
{〈v, w̄〉 ∣∣ v ∈ T (x̄)} by 12.63(a). The latter set is {v̄},

so we must have v̄ ∈ T0(x̄).
It deserves emphasis that all these properties of continuity and differen-

tiability are valid in particular in the special case where T is the subgradient
mapping ∂f associated with a proper, lsc, convex function f , since T is maxi-
mal monotone then by Theorem 12.17. On the ‘negative’ side, this means that
such a mapping ∂f can’t be continuous at a point x unless x ∈ int(dom f) and
f is strictly differentiable at x̄, so that ∂f(x) = {∇f(x)}. That’s a consequence
of 12.63(c) and the characterization of strict differentiability in 9.18 (along with
the strict continuity of finite convex functions in 9.14).

Remarkably, though, a relaxation from true subgradients to ε-subgradients
produces continuity properties that are dramatically better. In comparison
with the description of the set of true subgradients of f at x̄ as

∂f(x) =
{
v
∣∣ f(x′) ≥ f(x) + 〈v, x′ − x〉 for all x′}

=
{
v
∣∣ f(x) + f∗(v)− 〈v, x〉 ≤ 0

}
= argminv

{
f∗(v)− 〈v, x〉}

through 11.3, the set of ε-subgradients of f at x̄ is given for ε > 0 by

∂εf(x) : =
{
v
∣∣ f(x′) ≥ f(x) + 〈v, x′ − x〉 − ε for all x′

}
=

{
v
∣∣ f(x) + f∗(v)− 〈v, x〉 ≤ ε} = ε– argminv

{
f∗(v)− 〈v, x〉}

where again the equivalences are seen through 11.3 and require f to be convex,
proper and lsc. (Note: this concept of an ε-subgradient set is tuned to convex
functions only and must not be confused with the ε-regular subgradient set
∂̂εf(x) in 8(40), which is something different but does make good sense even
for nonconvex functions.)

12.68 Proposition (strict continuity of ε-subgradient mappings). For ε > 0 and
f : IRn → IR be proper, lsc and convex, define the mapping ∂εf : IRn →→ IRn

as above. Consider X ⊂ dom f and suppose ρ0 > 0 is such that f(x) ≤ ρ0 and
d
(
0, ∂f(x)

) ≤ ρ0 when x ∈ X . Then for every ρ ∈ (ρ0 + ε,∞) one has
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d̂lρ
(
∂εf(x

′), ∂εf(x)
) ≤ (2ρ/ε)(ρ+ ε)

∣∣x′ − x∣∣
when x, x′ ∈ X with |x′ − x| < ε/(ρ+ ε).

Thus in particular, ∂εf is strictly continuous relative to X .

Proof. Fix any points x1, x2 ∈ X and let gi(v) := f∗(v) − 〈v, xi〉, so that
∂εf(xi) = ε– argmin gi. The functions gi are proper, lsc and convex, and we
are able then to apply the estimate for approximate minimization in 7.69.
Since f(xi) = − inf gi and ∂f(xi) = argmin gi, our assumptions concerning ρ0
translate to having inf gi ≥ −ρ0 and ρ0IB ∩ argmin gi �= ∅. Our choice of ρ
ensures that ε < ρ− ρ0. Theorem 7.69 tells us in this setting that

d̂l
+

ρ+ε(g1, g2) < ε =⇒ d̂lρ
(
∂εf(x

′), ∂εf(x)
) ≤ (

2ρ/ε
)
d̂l

+

ρ+ε(g1, g2).

It will suffice now to demonstrate that d̂l
+

ρ+ε(g1, g2) ≤ (ρ + ε)|x1 − x2|. The
desired inequality will thereby be confirmed, and the strict continuity of ∂εf
relative to X will fall out of Definition 9.28 and the estimates in 9(9).

By the definition of d̂l
+

ρ+ε(g1, g2), as specialized from 7.61 to our choice of
g1 and g2 and the fact that gi(v) ≥ −ρ0 > −(ρ + ε) for all v, this distance is
the infimum of the values η > 0 such that

min
v′∈IB(v,η)

{
f∗(v′)− 〈v′, x1〉

} ≤ f∗(v)− 〈v, x2〉+ η

min
v′∈IB(v,η)

{
f∗(v′)− 〈v′, x2〉

} ≤ f∗(v)− 〈v, x1〉+ η

⎫⎪⎬
⎪⎭ for all v ∈ (ρ+ ε)IB.

One of the candidates for v′ in each case is v itself, so this condition on η
certainly holds when both −〈v, x1〉 ≤ −〈v, x2〉+ η and −〈v, x2〉 ≤ −〈v, x1〉+ η
for all v ∈ (ρ + ε)IB. But that’s true when η = (ρ + ε)|x1 − x2|. Hence

d̂l
+

ρ+ε(g1, g2) ≤ (ρ+ ε)|x1 − x2|, as claimed.

_
Ve fλ

gph f6ε

f(x) = |x|

Fig. 12–8. A Lipschitz continuous selection of ∂εf .

It’s interesting to note that when the convex function f in 12.68 is finite
and globally Lipschitz continuous on IRn, a single-valued Lipschitz continuous
mapping s : IRn → IRn can be found with s(x) ∈ ∂εf(x) for all x. Indeed, that
can be accomplished by taking s = ∇eλf for any λ ∈ (0, 2ε/κ2), where κ is the
Lipschitz constant for f , in which case the Lipschitz constant for s is 1/λ; see
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Figure 12–8. This can be seen from the conjugacy between eλf and f∗ + λ
2 | · |2

in 11.26(b), which tells us through 11.3 that having v = ∇eλf(x) is equivalent
to having v ∈ argminw

{
f∗(w) + λ

2 |w|2 − 〈w, x〉
}
, i.e.,

f∗(v) +
λ

2
|v|2 − 〈v, x〉 ≤ f∗(w) +

λ

2
|w|2 − 〈w, x〉 for all w ∈ dom f∗.

The Lipschitz continuity of f with constant κ implies dom f∗ ⊂ κIB (e.g. by
11.5), so f∗(v)−〈v, x〉 ≤ f∗(w)−〈w, x〉+(λκ2/2) for all w. If λκ2/2 ≤ ε, then
v ∈ ∂εf(x̄).

Commentary

Like other basic concepts of analysis, ‘monotonicity’ in the sense of Definition 12.1
was molded by many hands. An obvious precedent is positive semidefiniteness of
linear mappings. The earliest known condition of such sort for a nonlinear, single-
valued mapping F is found in a paper of Golumb [1935], but in the form 〈F (x1) −
F (x0), x1 − x0〉 ≥ σ|x1 − x0|2 with a parameter σ that might be negative or positive
as well as zero (so that hypomonotonicity and strong monotonicity are covered at
the same time). The idea was rediscovered by Zarantonello [1960], who saw in it
an useful adjunct to iterative methods for solving functional equations and obtained
contraction results akin to cases of Theorem 12.56. Kachurovskii [1960] noted that
gradient mappings of convex functions are monotone as in 2.14(a); he was the first
to employ the term ‘monotonicity’ for this property. Really, though, the theory of
monotone mappings began with papers of Minty [1961], [1962], where the concept
was studied directly in its full scope and the significance of maximality was brought
to light.

In those days, multivaluedness was in a temporary phase of being shunned by
mathematicians, so Minty was obliged to speak of ‘relations’ described by subsets of
IRn× IRn, where we now think of such subsets as gphT for mappings T : IRn →→ IRn.
His discovery of maximal monotonicity as a powerful tool was one of the main im-
pulses, however, along with the introduction of subgradients of convex functions, that
led to the resurgence of multivalued mappings as acceptable objects of discourse, espe-
cially in variational analysis. The need for enlarging the graph of a monotone mapping
in order to achieve maximal monotonicity, even if this meant that the graph would
no longer be function-like, was clear to him from his previous work with optimization
problems in networks, Minty [1960], which revolved around the one-dimensional case
of this phenomenon; cf. 12.9.

Much of the early research on monotone mappings was centered on infinite-
dimensional applications to integral equations and differential equations. The survey
of Kachurovskii [1968] and the books of Brézis [1973] and Browder [1976] present
this aspect well; more recently, the subject has been treated comprehensively by
Zeidler [1990a], [1990b]. In such a setting, mappings are usually called ‘operators’.
But finite-dimensional applications to numerical optimization have also come to be
widespread, particularly in schemes of decomposition; see, for example, the references
and discussion of Chen and Rockafellar [1997].

Monotone linear mappings with possibly nonsymmetric matrix A (cf. 12.2) were
called ‘dissipative’ by Dolph [1961] because of their tie to the physics of energy. This
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term might have carried over to nonlinear mappings through the Jacobian property
in 12.3, derived by Minty [1962], were it not for the latter’s preference for ‘monotone’
despite the ambiguities that arise with that word in spaces having a partial order-
ing. In a fundamental study of evolution equations that dissipate energy, Crandall
and Pazy [1969] established a one-to-one correspondence between maximal monotone
mappings and nonlinear semigroups of nonexpansive mappings. They too felt more
comfortable with monotone relations in a product space than with multivaluedness,
but their contribution was another big step on the road toward the eventual realiza-
tion that major results in nonlinear mathematics couldn’t satisfyingly be formulated
within the confines of single-valued mappings.

The existence of maximal extensions of monotone mappings, and the corre-
spondence between maximal monotone mappings T : IRn →→ IRn and nonexpansive
mappings S : IRn → IRn through the transformation in 12.11, was proved by Minty
[1962] (with the transformation J/

√
2 in place of J). In that landmark paper, Minty

also established the maximality of continuous monotone mappings in 12.7 and the im-
portant facts about resolvants and parameterization in 12.12 and 12.15. The general
inverse-resolvant identity in 12.14 was first stated by Poliquin and Rockafellar [1996a].
For the regularizations of the kind in 12.13 in the case of linear mappings, see Yosida
[1971]; this type of approximation was subsequently utilized for other mappings by
Brézis [1973].

The monotonicity of the subgradient mapping associated with a real-valued (but
not necessarily differentiable) convex function f was shown by Minty [1964], but
Moreau [1965] quickly pointed out that on the basis of his theory of proximal mappings
one could deduce almost at once the maximal monotonicity of ∂f for extended-real-
valued convex functions that are lsc and proper; cf. 12.17. His observation applied
even to Hilbert spaces. Rockafellar [1966a], [1969a], [1970d] extended this result to
general Banach spaces, also introducing cyclical monotonicity and obtaining the full
characterization of the subgradient mappings of convex functions as in 12.25. (The
argument in first of these papers had a gap which was fixed in the third; before this
gap had surfaced, an alternative justification of the same facts was furnished in the
second paper.)

For the subgradient mappings ∂f of proper, lsc functions f more generally, the
valuable converse assertion in 12.17 that the monotonicity of ∂f implies the convexity
of f , was first proved by Poliquin [1990a]; for the special case of strictly continuous
functions (locally Lipschitz continuous), it was noted earlier by Clarke [1983]. Infinite-
dimensional versions of this converse result have since been supplied by Correa, Jofré
and Thibault [1992], [1994], [1995] and Clarke, Stern and Wolenski [1993]. Gener-
alizations of the ‘integration’ result in Theorem 12.25 to the subgradient mappings
of nonconvex functions have been developed by Poliquin [1991] and Thibault and
Zagrodny [1993].

The maximal monotonicity of normal cone mappings (in 12.18) and projections
(in 12.20, 12.21 and 12.22) was seen by Moreau and Rockafellar as an immediate con-
sequence of their results about subgradients of extended-real-valued convex functions.
The relations to envelopes and Yosida regularization (in 12.23) come from Moreau
[1965]. It was Rockafellar [1970f] who uncovered how convex-concave functions too
could give rise to maximal monotone mappings as in 12.27 and thereby showed how
a variational inequality could correspond to solving an optimization problem even in
cases where the underlying maximal monotone mapping in question wasn’t itself a
subgradient mapping; cf. 12.50. For a full description of the functions l(x, y) that
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come up as Lagrangians in this setting, see Rockafellar [1964a] and [1970a].
The characterization of the subgradient mappings of lower-C2 functions by hy-

pomonotonicity was developed by Rockafellar [1982b]. A characterization of the
subgradient mappings of lower-C1 functions by ‘submonotonicity’, which we haven’t
treated here, was provided by Spingarn [1981]; for related work see Janin [1982].

The piecewise polyhedral characterization of the subgradient mappings of piece-
wise linear-quadratic convex functions in 12.30 was given in the dissertation of Sun
[1986] but hasn’t previously been published in full form.

The results in 12.32 on graphical convergence of monotone mappings are due to
Attouch [1984]. Theorem 12.35 on the graphical convergence of subgradient mappings
for convex functions comes mainly from Attouch [1977]; the extension to nonconvex
functions was achieved by Poliquin [1992]. In infinite dimensions, a partial extension
has been found by Levy, Poliquin and Thibault [1995]. The ‘compactness’ in 12.33
hasn’t been noted before, nor have the convergence properties in 12.34(a) and 12.36;
12.34(b) is already in Bagh and Wets [1996].

The uniform local boundedness result in 12.40(a) is new. The version in 12.40(b)
for subgradients of convex functions has precedents in Rockafellar [1970a] and Birge
and Qi [1995], but in this full form is due to Bagh and Wets [1996].

The near-convexity result in 12.41 was obtained by Minty [1961] and extended
to infinite-dimensional spaces by Rockafellar [1970e]. The characterization of local
boundedness of maximal monotone mappings in 12.38, an early contribution of Rock-
afellar [1969b], helped to shape the subject through its consequences for domains and
ranges in 12.39. (The sufficiency in the case of global boundedness was known already
to Minty.) The proof of 12.38 by way of the convergence property in 12.37 is new,
however. The fact in 12.37 that λT →g ND as λ ↘ 0 hasn’t been brought out until
now, but it’s equivalent, through inverse mappings and 12.41, to the graphical limit
property in 12.42 (as shown in the proof of the latter). That limit property was es-
tablished by P.-L. Lions [1978], although he didn’t express it in terms of convergence
to direction points.

A notion related to the graphical convergence in 12.42 is that of the limit of
〈v, w〉 for v ∈ T (x̄+ τw) as τ ↗∞, which exists by monotonicity when the half-line
{x̄ + τw | τ ≥ 0} lies in domT (as is true when x̄ ∈ domT and w ∈ (dom T )∞);
cf. 12.47. It’s evident that this limit can’t be larger than σR(w) for R = cl(rgeT ).
Strict inequality can hold, though, as for instance when T (x) = Ax for a nonsingular,
antisymmetric matrix A. Then the limit in question is always 0, but σR(w) ≡ ∞.

Such limits have played a role in ‘coercivity’ concepts for maximal monotone
mappings and their substitutes, as in Browder [1965], Rockafellar [1970c], and Brézis
and Nirenberg [1978]; see also Attouch, Chbani and Moudafi [1995]. They are reflected
in the criteria for existence of solutions to variational inequalities and generalized
equations T (x̄) 
 0 that are featured in 12.51 and 12.52. Parts (a) of these results
come from Rockafellar [1970c], whereas parts (b) are new in the sharpness of their
formulation.

For extensions of the results about ranges of maximal monotone mappings be-
yond the setting of reflexive Banach spaces, see Gossez [1971], Fitzpatrick and Phelps
[1992], and Simons [1996]. For contributions to the study of local boundedness, see
Borwein and Fitzpatrick [1988].

The question of whether maximality is preserved when a monotone mapping is
constructed out of other such mappings, themselves maximal, has been perceived as
basic to effective application of the general theory of monotonicity to individual cases.
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The maximality criterion in 12.44 for sums, and its special version in 12.48 in the
setting of a variational inequality, were established by Rockafellar [1970c] along with
a case of the ‘truncation’ result in 12.45. The composition rule in 12.43 hasn’t been
looked at before, although here we make it the central fact from which the other rules
are derived. It could in turn be derived from the addition rule in 12.44.

Strong monotonicity goes back to Zarantonello [1960]; strong convexity has a
much longer history. Both concepts are especially useful for in developing the conver-
gence rates of algorithms for finding solutions to variational inequalities and problems
of optimization, as exemplified in 12.56 and 12.57. For more on this, and other as-
pects of the extensive numerical methodology that is based on maximal monotone
mappings, see the articles of Rockafellar [1976b], [1976c], Lions and Mercier [1979],
Spingarn [1983], Eckstein [1989], Eckstein and Bertsekas [1992], Güler [1991], Renaud
[1993], and Chen and Rockafellar [1997].

The Lipschitz continuous gradient property in 12.62 for the double envelope
functions of Example 1.46 is due to Lasry and Lions [1986].

The directional limit property in 12.63(a) was found by Rockafellar [1970a].
Closely related to this, and of particular significance for numerical methods, is ‘semi
smoothness’ as defined by Mifflin [1989]. For more on how this operates, see Qi [1990],
[1993]. The directional boundedness in 12.63(b) comes from Rockafellar [1969b].

The geometric relationship of proto-differentiability between T and its resolvants
in 12.64 has heavily been used as a tool by Poliquin and Rockafellar [1996a], [1996b],
for subgradient mappings. Some aspects of the differentiability rule Theorem 12.65
were established by those authors, but the results for general maximal monotone
mappings in both 12.64 and 12.65 are new. The generic differentiability of monotone
mappings in 12.66 was proved earlier by Mignot [1976].

The structure result in 12.67 is new also. It extends a theorem of Rockafellar
[1970a] in the convex subgradient case.

The first to discover Lipschitzian properties of the ε-subgradient mappings ∂εf ,
with f proper, lsc and convex, were Nurminski [1978] and Hiriart-Urruty [1980b];
such mappings were introduced earlier by Rockafellar [1970a]. A stronger result was
obtained by Attouch and Wets [1993b]. Proposition 12.68 improves on this in the
assumptions and the sharpness of the estimate, furnishing also the connection with
the theory of strict continuity of set-valued mappings.

The book of Phelps [1989] provides an exposition of the theory of monotone
mappings in infinite-dimensional spaces and in particular addresses the geometry of
differentiability in such spaces.



13. Second-Order Theory

For functions f : IRn → IR, the notions of ‘subderivative’ and ‘subgradient’,
along with semidifferentiability and epi-differentiability, have provided a broad
and effective generalization of first-order differentiation. What can be said,
though, on the level of generalized second-order differentiation? And what
might the use of this be?

Classically, second derivatives carry forward the analysis of first deriva-
tives and provide quadratic approximations of a given function, whereas first
derivatives by themselves only provide linear approximations. They serve as
an intermediate link in an endless chain of differentiation that proceeds to
third derivatives, fourth derivatives, and so on. In optimization, derivatives of
third order and higher are rarely of importance, but second derivatives help
significantly in the understanding of optimality, especially the formulation of
sufficient conditions for local optimality in the absence of convexity. Such con-
ditions form the basis for numerical methodology and assist in studies of what
happens to optimal solutions when the parameters on which a problem depends
are perturbed.

In working toward a theory of second-order subdifferentiation that is ef-
fective for functions beyond the classical framework, such as have been treated
successfully so far, we can aim at promoting these applications on a wider front
as well as achieving new insights into results previously obtained by standard
tools operating with difficulty in narrow confines. The technical and concep-
tual challenges are formidable, however. We have to make sense of some kinds
of second derivatives for functions that need not have ordinary first deriva-
tives and can be discontinuous and extended-real-valued. It’s remarkable that
despite such hurdles very much can be accomplished.

A. Second-Order Differentiability

Let’s start by reviewing the classical notion of second-order differentiability
and discussing a simple extension that can be made of it. The extension builds
on Rademacher’s theorem, the fact in 9.60 that when a function f is strictly
continuous (hence locally Lipschitz continuous) on an open set O, the set of
points where it fails to be differentiable is negligible in O, so that its complement
is dense in O.
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13.1 Definition (twice differentiable functions). Let f : IRn → IR be a function
that is finite at x̄.

(a) f is twice differentiable at x̄ in the classical sense if it is differentiable
on a neighborhood of x̄ and the gradient mapping ∇f on this neighborhood
is differentiable at x̄. The Jacobian matrix ∇(∇f)(x̄) (whose components are
the second partial derivatives of f at x̄) is then called the Hessian of f at x̄ in
the classical sense and is denoted by ∇2f(x̄).

(b) f is twice differentiable at x̄ in the extended sense if it is differentiable
at x̄ and strictly continuous there, and ∇f is differentiable at x̄ relative to
D, its domain of existence (which has negligible complement relative to some
neighborhood of x̄): there is a matrix A ∈ IRn×n such that

∇f(x) = ∇f(x̄) + A[x− x̄] + o
(|x− x̄|) for x ∈ D.

This matrix A, necessarily unique, is then called the Hessian of f at x̄ in the
extended sense and is likewise denoted by ∇2f(x̄).

(c) f has a quadratic expansion at x̄ if it is differentiable at x̄ and there is
a matrix A ∈ IRn×n such that

f(x) = f(x̄) +
〈∇f(x̄), x− x̄〉+ 1

2

〈
x− x̄, A[x− x̄]〉+ o

(|x− x̄|2).
The extended definition in (b) is motivated by the desire to develop second-

order differentiability at x̄ without having to assume the existence of first partial
derivatives at every point in some neighborhood of x̄, which would be severely
limiting. The components of A are regarded in this case as legitimate second
partial derivatives, albeit from a broader perspective, hence the same notation
∇2f(x̄) for A. The uniqueness of A in (b) is apparent from the density of D
in a neighborhood of x̄; with A and A′ both satisfying the condition, we get
0 = (A′ − A)[x− x̄] + o

(|x− x̄|) for x ∈ D, so A′ − A = 0.
In speaking in (c) of a quadratic expansion, we could refer with seemingly

greater generality to a right side in which the first two terms are written as
c + 〈v, x − x̄〉 for some c ∈ IR and v ∈ IRn, but then obviously c = f(x̄) and
v = ∇f(x̄) anyway, so nothing more would really be said. The elucidation
of how the components of the matrix A in such a second-order approximation
relate to second partial derivatives of f is one of the tasks we will face.

The quadratic term in (c) depends only on the symmetric part 1
2(A+A∗)

of A and therefore determines only that part of A uniquely; the antisymmetric
part 1

2 (A−A∗) can be anything, unless symmetry of A is demanded. Of course,
even for Hessian matrices in the classical sense symmetry can’t be taken for
granted. Symmetry in second partial derivatives is familiar when f belongs
to C2 (this being the case in (a) where the Hessian exists at all x near x̄ and
depends continuously on x), but here we’re pushing outside of that territory.
Later, however, we’ll find a substantial class of functions f beyond C2 for
which the matrix ∇2f(x̄), when it exists in the manner of (a) or (b), must be
symmetric. (See 13.42.)

In the theorem that follows, we utilize the notion of differentiability of a
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set-valued mapping that was introduced after 8.43. It requires the mapping to
be single-valued at the point in question, but not necessarily elsewhere.

13.2 Theorem (extended second-order differentiability).

(a) If f : IRn → IR is twice differentiable at x̄ in the classical sense, it is
also twice differentiable at x̄ in the extended sense with the same Hessian.

(b) If f : IRn → IR is twice differentiable at x̄ in the extended sense,
it is strictly differentiable at x̄ and its Hessian matrix furnishes a quadratic
expansion for f at x̄:

f(x̄+ τw) = f(x̄) + τ
〈∇f(x̄), w〉+ 1

2τ
2
〈
w,∇2f(x̄)w

〉
+ o
(
τ2|w|2).

(c) In general, a function f : IRn → IR is twice differentiable at a point
x̄ in the extended sense if and only if f is finite and locally lsc at x̄ and the
subgradient mapping ∂f : IRn →→ IRn is differentiable at x̄: there exist v ∈ IRn

and A ∈ IRn×n such that ∂f(x̄) = {v} and
∅ �= ∂f(x) ⊂ v + A[x− x̄] + o

(|x− x̄|)IB 13(1)

with respect to x belonging to some neighborhood of x̄, in which case one
necessarily has v = ∇f(x̄) and A = ∇2f(x̄).

Proof. When f is twice differentiable at x̄ in the classical sense, we have
∇f(x) = ∇f(x̄)+∇2f(x̄)[x−x̄]+o(|x−x̄|), which implies∇f is locally bounded
at x̄. The existence of κ such that |∇f(x)| ≤ κ on a convex neighborhood V
of x̄ allows us to deduce that f is Lipschitz continuous on V with constant
κ. Specifically, for any points x0, x1 ∈ V the function ϕ(τ) = f(xτ ) for xτ :=
(1 − τ)x0 + τx1 is differentiable and thus by the mean value theorem has
ϕ(1) − ϕ(0) = ϕ′(τ) for some τ ∈ (0, 1). But ϕ′(τ) = 〈∇f(xτ), x1 − x0〉, so
|ϕ′(τ)| ≤ κ|x1 − x0| and we get f(x1)− f(x0) ≤ κ|x1 − x0|.

The expansion for ∇f that expresses its differentiability at x̄ then yields
the one in 13.1(b) with A = ∇2f(x̄) and says that f is twice differentiable at
x̄ in the extended sense. This proves (a).

To obtain the quadratic expansion in (b), we observe that the differentia-
bility of ∇f relative to D furnishes for any ε > 0 a δ > 0 such that∣∣∇f(x̄+ τw)−∇f(x̄)− τAw∣∣ ≤ ετ

for all τ ∈ [0, δ] when x̄+ τw ∈ D, |w| = 1.
13(2)

Let V be an open neighborhood of x̄ on which f is Lipschitz continuous. We
can take δ small enough in 13(2) that IB(x̄, δ) ⊂ V . The negligibility of V \D
guarantees that in the unit sphere S =

{
w
∣∣ |w| = 1

}
there’s a dense set of

w’s for which the intersection of the half-line
{
x̄ + τw

∣∣ τ ≥ 0
}
with V \D is

negligible (in the one-dimensional sense). For such w the Lipschitz continuous
function ψ(τ) = f(x̄+ τw) on [0, δ] has ψ′(τ) = 〈∇f(x̄+ τw), w〉 except for a
negligible set of τ values. Then f(x̄+ τw)− f(x̄) = ∫ τ

0
〈∇f(x̄+ tw), w〉dt, and

through 13(2) we get
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2τ

2〈w,∇2f(x̄)w〉∣∣
=
∣∣∣ ∫ τ

0

[〈∇f(x̄+ tw), w〉 − 〈∇f(x̄), w〉 − t〈w,Aw〉]dt∣∣∣
≤
∫ τ

0

∣∣〈∇f(x̄+ tw), w〉 − 〈∇f(x̄), w〉 − t〈w,Aw〉∣∣dt
≤
∫ τ

0

∣∣∇f(x̄+ tw)−∇f(x̄)− tAw∣∣∣∣w∣∣dt ≤ ετ2 when τ ∈ [0, δ].

Due to the outer inequality in this chain holding for all w in a dense subset
of the unit sphere S, and f being continuous on IB(x̄, δ), it must hold for all
w ∈ S. This means that the targeted quadratic expansion is valid.

We turn now to the characterization in (c), from which we’ll also derive the
strict differentiability claimed in (b). Suppose first that f is twice differentiable
at x̄ in the extended sense, and again let V be an open neighborhood of x̄ on
which f Lipschitz continuous. We have ∅ �= ∂f(x) ⊂ con∇f(x) at all points
of V , where ∇f(x) consists of all limits of sequences ∇f(xν) as xν → x; see
9.61. The first-order expansion of ∇f relative to D then yields the proposed
first-order expansion of ∂f with v = ∇f(x̄) and A = ∇2f(x̄).

Conversely, if f isn’t assumed strictly continuous at x̄ but just locally lsc,
and ∂f is differentiable at x̄ as in 13(1), we have ∂f locally bounded at x̄,
hence f strictly continuous at x̄ after all by 9.13. Furthermore ∂f(x̄) = {v},
which implies by 9.18 that f is strictly differentiable at x̄ with ∇f(x̄) = v.
The expansion in 13(1) then yields the one in Definition 13.1(b), inasmuch as
∇f(x) ∈ ∂f(x) whenever f is differentiable at x.

Along with furnishing facts of direct interest, Theorem 13.2 lays out the
patterns that will henceforth guide our efforts: the investigation of first-order
approximations to ∂f at x̄ and second-order approximations to f at x̄, possibly
nonlinear-nonquadratic and just one-sided in certain ways, and which are not
based exclusively on pointwise convergence. We’ll begin by exploring different
kinds of limits of second-order difference quotient expressions.

B. Second Subderivatives

From an elementary standpoint, it’s natural to think first of a simple general-
ization of the one-sided directional derivatives f ′(x̄;w) of 7(20), which are the
right derivatives ϕ′

+
(0) of functions ϕ(τ) = f(x̄+ τw). Second right derivatives

of such functions ϕ can be defined by

ϕ′′
+(0) = lim

τ ↘ 0

ϕ(τ)− ϕ(0)− τϕ′
+(0)

1
2τ

2
,

and one can speak then of one-sided second directional derivatives of f at x̄, a
point where f is finite, as given by
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f ′′(x̄;w) := lim
τ ↘ 0

f(x̄+ τw)− f(x̄)− τf ′(x̄;w)
1
2τ

2
13(3)

when this limit and the one for f ′(x̄;w) exist. Note that the 1
2 in the denomi-

nator, cumbersome as it may be, is mandatory for keeping in step with classical
conventions. In the case of ϕ(τ) = τ2, for instance, one gets ϕ′

+
(τ) = 2τ and

ϕ′′
+
(τ) = 2, but this would fail without the factor 1

2 being inserted.

This elementary notion of generalized derivatives is too weak to be satis-
factory, however. We already know from experience in first-order theory that
one-sided directional derivatives calculated just along half-lines emanating from
x̄ don’t serve well for nonsmooth functions f . (See Chapter 7 for the discus-
sion of first-order semidifferentiability, starting with 7.20.) Better results are
promised by other types of limits that test the behavior of f as x̄ is reached
from the direction of a vector w but perhaps ‘nonlinearly’.

Two forms of second-order difference quotients for f at x̄ facilitate the
study of such behavior. The first is

Δ2
τf(x̄)(w) :=

f(x̄+ τw)− f(x̄)− τdf(x̄)(w)
1
2τ

2
for τ > 0, 13(4)

where df(x̄) is the subderivative function of 8.1, so that in particular, df(x̄)(w)
comes out as the first-order semiderivative or the epi-derivative of f at x̄ for w
in the presence of the additional limit properties that define those terms. The
finiteness of f(x̄) is of course presupposed in this context, but to avoid trouble
over df(x̄)(w) also possibly having to be finite in order for the numerator in
13(4) even to make sense, we adopt the convention of inf-addition, where the
sum of ∞ and −∞ is interpreted as ∞. In other words, we take

Δ2
τf(x̄)(w) :=∞ if f(x̄+ τw) = df(x̄)(w) =∞ or −∞.

The other form of second-order difference quotient, which also presupposes
the finiteness of f(x̄), obviates the need for special treatment of infinities by
substituting a linear term 〈v, w〉 for df(x̄)(w):

Δ2
τf(x̄ |v)(w) :=

f(x̄+ τw)− f(x̄)− τ〈v, w〉
1
2τ

2
for τ > 0. 13(5)

When f is differentiable at x̄ and v = ∇f(x̄), this second form reduces to the
first because df(x̄)(w) = 〈v, w〉.

It’s instructive to observe that the elementary second directional derivative
function f ′′(x̄; ·) of 13(3), when everywhere defined, is the pointwise limit of
the difference quotient functions Δ2

τf(x̄) as τ ↘ 0. We can progress to more
robust generalizations of second-order differentiation by studying other limits
of Δ2

τf(x̄) and Δ2
τf(x̄ |v) as τ ↘ 0 that instead look to uniform convergence,

continuous convergence, or epi-convergence. The following lower limits are
fundamental to the discussion of all such modes of convergence.
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13.3 Definition (second subderivatives). For f : IRn → IR, any x̄ ∈ IRn with
f(x̄) finite and any v ∈ IRn, the second subderivative at x̄ for v and w is

d2f(x̄ |v)(w) := lim inf
τ ↘ 0
w′→w

Δ2
τf(x̄ |v)(w′). 13(6)

The second subderivative at x̄ for w (without mention of v) is

d2f(x̄)(w) := lim inf
τ ↘ 0
w′→w

Δ2
τf(x̄)(w

′). 13(7)

Thus, the functions d2f(x̄ |v) : IRn → IR and d2f(x̄) : IRn → IR are given by
lower epi-limits:

d2f(x̄ |v) = e-lim inf
τ ↘ 0

Δ2
τf(x̄ |v), d2f(x̄) = e-lim inf

τ ↘ 0
Δ2

τf(x̄).

Distinctions in the behavior of the two kinds of second subderivative will
be highlighted in what follows, but they agree when f is differentiable at x̄:

d2f(x̄ |v) = d2f(x̄) when v = ∇f(x̄).
Unlike first-order subderivative functions, the second-order subderivative

functions aren’t positively homogeneous in the ‘degree 1’ sense used so far.
Instead they have a higher-order property of such type.

13.4 Definition (positive homogeneity of degree p). A function h : IRn → IR is
called positively homogeneous of degree p > 0 if h(λw) = λph(w) for all λ > 0
and w, and h(0) <∞. (Then either h(0) = 0 or h(0) = −∞.)

The case of p = 1, important in first-order theory, takes the back stage
now in favor of positive homogeneity of degree p = 2.

13.5 Proposition (properties of second subderivatives). The functions d2f(x̄)
and d2f(x̄ |v) are lsc and positively homogeneous of degree 2. In addition,
d2f(x̄ |v)(w) depends concavely on v and has{

d2f(x̄ |v)(w) =∞ when 〈v, w〉 < df(x̄)(w),
d2f(x̄ |v)(w) = −∞ when 〈v, w〉 > df(x̄)(w),

so that finiteness of d2f(x̄ |v)(w) necessitates having 〈v, w〉 = df(x̄)(w). Thus,
dom d2f(x̄ |v) ⊂ {w ∣∣ df(x̄)(w) ≤ 〈v, w〉} always, but properness of d2f(x̄ |v)
is not possible unless actually df(x̄)(w) ≥ 〈v, w〉 for all w:

d2f(x̄ |v) proper =⇒
⎧⎨
⎩
v ∈ ∂̂f(x̄),
dom d2f(x̄ |v) ⊂ {w ∣∣ df(x̄)(w) = 〈v, w〉}

⊂ N
∂̂f(x̄)

(v).

Proof. The lower semicontinuity is automatic from the expression of these
functions as lower epi-limits; cf. 7.4(a). The positive homogeneity of de-
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gree 2 arises from the form of the second-order difference quotients in hav-
ing Δ2

τf(x̄ |v)(λw) = λ2Δ2
λτf(x̄ |v)(w) and Δ2

τf(x̄)(λw) = λ2Δ2
λτf(x̄)(w) for

λ > 0. The concavity of d2f(x̄ |v)(w) with respect to v comes from

d2f(x̄ |v)(w) = lim
δ ↘ 0

[
inf

w′∈IB(w,δ)
τ∈(0,δ)

Δ2
τf(x̄ |v)(w′)

]

and the fact that, for τ and w′ such that f(x̄ + τw′) is finite, Δ2
τf(x̄ |v)(w′)

is affine with respect to v. (The pointwise infimum of a collection of affine
functions is concave, and the pointwise limit of a sequence of concave functions
is concave; cf. 2.9.) Next fix any vector v and note that

Δ2
τf(x̄ |v)(w) =

2

τ

[
Δτf(x̄)(w)− 〈v, w〉

]
. 13(8)

Consider sequences wν → w and τν ↘ 0 such that Δ2
τνf(x̄ |v)(wν) converges to

some value α ∈ IR while Δτνf(x̄)(wν) converges to some β. (If either sequence
converges by itself, we can arrange, by passing to a subsequence if necessary
that the other converges as well, so the stipulation of joint convergence entails
no loss of generality.) The value d2f(x̄ |v)(w) is by definition the lowest α
attainable in such a scheme, whereas df(x̄)(w) is the lowest β.

Here α = limν(2/τ
ν)
[
Δτνf(x̄)(wν)−〈v, wν〉] andΔτνf(x̄)(wν)−〈v, wν〉 →

β − 〈v, w〉. If β − 〈v, w〉 > 0, then α = ∞. Having d2f(x̄ |v)(w) < ∞ thus
requires β − 〈v, w〉 ≤ 0, hence also df(x̄)(w)− 〈v, w〉 ≤ 0. On the other hand,
if β − 〈v, w〉 < 0, then α = −∞, so d2f(x̄ |v)(w) = −∞. The latter must hold
for sure when df(x̄)(w)−〈v, w〉 < 0, due to the fact that we can always choose
the sequences such that β = df(x̄)(w).

To have d2f(x̄ |v)(w) > −∞ for all w, we therefore need df(x̄)(w) ≥ 〈v, w〉
for all w. This means by 8.4 that v ∈ ∂̂f(x̄). But 〈v, w〉 ≤ df(x̄)(w) for every

v ∈ ∂̂f(x̄). It follows that any w with d2f(x̄ |v)(w) < ∞ must be such that

〈v′ − v, w〉 ≤ 0 for all v′ ∈ ∂̂f(x̄), so w ∈ N
∂̂f(x̄)

(v).

The relationships that, according to Proposition 13.5, must hold if the
second-order subderivative function d2f(x̄ |v) is to be proper and have a given
vector w �= 0 in its effective domain are shown in Figure 13–1. Not only
must v belong to the closed, convex set ∂̂f(x̄), but also, w must be a normal

vector to ∂̂f(x̄) at v. Besides, df(x̄)(w) must be finite, and the hyperplane

H =
{
v
∣∣ 〈v, w〉 = df(x̄)(w)

}
must support ∂̂f(x̄) at v. But of course the latter

follows from the other relationships when f is regular at x̄, since df(x̄) is then

the support function of ∂̂f(x̄); cf. 8.30. Under regularity, ∂̂f(x̄) = ∂f(x̄).

Another thing to note about the situation described by this picture, in
appreciating the content of Proposition 13.5, is that the concave function v �→
d2f(x̄ |v)(w) must be −∞ for v in one of the open half-spaces associated with
H (the one toward dirw), but ∞ for v in the other open half-space.

In particular, the function d2f(x̄ |v) can’t be finite everywhere unless df(x̄)
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is the linear function 〈v, · 〉, in which case ∂̂f(x̄) must be the singleton {v}.
For functions f that are regular and strictly continuous, such as finite convex
functions for instance, that isn’t possible unless f is differentiable at x̄ with
∇f(x̄) = v. At first this may seem disappointing, but the presence of∞ values
will later come out as a characteristic that’s indispensable in capturing the key
second-order properties of nonsmooth functions f .

w 6f(x)^ _N (v)

6^f(x)
_

v
|<v,w>=df(x)(w)}H={v

Fig. 13–1. Configuration necessary for properness of second subderivatives.

13.6 Definition (twice semidifferentiable and twice epi-differentiable functions).
Let x̄ be a point where the function f : IRn → IR is finite.

(a) f is twice semidifferentiable at x̄ if it is semidifferentiable at x̄ and the
functions Δ2

τf(x̄) converge continuously to d2f(x̄) as τ ↘ 0.

(b) f is twice epi-differentiable at x̄ for v if the functions Δ2
τf(x̄ |v) epi-

converge to d2f(x̄ |v) as τ ↘ 0. It is properly twice epi-differentiable at x̄ for v
if in addition the function d2f(x̄ |v) is proper.

The first-order semidifferentiability assumed in Definition 13.6(a) implies
by 7.21 that df(x̄)(w) is finite for all w, so the functionsΔ2

τf(x̄) are well defined
on IRn without any need for invoking the convention for handling conflicts of
infinities. The requirement for second-order semidifferentiability is that the
‘lim inf’ giving d2f(x̄)(w) in 13(6) should coincide with the ‘lim sup’, or in
other words that for each w one should have the existence of

lim
τ ↘ 0
w′→w

f(x̄+ τw′)− f(x̄)− τdf(x̄)(w′)
1
2τ

2
.

Similarly in Definition 13.6(b), d2f(x̄ |v) is already the e-lim inf of the func-
tionsΔ2

τf(x̄ |v) as τ ↘ 0, so the requirement for second-order epi-differentiability
is that d2f(x̄ |v) should also be the corresponding e-lim sup. This means that
for every w ∈ IRn and choice of τν ↘ 0 there should exist wν → w such that

f(x̄+ τνwν)− f(x̄)− τν〈v, wν〉
1
2τ

ν 2
→ d2f(x̄ |v)(w).

Second-order epi-differentiability doesn’t assume first-order epi-differentiability,
but it implies for each w ∈ dom d2f(x̄ |v) that the first-order epi-derivative of



B. Second Subderivatives 587

f at x̄ exists for w. This can be deduced from 13(8).
For still another notion of generalized differentiability, one might contem-

plate looking at continuous convergence of Δ2
τf(x̄ |v) to d2f(x̄ |v) (with its im-

plications of uniform convergence). But that would entail having d2f(x̄ |v)(w) <
∞ for all w (as seen from the case of w = 0) and consequently, when d2f(x̄ |v) is
proper, that df(x̄)(w) = 〈v, w〉 for all w (by Proposition 13.5). Then Δ2

τf(x̄ |v)
and d2f(x̄ |v) reduce to Δ2

τf(x̄) and d2f(x̄), so nothing new would be obtained.
The virtue of second-order semidifferentiability is that it corresponds to f

having a ‘second-order expansion’ at x̄ in the following sense.

13.7 Exercise (characterizations of second-order semidifferentiability). For any
function f : IRn → IR and any point x̄ at which f is semidifferentiable, the
following conditions are equivalent:

(a) f is twice semidifferentiable at x̄;

(b) as τ ↘ 0, the difference quotient functions Δ2
τf(x̄) converge uniformly

on all bounded subsets of IRn to a continuous function h;

(c) there is a finite, continuous, function h, which is positively homogeneous
of degree 2 and such that

f(x) = f(x̄) + df(x̄)(x− x̄) + 1
2h(x− x̄) + o

(|x− x̄|2).
Under these conditions the function h must be d2f(x̄), and therefore d2f(x̄)(w)
must everywhere be finite and depend continuously on w.

Guide. Mimic parts of the proof of Theorem 7.21.

The two concepts of generalized second-order differentiability in 13.6 lead
to the same thing when f is twice differentiable as in 13.1.

13.8 Example (connections with second-order differentiability). Whenever a
function f : IRn → IR is twice differentiable at x̄ in the classical or the extended
sense, it is both twice semidifferentiable at x̄ and twice epi-differentiable at x
for v = ∇f(x̄) and has

d2f(x̄ |v)(w) = d2f(x̄)(w) = f ′′(x̄;w) = 〈w,∇2f(x̄)w〉.
In general, f has a quadratic expansion at x̄ if and only if it is differentiable at
x̄ and also twice semidifferentiable there with d2f(x̄) quadratic.

Detail. This is immediate from the second-order expansion in Theorem 13.2(b)
and the definition of quadratic expansion in 13.1(c).

Beyond the classical setting it’s possible for f to be twice semidifferentiable
at x̄ and at the same time properly twice epi-differentiable at x̄ for every v ∈
∂f(x̄), yet with d2f(x̄ |v) always different from d2f(x̄). On the other hand, it’s
possible for f to be properly twice epi-differentiable at x̄ for every v ∈ ∂f(x̄)
while failing to be twice semidifferentiable at x̄. Both of these possibilities can
be encountered even in working with functions f that are convex and piecewise
linear-quadratic, as defined in 10.20. The analysis of this class of functions is
important for such reasons but also as a stepping stone.
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13.9 Proposition (piecewise linear-quadratic functions). Suppose f is proper,
convex and piecewise linear-quadratic on IRn, and let x̄ ∈ dom f . Then d2f(x̄)
is proper and piecewise linear-quadratic, but not necessarily convex, and the
values of d2f(x̄) are achievable by taking limits merely along half-lines:

d2f(x̄)(w) = lim
τ ↘ 0

Δ2
τf(x̄)(w) = f ′′(x̄;w) ≥ 0.

For every v ∈ ∂f(x̄), d2f(x̄ |v) is proper, convex and piecewise linear-quadratic.
With K(x̄, v) =

{
w
∣∣ df(x̄)(w) = 〈v, w〉}, a polyhedral cone, one has

d2f(x̄ |v)(w) = lim
τ ↘ 0

Δ2
τf(x̄ |v)(w) = d2f(x̄)(w) + δ

K(x̄,v)
(w).

Moreover f is twice epi-differentiable at x̄ for every v ∈ ∂f(x̄), whereas f
is twice semidifferentiable at x̄ if x̄ ∈ int(dom f) but not if x̄ ∈ bdry(dom f).
Nonetheless there always exists V ∈ N (x̄) such that

f(x) = f(x̄) + df(x̄)(x− x̄) + 1
2d

2f(x̄)(x− x̄) for x ∈ V ∩ dom f. 13(9)

Further, there exists ε > 0 such that whenever w ∈ Tdom f (x̄)∩IB and τ ∈ (0, ε)
one has, for every z ∈ IRn, the additional expansion

df(x̄+ τw)(z) = dh1(w)(z) +
1
2τdh2(w)(z) with

{
h1 = df(x̄),
h2 = d2f(x̄).

13(10)

Proof. By the definition of ‘piecewise linear-quadratic’ in 10.20, the convex
set C := dom f is the union of finitely many polyhedral sets Ck on which f
coincides with a linear-quadratic function fk. Fixing x̄, we can take f(x̄) = 0
and suppose that x̄ belongs to every Ck (since this can be arranged by adding
to f the indicator of a polyhedral neighborhood of x̄, which won’t affect the
local properties of f at x̄). Then

fk(x̄+ τw)− fk(x̄) = τ
〈
ak, w

〉
+ 1

2τ
2
〈
w,Akw

〉
when x̄+ τw ∈ Ck

for vectors ak and symmetric matrices Ak, and TC(x̄) =
⋃r

k=1 TCk
(x̄), so

Δτf(x̄)(w) =

{〈
ak, w

〉
+ 1

2τ
〈
w,Akw

〉
when w ∈ τ−1[Ck − x̄],

∞ when w /∈ τ−1[C − x̄],
df(x̄)(w) =

{ 〈ak, w〉 when w ∈ TCk
(x̄),

∞ when w /∈ TC(x̄).
From this it’s clear that f is epi-differentiable at x̄, even semidifferentiable
when x̄ ∈ intC (which corresponds to having TC(x̄) = IRn). Further,

Δ2
τf(x̄)(w) =

{〈
w,Akw

〉
when w ∈ τ−1[Ck − x̄],

∞ when w /∈ τ−1[C − x̄],
d2f(x̄)(w) =

{〈
w,Akw

〉
when w ∈ TCk

(x̄),
∞ when w /∈ TC(x̄),
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with the lower limit that defines d2f(x̄)(w) existing as the limit as τ ↘ 0. (Note
that here we use the rule of interpreting Δ2

τf(x̄)(w) as ∞ when f(x̄+ τw) =
df(x̄)(w) = ∞.) It follows that f is twice semidifferentiable at x̄ when x̄ ∈
intC, but that the second-order expansion in 13(9) is valid locally around x̄
even if x̄ ∈ bdryC.

Consider next any v ∈ ∂f(x̄). We have 〈v, w〉 ≤ df(x̄)(w) for all w, and

Δ2
τf(x̄ |v)(w) =

{〈
w,Akw

〉
+ 2τ−1

〈
ak − v, w

〉
when w ∈ τ−1[Ck − x̄],

∞ when w /∈ τ−1[C − x̄],
where 〈ak − v, w〉 = df(x̄)(w)− 〈v, w〉 ≥ 0 when w ∈ τ−1[Ck − x̄]. Therefore

d2f(x̄ |v)(w) =
{〈

w,Akw
〉

when w ∈ TCk
(x̄) ∩K(x̄, v),

∞ when w /∈ TC(x̄) ∩K(x̄, v).

The lower limit that defines d2f(x̄ |v)(w) can be attained then as the limit
as τ ↘ 0, thus ensuring that d2f(x̄ |v) is the epi-limit of Δ2

τf(x̄ |v) as τ ↘ 0.
Since Δ2

τf(x̄ |v) inherits convexity from f , and convexity is preserved under
epi-convergence (cf. 7.17), d2f(x̄ |v) must be convex.

To justify the formula for df(x̄ + τw), recall first that because dom f is
polyhedral we have for any w ∈ Tdom f (x̄) that x̄ + τw ∈ dom f for τ > 0
sufficiently small. The function df(x̄+ τw) is convex and piecewise linear (cf.
10.21), so for any z ∈ IRn we then have

df(x̄+ τw)(z) = lim
σ ↘ 0

f(x̄+ τw + τσz)− f(x̄+ τw)

τσ
.

The expansion in 13(9) gives f(x̄ + τ(w + σz)) = f(x̄) + τdf(x̄)(w + σz) +
1
2τ

2df(x̄)(w + σz) while f(x̄ + τw) = f(x̄) + τdf(x̄)(w) + 1
2τ

2df(x̄)(w). In
substituting these expressions we get

df(x̄+ τw)(z) = lim
σ ↘ 0

{
Δσh1(w)(z) +

1
2τΔσh2(w)(z)

}
,

hence df(x̄+ τw)(z) = dh1(w)(z)+
1
2τdh2(w)(z) because h1 and h2 are them-

selves piecewise linear-quadratic.

The expansion in 13(10) is interesting alongside of the expansion in 13(9)
because it generalizes ‘cross partial derivatives’. In the simple case of f(x) =
α+〈a, x〉+ 1

2 〈x,Ax〉 with A symmetric, so that d2f(x̄)(w) = 〈w,Aw〉, the term
dh2(w)(z) in this formula would come out as 〈z, Aw〉. In general, the function
h1 = df(x̄) here is the support function of the set ∂f(x̄), which is polyhedral,
and dh1(w) is in turn the support function of ∂h1(w), this being the face of
∂f(x̄) where the linear function v �→ 〈v, w〉 attains its maximum (cf. 8.25).

The failure of d2f(x̄) to exhibit convexity in the elementary context of 13.9,
although the functions d2f(x̄ |v) do inherit it from f , points to a troublesome
shortcoming of d2f(x̄) even in situations where semidifferentiability may be
present. An instance of such behavior is seen for
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f(x1, x2) =
1
2x

2
1+

1
2x

2
2+(1−x1)|x2|+δD(x1, x2), D = [−1, 1]×[−1, 1].

This function on IR2 is piecewise linear-quadratic with one formula on the half-
square [−1, 1] × [0, 1] and another on [−1, 1] × [−1, 0]. It’s convex on each
half-square separately, because the Hessians in the two quadratic formulas are
positive-semidefinite, but it’s actually convex also with respect to the whole of
D. This can be verified by checking the convexity of f along each line segment
in D that crosses the x1-axis. For this we need only inspect segments of form{
(ξ, 0) + τ(ω, 1)

∣∣ − ε ≤ τ ≤ ε
}
for some ξ ∈ (−1, 1) and ω ∈ (−∞,∞), with

ε > 0 small enough that the segment lies in D. Along such a segment we
set ϕ(τ) = f(ξ + τω, τ) and ask whether ϕ is convex on [−ε, ε]. This comes
down to whether ϕ′

−(0) ≤ ϕ′
+
(0). It’s easy to calculate that ϕ′

+
(0) − ϕ′

−(0) =
2(1− ξ) > 0 when ξ ∈ (−1, 1), so f is convex as claimed. We note next that f
is semidifferentiable at x̄ = (0, 0), inasmuch as (0, 0) ∈ intD, yet the function
d2f(0, 0) fails to be convex: we calculate that df(0, 0)(w1, w2) = |w2| and
consequently d2f(0, 0)(w1, w2) = w2

1 +w2
2 − 2w1|w2|. For w1 = 1 in particular,

we get d2f(0, 0)(1, w2) = 1+w2
2−2|w2|. This expression not only lacks convexity

with respect to w2 but has an ‘upward kink’.
An example of a function f that is twice semidifferentiable at x̄ without

being properly twice epi-differentiable at x̄ for any vector v is

f(x) = −|x|+ 1
2 max2

{
0, 〈a, x〉} at x̄ = 0

for a vector a �= 0. Here df(x̄)(w) = −|w| and d2f(x̄)(w) = max2
{
0, 〈a, w〉}.

By the expansion criterion in 13.7(c), f is twice semidifferentiable at x̄. But

∂̂f(x̄) = ∅ by 8.4; it’s impossible to find v such that 〈v, w〉 ≤ −|w| for all w.
We know then from Proposition 13.5 that no vector v is eligible for f being
properly twice epi-differentiable at x̄ for v.

The property of second-order semidifferentiability, although appealing for
its tie to second-order expansions, doesn’t go far in treating nonsmoothness.
Because it posits first-order semidifferentiability, it can’t be present at x̄ unless
f is finite and continuous around x̄. Thus, it can’t be relevant to the analysis of
points x̄ ∈ bdry(dom f), so it can’t lead anywhere in constrained optimization.
But even for functions that are finite and first-order semidifferentiable every-
where, second-order semidifferentiability can be elusive. The class of functions
given by the pointwise max of finitely many C2 functions reveals the nature of
the difficulty.

13.10 Example (lack of second-order semidifferentiability of max functions). Let
f = max

{
f1, . . . , fm

}
for functions fi of class C2 on IRn. At any x̄, f is (once)

semidifferentiable; one has for the index set I(x̄) :=
{
i
∣∣ fi(x̄) = f(x̄)

}
that

df(x̄)(w) = max
i∈I(x̄)

dfi(x̄)(w) = max
i∈I(x̄)

〈∇fi(x̄), w〉.
Whenever f is twice semidifferentiable at x̄, one must further have for the index
set I ′(x̄, w) :=

{
i ∈ I(x̄) ∣∣dfi(x̄)(w) = df(x̄)(w)

}
that
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d2f(x̄)(w) = max
i∈I′(x̄,w)

d2fi(x̄)(w) = max
i∈I′(x̄,w)

〈
w,∇2fi(x̄)w

〉
.

Thus, f can only be twice semidifferentiable at x̄ in circumstances where the
latter expression is continuous in w despite the dependence of I ′(x̄, w) on w.
This fails in simple cases like f(x) = max

{|x+ a|2, 1} at x̄ = 0, with |a| = 1.

Detail. The first-order fact is already known from 7.28 and 8.31. Around x̄
one has f(x) = maxi∈I(x̄) fi(x) and, for any w as long as τ is sufficiently small,

Δ2
τf(x̄)(w) =

[
maxi∈I(x̄) fi(x̄+ τw)

]− f(x̄)− τdf(x̄)(w)
1
2τ

2

= max
i∈I(x̄)

{
Δ2

τfi(x̄)(w)−
2

τ

[
df(x̄)(w)− 〈∇fi(x̄), w〉

]}
.

Here df(x̄)−〈∇fi(x̄), w〉 ≥ 0, and this inequality is strict whenever i /∈ I ′(x̄, w).
If f is twice semidifferentiable at x̄, we must in particular have d2f(x̄)(w) =
limτ ↘ 0Δ

2
τf(x̄)(w). This limit is the maximum of d2fi(x̄)(w) over i ∈ I ′(x̄, w),

as claimed. But by 13.7, d2f(x̄)(w) has to be continuous relative to w when f
is twice semidifferentiable at x̄.

In the case described at the end, where f = max{f1, f2} for f1(x) = |x+a|2
and f2(x) ≡ 1, one has I(x̄) = {1, 2}, df(x̄)(w) = max

{
0, 2〈a, w〉}, and

I ′(x̄, w) =

⎧⎨
⎩
{1} when 〈a, w〉 > 0,
{1, 2} when 〈a, w〉 = 0,
{2} when 〈a, w〉 < 0.

Then d2f(x̄)(w) = 2|w|2 when 〈a, w〉 > 0, but d2f(x̄)(w) = 0 when 〈a, w〉 < 0,
so d2f(x̄) isn’t continuous at any w �= 0 for which 〈a, w〉 = 0.

We’ll see in 13.15, on the other hand, that max functions f of the type in
this example are always twice epi -differentiable at x̄ for every v ∈ ∂f(x̄).

C. Calculus Rules

A key to establishing such facts will be the study of modes of variation around
x̄ that take into account not only the direction w from which x̄ is approached,
but also the way that w itself is approached. To this end we investigate ‘arcs’
ξ : [0, ε]→ IRn for which ξ′

+
(0) and ξ′′

+
(0) both exist.

13.11 Definition (second-order tangent sets and parabolic derivability). For
x̄ ∈ C ⊂ IRn, the second-order tangent set to C at x̄ for a vector w ∈ TC(x̄) is

T 2
C(x̄ |w) := lim sup

τ ↘ 0

C − x̄− τw
1
2τ

2
.

The set C is said to be parabolically derivable at x̄ for w if this outer limit is
nonempty and achieved as a full limit, or in other words, if for each z ∈ T 2

C(x̄ |w)
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there exists, for some ε > 0,

ξ : [0, ε] �→ C with ξ(0) = x̄, ξ′
+
(0) = w, ξ′′

+
(0) = z. 13(11)

In general, the vectors z characterized by 13(11) are the ones belonging
to the ‘lim inf’ of [C − x̄− τw]/ 1

2τ
2 as τ ↘ 0 instead of the ‘lim sup’. Without

parabolic derivability there would be vectors z ∈ T 2
C(x̄ |w) that aren’t obtain-

able from an ‘arc’ ξ in 13(11) but merely from sequences τν ↘ 0 and zν → z
with x̄+ τνw + 1

2τ
ν 2zν ∈ C.

The set T 2
C(x̄ |w) needn’t be a cone, and it might be empty. An example

is C =
{
(x1, x2) ∈ IR2

∣∣x41 − x32 = 0
}
at x̄ for w = (1, 0). Then there aren’t

any bounded sequences of vectors zν such that x̄+ τνw+ 1
2τ

ν 2zν ∈ C for some
choice of τν ↘ 0. In particular, C isn’t parabolically derivable at x̄ for w.

13.12 Proposition (properties of second-order tangents). For any x̄ ∈ C and
w ∈ TC(x̄), the set T 2

C(x̄ |w) is closed. If C is Clarke regular at x̄ (as when C
is closed and convex, in particular), one has

T 2
C(x̄ |w) + u ⊂ T 2

C(x̄ |w) for all u ∈ TC(x̄), 13(12)

so that T 2
C(x̄ |w), if nonempty, must be unbounded (apart from the degenerate

case where TC(x̄) = {0}, i.e., x̄ is an isolated point of C and w = 0).

If C is polyhedral, then C is parabolically derivable at x̄ for every vector
w ∈ TC(x̄), with

T 2
C(x̄ |w) = T

TC (x̄)
(w) = TC(x̄) + IRw. 13(13)

Proof. The closedness of T 2
C(x̄ |w) is evident from its definition as an outer

limit. The assumption of Clarke regularity ensures that TC(x̄) agrees with the

regular tangent cone T̂C(x̄) (see 6.20). Our task for 13(12), therefore, is to

show for any z ∈ T 2
C(x̄ |w) and any u ∈ T̂C(x̄) that z + u ∈ T 2

C(x̄ |w). From

the definition of T̂C(x̄) in 6.25, there exists

ω(x, τ) ∈ [C − x]/τ with ω(x, τ)→ u as τ ↘ 0, x→C x̄.

On the other hand, we have sequences τν ↘ 0 and zν → z such that the points
xν = x̄ + τνw + 1

2τ
ν2zν lie in C. Let uν = ω(xν , τ̄ν) for τ̄ν = 1

2τ
ν 2. Then

xν +
1
2τ

ν2uν ∈ C with uν → u; in other words, x̄ + τw +
1
2τ

ν2(zν + uν) ∈ C
with zν + uν → z + u. Hence z + u ∈ T 2

C(x̄ |w) as claimed.
When C is polyhedral, it has a representation as the set of all x satisfying

a system of finitely many linear inequalities, say 〈ai, x〉 ≤ ci for i ∈ I. Let
I(x̄) give the indices of the constraints that are active at x̄. Then TC(x̄)
consists of the vectors w such that 〈ai, w〉 ≤ 0 for i ∈ I(x̄). Fixing w now, let
I(x̄, w) consist of the indices such that 〈ai, w〉 = 0. Then for K = TC(x̄) the
same reasoning expresses TK(w) as the set of all z such that 〈ai, z〉 ≤ 0 for
i ∈ I(x̄, w). It’s easy to see that any vector z ∈ T 2

C(x̄ |w) must satisfy these

inequalities, but also that, if they are satisfied, one has
〈
ai, x̄+τw+ 1

2τ
2z
〉 ≤ ci
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for all i ∈ I as long as τ > 0 is sufficiently small. Thus, these inequalities on z
describe T 2

C(x̄ |w) too, and C is parabolically derivable at x̄ for w.

We’ll need to analyze the images of arcs ξ : [0, ε] → IRn with ξ(0) = x̄
under mappings F : IRn → IRm. If ξ′+(0) and ξ′′+(0) exist and F is of class C2,
it’s elementary for ω(τ) = F

(
ξ(τ)

)
that ω′

+
(0) and ω′′

+
(0) exist with

ω′
+
(0) = ∇F (x̄)ξ′

+
(0), ω′′

+
(0) = ξ′

+
(0)∇2F (x̄)ξ′

+
(0) +∇F (x̄)ξ′′

+
(0).

Here we utilize the notation that{
w∇2F (x̄)w is the unique vector in IRm such that〈
w,∇2(yF )(x̄)w

〉
=
〈
y, w∇2F (x̄)w

〉
for all w ∈ IRn, y ∈ IRm.

13(14)

In terms of F = (f1, . . . , fm), one has the expression

w∇2F (x̄)w =
(〈w,∇2f1(x̄)w〉, . . . , 〈w,∇2fm(x̄)w〉).

13.13 Proposition (chain rule for second-order tangents). Suppose that C ={
x
∣∣F (x) ∈ D} for a C2 mapping F : IRn → IRm and a closed set D ⊂ IRm.

Let x̄ ∈ C satisfy the constraint qualification that the only vector y ∈ ND(F (x̄))
with ∇F (x̄)∗y = 0 is y = 0. Then

w ∈ TC(x̄)
z ∈ T 2

C(x̄ |w)

}
⇐⇒

{
∇F (x̄)w ∈ TD

(
F (x̄)

)
∇F (x̄)z ∈ T 2

D

(
F (x̄) | ∇F (x̄)w)− w∇2F (x̄)w.

13(15)

Furthermore, C is parabolically derivable at x̄ for w when D is Clarke regular
at F (x̄) and parabolically derivable at F (x̄) for ∇F (x̄)w. That is the case in
particular when D is a polyhedral set, and then

T 2
D

(
F (x̄)

∣∣∇F (x̄)w) = TK
(∇F (x̄)w) for K = TD(x̄). 13(16)

Proof. We have F (x̄) ∈ D by assumption. The constraint qualification ensures
that w ∈ TC(x̄) if and only if ∇F (x̄)w ∈ TD(F (x̄)); cf. 6.31. Fix any such w
and, for arbitrary z′ ∈ IRn, let

Δ2
τF (x̄)(w |z′) :=

F (x̄+ τw + 1
2τ

2z′)− F (x̄)− τ∇F (x̄)w
1
2τ

2
,

noting that Δ2
τF (x̄)(w | z′)→ w∇2F (x̄)w +∇F (x̄)z as τ ↘ 0, z′ → z.

If z ∈ T 2
C(x̄ |w), there exist τν ↘ 0 and zν → z with x̄+τνw+ 1

2τ
ν2zν ∈ C,

i.e., F (x̄ + τνw + 1
2τ

ν2zν) ∈ D. The vectors Δ2
τνF (x̄)(w | zν) belong then to

the set [D − F (x̄)− τν∇F (x̄)w]/ 1
2τ

ν2, and in the limit we obtain

w∇2F (x̄)w +∇F (x̄)z ∈ T 2
D

(
F (x̄) | ∇F (x̄)w). 13(17)

This establishes the ‘⇒’ half of the second-order equivalence in 13(15).

In order to establish the ‘⇐’ half of the second-order equivalence in 13(15),
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we invoke the metric regularity property in Example 9.44: the constraint
qualification provides the existence of κ ∈ IR+ and V ∈ N (x̄) such that
d(x, C) ≤ κd(F (x), D) when x ∈ V . Applying this to x = x̄ + τw + 1

2τ
2z

for any z ∈ IRn, we see that

d
(
x̄+ τw + 1

2τ
2z, C

) ≤ κ d(F (x̄+ τw + 1
2τ

2z
)
, D
)

for τ > 0 sufficiently small. This inequality can be written equivalently as

d
(
z,
C − x̄− τw

1
2τ

2

)
≤ κ d

(
Δ2

τF (x̄)(w |z),
D − F (x̄)− τ∇F (x̄)w

1
2τ

2

)
. 13(18)

Under the assumption that 13(17) holds, there’s a sequence τν ↘ 0 such that
the right side of 13(18) goes to 0. Then the left side of 13(18) must go to 0
too, implying that z ∈ T 2

C(x̄ |w).
The arguments provided so far are relevant not only to sequences. They

show actually that the sets [C−x̄−τw]/ 1
2τ

2 converge to T 2
C(x̄ |w) whenever the

sets [D−F (x̄)−τ∇F (x̄)w]/ 1
2τ

2 converge to T 2
D

(
F (x̄) | ∇F (x̄)w). This property

comes close to telling us that parabolic derivability of D at F (x̄) for ∇F (x̄)w
implies parabolic derivability of C at x̄ for w, but for that conclusion we must
also verify that nonemptiness of T 2

D

(
F (x̄) | ∇F (x̄)w) implies nonemptiness of

T 2
C(x̄ |w), or in other words the existence of at least one vector z for which

13(17) holds.
For this we appeal once more to the constraint qualification, but write it

in one of the equivalent dual forms in 6.39, as is possible under the additional
assumption that D is Clarke regular at F (x̄): TD(F (x̄)) +∇F (x̄)IRn = IRm.

(Here we make use also of the fact that TD(F (x̄)) = T̂D(F (x̄)) when D is
regular at F (x̄); cf. 6.29.) The nonemptiness of T 2

D

(
F (x̄) | ∇F (x̄)w) implies

through relation 13(12) of Proposition 13.12 the existence of a vector a such
that TD(F (x̄)) + a ⊂ T 2

D

(
F (x̄) | ∇F (x̄)w). Then

T 2
D

(
F (x̄) | ∇F (x̄)w)+∇F (x̄)IRn = IRm.

The set on the left must therefore contain the vector w∇2F (x̄)w ∈ IRm, in
particular. Hence 13(17) must hold for some z, as claimed.

The assertions for the special case of a polyhedral set D merely appeal to
the result at the end of Proposition 13.12, applied to D.

13.14 Theorem (chain rule for second subderivatives). Let f = g◦F for a C2
mapping F : IRn → IRm and a proper, lsc function g : IRm → IR. Let x̄ be
a point such that g is finite and regular at F (x̄) and satisfies the constraint
qualification

y ∈ ∂∞
g
(
F (x̄)

)
, ∇(yF )(x̄) = 0 =⇒ y = 0,

which is known to imply in particular that f is regular at x̄ with

df(x̄)(w) = dg(F (x̄))(∇F (x̄)w), ∂f(x̄) =
{∇(yF )(x̄) ∣∣ y ∈ ∂g(F (x̄))}.
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Then for any v ∈ ∂f(x̄) the set

Y (x̄, v) :=
{
y ∈ ∂g(F (x̄)) ∣∣∇(yF )(x̄) = v

}
is compact as well as convex and nonempty, and for any w ∈ IRn one has the
inequality,

d2f(x̄ |v)(w) ≥ sup
y∈Y (x̄,v)

{
d2g(F (x̄) |y)(∇F (x̄)w) + 〈w,∇2(yF )(x̄)w

〉}
.

This holds with equality when g is fully amenable at F (x̄), and in that case f
is properly twice epi-differentiable at x̄ for every v ∈ ∂f(x̄), with

dom d2f(x̄ |v) =
{
w
∣∣ df(x̄)(w) = 〈v, w〉} = N∂f(x̄)(v).

In particular these conclusions hold when g is convex and piecewise linear-
quadratic. Then more specifically

d2f(x̄ |v)(w) = d2f̄(x̄ |v)(w) + max
y∈Y (x̄,v)

〈
w,∇2(yF )(x̄)w

〉
13(19)

for the function f̄(x) := g(F (x̄) +∇F (x̄)[x− x̄]). This function is convex and
piecewise linear-quadratic with f̄(x̄) = f(x̄), df̄(x̄) = df(x̄), ∂f̄(x̄) = ∂f(x̄),
and for v in the latter set one has

d2f̄(x̄ |v)(w) = d2g(F (x̄) |y)(∇F (x̄)w) for any y ∈ Y (x̄, v)

=

{
d2g(F (x̄))(∇F (x̄)w) if dg(F (x̄))(∇F (x̄)w) = 〈v, w〉,
∞ otherwise.

Proof. The first-order facts in the preamble come from Theorem 10.6; recall
that ∇(yF )(x̄) can be written as ∇F (x̄)∗y. The convexity of ∂g

(
F (x̄)

)
and

therefore of Y (x̄, v) is due to the regularity of g at F (x̄); cf. 8.6, 8.11. We have
Y (x̄, v)∞ ⊂ {y ∈ ∂∞g

(
F (x̄)

) ∣∣∇F (x̄)∗y = 0
}
= {0}, so Y (x̄, v) is compact. For

any y ∈ Y (x̄, v) we can write

Δ2
τf(x̄ |v)(w) =

g
(
F (x̄+ τw)

)− g(F (x̄))− τ〈v, w〉
τ2/2

=
g
(
F (x̄) + τΔτF (x̄)(w)

)− g(F (x̄))− τ〈∇F (x̄)∗y, w〉
τ2/2

=
g
(
F (x̄) + τΔτF (x̄)(w)

)− g(F (x̄))− τ〈y,ΔτF (x̄)(w)
〉

τ2/2

+
τ
〈
y,ΔτF (x̄)(w)

〉− τ〈y,∇F (x̄)w〉
τ2/2

= Δ2
τg
(
F (x̄) |y

)(
ΔτF (x̄)(w)

)
+Δ2

τ (yF )(w).

Because ΔτF (x̄)(w
′) → ∇F (x̄)w when τ ↘ 0 and w′ → w, while at the same

time Δ2
τ (yF )(x̄)(w

′)→ d2(yF )(w) = 〈w,∇2(yF )(x̄)w〉, it follows that
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d2f(x̄ |v)(w) = lim inf
τ ↘ 0
w′→w

Δ2
τf(x̄ |v)(w′)

= lim inf
τ ↘ 0
w′→w

{
Δ2

τg
(
F (x̄) |y

)(
ΔτF (x̄)(w

′)
)
+Δ2

τ (yF )(w
′)
}

≥ d2g
(
F (x̄) |y

)(∇F (x̄)w)+ 〈w,∇2(yF )(x̄)w
〉
.

The general inequality in the theorem is thus established.

Next we suppose that g is convex and piecewise linear-quadratic. (The
case of g just fully amenable will come last.) We know then from 13.9 that

d2g
(
F (x̄) |y

)(∇F (x̄)w)
=

{
d2g
(
F (x̄)

)(∇F (x̄)w) if dg
(
F (x̄)

)(∇F (x̄)w) = 〈y,∇F (x̄)w〉,
∞ otherwise.

But 〈y,∇F (x̄)w〉 = 〈v, w〉 when y ∈ Y (x̄, v), whereas dg(F (x̄))(∇F (x̄)w) =
df(x̄)(w). On the other hand, we have

d2g
(
F (x̄) |y

)(∇F (x̄)w) = d2f̄(x̄ |v)(w) for all y ∈ Y (x̄, v)

for f̄(x) := g(F (x̄) +∇F (x̄)[x − x̄]). The function f̄ is convex and piecewise
linear-quadratic by 10.22(b), which also yields the claimed equality between
the subgradients and first-order subderivatives of f̄ and those of f . Then the
characterization of d2f̄(x̄ |v)(w) at the end of the theorem follows from 13.9.
In particular, d2f̄(x̄ |v)(w) is finite when dg(F (x̄))(∇F (x̄)w) = 〈v, w〉.

We deduce from this and the general inequality for d2f(x̄ |v)(w) already
established that the ‘≥’ half of the equation in 13(19) is valid, with the right side
being finite when dg(F (x̄))(∇F (x̄)w) = 〈v, w〉 but ∞ otherwise. Here ‘max’
can replace ‘sup’ because of the compactness of Y (x̄, v), which follows from
the constraint qualification since Y (x̄, v)∞ =

{
y ∈ ∂g(F (x̄))∞ ∣∣∇F (x̄)∗y = 0

}
and ∂g(F (x̄))∞ = ∂∞g(F (x̄)). We see also that equality holds automatically in
13(19) when dg(F (x̄))(∇F (x̄)w) ≥ 〈v, w〉 (both sides being ∞), and that the
domain formula for d2f(x̄ |v) will follow once 13(19) has been verified for other
w as well. (The inclusion ‘⊂’ in the domain formula is known from 13.5.)

Working toward the ‘≤’ half of 13(19) and the claim of second-order epi-
differentiability, we can fix w satisfying dg(F (x̄))(∇F (x̄)w) = 〈v, w〉 and view
the ‘max’ term in 13(19) as the optimal value in the problem

maximize 〈b, y〉 subject to y ∈ Y, A∗y − c = 0, where

b = w∇2F (x̄)w, Y = ∂g(F (x̄)), A = −∇F (x̄), c = −v. 13(20)

(The notation w∇2F (x̄)w corresponds to 13(14).) This problem fits the frame-
work of extended linear-quadratic programming in 11.43, inasmuch as the set
Y = ∂g

(
F (x̄)

)
is polyhedral (by virtue of g being piecewise linear-quadratic;

cf. 10.21). It’s dual within that framework to the problem

minimize 〈c, z〉+ h(b− Az) over all z ∈ IRn
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in which h is the support function σY = dg
(
F (x̄)

)
. This comes out as:

minimize dg
(
F (x̄)

)(
w∇2F (x̄)w +∇F (x̄)z)− 〈v, z〉 in z. 13(21)

Theorem 11.42 says that the optimal value in 13(20) agrees with the one value
in 13(21), which is attained. Hence there exist z̄ ∈ IRn and ȳ ∈ Y (x̄, v) with

dg
(
F (x̄)

)(
w∇2F (x̄)w +∇F (x̄)z̄)− 〈v, z̄〉 =

〈
w,∇2(ȳF )(x̄)w

〉
. 13(22)

Let D = dom g and K = TD
(
F (x̄)

)
, so K = domh in the notation h =

dg(F (x̄)), which we keep for simplicity. Because h(∇F (x̄)w) = df(x̄)(w) =
〈v, w〉, while the value h

(
w∇2F (x̄)w −∇F (x̄)z̄) is finite by 13(22), we have

∇F (x̄)w ∈ K, w∇2F (x̄)w +∇F (x̄)z̄ ∈ K.
Because K is a convex cone, we know that K ⊂ TK(u) for any vector u ∈ K, in
particular u = ∇F (x̄)w; hence z ∈ T 2

C(x̄ |w) by 13.13. Through the parabolic
derivability in 13.13, we obtain the existence of an arc

ξ : [0, ε] �→ IRn with ξ(0) = x̄, ξ′
+
(0) = w, ξ′′

+
(0) = z̄, F (ξ(τ)) ∈ D

(for some ε > 0). In working now with such an arc ξ, it will be useful to write

ξ(τ) = ξ(0) + τwτ for wτ :=
ξ(τ)− ξ(0)

τ
→ w.

To reach our current goal (of validating for g convex and piecewise linear-
quadratic the ‘≤’ part of 13(19) and the claim that f is twice epi-differentiable
at x̄ for v), it will suffice to demonstrate for our chosen w that

lim sup
τ ↘ 0

Δ2
τf(x̄ |v)(wτ )

≤ d2g
(
F (x̄)

)(∇F (x̄)w)+〈w,∇2(ȳF )(x̄)w
〉
.

13(23)

Let ω(τ) = F
(
ξ(τ)

)
, so that ω(0) = F (x̄), ω′

+
(0) = ∇F (x̄)w and ω′′

+
(0) =

w∇2F (x̄)w +∇F (x̄)z̄. Then

ω(τ) = ω(0) + τ
[
ω′

+
(0) + 1

2τζτ
]
for ζτ :=

ω(τ)− ω(0)− τω′
+(0)

1
2τ

2
→ ω′′

+
(0).

In this scheme we can apply to g the expansion in 13(9), getting

g
(
ω(τ)

)
= g

(
ω(0)

)
+ τdg

(
ω(0)

)(
ω′

+(0) +
1
2τζτ

)
+

1
2τ

2d2g
(
ω(0)

)(
ω′

+(0) +
1
2τζτ

)
.

Here it should be remembered that the function dg
(
ω(0)

)
= h is positively

homogeneous of degree 1, while the function d2g
(
ω(0)

)
is positively homoge-

neous of degree 2; both are continuous on the cone K = domh. Furthermore,
h
(
ω′

+(0)
)
= 〈v, w〉 = 〈v, ξ′+(0)〉. We are enabled by this to calculate
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Δ2
τf(x̄ |v)(wτ ) =

g
(
ω(τ)

)− g(ω(0))− τ〈v, wτ 〉
1
2τ

2

= d2g
(
ω(0)

)(
ω′

+(0) +
1
2τζτ

)
+
h
(
ω′

+
(0) + 1

2τζτ
)− h(ω′

+
(0))

1
2τ

+

〈
v, ξ′+(0)

〉− 〈v, τ−1[ξ(τ)− ξ(0)]〉
1
2τ

and in consequence that

lim
τ ↘ 0

Δ2
τf(x̄ |v)(wτ ) = lim

τ ↘ 0
d2g
(
ω(0)

)(
ω′

+(0) +
1
2τζτ

)
+ lim

τ ↘ 0

h
(
ω′

+
(0) + 1

2τζτ
)− h(ω′

+
(0))

1
2τ

−
〈
v, lim

τ ↘ 0

ξ(τ)− ξ(0)− τξ′
+
(0)

1
2τ

2

〉
= d2g

(
ω(0)

)(
ω′

+(0)
)
+ dh

(
ω′

+(0)
)(
ω′′

+(0)
)− 〈v, z̄〉.

Here d2g
(
ω(0)

)(
ω′

+
(0)
)
is the term d2g

(
F (x̄)

)(∇F (x̄)w) sought in 13(23), while
〈v, z̄〉 satisfies 13(22), where w∇2F (x̄)w +∇F (x̄)z̄ = ω′′

+(0). Thus,

lim
τ ↘ 0

Δ2
τf(x̄ |v)(wτ ) = d2g

(
F (x̄)

)(∇F (x̄)w)+〈w,∇2(ȳF )(x̄)w
〉

+ dh
(
ω′

+(0)
)(
ω′′

+(0)
)− h(ω′′

+(0)
)
.

All we need now, to get 13(23), is to check that dh
(
ω′

+
(0)
)(
ω′′

+
(0)
) ≤ h(ω′′

+
(0)
)
.

This rests on the fact that, because h is sublinear, one has dh(u)(u′) ≤ h(u′)
for any u ∈ domh, u′ ∈ IRn. Indeed, Δτh(u)(u

′) = τ−1[h(u+ τu′)−h(u)] with
h(u + τu′) ≤ h(u) + τh(u′), so that Δτh(u)(u

′) ≤ h(u′) for all τ > 0 and, in
the limit as τ ↘ 0, dh(u)(u′) ≤ h(u′).

Finally, we take up the case where g isn’t necessarily convex and piecewise
linear-quadratic, but fully amenable at F (x̄). This means (by Definition 10.23)
that, at least locally around F (x̄), we have g = g0◦G for a C2 mapping G :
IRm → IRm0 and a convex, piecewise linear-quadratic function g0 : IRm0 → IR
satisfying for ū := F (x̄) and D0 := dom g0 the constraint qualification

y0 ∈ ND0

(
G(ū)

)
, ∇(y0G)(ū) = 0 =⇒ y0 = 0. 13(24)

The convexity of g0 makes ND0

(
G(ū)

)
= ∂∞g0

(
G(ū)

)
(cf. 8.12). Our result for

the piecewise linear-quadratic case can thus be invoked for g = g0◦G. We have
y ∈ ∂g(ū) if and only if ∇(y0G)(ū) = y for some y0 ∈ ∂g0

(
G(ū)

)
, and then

d2g(ū |y)(z) = sup
y0∈∂g0(G(ū))
∇(y0G)(ū)=y

{
d2g0(G(ū) |y0)(∇G(ū)z) +

〈
z,∇2(y0G)(ū)z

〉}
.

13(25)
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Let F0 = G◦F , this being a C2 mapping such that f = g0◦F0 and F0(x̄) =
G(ū) as well as ∇F0(x̄) = ∇G(ū)∇F (x̄). Since ∇(y0F0)(x̄) = ∇F0(x̄)

∗y0 =
∇F (x̄)∗∇G(ū)∗y0 = ∇(yF )(x̄) for y = ∇(y0G)(ū), we see from combining
13(24) with the original constraint qualification relative to g and F that

y0 ∈ ∂∞
g0
(
F0(x̄)

)
, ∇(y0F0)(x̄) = 0 =⇒ y0 = 0.

Our result for the piecewise linear-quadratic case can thus be applied to f =
g0◦F0 to get for v ∈ ∂f(x̄) that f is twice epi-differentiable at x̄ for v with

d2f(x̄ |v)(w) =

sup
y0∈∂g0(F0(x̄))
∇(y0F0)(x̄)=v

{
d2g0(F0(x̄) |y0)(∇F0(x̄)w) +

〈
w,∇2(y0F0)(x̄)w

〉}
. 13(26)

In comparison, the targeted formula is

d2f(x̄ |v)(w) = sup
y∈∂g(F (x̄))
∇(yF )(x̄)=v

{
d2g(F (x̄) |y)(∇F (x̄)w) + 〈w,∇2(yF )(x̄)w

〉}
.

We’ll demonstrate that this formula follows from 13(25), 13(26), and the un-
derlying relationships. First, by specializing 13(25) to the case of z = ∇F (x̄)w
we obtain

d2g0(G(ū) |y0)
(∇G(ū)z) = d2g0

(
F0(x̄) |y0

)(∇F0(x̄)w
)
,〈

z,∇2(y0G)(ū)z
〉
=
〈∇F (x̄)w,∇2(y0G)(F (x̄))∇F (x̄)w

〉
.

On the other hand, the maximization in 13(26) can be realized in two stages:

sup
y0∈∂g0(F0(x̄))
∇(y0F0)(x̄)=v

{ }
= sup

y∈∂g(F (x̄))
∇(yF )(x̄)=v

{
sup

y0∈∂g0(G(ū))
∇(y0G)(ū)=y

{ }}
.

It’s apparent then that to get the formula we want we have only to prove that〈
w,∇2(y0F0)(x̄)w

〉
=
〈∇F (x̄)w,∇2(y0G)(F (x̄))∇F (x̄)w

〉
+
〈
w,∇2(yF )(x̄)w

〉
when ∇(y0G)(ū) = y. We derive this equation by setting ω(τ) = F (x̄ + τw)
and computing

〈
w,∇2(y0F0)(x̄)w

〉
=

d2

dτ2
(y0F0)(x̄+ τw)

∣∣∣
τ=0

=
d2

dτ2
(y0G)

(
ω(τ)

)∣∣∣
τ=0

=
〈
ω′(0),∇2(y0G)

(
ω(0)

)
ω′(0)

〉
+
〈∇(y0G)(ω(0)), ω′′(0)

〉
=
〈∇F (x̄)w,∇2(y0G)(ū)∇F (x̄)w

〉
+
〈
y, [w∇2F (x̄)w]

〉
.

The last term is
〈
w,∇2(yF )(x̄)w

〉
by definition, so we’re done.

13.15 Corollary (second-order epi-differentiability from full amenability). When
f : IRn → IR is fully amenable at x̄, there exists V ∈ N (x̄) such that, for all
x ∈ V ∩ dom f and v ∈ ∂f(x), f is properly twice epi-differentiable at x for v.
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Proof. At x̄, the conclusion comes from the fact that fully amenable functions
have, by definition (in 10.23), a representation f = g◦F for convex, piecewise
linear-quadratic g meeting the constraint qualification in the theorem. Alter-
natively, this can be regarded as the case of the theorem in which F = I,
f = g. Full amenability at x̄ entails full amenability at all x ∈ dom f in some
neighborhood of x̄ (cf. 10.25(b)), and this justifies the broader claim.

The class of fully amenable functions is rich, as observed in 10.24. The
case of ‘max’ functions falls into this class in particular and highlights the
differences between second-order epi-differentiability and second-order semidif-
ferentiability through comparison with 13.10.

13.16 Example (second-order epi-differentiability of max functions). Suppose
f = max

{
f1, . . . , fm

}
for functions fi of class C2 on IRn. Then f is prop-

erly twice epi-differentiable at every point x̄ for every subgradient v ∈ ∂f(x̄).
Moreover in terms of the index sets

I(x̄) :=
{
i
∣∣ fi(x̄) = f(x̄)

}
,

I ′(x̄, w) :=
{
i ∈ I(x̄) ∣∣ 〈∇fi(x̄), w〉 = df(x̄)(w)

}
,

one has v ∈ ∂f(x̄) if and only if v ∈ con
{∇fi(x̄) ∣∣ i ∈ I(x̄)}, and then

d2f(x̄ |v)(w) = δ
K(x̄,v)

(w)

+max

{ ∑
i∈I(x̄)

yi
〈
w,∇2fi(x̄)w

〉 ∣∣∣∣ yi ≥ 0,
∑

i∈I(x̄)

yi = 1,
∑

i∈I(x̄)

yi∇fi(x̄) = v

}

with w ∈ K(x̄, v) if and only if v ∈ con
{∇fi(x̄) ∣∣ i ∈ I ′(x̄, w)}.

Detail. Let F (x) =
(
f1(x), . . . , fm(x)

)
. Then f = g◦F for g = vecmax, which

is convex and piecewise linear. The hypothesis of Theorem 13.14 is satisfied by
this representation, and the epi-derivative formula there specializes to the one
here by way of the subdifferential properties of g in 8.26.

Example 13.16 gives occasion to note that in the final formula of Theorem
13.14, for g piecewise linear-quadratic, the term d2g

(
F (x̄)

)(∇F (x̄)w) will drop
out whenever g is just piecewise linear. This holds when g is the ‘vecmax’
function of 1.30, and also in the case described next.

13.17 Exercise (indicators and geometry). Let C =
{
x ∈ X ∣∣F (x) ∈ D} for a

C2 mapping F : IRn → IRm and polyhedral sets X ⊂ IRn and D ⊂ IRn. Let
x̄ ∈ C satisfy the constraint qualification:

y ∈ ND

(
F (x̄)

)
, ∇(yF )(x̄) = 0 =⇒ y = 0.

Consider any vector v ∈ NC(x̄), such vectors being characterized by the exis-
tence of y ∈ ND

(
F (x̄)

)
with v −∇(yF )(x̄) ∈ NX(x̄); denote the set of such y

by Y (x̄, v). Then δC is properly twice epi-differentiable at x̄ for v, and
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d2(δC)(x̄ |v)(w) = δK(x̄,v)(w) + max
y∈Y (x̄,v)

〈
w,∇2(yF )(x̄)w

〉

for K(x̄, v) =
{
w ∈ TX(x̄)

∣∣∇F (x̄)w ∈ TD(F (x̄)), w ⊥ v}, which is the normal
cone to NC(x̄) at v and is polyhedral.

Guide. When X = IRn, one can get this by invoking the special formula at
the end of Theorem 13.14 in the case of g = δD, piecewise linear. For the
general case, one can instead pass to the mapping F0 : x �→ (

x, F (x)
)
and use

the representation δC = δD0
◦F0 with D0 = X ×D.

What’s especially to be noted in 13.17 is that indicator functions δC can
have nontrivial second epi-derivatives even though their first epi-derivatives
are invariably 0, when finite: d(δC)(x̄)(w) = δT (w) for T = TC(x̄). This
phenomenon reflects the possible boundary curvature of C, which may be the
source of second-order effects although not first-order. When C is polyhedral,
the second epi-derivatives do have to be 0 when finite, as seen directly from
13.9 or as the case of 13.17 where F is affine and therefore ∇(yF )(x̄) = 0. Then
one merely has d2(δC)(x̄ |v) = δK(x̄,v).

A concrete illustration of the situation in 13.17 may aid in understanding
how the curvature of C is captured in the formula for the second epi-derivatives
d2(δC)(x̄)(w). Consider the half-disk

C =
{
x = (x1, x2) ∈ IR2

∣∣x21 + x22 ≤ 2, x1 − x2 ≤ 0
}

and its corner point x̄ = (1, 1), as in Figure 13–2. Place this in the context of
13.17 by taking X = IR2, D = IR2

− and F = (f1, f2) for f1(x1, x2) = x21+x
2
2−2

and f2(x1, x2) = x1 − x2. (An alternative would be to define X by the linear
constraint and use F only for the nonlinear constraint, in which case D = IR1

−;
the results for epi-derivatives of δC come out the same either way, of course.)
We have F (x̄) = (0, 0), ND

(
F (x̄)

)
= IR2

+, TD
(
F (x̄)

)
= IR2

−, and in terms of
vectors w = (w1, w2), v = (v1, v2) and y = (y1, y2) also

∇F (x̄)w = (2w1 + 2w2, w1 − w2),

TC(x̄) =
{
w
∣∣ |w2| ≤ −w1

}
,

∇(yF )(x̄) = (2y1 + y2, 2y1 − y2) = y1(2, 2) + y2(1,−1),
NC(x̄) =

{
v
∣∣ |v2| ≤ v1} =

{
y1(2, 2) + y2(1,−1)

∣∣ y1 ≥ 0, y2 ≥ 0
}
,

Y (x̄, v) =
{
y
∣∣ y1 ≥ 0, y2 ≥ 0, 2y1 + y2 = v1, 2y1 − y2 = v2

}
,

∇2(yF )(x̄) = 2y1I,
〈
w,∇2(yF )(x̄)w

〉
= 2y1(w

2
1 + w2

2).

Focusing on the particular normal vector v̄ = (2, 2) ∈ NC(x̄), we find that

Y (x̄, v̄) = {ȳ} for ȳ = (1, 0),

K(x̄, v̄) =
{
w = (w1, w2)

∣∣ − w2 = w1 ≤ 0
}
=
{
λ(−1, 1) ∣∣λ ≥ 0

}
,

d2(δC)(x̄ | v̄)(w) =
{
2λ2 when w = λ(−1, 1) with λ ≥ 0,
∞ otherwise.
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Looking at the normal vector ṽ = (2,−2) instead, we get

Y (x̄, ṽ) = {ỹ} for ỹ = (0, 1),

K(x̄, ṽ) =
{
w = (w1, w2)

∣∣w2 = w1 ≤ 0
}
=
{
λ(−1,−1) ∣∣λ ≥ 0

}
,

d2(δC)(x̄ | ṽ)(w) =
{
0 when w = λ(−1,−1) with λ ≥ 0,
∞ otherwise.

C

w

N (x)C

_

v
_

x2K(x,v)
_ _

x
_

x1

Fig. 13–2. Set curvature expressed through second epi-derivatives.

The difference between the two cases reflects the fact that the first detects
a curved part of the boundary of C, while the second detects a straight part.
A third normal vector worth inspecting is v̂ = (2, 0), which yields

Y (x̄, v̂) = {ŷ} for ŷ = (1, 1), K(x̄, v̂) = {(0, 0)},

d2(δC)(x̄ | v̂)(w) =
{
0 when w = (0, 0),
∞ when w �= (0, 0).

The second epi-derivatives trivialize in this case because v̂ detects no part of
the boundary of C beyond the corner point x̄ itself.

Note that the uniqueness of the y vector in all three cases comes from the
linear independence of the gradients of the constraints that are active at x̄. To
have an example of a set C, defined by finitely many inequality constraints, for
which the maximum in the second epi-derivative formula is taken over more
than just a singleton set of vectors y, we would need to pass to a situation
in which the gradients aren’t linearly dependent, although still such that the
constraint qualification is satisfied.

Along with the chain rule in Theorem 13.14 there are other, simpler results
that can assist in determining second subderivatives and checking whether a
function is twice epi-differentiable, or for that matter twice semidifferentiable
in a given situation.

13.18 Exercise (addition of a twice smooth function). Suppose f : IRn → IR
is properly twice epi-differentiable at x̄ for v. Let f0 : IRn → IR be C2. Then
f + f0 is properly twice epi-differentiable at x̄ for v + v0, where v0 := ∇f0(x̄),
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and one has

d2(f + f0)(x̄ |v + v0)(w) = d2f(x̄ |v)(w) +
〈
w,∇2f0(x̄)w

〉
.

Likewise, if f is twice semidifferentiable at x̄, the same is true for f + f0, and

d2(f + f0)(x̄)(w) = d2f(x̄)(w) +
〈
w,∇2f0(x̄)w

〉
.

Guide. Apply the definitions directly.

13.19 Proposition (second subderivatives of a sum of functions). Suppose that
f =

∑m
i=1 fi for proper, lsc functions fi : IRn → IR. Let x̄ be a point of

dom f =
⋂m

i=1 dom fi at which every fi is regular and

vi ∈ ∂∞
fi(x̄),

∑m

i=1
vi = 0 =⇒ vi = 0 for all i,

so that f is regular at x̄ with df(x̄) =
∑m

i=1 dfi(x̄) and ∂f(x̄) =
∑m

i=1 ∂fi(x̄).
Then for any v ∈ ∂f(x̄) one has

d2f(x̄ |v)(w) ≥ sup
{∑m

i=1
d2fi(x̄ |vi)(w)

∣∣∣ vi ∈ ∂fi(x̄), ∑m

i=1
vi = v

}
.

This holds with equality when every fi is fully amenable at x̄, and then f ,
being itself fully amenable at x̄, is twice epi-differentiable at x̄ for v.

Proof. The first-order facts come from 10.9. We can think of f as g◦F for
g : (IRn)m → IR and F : IRn → (IRn)m defined by

g(x1, . . . , xm) = f1(x1) + · · ·+ fm(xm), F (x) = (x, . . . , x).

The linear mapping F has ∇F (x) ≡ [I, · · · , I]∗. It’s elementary that

Δ2
τg(x1, . . . , xm |v1, . . . , vm)(w1, . . . , wm) =

∑m

i=1
Δ2

τfi(xi |vi)(wi),

and that the same relation then holds in the limit for second subderivatives.
Also, g is fully amenable when every one of the functions fi is fully amenable;
this is covered as a special case of 10.26(a), which also provides then the full
amenability of f . The results then follow from Theorem 13.14 as applied to
this simple framework.

D. Convex Functions and Duality

Second subderivatives of convex functions f have some special properties which
can be viewed as extending the fact that, in the twice smooth case, the matrices
∇2f(x) are positive-semidefinite.

13.20 Proposition (second subderivatives of convex functions). For any proper,
convex function f : IRn → IR, any x̄ ∈ dom f and any v̄ ∈ ∂f(x̄), the following
properties hold.
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(a) d2f(x̄ |v) ≥ 0 everywhere, and when f is twice epi-differentiable at x̄
for v̄, the function d2f(x̄ |v) also has to be convex.

(b) d2f(x̄ |v) = γ2C for the gauge γC of a unique closed set C � 0, and when
f is twice epi-differentiable at x̄ for v̄, the set C also has to be convex.

(c) f is twice semidifferentiable at x̄ for v if and only if f is twice epi-
differentiable at x̄ for v and d2f(x̄ |v)(w) is finite for all w. Then in particular,
f must be differentiable at x̄ with v = ∇f(x̄).
Proof. For τ > 0 we have f(x̄ + τw) − f(x̄) − τ〈v, w〉 ≥ 0 by the basic
subgradient inequality for convex functions (in 8.12). Therefore Δ2

τf(x̄ |v)(w)
is therefore nonnegative; obviously this expression is also convex with respect
to w. It follows from the limit definition in 13.3 that d2f(x̄ |v) ≥ 0 everywhere.
When f is twice epi-differentiable at x̄ for v, so that Δ2

τf(x̄ |v)→e d2f(x̄ |v), we
deduce the convexity of d2f(x̄ |v) from the principle that epi-limits of convex
functions are convex (see 7.17). This establishes (a).

In (b) the gauge relation clearly holds for C =
{
w
∣∣ d2f(x̄ |v)(w) ≤ 1

}
,

since d2f(x̄ |v) is not just nonnegative but lsc and positively homogeneous of
degree 2 (by 13.5), hence vanishes at the origin. (For background on gauge
functions, see 3.50.)

The equivalence in (c) is based on the observation that convex functions
converge continuously to a finite function if and only if they epi-converge to that
function; this follows from 7.14 and 7.17 in conjunction with the continuity of
finite convex functions (in 2.36). We know from 13.5 that finiteness of d2f(x̄ |v)
requires having df(x̄) = 〈v, ·〉. But that corresponds for a convex function f
to differentiability at x̄ with ∇f(x̄) = v; cf. 9.18, 9.14.

In the C2 case with x = ∇f(x̄) and d2f(x̄ |v)(w) =
〈
w,∇2f(x̄)w

〉
, the set

C in 13.20(b) is the (possibly degenerate) ‘ellipsoid’
{
w
∣∣ 〈w,∇2f(x̄)w〉 ≤ 1

}
.

13.21 Theorem (second-order epi-differentiability in duality). Let f : IRn → IR
be lsc, proper and convex. Let x̄ ∈ dom f and v̄ ∈ ∂f(x̄), so that the conjugate
convex function f∗ has v̄ ∈ dom f∗ and x̄ ∈ ∂f∗(v̄). Then f is properly twice
epi-differentiable at x̄ for v̄ if and only if f∗ is properly twice epi-differentiable
at v̄ for x̄. In that case there is the conjugacy relation

1
2d

2f(x̄ | v̄) ←→∗
1
2d

2f∗(v̄ | x̄).

Proof. The equivalence of v̄ ∈ ∂f(x̄) with x̄ ∈ ∂f∗(v̄) is known from 11.3 with
the fact that these relations entail f(x̄) + f∗(v̄) = 〈v̄, x̄〉. Let ϕ0 = 1

2d
2f(x̄ | v̄)

and ψ0 = 1
2d

2f∗(v̄ | x̄), and for τ > 0 define

ϕτ (w) =
1
2Δ

2
τf(x̄ | v̄)(w) = τ−2

[
f(x̄+ τw)− f(x̄)− τ〈v̄, w〉],

ψτ (z) =
1
2Δ

2
τf

∗(v̄ | x̄)(z) = τ−2
[
f∗(v̄ + τz)− f∗(v̄)− τ〈x̄, z〉].

Then ϕτ and ψτ are lsc, proper and convex, with ϕ0 = e-lim infτ ↘ 0 ϕτ and
ψ0 = e-lim infτ ↘ 0 ψτ . Applying the Legendre-Fenchel transform to ϕτ , we get
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ϕ∗
τ (z) = supw

{〈z, w〉 − ϕτ (w)
}

= τ−2 supw
{〈τz, τw〉 − f(x̄+ τw) + f(x̄) + τ〈v̄, w〉}

= τ−2
[
supw

{〈τz, τw〉+ 〈v̄, x̄+ τw〉 − f(x̄+ τw)
}− f∗(v̄)

]
= τ−2

[
supu

{〈τz, u− x̄〉+ 〈v̄, u〉 − f(u)}− f∗(v̄)
]

= τ−2
[
supu

{〈v̄ + τz, u〉 − f(u)}− τ〈z, x̄〉 − f∗(v̄)
]

= τ−2
[
f∗(v̄ + τz) − τ〈z, x̄〉 − f∗(v̄)

]
= ψτ (z).

By the same argument, using f∗∗ = f , we get ψ∗
τ = ϕτ . Having f properly

twice epi-differentiable at x̄ for v̄ corresponds to having ϕτ→e ϕ0 (proper) as
τ ↘ 0, whereas having f∗ properly twice epi-differentiable at v̄ for x̄ corresponds
to having ψτ →e ψ0 (proper) as τ ↘ 0. These conditions are equivalent because
epi-convergence is preserved under the Legendre-Fenchel transform (cf. 11.34),
which pairs proper convex functions with proper convex functions.

In the case of Theorem 13.21 corresponding to the classical Legendre trans-
form as described in 11.9, where both f and f∗ are C2 and one has v̄ = ∇f(x̄)
if and only if x̄ = ∇f∗(v̄), the conjugacy between 1

2d
2f(x̄ | v̄) and 1

2d
2f∗(v̄ | x̄)

says that
∇2f∗(v̄) = ∇2f(x̄)−1.

This is evident from the basic facts in 11.10 about conjugacy of linear-quadratic
functions, but it’s also clear immediately from the interpretation of ∇2f(x̄) and
∇2f∗(v̄) as Jacobian matrices associated with the smooth mappings ∇f and
∇f∗ in light of having ∇f∗ = (∇f)−1.

Another interesting feature of the duality in Theorem 13.21 is that if we
represent d2f(x̄ | v̄) = γ2

C
in the manner of 13.20(b) using the gauge γC of

a closed, convex set C � 0, we get d2f∗(v̄ | x̄) = γ2
C◦ with C◦ the polar of

C. This follows from 11.21. In the Legendre case just described, the duality
between second subderivative functions translates to the polarity between two
ellipsoidal sets centered at the origin and expresses a reciprocity of eigenvalues
in the associated quadratic forms.

Theorem 13.21 also provides examples of twice epi-differentiable functions
which, in contrast to virtually all the examples so far, don’t necessarily turn
out to be fully amenable functions.

13.22 Corollary (conjugates of fully amenable functions). Suppose f has the
representation f(x) = supv

{〈v, x〉 − ϕ(v)} for a function ϕ : IRn → IR that

is lsc, proper and convex, in which case ∂f(x) = argmaxv
{〈v, x〉 − ϕ(v)}. If

v̄ ∈ ∂f(x̄) and ϕ is fully amenable at v̄, then f is twice epi-differentiable at x̄
for v̄ with

d2f(x̄ | v̄)(w) = supz
{
2〈w, z〉 − d2ϕ(v | x̄)(z)

}
.

Proof. This combines 13.21 with 13.15, since f = ϕ∗ and ϕ = f∗ in the
situation described.

13.23 Example (piecewise linear-quadratic penalties). For any nonempty poly-
hedral set Y ⊂ IRm and symmetric, positive-semidefinite matrix B ∈ IRm×m
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(possibly B = 0), the convex, piecewise linear-quadratic function

θY,B(u) := sup
y∈Y

{
〈y, u〉 − 1

2〈y, By〉
}

on IRm is properly twice epi-differentiable at every point ū ∈ dom θY,B for every
subgradient ȳ ∈ ∂θY,B(ū). Indeed, one has

d2θY,B(ū | ȳ)(z) = sup
w∈Y ′(ū,ȳ)

{
2〈w, z〉 − 〈w,Bw〉

}

for the polyhedral cone Y ′(ū, ȳ) =
{
w ∈ TY (ȳ)

∣∣w ⊥ ū−Bȳ}, and consequently

d2θY,B(ū | ȳ) = 2θY ′(ū,ȳ),B

dom d2θY,B(ū | ȳ) =
{
w ∈ TY (ȳ)

∣∣Bw = 0, w ⊥ ū
}∗
.

When B = 0, the function d2θY,B(ū | ȳ) is the indicator of the cone Y ′(ū, ȳ)∗.

Detail. The function θY,B, already explored in 11.18, is ϕ∗ for the convex,

piecewise linear-quadratic function ϕ := δY + jB , where jB(y) =
1
2 〈y, By〉.

From 13.9 we have d2ϕ(ȳ | ū)(w) = 〈w,Bw〉+ δK(w) for the convex cone K ={
w
∣∣ dϕ(ȳ)(w) = 〈ū, w〉}. But dϕ(ȳ)(w) = δTY (ȳ)(w) + 〈y, Bw〉, so that K =

Y ′(ū, ȳ). Twice epi-differentiability and the expression for d2θY,B(ū | ȳ) follow
now from Corollary 13.22. The formula for dom d2θY,B(ū | ȳ) is the one for
dom θY ′(ū,ȳ),B furnished by 11.18, namely the cone [Y ′(ū, ȳ)∞ ∩ kerB]∗. We
have Y ′(ū, ȳ)∞ = Y ′(ū, ū) because Y ′ is a cone. But w ∈ Y ′(ū, ȳ) ∩ kerB if
and only if w ∈ TY (ȳ), Bw = 0 and 〈w, ū − Bȳ〉 = 0. The latter is the same
as 〈w, ū〉 = 0 when Bw = 0, since 〈w,Bȳ〉 = 〈Bw, ȳ〉.

Functions of the kind in Example 13.23 are particularly useful in the role
of penalty expressions in composite formats for problems of optimization (cf.
11.18, 11.43, 11.46).

E. Second-Order Optimality

One of the prime reasons for developing a second-order theory of subdiffer-
entiation, of course, is the derivation of second-order conditions for optimality
that go beyond the various versions of Fermat’s rule and their applications.
For this, the investments we have made can now pay off.

13.24 Theorem (second-order conditions for optimality). For a proper function
f : IRn → IR, consider the problem of minimizing f(x) over all x ∈ IRn.

(a) If x̄ is locally optimal, then 0 ∈ ∂f(x̄) and d2f(x̄ |0)(w) ≥ 0 for all w.

(b) If 0 ∈ ∂f(x̄) and d2f(x̄ |0)(w) > 0 for w �= 0, then x̄ is locally optimal.

(c) Having 0 ∈ ∂f(x̄) and d2f(x̄ |0)(w) > 0 for all w �= 0 is equivalent to
having the existence ε > 0 and δ > 0 such that
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f(x) ≥ f(x̄) + ε|x− x̄|2 when |x− x̄| ≤ δ.
Proof. If x̄ is locally optimal there exists δ > 0 such that f(x) ≥ f(x̄) when

|x − x̄| ≤ δ, and then not only 0 ∈ ∂̂f(x̄) ⊂ ∂f(x̄) but also Δ2
τf(x̄ |0)(w) ≥ 0

when |τw| ≤ δ, i.e., Δ2
τf(x̄ |0) ≥ 0 on δτ−1IB. From the fact that d2f(x̄ |0) =

e-lim infτ ↘ 0Δ
2
τf(x̄ |0) we conclude that d2f(x̄ |0) ≥ 0. Thus, (a) is correct.

To prove (b), it’s obviously enough to verify (c).

In extension of the argument just given, the ε and δ condition in (c) yields
Δ2

τf(x̄ |0)(w) ≥ 2ε|w|2 when w ∈ δτ−1IB, hence d2f(x̄ |0)(w) ≥ 2ε|w|2 for all
w. Conversely, if Δ2

τf(x̄ |0)(w) > 0 for all w > 0 choose ε by

3ε = min
w∈W

d2f(x̄ |0)(w) for W :=
{
w
∣∣ |w| = 1

}
,

where the minimum exists and is positive because d2f(x̄ |0) is lsc and W is
compact (cf. 13.5, 1.9). Because d2f(x̄ |0) = e-lim infτ ↘ 0Δ

2
τf(x̄ |0), there

exists for each w ∈ W a δw > 0 and an open neighborhood Vw ∈ N (w) such
that Δ2

τf(x̄ |0)(w′) ≥ 2ε when w′ ∈ Nw and τ ∈ (0, δw). The open sets Vw
cover the compact set W , so a finite family of them cover it as well, say for
w1, . . . , wr with corresponding δ1, . . . , δr. Let δ = min{δ1, . . . , δr}. Then δ > 0
and we have Δ2

τf(x̄ |0)(w′) ≥ 2ε for all w′ ∈ W when τ ∈ (0, δ). Literally this
means that f(x̄+ τw′) − f(x̄) − τ〈0, w′〉 ≥ ετ2 when 0 < τ < δ and |w′| = 1,
and we deduce immediately that f(x) ≥ f(x̄) + ε|x− x̄|2 when |x− x̄| ≤ δ.

In bringing the conditions in Theorem 13.24 down to more detail, one can
add particular structure to f and appeal to the formulas for second-order sub-
derivatives that have been obtained. Observe that the basic inequalities for
d2f(x̄ |0) that are available from the chain rule of 13.14 and the addition rule
in 13.19, for instance, can operate effectively in getting second-order sufficient
conditions for optimality, but they don’t say anything about necessary condi-
tions. For that one needs to focus on cases where the subderivative inequalities
are manifested as equations. The results about twice epi-differentiability are
then the main tool, and fully amenable functions come to the fore.

13.25 Example (second-order optimality with smooth constraints). Consider
the problem of minimizing f0 over C =

{
x ∈ X ∣∣F (x) ∈ D} for f0 : IRn → IR

and F : IRn → IRm of class C2 and sets X ⊂ IRn and D ⊂ IRm that are
polyhedral. Let x̄ ∈ C satisfy the constraint qualification that

y ∈ ND

(
F (x̄)

)
, −∇F (x̄)∗y ∈ NX(x̄) =⇒ y = 0.

Define

Y (x̄) =
{
y ∈ ND

(
F (x̄)

) ∣∣∣ − [∇f0(x̄) +∇F (x̄)∗y] ∈ NX(x̄)
}
,

K(x̄) =
{
w ∈ TX(x̄)

∣∣∣∇F (x̄)w ∈ TD(F (x̄)), w ⊥ ∇f0(x̄)}.
Then Y (x̄) is a polyhedral, compact set, K(x̄) is a polyhedral cone, and the
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possible optimality of x̄ can be identified as follows.

(a) (necessity) If x̄ is locally optimal, then Y (x̄) �= ∅ and
max

y∈Y (x̄)

〈
w,∇2

xx[f0 + yF ](x̄)w
〉 ≥ 0 for all w ∈ K(x̄).

(b) (sufficiency) Conversely, if these conditions hold and the inequality is
strict when w �= 0, then x̄ is locally optimal; in fact there exist ε > 0 and δ > 0
such that f0(x) ≥ f0(x̄) + ε|x− x̄|2 for all x ∈ C ∩ IB(x̄, δ).

Detail. We apply Theorem 13.24 to f = f0 + δC , determining second sub-
derivatives from 13.17 with the help of 13.18. The constraint qualification and
the assumption thatX andD are polyhedral make f be twice epi-differentiable.
Note that the condition Y (x̄) �= ∅ refers to the existence of a vector y meeting
the prescriptions of the Lagrange multiplier rule in 6.15.

13.26 Exercise (second-order optimality with penalties). Consider the problem

minimize f0(x) + θY,B
(
f1(x), . . . , fm(x)

)
over all x ∈ X

for C2 functions fi on IR
n, a polyhedral set X ⊂ IRn, and a function θY,B of the

kind described in 11.18 and 13.23. Viewing this as the problem of minimizing
f = δX + f0 + θY,B◦F over all of IRn, where F = (f1, . . . , fm), let x̄ ∈ dom f
be a point at which X is fully amenable and

y ∈ Y ∞, By = 0, −∇F (x̄)∗y ∈ NX(x̄) =⇒ y = 0.

Setting L(x, y) := f0(x) + 〈y, F (x)〉 − 1
2 〈y, By〉 on X × Y , define

Y (x̄) :=
{
ȳ
∣∣∣ −∇xL(x̄, ȳ) ∈ NX(x̄), ∇yL(x̄, ȳ) ∈ NY (ȳ)

}
.

Then Y (x̄) is a polyhedral, compact set, and for ŷ ∈ Y (x̄) the polyhedral cones

X ′(x̄) := TX(x̄) ∩ ∇xL(x̄, ŷ)
⊥, Y ′(x̄) := TY (ŷ) ∩∇yL(x̄, ŷ)

⊥,

are independent of the particular choice of ŷ. The possible optimality of x̄ can
be identified then as follows.

(a) (necessity) If x̄ is locally optimal, then Y (x̄) �= ∅ and
max

y∈Y (x̄)

〈
w,∇2

xxL(x̄, y)w
〉
+ 2θ

Y ′(x̄),B

(∇F (x̄)w) ≥ 0 for all w ∈ X ′(x̄).

(b) (sufficiency) Conversely, if these conditions hold and the inequality is
strict when w �= 0, then x̄ is locally optimal; in fact there exist ε > 0 and δ > 0
such that f(x) ≥ f(x̄) + ε|x− x̄|2 for all x ∈ IB(x̄, δ).

Guide. Apply 13.24 in the light of the calculus in 11.18, 13.14, 13.19, and the
amenability facts in 10.24–10.26. See that δX′(x̄)(w) + 2θY ′(x̄),B

(∇F (x̄)w) is
unaffected by the particular choice of ŷ in the definition of X ′(x̄) and Y ′(x̄).
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An interesting thing about the second-order necessary condition in 13.26(a)
is that it corresponds to w = 0 being an optimal solution to the subproblem

minimize g0(w) + θ
Y ′(x̄),B

(
g1(w), . . . , gm(w)

)
over all w ∈ X ′(x̄),

where gi(w) = 〈∇fi(x̄), w〉 and g0(w) = 1
2 maxy∈Y (x̄)〈w,∇2

xxL(x̄, y)w〉. The
second-order sufficient condition in 13.26(b) corresponds to w = 0 being the
only optimal solution. This subproblem has the same pattern as the original
problem, except that g0 need not be smooth. When the multiplier set Y (x̄) is
a singleton, however, g0 is quadratic and the subproblem falls in the category
of extended linear-quadratic programming that was described in 11.43.

A supplementary discussion of second-order optimality conditions in terms
of ‘parabolic subderivatives’ (introduced in 13.59) will center on 13.66.

F. Prox-Regularity

It’s time now for a closer look at the classical idea of obtaining second deriva-
tives by differentiating first derivatives. How might this fit into the emerging
picture of generalized second-order differentiation, focused on limits of second-
order difference quotient functions? Theorem 13.2 points the way: the an-
swer lies in the study of generalized first-order differentiation of subgradient
mappings. The issue of when such mappings are proto-differentiable, say, is
important not only in this respect but also in its own right.

A clue to the kind of connection between first and second derivatives that
one might hope to develop can be found in the case of functions f that are twice
differentiable in the extended sense; cf. Example 13.8. The function h = d2f(x̄),
the same as d2f(x̄ | v̄) for v̄ = ∇f(x̄), is quadratic in this situation with matrix
∇2f(x̄). At the same time, the mapping ∇f is differentiable at x̄ relative to its
domain of definition, with associated derivative mapping w �→ ∇2f(x̄)w. The
double role of the Hessian ∇2f(x̄) can be expressed by

∇[d2f(x̄)](w) = 2D[∇f ](x̄)(w). 13(27)

This formula can be taken as a potential model for something much more
general, especially in the light of Theorem 13.2, a result suggesting that ∇f on
the right side might be replaceable by ∂f .

When f isn’t twice differentiable at x̄ or for that matter even once differen-
tiable at x̄, we do still have the functions d2f(x̄ |v) corresponding to subgradi-
ents v ∈ ∂f(x̄) and can contemplate substituting for the gradient ∇[d2f(x̄)](w)
on the left side of 13(27) the subgradient set ∂[d2f(x̄ |v)](w). Can the relation

∂[d2f(x̄ |v)] = 2D[∂f ](x̄ |v),

with second-order epi-differentiability on the left and proto-differentiability on
the right, possibly be realized as an appropriate generalization of 13(27) in
major cases? The answer turns out to be yes.



610 13. Second-Order Theory

The confirmation of this fact, ultimately in Theorem 13.40, will have the
by-product of unveiling circumstances in which a subgradient mapping is proto-
differentiable. This will illuminate what happens when optimality conditions
are perturbed, since such conditions typically involve subgradient mappings.
In the process, we’ll make strong use of another kind of regularity property.

13.27 Definition (prox-regularity of functions). A function f : IRn → IR is prox-
regular at x̄ for v̄ if f is finite and locally lsc at x̄ with v̄ ∈ ∂f(x̄), and there
exist ε > 0 and ρ ≥ 0 such that

f(x′) ≥ f(x) +
〈
v, x′ − x〉− ρ

2
|x′ − x|2 for all x′ ∈ IB(x̄, ε)

when v ∈ ∂f(x), |v − v̄| < ε, |x− x̄| < ε, f(x) < f(x̄) + ε.

When this holds for all v̄ ∈ ∂f(x̄), f is said to be prox-regular at x̄.

Prox-regularity implies for all (x, v) ∈ gph ∂f near enough to (x̄, v̄), and
with f(x) near enough to f(x̄), that v is a proximal subgradient of f at x̄; cf.
Definition 8.45. It goes beyond this, however, in requiring the constant ρ in
that definition, and the neighborhood in it as well, to exhibit a local uniformity.
Although proximal subgradients are regular subgradients in particular, prox-
regularity doesn’t necessarily imply subdifferential regularity at x̄, since it may
only involve some of the vectors v ∈ ∂f(x̄) near to v̄, not every v ∈ ∂f(x̄).

The restriction to f(x) < f(x̄) + ε in Definition 13.27 makes sure that
the subgradients under consideration correspond to normals to epi f at points(
x, f(x)

)
sufficiently near to

(
x̄, f(x̄)

)
and thus truly reflect only the local

geometry of epi f at
(
x̄, f(x̄)

)
. This is superfluous when nearness of (x, v)

to (x̄, v̄) in gph ∂f automatically entails nearness of f(x) to f(x̄), a property
common to many types of functions, which we formalize as follows.

13.28 Definition (subdifferential continuity). A function f : IRn → IR is called
subdifferentially continuous at x̄ for v̄ if v̄ ∈ ∂f(x̄) and, whenever (xν , vν) →
(x̄, v̄) with vν ∈ ∂f(xν), one has f(xν)→ f(x̄). If this holds for all v̄ ∈ ∂f(x̄),
f is said to be subdifferentially continuous at x̄.

13.29 Exercise (characterization of subdifferential continuity). For a function
f : IRn → IR to be subdifferentially continuous at x̄, it is necessary and suf-
ficient that f be continuous at x̄ relative to each set containing x̄ that has
the form (∂f)−1(B) with B compact. Thus in particular, f is subdifferentially
continuous at any point x̄ where f is continuous relative to dom f .

An example of how a function f can fail to be subdifferentially continuous
at a point x̄ ∈ dom f is displayed in Figure 13–3. Define f : IR→ IR by f(x) = 1
for x < 1 but f(x) = x− 2 for x ≥ 1. Obviously f is lsc everywhere. It’s easy
to see too that f is prox-regular everywhere. The graph of ∂f has a peculiarity
at (x̄, v̄) = (1, 0), though. The horizontal part of it shown as branching to the
left from (x̄, v̄) comes from the constancy of f on (−∞, 1]. It has no genesis
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Fig. 13–3. A prox-regular function that lacks subdifferential continuity.

in the behavior of epi f close to
(
x̄, f(x̄)

)
= (1,−1). As (xν , vν) → (x̄, v̄) in

gph ∂f along this branch we have f(xν) ≡ 1, so f(xν) �→ f(x̄) = −1.
For terminology to help further with such distinctions, let’s start from

the idea that a localization of ∂f around (x̄, v̄) is a mapping whose graph
is obtained by intersecting gph ∂f with some neighborhood of (x̄, v̄). Let’s
augment this by saying that an f -attentive localization of ∂f around (x̄, v̄)
is a localization in which the pairs (x, v) are additionally restricted to have
f(x) within some neighborhood of f(x̄). Of course, as long as f is locally
lsc at x̄, only upper bounds on f(x) − f(x̄) need be of concern, since lower
bounds are induced automatically. Anyway, ordinary localization intersects
gph ∂f with a neighborhood of (x̄, v̄) in the ordinary topology on IRn × IRn,
while f -attentive localization takes the neighborhood instead in the sense of
the product topology coming from the f -attentive topology on IRn in the x
component but the ordinary topology on IRn in the v component.

In these terms, prox-regularity refers to a uniformity property possessed
by some f -attentive localization of ∂f around (x̄, v̄). Subdifferential continuity
describes the situation where f -attentive localization of ∂f amounts to the
same thing as ordinary localization. In Figure 13–3, ordinary localization of
∂f around (x̄, v̄) would include part of the side branch, whereas f -attentive
localization, when small enough, would eliminate the side branch.

13.30 Example (prox-regularity from convexity). A proper, lsc, convex function
f is prox-regular and subdifferentially continuous at every point of dom f .

Detail. In this case the constant ρ can always be taken to be 0. In
the circumstances of Definition 13.28 one has f(x̄) ≥ f(xν) + 〈vν , x̄ − xν〉
with (xν , vν) → (x̄, v̄), and this implies that lim supν f(x

ν) ≤ f(x̄). Since
lim infν f(x

ν) ≥ f(x̄) because f is lsc, we have f(xν)→ f(x̄).

13.31 Exercise (prox-regularity of sets). For a set C ⊂ IRn and any point x̄ ∈ C,
the indicator function δC is subdifferentially continuous at x̄, and the following
properties with respect to a vector v̄ are equivalent:

(a) δC is prox-regular at x̄ for v̄;

(b) C is locally closed at x̄ with v̄ ∈ NC(x̄), and there exist ε > 0 and ρ ≥ 0
such that 〈v, x′ − x〉 ≤ 1

2ρ|x′ − x|2 for all x′ ∈ C ∩ IB(x̄, ε) when v ∈ NC(x),
|v − v̄| < ε and |x− x̄| < ε.
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A set C is called prox-regular at x̄ for v̄ when the equivalent properties in
13.31 hold. It is called prox-regular at x̄ when this is true for all v̄ ∈ NC(x̄).
Closed, convex sets C are everywhere prox-regular, in particular; this is ap-
parent from combining 13.30 with 13.31. But prox-regularity prevails also for
the much larger class of strongly amenable sets (cf. 10.23, 10.24) by virtue of
the next proposition, which furnishes besides a prime source of examples of
prox-regular functions.

Fig. 13–4. A nonconvex set that is everywhere prox-regular.

13.32 Proposition (prox-regularity from amenability). Let f : IRn → IR be
strongly amenable at x̄. Then f is prox-regular and subdifferentially continuous
at x̄ and indeed at all points x in a neighborhood of x̄ relative to dom f .

Proof. Consider a representation f = g◦F on a neighborhood V of x̄ as
provided by the definition of strong amenability in 10.23. This representa-
tion makes f be lsc relative to V , implying that f is locally lsc at x̄ as
required by Definition 13.27. Let v̄ ∈ ∂f(x̄). For all x near x̄ we have
∂f(x) = ∇F (x)∗∂g(F (x)) (cf. 10.25). Thus, for x ∈ V the vectors v ∈ ∂f(x)
are the ones of the form v = ∇F (x)∗y for some y ∈ ∂g(F (x)). Moreover, there
exists ε > 0 such that the set of all y having this property with respect to
x and v satisfying |x − x̄| < ε and |v − v̄| < ε is bounded in norm, say by η
(for otherwise a contradiction to the constraint qualification in the definition of
amenability can be obtained); we suppose ε is small enough that |x− x̄| < ε im-
plies x ∈ V . Because F is of class C2 in the stipulations for strong amenability,
there exists ρ > 0 such that〈

y, F (x′)− F (x)〉 ≥ 〈∇F (x)∗y, x′ − x〉− ρ

2
|x′ − x|2

when |y| ≤ η, |x− x̄| < ε, |x′ − x̄| ≤ ε.
Then, as long as |x − x̄| < ε and v ∈ ∂f(x) with |v − v̄| < ε, we have for any
y ∈ ∂g(F (x)) with ∇F (x)∗y = v and any point x′ with |x′ − x̄| ≤ ε that
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f(x′)−f(x) = g
(
F (x′)

)− g(F (x)) ≥ 〈y, F (x′)− F (x)〉
≥ 〈∇F (x)∗y, x′ − x〉− ρ

2
|x′ − x|2 =

〈
v, x′ − x〉− ρ

2
|x′ − x|2.

This not only tells us that f is prox-regular at x̄ but also yields the estimate
f(x)− f(x′) ≤ η|F (x′) − F (x)|. In the same way, if f has a subgradient v′ at
x′ with |v′ − v̄| < ε, we have f(x′)− f(x) ≤ η|F (x)− F (x′)|. Hence, whenever
(x, v) and (x′, v′) are sufficiently near to (x̄, v̄) with v ∈ ∂f(x) and v′ ∈ ∂f(x′),
we have |f(x′)−f(x)| ≤ η|F (x′)−F (x)|. In particular, through the continuity
of F we are able to conclude that f is subdifferentially continuous at x̄ for v̄.

The extension of the conclusions from x̄ to all nearby x in dom f is vali-
dated by the fact that strong amenability persists at such points.

13.33 Proposition (prox-regularity versus subsmoothness). If f is lower-C2 on
an open set O ⊂ IRn, then f is prox-regular and subdifferentially continuous
at every point of O as well as strictly continuous on O. Conversely, if f is
prox-regular and strictly continuous on O, then f is lower-C2 on O.

In particular, if f is prox-regular at a point x̄ where it is strictly differen-
tiable, it must be lower-C2 around x̄.

Proof. Lower-C2 functions are strongly amenable by 10.36, so the initial asser-
tion is a consequence of 13.32. Of course, lower-C2 functions, like all subsmooth
functions, are strictly continuous in particular (see 10.31).

Suppose now that f is strictly continuous and prox-regular on O, and let
x̄ ∈ O. The set ∂f(x̄) is compact by 9.13. For each v̄ ∈ ∂f(x̄) we can apply the
definition of prox-regularity and get ρ and ε as described, but the compactness
allows us to go further and, by selecting from the covering of ∂f(x̄) by the
various balls int IB(v̄, δ) a finite covering, we can obtain ρ̄ and ε̄ such that

f(x′) ≥ f(x) +
〈
v, x′ − x〉− 1

2 ρ̄|x′ − x|2 for x, x′ ∈ IB(x̄, ε̄), v ∈ ∂f(x).

In terms of g(x) := f(x)+ 1
2 ρ̄|x|2 this inequality can equally well be written as

g(x′) ≥ g(x) + 〈z, x′ − x〉 for all x, x′ ∈ IB(x̄, ε̄) and z ∈ ∂g(x). It implies that
g is convex on IB(x̄, ε̄) (because g coincides with the pointwise supremum of
the collection of affine functions appearing on the right sides). Therefore, on
the open convex set int IB(x̄, ε̄), f has the form g − 1

2 ρ̄| · |2 for a finite convex
function g. Then f is lower-C2 on this set by 10.33.

If f is strictly differentiable at x̄, it’s strictly continuous there by 9.18 with
∂f(x̄) = {∇f(x̄)}. Prox-regularity at x̄ for v̄ = ∇f(x̄) entails a neighborhood
U of (x̄, v̄) such that, for all (x, v) ∈ U ∩ gph ∂f , f is prox-regular at x for v.
Since f is strictly continuous, ∂f is osc and locally bounded at x̄ (cf. 9.13),
so by 5.19 there’s an open neighborhood O of x̄ such that (x, v) ∈ U for all
v ∈ ∂f(x) when x ∈ O. Then f is prox-regular on O, hence lower-C2 on O.

A finite function can be prox-regular and subdifferentially continuous ev-
erywhere without necessarily being lower-C2 or amenable. This is demonstrated
in Figure 13–5 for a function f : IR → IR, where the circumstances at x = 0
and x = 1 deserve particular attention.
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Not to be overlooked as a special but important class of prox-regular func-
tions are the C1+ functions, characterized as follows.

0 1 0 1

f

f6

Fig. 13–5. Finite prox-regularity without subsmoothness or amenability.

13.34 Proposition (functions with strictly continuous gradient). A function f is
of class C1+ on an open set O (i.e., is differentiable with ∇f strictly continuous)
if and only if f is simultaneously lower-C2 and upper-C2 on O. In particular,
such a function f is prox-regular and subdifferentially continuous on O.

Proof. If ∇f is strictly continuous it’s hypomonotone by 12.28(a), and then
f is lower-C2 by 12.28(c), hence prox-regular and subdifferentially continuous
by 13.33. Applying this to −f , one sees that f is upper-C2 as well.

To verify the converse, suppose f is both lower-C2 and upper-C2 on O.
In this case f is C1 on O by 10.30. We must demonstrate that ∇f isn’t just
continuous but strictly continuous a neighborhood of any point x̄ ∈ O. There’s
no loss of generality in assuming that x̄ = 0 and ∇f(x̄) = 0.

Let j = 1
2 | · |2. According to 10.33, there exist ε > 0 and ρ > 0 such

that, on 2εIB ⊂ O, f + ρj is convex while f − ρj is concave. Increasing ρ if
necessary, we can arrange that actually f + ρj is strictly convex on 2εIB. Let
g = f+ρj+δ2εIB . Then g is strictly convex, lsc and proper with dom g = 2εIB,
and g is continuously differentiable on the interior of 2εIB with∇g(0) = 0. Also,
g−2ρj is concave on 2εIB. It will suffice to show that ∇g is strictly continuous
on some neighborhood of 0, since that will ensure the same property for ∇f .

The strict convexity of g implies through 11.13 that the conjugate function
g∗ is differentiable on IRn, so ∂g = (∇g∗)−1 (see 11.3). It follows that ∇g∗ =
(∇g)−1 on ∇g(εIB), in particular. The concavity of g − 2ρj on 2εIB gives us
(g − 2ρj)(x′) ≤ (g − 2ρj)(x) +

〈∇(g − 2ρj)(x), x′ − x〉 when x′ − x ∈ εIB and
x ∈ εIB, where the inequality can algebraically be rewritten as

g(x′) ≤ g(x) + 〈∇g(x), x′ − x〉+ ρ|x′ − x|2.
Define θ(u) = ρ|u|2+ δεIB(u), noting that θ is convex, lsc and proper. Then for
each x ∈ εIB we can estimate
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g∗(v) = supx′
{〈v, x′〉 − g(x′)}

≥ supx′
{〈v, x′〉 − g(x)− 〈∇g(x), x′ − x〉 − θ(x′ − x)}

= −g(x) + 〈v, x〉+ supu
{〈v −∇g(x), u〉 − θ(u)}

= g∗(∇g(x)) + 〈v −∇g(x), x〉+ θ∗(v −∇g(x)),
where at the end the relation has been used that g∗(y) = 〈y, x〉 − g(x) when
y ∈ ∂g(x); cf. 11.3. By invoking this estimate in the case of x = x0 and
v = ∇g(x1) for any two points x0, x1 ∈ εIB, we obtain

g∗(∇g(x1)) ≥ g∗(∇g(x0)) + 〈∇g(x1)−∇g(x0), x0〉+ θ∗(∇g(x1)−∇g(x0)),
but we can also get the corresponding inequality with the roles of x0 and x1
reversed. When added together, these two inequalities yield

θ∗(∇g(x1)−∇g(x0)) ≤ 〈∇g(x1)−∇g(x0), x1 − x0〉
≤ ∣∣∇g(x1)−∇g(x0)∣∣∣∣x1 − x0∣∣.

All that remains is the calculation that θ∗ = (2ρj + δεIB)
∗ = (2ρj)∗ δ∗εIB =

(2ρ)−1j ε| · | (by rules in 11.23(a), 11.24, 11.11), from which one sees that
θ∗(v) = (1/4ρ)|v|2 for v in a neighborhood of 0. This allows us to conclude
that |∇g(x1)−∇g(x0)| ≤ 4ρ|x1−x0| for x0, x1 in some neighborhood of 0, and
hence that ∇g is strictly continuous in such a neighborhood.

13.35 Exercise (perturbations of prox-regularity). Let f be prox-regular at x̄
for v̄ ∈ ∂f(x̄). Then f0(x) = f(x)− 〈v, x〉 is prox-regular at x̄ for 0 ∈ ∂f0(x̄).

Indeed, for any function g that is C2 (or even just C1+) around x̄, f + g is
prox-regular at x̄ for the subgradient v̄ +∇g(x̄) ∈ ∂(f + g)(x̄). Subdifferential
continuity, if present, is likewise preserved in these situations.

Guide. Develop these facts from the definitions of prox-regularity and subdif-
ferential continuity, utilizing 8.8, 10.33, and 13.34.

According to the next theorem, the subgradient mappings associated with
prox-regular functions are distinguished by a ‘hypomonotonicity’ property akin
to the one defined in 12.28, but requiring f -attentive localization.

13.36 Theorem (subdifferential characterization of prox-regularity). Suppose
f : IRn → IR is finite and locally lsc at x̄, and let v̄ ∈ ∂f(x̄) be a proximal
subgradient. Then the following conditions are equivalent:

(a) f is prox-regular at x̄ for v̄;

(b) ∂f has an f -attentive localization T around (x̄, v̄) such that T + ρI is
monotone for some ρ ∈ IR+.

Proof. (a) ⇒ (b). Taking ε and ρ as in the definition of prox-regularity in
13.27, let T be the f -attentive localization of ∂f around (x̄, v̄) whose graph
consists of all (x, v) ∈ ∂f with |v− v̄| < ε, |x− x̄| < ε, and f(x) < f(x̄)+ ε. As
noted, the prox-regularity condition implies for every (x, v) ∈ gph T that v is a
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proximal subgradient of f at x, and this applies in particular to (x̄, v̄). Indeed,
for any two pairs (x0, v0) and (x1, v1) in gphT we have

f(x1) ≥ f(x0) + 〈v0, x1 − x0〉 − 1
2ρ|x1 − x0|2,

f(x0) ≥ f(x1) + 〈v1, x0 − x1〉 − 1
2ρ|x0 − x1|2.

Adding these together, we get 0 ≥ −〈v1 − v0, x1 − x0〉 − ρ|x1 − x0|2. In the
notation ṽ0 = v0 + ρx0 ∈ (T + ρI)(x0) and ṽ1 = v1 + ρx1 ∈ (T + ρI)(x1), the
conclusion is that 〈ṽ1 − ṽ0, x1 − x0〉 ≥ 0. Thus, T + ρI is monotone.

(b) ⇒ (a). Both (a) and (b) refer to conditions dependent only on the
nature of epi f near

(
x̄, f(x̄)

)
. There’s no loss of generality then in supposing

f to be lsc on IRn with bounded domain, since that can be manufactured out
of the local lsc property by adding some indicator function to f . On the same
basis we can assume that the subgradient inequality satisfied by v̄ at x̄ holds
globally (through 8.46(f)), and further that v̄ = 0 (cf. 13.35) and for that
matter x̄ = 0. Then, by adding 1

2 ρ̄| · |2 to f for ρ̄ sufficiently large, which
replaces ∂f by ∂f + ρ̄I, we can pass (again with justification via 13.35) to the
case where argmin f = {0} and an f -attentive localization of ∂f around (0, 0)
is known actually to be monotone. Let’s denote this localization still by T .

Fix any λ > 0 and consider the proximal mapping Pλf : IRn →→ IRn, noting
that Pλ(0) = {0}. By 1.25, Pλf is everywhere nonempty-valued and

xν ∈ Pλf(u
ν), uν → 0 =⇒ xν → 0, f(xν)→ f(0), 13(28)

with the convergence of function values coming from the continuity of the
envelope function eλf and the relation eλf(u

ν) = f(xν) + (1/2λ)|xν − uν |2.
From applying Fermat’s rule 10.1 to the minimization problem having

Pλf(u) as its optimal solution set, we know that whenever x ∈ Pλf(u) we have
0 ∈ ∂f(x) + (1/λ)(x − u). The f -attentiveness in 13(28) ensures, however,
that ∂f(x) can be replaced by T (x) in this condition when u is sufficiently
near to 0. Therefore, Pλf(u) ⊂ (I + λT )−1(u) for u around 0. In addition
(I + λT )−1(u) is nonempty for such u, yet because T is monotone it can’t be
more than a singleton; indeed, (I+λT )−1 is nonexpansive (cf. 12.12). Hence on
some neighborhood U of 0 we have Pλf single-valued with Pλf = (I + λT )−1.
Choose ε > 0 small enough that

v ∈ ∂f(x), |v| < ε

|x| < ε, f(x) < f(0) + ε

}
=⇒ v ∈ T (x), x+ λv ∈ U. 13(29)

Then for such (x, v) we have for u = x + λv that x ∈ (I + λT )−1(u) and
consequently x = Pλf(u). But this means that f(x′) + (1/2λ)|x′ − u|2 ≥
f(x) + (1/2λ)|x− u|2 for all x′. On substituting x + λv for u we can rewrite
this as the proximal subgradient inequality

f(x′) ≥ f(x) + 〈v, x′ − x〉 − 1

2λ
|x′ − x|2.
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Because this is satisfied globally whenever x and v fulfill the conditions on the
left side of 13(29), we may conclude that f is prox-regular at x̄ = 0 for v̄ = 0
with parameter value ρ = λ−1.

A close connection between prox-regularity and the theory of proximal
mappings Pλf and Moreau envelopes eλf is revealed by the preceding proof.
Much more can be said about this.

13.37 Proposition (proximal mappings and Moreau envelopes). Suppose that
f : IRn → IR is prox-regular at x̄ for v̄ = 0, and that f is prox-bounded. Then
for all λ > 0 sufficiently small there is a neighborhood of x̄ on which

(a) Pλf is monotone, single-valued and Lipschitz continuous; Pλf(x̄) = x̄;

(b) eλf is differentiable with ∇(eλf)(x̄) = 0, in fact of class C1+ with

∇eλf = λ−1[I − Pλf ] = [λI + T−1]−1

for an f -attentive localization T of ∂f at (x̄, 0). Indeed, this localization can
be chosen so that the set Uλ := rge(I + λT ) serves for all λ > 0 sufficiently
small as a neighborhood of x̄ on which these properties hold.

Proof. The justification proceeds along lines parallel to the proof of the con-
verse in Theorem 13.36. We can take x̄ = 0. Because f is prox-bounded,
the subgradient inequalities in the definition of prox-regularity in 13.27 can be
taken to be global; cf. 8.46(f). Thus, there exist ε > 0 and λ0 > 0 such that

f(x′) > f(x) + 〈v, x′ − x〉 − 1
2λ

−1
0 |x′ − x|2 for all x′ �= x

when v ∈ ∂f(x), |v| < ε, |x| < ε, f(x) < f(0) + ε.
13(30)

Let T be the f -attentive localization of ∂f specified in 13(30). Let λ ∈ (0, λ0).
The inequality in 13(30) persists with λ in place of λ0 and can be written as

f(x′) +
1

2λ
|x′ − u|2 > f(x) +

1

2λ
|x− u|2 for u = x+ λv.

Thus we have Pλ(x + λv) = {x} when v ∈ T (x). On the other hand, as
argued in the proof of 13.36, we have for any point u near enough to 0 and any
x ∈ Pλf(u) that the vector v = λ−1[u − x] satisfies v ∈ T (x). Therefore, the
set Uλ = rge(I +λT ) is a neighborhood of 0 on which Pλf is single-valued and
coincides with (I + λT )−1.

The mapping T + λ−1
0 I is monotone as a consequence of 13(30) (by the

argument employed in the first part of the proof of 13.36). Let δ = λ−1−λ−1
0 >

0, so that T + λ−1I = T + λ−1
0 I + δI and

(I + λT )−1 =
(
λδ[I + δ−1(T + λ−1

0 I)])−1 = (I +M)−1◦(λδ)−1I

for the monotone mapping M = δ−1(T +λ−1
0 I). We have (I+M)−1 monotone

and nonexpansive by 12.12, hence (I + λT )−1 monotone and Lipschitz contin-
uous with constant (λδ)−1. Since Pλf = (I+λT )−1 on Uλ, it follows that Pλf
has these properties on this neighborhood of 0.
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Recalling from 10.32 the formula ∂[−eλf ](u) = λ−1
[
con(Pλf)(u)−u

]
, we

obtain the single-valuedness of ∂[−eλf ] around 0 and deduce thereby through
9.18 that −eλf is strictly differentiable at all points u ∈ Uλ with ∇[−eλf ](u) =
λ−1
[
Pλf(u)−u

]
. Then eλf is strictly differentiable on this neighborhood with

∇[eλf ] = λ−1(I − Pλ). Because Pλf is Lipschitz continuous, eλf is actually
of class C1+ on Uλ. The relation λ−1(I − Pλ) = (λI + T−1)−1 is equivalent to
Pλf = (I + λT )−1 by the identity in 12.14.

The properties in Proposition 13.37, while implied by prox-regularity,
aren’t sufficient for it. This can be seen at (x̄, v̄) = (0, 0) for the function
f : IR→ IR defined by f(0) = 0 but f(x) = |x|(1 + sinx−1) for x �= 0.

13.38 Exercise (projections on prox-regular sets). For a closed set C ⊂ IRn and
any point x̄ ∈ C, the following properties are equivalent:

(a) C is prox-regular at x̄ for v̄ = 0,

(b) NC has a hypomonotone localization around (x̄, 0).

These properties, which hold in particular whenever C is fully amenable at x̄,
imply that

(c) PC is single-valued around x̄,

(d) dC is differentiable outside of C around x̄.

Indeed, there exists in this case a neighborhood V of x̄ on which PC is monotone
and Lipschitz continuous with PC = (I + T )−1 for some localization T of NC

around (x̄, 0), while ∇dC = [I − PC ]/dC on V \C.

Guide. Apply 13.36 and 13.37 to f = δC .

G. Subgradient Proto-Differentiability

We are ready to proceed with the analysis of how second-order epi-differentiabi
lity of f at x̄ for v̄ corresponds, at least for a large category of functions, to
proto-differentiability of ∂f at x̄ for v̄ and even provides a rule for calculating
the proto-derivatives.

13.39 Lemma (difference quotient relations). For any function f : IRn → IR,
any point x̄ where f is finite and any v̄ ∈ ∂f(x̄), one has for all τ > 0 that

∂[ 12Δ
2
τf(x̄ | v̄)] = [Δτ∂f ](x̄ | v̄).

In the special case of v̄ = 0, x̄ = 0, and f(x̄) = 0 = min f , one further has for
all τ > 0 and λ > 0 that

eλ[
1
2Δ

2
τf(0 |0)] = [ 12Δ

2
τeλf ](0 |0), Pλ[

1
2Δ

2
τf(0 |0)] = [ΔτPλf ](0 |0).

Proof. Fix τ > 0. Let ϕ(w) = τ−2[f(x̄ + τw) − f(x̄) − τ〈v̄, w〉], so that
ϕ = 1

2Δ
2
τf(x̄ | v̄). Obviously ∂ϕ(w) = τ−2[τ∂f(x̄ + τw) − τ v̄], hence ∂ϕ =

[Δτ∂f ](x̄ | v̄). This establishes the first of the formulas.
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Now suppose v̄ = 0, x̄ = 0, f(x̄) = 0 = min f . Then ϕ(w) = τ−2f(τw).
Calculating from the definition of a Moreau envelope, we get

eλϕ(u) = minw
{
τ−2f(τw) +

1
2λ

−1|w − u|2}
= τ−2 minz

{
f(z) +

1
2λ

−1|z − τu|2} = τ−2eλf(τu).

But eλf(0) = 0 because x̄ ∈ argmin f , x̄ = 0. Therefore, the final term equals
1
2Δ

2
τ [eλf ](0 |0)(u). In the footsteps of the same calculation we have for the

corresponding proximal mappings that

Pλϕ(u) = argminw
{
τ−2f(τw) + 1

2λ
−1|w − u|2}

= τ−1 argminz
{
f(z) +

1
2λ

−1|z − τu|2} = τ−1Pλf(τu).

Since Pλf(0) = 0 under our assumptions, the final term is [ΔτPλf ](0 |0)(u).
The other two formulas in the lemma are thus correct as well.

13.40 Theorem (proto-differentiability of subgradient mappings). Suppose that
f : IRn → IR is prox-regular at x̄ for v̄ ∈ ∂f(x̄). As long as f is subdifferentially
continuous at x̄ for v̄, the mapping ∂f is proto-differentiable at x̄ for v̄ if and
only if f is twice epi-differentiable at x̄ for v̄, and then

D(∂f)(x̄ | v̄) = ∂h for h = 1
2d

2f(x̄ | v̄) (proper). 13(31)

In the absence of subdifferential continuity, these conclusions hold with ∂f
replaced by any of its sufficiently close f -attentive localizations at (x̄, v̄).

Proof. We work directly with the case where f might not be subdifferentially
continuous at x̄ for v̄, denoting by T an f -attentive localization of ∂f with the
property that T + ρI is monotone for a certain ρ ∈ IR+, as exists by Theorem
13.36. Everything refers to properties of epi f in the vicinity of

(
x̄, f(x̄)

)
,

and epi f is locally closed there as part of the definition of prox-regularity.
Without loss of generality, therefore, we can assume (as the result of adding
some indicator function to f if necessary) that f is globally lsc with dom f
bounded. Also, we can normalize to v̄ = 0, x̄ = 0, and f(x̄) = 0 without any
prejudice to the assertions. With the same impunity we can then add 1

2σ| · |2
to f for any σ > 0, and in this way, by taking σ sufficiently large, we can get
T actually to be monotone and argmin f = {0}, min f = 0, and such that

f(x′) > f(x) + 〈v, x′ − x〉 for all x′ �= x when v ∈ T (x). 13(32)

This puts us in the framework of the special case in Lemma 13.39. By defi-
nition, f is twice epi-differentiable at x̄ = 0 for v̄ = 0 if and only if the functions
hτ :=

1
2Δ

2
τf(0 |0) epi-converge to something as τ ↘ 0, the only candidate being

of course h = 1
2d

2f(0 |0). The functions hτ and h, like f , are nonnegative ev-
erywhere, hence in particular prox-bounded uniformly. Therefore by Theorem
7.37, hτ →e h if and only if eλhτ →p eλh for all λ > 0 sufficiently small. We seek
next an understanding of what this convergence of envelopes entails.
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We have ∂hτ = Δτ (∂f)(0 |0) by Lemma 13.39, so gph ∂hτ = τ−1 gph ∂f .
Out of this it’s clear that the monotone mapping Tτ := ΔτT (0 |0), which has
gphTτ = τ−1 gphT , serves as an hτ -attentive localization of ∂hτ at (0, 0).
Moreover rge(I + λTτ ) = τ−1Uλ for Uλ := rge(I + λT ). According to 13.37,
Uλ is a neighborhood of 0 and we have eλhτ differentiable with

∇(eλhτ ) = (λI + T−1
τ )−1 on τ−1Uλ.

Furthermore, because (λI + T−1
τ )−1 = (I + λ−1T−1

τ )−1◦λ−1I and the mapping
(I + λ−1T−1

τ )−1 is nonexpansive (by 12.12, since T−1
τ like Tτ is monotone)

we have ∇(eλhτ ) Lipschitz continuous on τ−1Uλ with constant λ−1. For this
reason, and the fact that eλhτ (0) = 0 and ∇(eλhτ )(0) = 0 for all τ , pointwise
convergence of eλhτ to eλh as τ ↘ 0 (with λ fixed and sufficiently small) is
equivalent to pointwise convergence of the gradient mappings ∇(eλhτ ) eventu-
ally on any bounded set, in which case these mappings converge uniformly on
such sets, hence graphically, and their limit must be ∇(eλh) (the function eλh
necessarily being differentiable). But graphical convergence of the mappings
∇(eλhτ ) means such convergence for the mappings (λI+T−1

τ )−1 and therefore
that of the mappings Tτ = ΔτT (0, 0), inasmuch as gph(λI + T−1

τ )−1 is simply
the image of gphTτ under a certain nonsingular linear transformation from
IRn × IRn onto itself that depends only on λ, not τ . Graphical convergence of
ΔτT (0 |0) as τ ↘ 0 is the property of proto-differentiability of T at 0 for 0; the
limit has to be DT (0 |0).

Putting this together, we see that f is twice epi-differentiable at 0 for
0 if and only if T is proto-differentiable at 0 for 0, in which case ∇(eλh) =
(λI +DT (0 |0)−1)−1. We have yet to verify that this implies ∂h = DT (0 |0).

For simplicity, let T0 = DT (0 |0). As the graphical limit of the monotone
mappings Tτ = ΔτT (0 |0), we know that T0 is monotone (by 12.32). The set
rge(I + λT0) is the domain of (λI + T−1

0 )−1 = ∇(eλh), hence all of IRn, so
T0 is maximal monotone (by 12.12). We claim now that T0 is also cyclically
monotone, which in combination with maximal monotonicity implies maximal
cyclical monotonicity. This is verified as follows. Going back to 13(32), we rec-
ognize that T itself is cyclically monotone; the chain of inequalities used at the
beginning of the proof of Theorem 12.25 gives this right away. It’s elementary
then that the difference quotient mappings Tτ are cyclically monotone, and in
the graphical limit that T0 too is cyclically monotone.

The maximal cyclical monotonicity of T0 ensures the existence of a proper,
lsc, convex function h0 such that ∂h0 = T0. Since 0 ∈ T0(0) we can fix the
constant of integration by requiring h0(0) = 0, and then h is nonnegative with 0
as its minimum value (inasmuch as 0 ∈ ∂h0(0)). Applying once more the theory
of Moreau envelopes, this time to h0, we determine that eλh0 is differentiable
with ∇(eλh0) = (λI + T−1

0 )−1; cf. 13.37. Thus, ∇(eλh0) = ∇(eλh). Since
also h(0) = 0, we must have eλh0 = eλh. This holds on IRn for all λ > 0
sufficiently small. But as λ ↘ 0 we have for every u ∈ IRn that eλh0(u)↗h0(u)
and eλh(u)↗h(u); cf. 1.25. Therefore h0 = h. This tells us that T0 = ∂h,
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which is what we needed.

13.41 Corollary (subgradient proto-differentiability from amenability). If f is
fully amenable at x̄, there exists a neighborhood V of x̄ such that, for every
x ∈ V ∩ dom f and v ∈ ∂f(x), ∂f is proto-differentiable at x for v.

Proof. Full amenability persists at all the points x in some neighborhood V
of x̄. At such points we are sure that f is twice epi-differentiable, prox-regular
and subdifferentially continuous at x for v; cf. 13.14 and 13.32.

13.42 Corollary (second derivatives and quadratic expansions). If a function
f : IRn → IR is differentiable at x̄ and prox-regular for v̄ = ∇f(x̄), the following
properties are equivalent:

(a) f is twice differentiable at x̄ in the extended sense;

(b) ∂f is differentiable at x̄;

(c) f has a quadratic expansion at x̄.

Moreover ∇2f(x̄) must then be symmetric, and f must be lower-C2 around x̄.

Proof. This corresponds through 13.2 and 13.8 to the case of Theorem 13.40
where d2f(x̄ | v̄) is quadratic or D(∂f)(x̄ | v̄) is linear. When h(w) = 〈w,Aw〉 we
have ∂h(w) = Asw for As =

1
2 [A+A∗], so the formula in the theorem implies

that the Jacobian matrix at x̄ for ∂f (or for ∇f on its domain of existence)
is symmetric. The fact that f has to be lower-C2 locally falls out of 13.33 and
the strict differentiability of f at x̄ established in 13.2.

13.43 Corollary (normal cone mappings and projections). Let C ⊂ IRn be prox-
regular at x̄ for v̄. Then the following are equivalent and hold in particular when
C is fully amenable at x̄:

(a) NC is proto-differentiable at x̄ for v̄,

(b) PC is proto-differentiable at ū = x̄+ v̄ for x̄,

(c) PC is single-valued and semidifferentiable at ū = x̄+ v̄,

(d) δC is twice epi-differentiable at x̄ for v̄,

and then one has

DNC(x̄ | v̄) = ∂[
1
2d

2δC(x̄ | v̄)], DPC(ū) = [I +DNC(x̄ | v̄)]−1.

Proof. Apply Theorem 13.40 to f = δC , invoking also 13.41 and the properties
in 13.38.

13.44 Example (polyhedral sets). Let C ⊂ IRn be polyhedral. Let x̄ ∈ C and
v̄ ∈ NC(x̄) and define K =

{
w ∈ TC(x̄)

∣∣w ⊥ v̄}. Then
(a) NC is proto-differentiable at x̄ for v̄ with DNC(x̄ | v̄) = NK ;

(b) PC is semidifferentiable at ū = x̄+ v̄ with DPC(ū) = PK .

Detail. The function f = δC is fully amenable (as a special case of being
convex, piecewise linear), hence covered by 13.42. From 13.9 we calculate
d2δC = δK , and the conclusions then follow from 13.43.
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13.45 Exercise (semidifferentiability of proximal mappings). Let f : IRn → IR
be prox-regular at x̄ for v̄ = 0 and prox-bounded. Then second-order epi-
differentiability of f at x̄ for 0 is equivalent to any of the following properties
holding for some λ > 0 sufficiently small:

(a) Pλf is semidifferentiable at x̄,

(b) Pλf is proto-differentiable at x̄,

(c) eλf is twice epi-differentiable at x̄,

(d) eλf is twice semidifferentiable at x̄.

All these properties hold then for all λ > 0 sufficiently small, and moreover one
has the formulas

d2
[1
2eλf(x̄)

]
= eλ

[ 1
2d

2f(x̄ |0)
]
, D[Pλf ](x̄) = Pλ

[1
2d

2f(x̄ |0)
]
.

Guide. Apply Theorem 13.40 in the light of 13.37.

The results about prox-regularity have revealed much about subgradient
mappings and how the geometry of their graphs is related to second-order sub-
differentiation. The notion in 9.66 of a mapping being graphically Lipschitzian
helps to underscore the special nature of this geometry.

13.46 Proposition (Lipschitzian geometry of subgradient mappings). When a
function f : IRn → IR is prox-regular and subdifferentially continuous at x̄
for v̄, the mapping ∂f : IRn →→ IRn is graphically Lipschitzian of dimension n
around (x̄, v̄). In the absence of subdifferential continuity this holds for any
sufficiently close f -attentive localization of ∂f around (x̄, v̄).

Proof. For simplicity we can normalize to v̄ = 0 (cf. 13.35); geometrically this
just amounts to a translation of gph ∂f and its localizations. The formula in
13.37 then identifies gphT with the graph of the Lipschitz continuous mapping
∇eλf near x̄ under a certain linear change of coordinates around (x̄, v̄).

This geometry furnishes the insight that proto-differentiability of ∂f at
x̄ for v̄ is essentially just semidifferentiability seen from a different angle. In
graphical terms the two properties provide exactly the same kind of approxi-
mation to a graph that locally has the appearance of a ‘Lipschitzian manifold
of dimension n’, but subdifferentiability is the more special way that the prop-
erty can be described when the angle of view presents the graph as that of a
Lipschitz continuous mapping, here ∇eλf around x̄ in the case of v̄ = 0.

H. Subgradient Coderivatives and Perturbation

In the study of the subgradient mappings ∂f : IRn →→ IRn associated with
functions f : IRn → IR, one can look not only at the graphical derivative
mappings

D(∂f)(x̄ | v̄) : IRn →→ IRn,

as we have been doing so far, but also the coderivative mappings
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D∗(∂f)(x̄ | v̄) : IRn →→ IRn,

which offer yet another ‘second derivative’ concept. Significant conclusions
can be obtained in a number of situations by applying to these mappings the
various coderivative results in Chapters 8, 9 and 10.

Such a situation is found in sensitivity analysis of first-order conditions for
optimality, with the parametric version of Fermat’s rule in 10.12 serving for
the basic format. This provides an intriguing application of Theorem 13.40 as
well. For f : IRn × IRm → IR consider the problem

P(u, v) : minimize f(x, u)− 〈v, x〉 over all x ∈ IRn,

where u and v are viewed as parameter elements. The constraint qualification

(0, y) ∈ ∂∞
f(x, u) =⇒ y = 0

is shown by 10.12 to guarantee the existence of a vector y such that

(v, y) ∈ ∂f(x, u),
which can be interpreted as a generalized Lagrange multiplier element. (Al-
though 10.12 dealt with v = 0, the extension to general v is immediate from
applying that earlier result to fv(x, u) = f(x, u)−〈v, x〉.) We can study how the
pair (x, y) depends on the pair (u, v). This leads to the discovery of relatively
common circumstances in which the mapping (u, v) �→ (x, y) is actually proto-
differentiable, indeed with proto-derivatives that themselves can be computed
by way of other optimality conditions.

13.47 Theorem (perturbation of optimality conditions). For f : IRn×IRm → IR
consider the mapping

S : (u, v) �→ {(x, y) ∣∣ (v, y) ∈ ∂f(x, u)}
along with particular elements (x̄, ȳ) ∈ S(ū, v̄). Suppose that f is prox-
regular and subdifferentially continuous at (x̄, ū) for (v̄, ȳ). Then S is proto-
differentiable at (ū, v̄) for (x̄, ȳ) if and only if f is twice epi-differentiable at
(x̄, ū) for (v̄, ȳ), in which case the proto-derivatives have the formula

DS(ū, v̄ | x̄, ȳ)(u′, v′) = {(x′, y′) ∣∣ (v′, y′) ∈ ∂h(x′, u′)}, h =
1
2d

2f(x̄, ū | v̄, ȳ).
Moreover, S is graphically Lipschitzian of dimension m+ n around (ū, v̄; x̄, ȳ),
and it has the Aubin property at (ū, v̄) for (x̄, ȳ) if and only if

(0, y′) ∈ D∗(∂f)(x̄ | ū)(x′, 0) =⇒ x′ = 0, y′ = 0.

Proof. The graph of S corresponds to that of ∂f under (u, v, x, y) ↔
(x, u, v, y), which preserves proto-differentiability in particular. All one has
to do is apply 13.46 and 13.40 in this framework. The result about the Aubin
property invokes for S the Mordukhovich criterion in 9.40 with the observation
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that the graph of D∗S(ū, v̄ | x̄, ȳ) is a copy of the graph of D∗(∂f)(x̄, ū | v̄, ȳ)
under the same affine correspondence.

It can’t escape attention that the proto-derivative formula in Theorem
13.47 concerns the first-order conditions for the auxiliary problem

P ′(x̄, ū | v̄, ȳ)(u′, v′) : minimize 1
2d

2f(x̄, ū | v̄, ȳ)(x′, u′)−〈v′, x′〉 in x′

in the same parameterized format as P(x̄, ū). The perturbation vectors u′

and v′ associated with ū and v̄ are now the parameter elements, while the x′

and y′ that are so characterized give the corresponding perturbations of x̄ and
v̄. Especially noteworthy is the case of convex optimization, where the first-
order conditions are enough to guarantee optimality. The proto-derivatives
of optimal solutions to a primal-dual pair of problems are obtained then by
solving an auxiliary pair of such problems.

The result in Theorem 13.47 can be adapted to many situations where
the formula for proto-derivatives can be fleshed out from the accompanying
structure of f . Similar applications of second-order theory can also be made
to other models of perturbation where subgradient mappings, such as normal
cone mappings or projections, are involved. Variational inequalities, where
the subgradient mapping is NC for a closed, convex set C, serve as a major
illustration. They are covered as a special case of the next result.

13.48 Theorem (perturbation of solutions to variational conditions). For any
function f : IRn → IR and C1 mapping F : IRd × IRn → IRn, consider the
generally set-valued mapping S : IRd × IRn →→ IRn defined by

S(w, u) =
{
x
∣∣F (w, x) + ∂f(x) � u},

which in the special case of f = δC , ∂f = NC , would give the solutions to a
parameterized variational condition. Let x̄ ∈ S(w̄, ū) and suppose f is fully
amenable at x̄. Then S is proto-differentiable at (w̄, v̄) for x̄ with

DS(w̄, ū | x̄)(w′, u′) =
{
x′
∣∣Φ(w′, x′) + ∂ϕ(x′) � u′},

where Φ(w′, x′) = ∇wF (w̄, x̄)w
′ +∇xF (x̄, w̄)x

′ and ϕ(x′) = 1
2d

2f(x̄ | v̄)(x′) for
v̄ := ū − F (w̄, x̄). Further, S is graphically Lipschitzian of dimension d + 2n
around (w̄, ū, x̄), and it has the Aubin property at (w̄, ū) for x̄ if and only if

−∇xF (w̄, x̄)
∗z ∈ D∗(∂f)(x̄ | v̄)(z) =⇒ z = 0.

Proof. Here gphS =
{
(w, u, x)

∣∣ (x, u − F (w, x)
) ∈ gph ∂f

}
. The smooth

transformation G : (w, u, x) �→ (
x, u − F (w, x)

)
takes the point (w̄, ū, x̄) ∈

gphS to the point (x̄, v̄) ∈ gph ∂f , and its Jacobian has full rank:

∇G(w̄, ū, x̄)(w′, u′, x′) =
(
x′, u′−∇wF (w̄, x̄)w

′ +∇xF (w̄, x̄)x
′),

∇G(w̄, ū, x̄)∗(x′′, v′′) = (−∇wF (w̄, x̄)
∗v′′, v′′, x′′−∇xF (w̄, x̄)

∗v′′
)
.
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Through the change-of-coordinates rule in 6.7 we have

TgphS(w̄, ū, x̄) =
{
(w′, u′, x′)

∣∣∣∇G(w̄, ū, x̄)(w′, u′, x′) ∈ Tgph ∂f (x̄, v̄)
}
,

NgphS(w̄, ū, x̄) =
{
∇G(w̄, ū, x̄)∗(x′′, v′′)

∣∣∣ (x′′, v′′) ∈ Ngph ∂f (x̄, v̄)
}
.

Proto-differentiability of ∂f corresponds to geometric derivability of gph ∂f . It
thus carries over to geometric derivability of gphS and furthermore to proto-
differentiability of S. From the normal cone relation we have

(w′, u′) ∈ D∗S(w̄, ū | x̄)(x′) ⇐⇒ (w′, u′,−x′) ∈ NgphS(w̄, ū, x̄)

⇐⇒ ∃ (x′′, v′′) ∈ Ngph ∂f (x̄, v̄) with

⎧⎨
⎩
w′ = −∇wF (w̄, x̄)

∗v′′,
u′ = v′′,
x′ = x′′−∇xF (w̄, x̄)

∗v′′,

where in the last description the normal cone description of (x′′, v′′) can equally
be expressed by x′′ ∈ D∗(∂f)(x̄ | v̄)(−v′′). This tells us that

(w′, u′) ∈ D∗S(w̄, ū | x̄)(x′) ⇐⇒
{
x′ +∇xF (w̄, x̄)

∗u′ ∈ D∗(∂f)(x̄ | v̄)(−u′),
w′ = −∇wF (w̄, x̄)

∗u′.

The Mordukhovich criterion, necessary and sufficient for S to enjoy the Aubin
property at (w̄, ū) for x̄, is D∗S(w̄, ū | x̄)(0) = {(0, 0)}. Our coderivative for-
mula for S makes clear that this holds if and only if there’s no u′ �= 0 with
∇xF (w̄, x̄)

∗u′ ∈ D∗(∂f)(x̄ | v̄)(−u′), which amounts to the stated condition.

I∗. Further Derivative Properties

The theory of prox-regularity and full amenability has additional consequences
which we now proceed to lay out.

13.49 Proposition (prox-regularity and amenability of second subderivatives). If
f is prox-regular and properly twice epi-differentiable at x̄ for v̄, there exists
ρ ≥ 0 such that the function d2f(x̄ | v̄) + ρ| · |2 is convex and the mapping
D(∂f)(x̄ | v̄)+ρI is maximal monotone, implying that d2f(x̄ | v̄) is prox-regular
everywhere. In particular these properties hold whenever f is fully amenable
at x̄, and in that case d2f(x̄ | v̄) is fully amenable everywhere.

Proof. By Theorem 13.40, ∂d2f(x̄ | v̄) has the form 2DT (x̄ | v̄) for a mapping
T which, according to 13.36, has T + ρI is monotone for some ρ ≥ 0. Then
2DT (x̄ | v̄)+2ρI is monotone, but this is ∂k for k = d2f(x̄ | v̄)+ρ| · |2, a function
that’s lsc because d2f(x̄ | v̄) is lsc. This implies by 12.17 that k is convex and
∂k is maximal monotone.

In the fully amenable case we can invoke the facts about full amenability
in 13.15 and 13.41, which plug this into the case just treated. Further, the
formula in 13(19) can be interpreted as
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d2f(x̄ | v̄)(w) = ϕ
(
Φ(w)

)
for the C2 mapping

Φ : w �→ (w,w∇2F (x̄)w)

and the convex, piecewise linear-quadratic function

ϕ(w, z) = d2f̄(x̄ | v̄)(w) + σ(z),

with σ the support function of the polyhedral set Y (x̄, v̄). The compactness
of Y (x̄, v̄) (cf. the proof of 13.14) causes σ to be finite on IRm. This en-
sures the fulfillment of the constraint qualification required for this compo-
sition to meet the definition of amenability at w: no nonzero vector (p, q) ∈
Ndomϕ(w,w∇2F (x̄)w) has ∇Φ(w)∗(p, q) = 0. Indeed, the normal cone in ques-
tion is ND(w) × {0} for D = dom d2f̄(x̄ | v̄), so it can’t contain (p, q) unless
q = 0. On the other hand, though, ∇Φ(w)∗(p, 0) = p.

The full amenability of the second epi-derivative functions in 13.49 doesn’t
extend to them actually being piecewise linear-quadratic—because of the stip-
ulation in the definition of that property about the different ‘pieces’ of the
domain being polyhedral. For an example, consider on IR3 the fully amenable
function f(x1, x2, x3) = |x21 + x22 − x23| at x̄ = 0 for the vector v̄ = ∇f(x̄) = 0.
It’s evident that d2f(x̄ | v̄)(w) = 2f(w). The domain of this function is divided
into two pieces on which different quadratic formulas have priority, but these
pieces aren’t polyhedral.

When f is fully amenable, the proto-derivatives in Theorem 13.40 (and
Corollary 13.41) can be expressed in an alternative manner with the help of
subgradient calculus. This expression too could be utilized in results on per-
turbation of solutions.

13.50 Exercise (subgradient derivative formula in full amenability). Let f :
IRn → IR be fully amenable at x̄, and let v̄ ∈ ∂f(x̄). Then, in the notation of
13.14, the proto-derivatives of ∂f at x̄ for v̄ have the expression

D(∂f)(x̄ | v̄)(w) = D(∂f̄)(x̄ | v̄)(w) +
{∇2(yF )(x̄)w

∣∣ y ∈M(x̄, v̄, w)
}
,

M(x̄, v̄, w) = argmax
y∈Y (x̄,v̄)

〈
w,∇2(yF )(x̄)w

〉
.

Guide. Write d2f(x̄ | v̄) = ϕ◦Φ as in the proof of Proposition 13.49 and cal-
culate the subgradients of this function using the basic chain rule in Theorem
10.6 and the formula for subgradients of support functions in Corollary 8.25.
Then invoke Theorem 13.40.

Next, let’s note that the almost everywhere differentiability of maximal
monotone mappings yields an analogous conclusion about second-order differ-
entiability of functions whose subgradient mappings are hypomonotone.

13.51 Theorem (almost everywhere second-order differentiability). Any lower-
C2 function f on an open set O is twice differentiable in the extended sense at
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all but a negligible set of points x ∈ O, the matrices ∇2f(x) being symmetric
where they exist. In particular this holds when f is finite and convex on O.

Proof. For any x̄ ∈ O there exists by 10.33 a compact neighborhood B of x̄
within O along with ρ ≥ 0 such that f + 1

2ρ| · |2 is convex on B. Then the
function g := f+

1
2ρ| · |2+δB is proper, lsc and convex on IRn, and ∂f = ∂g−ρI

on intB. But ∂g is maximal monotone by 12.17, so ∂g is single-valued and
differentiable except on a negligible subset of intB by 12.66. Then ∂f has
this property, and it follows from 13.42 that twice differentiability of f prevails
except on such a subset. Hessian symmetry follows then from 13.42.

Theorem 13.51 covers as a special case all functions that are C1+ on O,
inasmuch as they are lower-C2 (cf. 13.34). But for C1+ functions f the verifica-
tion of almost everywhere twice differentiability in the extended sense doesn’t
need to pass through the theory of monotone mappings. It’s immediate from
Rademacher’s theorem in 9.60 as applied to the strictly continuous mapping
∇f . The fact that the Hessian matrices are symmetric when they exist still
requires an appeal to something further, though, the fact in 13.42.

Other interesting properties come up in the C1+ case as well.

13.52 Theorem (generalization of second-derivative symmetry). Let f : O → IR
be of class C1+, with O ⊂ IRn open, and let D ⊂ O consist of the points where
f is twice differentiable (in the classical or extended sense). For x̄ ∈ O define

∇2
f(x̄) :=

{
A ∈ IRn×n

∣∣∣ ∃xν → x̄ with xν ∈ D, ∇2f(xν)→ A
}
.

Then ∇2
f(x̄) is a nonempty, compact set of symmetric matrices, and for every

w ∈ IRn one has

conD∗(∇f)(x̄)(w) = conD∗(∇f)(x̄)(w) = con
{
Aw

∣∣A ∈ ∇2
f(x̄)

}
, 13(33)

with D∗(∇f)(x̄) denoting the strict derivative mapping of 9.53. Moreover for
all z, w ∈ IRn one has

lim sup
τ ↘ 0, σ ↘ 0

x→x̄

f(x+ τw + σz)− f(x+ τw)− f(x+ σz) + f(x)

τσ

= lim sup
τ ↘ 0
x→x̄

〈z,∇f(x+ τw)〉 − 〈z,∇f(x)〉
τ

= lim sup
τ ↘ 0
x→x̄

〈w,∇f(x+ τz)〉 − 〈w,∇f(x)〉
τ

= max
〈
z,D∗(∇f)(x̄)(w)〉 = max

〈
w,D∗(∇f)(x̄)(z)〉

= max
{〈z, Aw〉 ∣∣A ∈ ∇2

f(x̄)
}
.

13(34)

The upper limits in this equation would be unchanged if taken also over w′ → w
and z′ → z, or if σ were made the same as τ . Further, D could be replaced in
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the formula for ∇2
f(x̄) by any set D′ ⊂ D such that D \D′ is negligible.

Proof. Everything except the first equation in 13(34) follows at once from
applying 9.62 to F = ∇f and invoking the symmetry of ∇2f(x) when
it exists; cf. 13.42. (The second and third expressions in 13(34) equal
max

〈
z,D∗(∇f)(x̄)(w)

〉
and max

〈
w,D∗(∇f)(x̄)(z)

〉
, respectively.)

Fix any w and z, and denote the first expression in 13(34) by Φτ,σ(x)
for τ > 0 and σ > 0. We have Φτ,σ(x) = [θx,τ (σ) − θx,τ (0)]/σ for θx,τ (σ) :=
Δτf(x+σz)(w). By the mean-value theorem, [θx,τ (σ)−θx,τ (0)]/σ equals θ′(σ̂)
for some σ̂ ∈ (0, σ). Because ∇x

[
Δτf(x)(w)

]
= τ−1

[∇f(x+ τw)−∇f(x)], we
get θ′x,τ (σ̂) = τ−1〈z,∇f(x+ σ̂z + τw)−∇f(x+ σ̂z)〉. Thus

Φτ,σ(x) =
〈z,∇f(x′ + τw)− 〈z,∇f(x′)〉

τ
for some x′ ∈ [x, x+ σz].

Clearly, then, the ‘≤’ half of the first equation in 13(34) is correct. To get the
‘≥’ half, we’ll argue that the first expression in 13(34) can’t be less than the
final one, even when σ is restricted to being the same as τ .

Denote by α the max at the end of 13(34). For any ε > 0 we can find
x ∈ D ∩ IB(x̄, ε) with 〈z,∇2f(x)w〉 > α− ε. We have

f(x+ τw + τz)) = f(x) + τ〈∇f(x), w + z〉
+ 1

2τ
2〈(w + z),∇2f(x)(w+ z)〉+ o(τ2|w + z|2),

f(x+ τw) = f(x) + τ〈∇f(x), w〉+ 1
2τ

2〈w,∇2f(x)w〉+ o(τ2|w|2),
f(x+ τz) = f(x) + τ〈∇f(x), z〉+ 1

2τ
2〈z,∇2f(x)z〉+ o(τ2|z|2),

and this gives us

f(x+ τw+τz))− f(x+ τw)− f(x+ τz) + f(x)

= τ2
〈
z,∇2f(x)w

〉
+ o(τ2|w + z|2)− o(τ2|w|2)− o(τ2|z|2).

It follows that Φτ,τ (x) → 〈z,∇2f(x)w〉 as τ ↘ 0. Thus, by choosing τ small
enough, we can make Φτ,τ (x) > 〈z,∇2f(x)w〉−ε. Then Φτ,τ (x) > α−2ε. This
inequality being achievable for arbitrary ε > 0 by some x ∈ D ∩ IB(x̄, ε) and
τ ∈ (0, ε), we conclude, as needed, that the upper limit of Φτ,τ (x) as x → x̄
and τ ↘ 0 is at least high as α.

The modification of the second and third expressions in 13(34) to upper
limits with w′ → w and z′ → z would make no difference because of the
Lipschitz continuity of ∇f . In this case the argument for the first equation in
13(34) could be made in essentially the same way.

Is the convex hull operation in 13(33) really needed? Could it be
true that the strict derivative D∗(∇f)(x̄)(w) actually equals the coderivative
D∗(∇f)(x̄)(w)? This can fail even in the one-dimensional case, unless, of
course, ∇f happens to be strictly differentiable at x̄. A simple counterexample
on IR1 is furnished by f(x) = 1

2x
2 for x ≥ 0, f(x) = −1

2x
2 for x ≤ 0, which
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has ∇f(x) = f ′(x) = |x|. For this C1+ function at x̄ = 0,

D∗(∇f)(x̄)(w) = [−|w|, |w|] for all w,

D∗(∇f)(x̄)(w) = ∂x
(
w|x|)∣∣

x=0
=

{ {−|w|, |w|} for w ≥ 0,
[−|w|, |w|] for w ≤ 0.

The properties in Theorem 13.52 are applicable in particular to eλf at all
points x̄ in a neighborhood of a point x̃ where 0 ∈ ∂f(x̃), provided that f is
prox-bounded as well as prox-regular at x̃ for ṽ = 0, and λ > 0 is sufficiently
small; this follows from 13.37. The relationship between ∇eλf and Pλf in
13.37 then gives us analogous properties for Pλf with respect to the matrix
sets ∇(Pλf)(x̄), defined as in 9.62.

13.53 Corollary (symmetry in derivatives of proximal mappings). Consider a
prox-bounded function f : IRn → IR and a point x̃ with 0 ∈ ∂f(x̃). Suppose f
is prox-regular at x̃ for ṽ = 0. Then there is an open set O containing x̃ such
that, at every point x̄ ∈ O, the following properties hold for the mapping Pλf ,
this being strictly continuous on O.

The matrix set ∇(Pλf)(x̄) is nonempty and compact with all of its ele-
ments symmetric, and for every w ∈ IRn one has

conD∗(Pλf)(x̄)(w) = conD∗(Pλf)(x̄)(w) = con
{
Aw

∣∣A ∈ ∇(Pλf)(x̄)
}
.

Moreover for all z, w ∈ IRn one has

max
A∈∇(Pλf)(x̄)

〈
z, Aw

〉
= max

〈
z,D∗(Pλf)(x̄)(w)

〉
= max

〈
w,D∗(Pλf)(x̄)(z)

〉

= lim sup
τ ↘ 0
x→x̄

〈z, Pλf(x+ τw)〉 − 〈z, Pλf(x)〉
τ

= lim sup
τ ↘ 0
x→x̄

〈w, Pλf(x+ τz)〉 − 〈w, Pλf(x)〉
τ

.

Proof. This follows from 13.52 through 13.37, as noted above.

13.54 Corollary (symmetry in derivatives of projections). Let C ⊂ IRn be prox-
regular at x̃ for ṽ = 0. Then there is an open set O containing x̃ such that,
at every point x̄ ∈ O, the following properties hold for the projection mapping
PC , this being strictly continuous on O.

The matrix set ∇PC(x̄) is nonempty and compact with all of its elements
symmetric, and for every w ∈ IRn one has

conD∗PC(x̄)(w) = conD∗PC(x̄)(w) = con
{
Aw
∣∣A ∈ ∇PC(x̄)

}
.

Moreover for all z, w ∈ IRn one has
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max
A∈∇PC (x̄)

〈
z, Aw

〉
= max

〈
z,D∗PC(x̄)(w)

〉
= max

〈
w,D∗PC(x̄)(z)

〉

= lim sup
τ ↘ 0
x→x̄

〈z, PC(x+ τw)〉 − 〈z, PC(x)〉
τ

= lim sup
τ ↘ 0
x→x̄

〈w, PC(x+ τz)〉 − 〈w, PC(x)〉
τ

.

Proof. Here we specialize the preceding corollary to f = δC .

The expressions in the first lim sup in 13(34) are second-order difference
quotients of yet another type. It might be wondered whether something can
be made of them more generally, but their usefulness is limited to the class of
C1+ functions because of the following fact.

13.55 Exercise (second-order Lipschitz continuity). A function f is of class C1+

around x̄ if and only if it is finite around x̄ and for some ε > 0 there exists
κ ∈ IR+ such that

f(x+ w + z)− f(x+ w)− f(x+ z) + f(x) ≤ κ|w||z|
when |x− x̄| ≤ ε, |w| ≤ ε, |z| ≤ ε. 13(35)

The lowest limiting value of such constants κ as ε↘ 0 is given then by

lim sup
|w| ↘ 0, |z| ↘ 0

x→x̄

f(x+ w + z) − f(x+ w)− f(x+ z) + f(x)

|w||z| = max
A∈∇2

f(x̄)

|A|.

Guide. Get the necessity of the condition from Theorem 13.52, deducing
the formula at the end by the same means. For the sufficiency, introduce
dw(x) := [f(x+ w)− f(x)]/|w| and argue that 13(35) means

|dw(x′)−dw(x)| ≤ κ|x′−x| when |x−x̄| ≤ ε, |x′−x| ≤ ε, 0 < |w| ≤ ε. 13(36)
Obtain from this the existence of some κ0 such that dw(x) ≤ κ0 when |x−x̄| ≤ ε
and 0 < |w| ≤ ε and thereby the fact that f is Lipschitz continuous around x̄
with constant κ0. Next transform 13(36) into the condition that

|Δτf(x
′)(w)−Δτf(x)(w)| ≤ κ|x′ − x| when |x− x̄| ≤ ε, τ ∈ (0, ε], w ∈ IB,

and by considering what happens when τ ↘ 0 and invoking the existence of
∇f(x) almost everywhere around x̄ (cf. 9.60), deduce that ∇f(x) must exist
for all x near x̄ and be strictly continuous with respect to x.

This has a notable consequence for second-order differentiability.

13.56 Proposition (strict second-order differentiability). The following proper-
ties of a function f at a point x̄ are equivalent:

(a) f is differentiable on a neighborhood of x̄, and the mapping ∇f is
strictly differentiable at x̄;
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(b) f is of class C1+ on a neighborhood of x̄ as well as twice differentiable
at x̄ (in the classical or extended sense), and the mapping x �→ ∇2f(x) is
continuous at x̄ relative to its domain of existence;

(c) f is finite on a neighborhood of x̄, and for every choice of z, w ∈ IRn

one has the existence of

lim
τ ↘ 0, σ ↘ 0

x→x̄

f(x+ τw + σz)− f(x+ τw)− f(x+ σz) + f(x)

τσ
.

In that case this limit equals
〈
z,∇2f(x̄)w

〉
.

Proof. In (a), the strict differentiability of ∇f at x̄ entails its Lipschitz con-
tinuity there, so f must be C1+ around x̄, as in (b)—and also in (c) by virtue
of 13.55. All three cases thus fit the framework of Theorem 13.52. The strict
differentiability of ∇f in (a) corresponds then to the existence of a matrix A
such that the second and third expressions in 13(34) converge to 〈z, Aw〉 as
x→ x̄, τ ↘ 0 and σ ↘ 0 (the lim sup equaling the lim inf), and this is therefore
identical to having the quotient in (c) converge to 〈z, Aw〉, as well as to having

max
{〈z, Aw〉 ∣∣A ∈ ∇2

f(x̄)
}
= min

{〈z, Aw〉 ∣∣A ∈ ∇2
f(x̄)

}
=
〈
z, Aw

〉
for all z, w. Thus, ∇f(x̄) = {A}; in other words, ∇2f(x) → A = ∇2f(x̄) as
x → x̄ on the set where ∇2f(x) exists. This is (b). The max corresponds to
the upper limit in (c) and the min to the lower limit of that quotient, so they

can’t coincide unless ∇2
f(x̄) is a singleton. Hence if the limit in (c) exists for

all z, w, it must be of the form 〈z, Aw〉 for some A.

Graphical derivatives and coderivatives of ∂f are connected by still another
result, which doesn’t assume that the function f is C1+ or even finite around x̄
but requires other properties instead.

13.57 Theorem (derivative-coderivative inclusion). Suppose v̄ ∈ ∂f(x̄) for a
function f : IRn →→ IR that is prox-regular and subdifferentially continuous at
x̄ for v̄ as well as twice epi-differentiable at x̄ for v̄. Then

D(∂f)(x̄ | v̄) ⊂ D∗(∂f)(x̄ | v̄),

and in fact one has for all w that

D(∂f)(x̄ | v̄)(w) ∪ [−D(∂f)(x̄ | v̄)(−w)]
⊂ D∗(∂f)(x̄ | v̄)(w) ∩ [−D∗(∂f)(x̄ | v̄)(−w)]. 13(37)

Proof. Let H = D(∂f)(x̄ | v̄) and (w̄, z̄) ∈ gphH. We have gphD∗H(w̄ | z̄) ⊂
gphD∗(∂f)(x̄ | v̄) by 8.44(a). We wish to show that z̄ belongs to the set
D∗(∂f)(x̄ | v̄)(w̄) ∩ [−D∗(∂f)(x̄ | v̄)(−w̄)], and for this it suffices to show

z̄ ∈ D∗H(w̄ | z̄)(w̄) and − z̄ ∈ D∗H(w̄ | z̄)(−w̄).
The theorem will thereby be proved, since, if we were to start instead by
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assuming (−w̄,−z̄) ∈ gphH, the identical reasoning would be applicable to
(w̄′, z̄′) := (−w̄,−z̄).

Because the graph of D∗(∂f)(x̄ | v̄) is closed, we don’t really have to carry
this out for arbitrary (w̄, z̄), but merely for all pairs (w̄, z̄) in some dense subset
of gphH. Indeed, density in some neighborhood of (0, 0) relative to gphH
suffices, because gphH is a cone.

Through Theorem 13.40, our assumptions imply that H = ∂h for a certain
function h, which by 13.49 is globally prox-regular. For any λ > 0 sufficiently
small we know from 13.37 that (λI + S−1)−1 = ∇(eλh) on an open neighbor-
hood V of 0, moreover with eλh of class C1+ on V . In this relation the graphs
of H and F = ∇(eλh) correspond to each other around (0, 0) under a linear
change of variables in IRn × IRn, namely

(w, z)←→ (u, z) with u = w + λz, w = u− λz. 13(38)

Let D be a dense subset of V where F is differentiable, which exists by 13.51
as applied to eλh; for each u ∈ D the matrix ∇F (u) is symmetric. The pairs(
u, F (u)

)
with u ∈ D are locally dense in gphF around (0, 0), so the corre-

sponding pairs (w, z) =
(
u − λF (u), F (u)) are dense in gphH around (0, 0).

Our attention can therefore be focused on such pairs; we can assume that
(w̄, z̄) =

(
ū− λF (ū), F (ū)) for a certain ū ∈ D, writing A = ∇F (ū).

The tangent cone to gphF at
(
ū, F (ū)

)
is the subspace of IRn × IRn

consisting of the pairs (u′, Au′) as u′ ranges over IRn. Under the linear change
of variables in 13(38), the tangent cone TgphH(w̄, z̄) = gphDH(w̄ | z̄) must
therefore be the subspace consisting of the pairs (w′, z′) of form (u′−λAu′, Au′)
for some u′ ∈ IRn. This subspace has to contain (w̄, z̄) itself, inasmuch as gphH
is a cone. Hence there exists ū′ ∈ IRn such that (w̄, z̄) = (ū′ − λAū′, Aū′).

Our goal of proving that z̄ ∈ D∗H(w̄ | z̄)(w̄) and −z̄ ∈ D∗H(w̄ | z̄)(−w̄)
comes down to verifying that (z̄,−w̄) and (−z̄, w̄) lie in NgphH(w̄, z̄). In fact
(z̄,−w̄) and (−z̄, w̄) are regular normals to gphH at (w̄, z̄); we’ll get this by
showing that (z̄,−w̄) is orthogonal to the subspace TgphH(w̄, z̄). For arbitrary
(w′, z′) = (u′ − λAu′, Au′) in this subspace, we have〈

(z̄,−w̄), (w′, z′)
〉
=
〈
(Aū′,−ū′ + λAū′), (u′ − λAu′, Au′)〉

=
〈
Aū′, u′ − λAu′〉− 〈ū′ − λAū′, Au′〉

=
〈
Aū′, u′

〉− 〈ū′, Au′〉 = 〈ū′, (A∗ − A)u′〉 = 0,

because the matrix A = ∇F (ū) is symmetric. This finishes the proof.

13.58 Corollary (subgradient coderivatives of fully amenable functions). If f is
fully amenable at x̄, one has for all v̄ ∈ ∂f(x̄) that

g-lim sup
(x,v)→(x̄,v̄)
v∈∂f(x)

D(∂f)(x |v) ⊂ D∗(∂f)(x̄ | v̄).

Proof. The hypothesis entails f also being fully amenable at all x ∈ dom f
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near x̄; cf. 10.25(b). At such x and for any v ∈ ∂f(x) we have f prox-regular
and subdifferentially continuous by 13.32 and twice epi-differentiable by 13.15.
Then from 13.57 we get D∗(∂f)(x |v) ⊃ D(∂f)(x |v). The fact in 8(18) that

D∗(∂f)(x̄ | v̄) = g-lim sup
(x,v)→(x̄,v̄)
v∈∂f(x)

D∗(∂f)(x |v)

then produces the claimed inclusion with respect to D∗(∂f)(x̄ | v̄).

The limit relation in Corollary 13.58 could also, of course, be elaborated
further with symmetries in the pattern of 13(37).

J∗. Parabolic Subderivatives

We look now at another kind of second-order difference quotient, which extends
the one in 13(4) that was used in defining d2f(x̄)(w):

Δ2
τf(x̄)(w |z) :=

f
(
x̄+ τw + 1

2τ
2z
)− f(x̄)− τdf(x̄)(w)
1
2τ

2
.

This is called a parabolic difference quotient, because it tests the values of f
along a parabola through x̄ instead of a line.

13.59 Definition (parabolic subderivatives). For a function f : IRn → IR, any
point x̄ with f(x̄) finite and any vector w with df(x̄)(w) finite, the parabolic
subderivative at x̄ for w with respect to z is

d2f(x̄)(w |z) := lim inf
τ ↘ 0
z′→z

f
(
x̄+ τw + 1

2τ
2z′
)− f(x̄)− τdf(x̄)(w)
1
2τ

2
.

Thus, in the parabolic difference quotient notation, the function d2f(x̄)(w | ·) :
IRn → IR is defined by

d2f(x̄)(w | ·) = e-lim inf
τ ↘ 0

Δ2
τf(x̄)(w | ·).

If actually d2f(x̄)(w | ·) = e-limτ ↘ 0Δ
2
τf(x̄)(w | ·) �≡ ∞, then f is said to be

parabolically epi-differentiable at x̄ for w.

Parabolic epi-differentiability at x̄ for w thus refers to the case where, for
any z, one can actually find zτ → z such that Δ2

τf(x̄)(w | zτ )→ d2f(x̄)(w |z) as
τ ↘ 0, or equivalently, to the existence of an arc ξ : [0, ε]→ IRn (for some ε > 0)
with ξ(0) = x̄, ξ′

+
(0) = w, ξ′′

+
(0) = z, for which the function ϕ(τ) = f(ξ(τ))

has ϕ′′
+(0) = d2f(x̄)(w | z). The two perspectives correspond in terms of

ξ(τ) = x̄+ τw + 1
2τ

2zτ , zτ = [ξ(τ)− ξ(0)− τξ′(0)]/ 1
2τ

2.
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13.60 Example (parabolic aspects of twice smooth functions). Let f : IRn → IR
be of class C2. Then at any point x̄, f is parabolically epi-differentiable at x̄
for every w ∈ IRn, and

d2f(x̄)(w |z) = 〈w,∇2f(x̄)w〉+ 〈∇f(x̄), z〉.
Detail. This follows from the quadratic expansion of f at x̄.

13.61 Exercise (parabolic aspects of piecewise linear-quadratic functions). Let
f : IRn → IR be convex and piecewise linear-quadratic, and let x̄ ∈ dom f .
Then f is parabolically epi-differentiable at x̄ for every w ∈ dom df(x̄), and

d2f(x̄)(w | z) = d2f(x̄)(w) + σ
∂f(x̄|w)

(z) with

∂f(x̄ |w) : =
{
v ∈ ∂f(x̄) ∣∣df(x̄)(w) = 〈v, w〉} = argmax

v∈∂f(x̄)

〈v, w〉,

hence in particular,

d2f(x̄)(w | z) <∞ ⇐⇒ z ∈ TK(w) for K = dom df(x̄)(w).

Guide. Get this out of the facts in 13.9.

Parabolic derivatives can be interpreted geometrically in terms of the
second-order tangent sets in 13.11, as follows.

13.62 Example (parabolic subderivatives versus second-order tangents).

(a) For a set C ⊂ IRn and any choice of x̄ ∈ C and w ∈ TC(x̄), one has
d2δC(x̄)(w |z) = δT 2

C
(x̄|w)(z). Parabolic epi-differentiability of the indicator

function δC at x̄ for w corresponds to parabolic derivability of C at x̄ for w.

(b) Consider f : IRn → IR, a point x̄ with f(x̄) finite and a vector w with
df(x̄)(w) finite; let α = f(x̄) and β = df(x̄)(w). Then

epi d2f(x̄)(w | ·) = T 2
epi f

(
(x̄, α)

∣∣ (w, β)).
Parabolic epi-differentiability of f at x̄ for w is parabolic derivability of epi f
at (x̄, α) for (w, β).

Detail. These observations are immediate from the definitions.

13.63 Exercise (chain rule for parabolic subderivatives). Suppose f(x) =
g(F (x)) for a C2 mapping F : IRn → IRm and a proper, lsc function
g : IRm → IR. Let x̄ ∈ dom f satisfy the constraint qualification that the only
vector y ∈ ∂∞g(F (x̄)) with∇F (x̄)∗y = 0 is y = 0. Then for any w ∈ dom df(x̄),
i.e., with ∇F (x̄)w ∈ dom dg(F (x̄)), one has

d2f(x̄)(w |z) = d2g
(
F (x̄)

∣∣w∇2F (x̄)w +∇F (x̄)z).
Further, f is parabolically epi-differentiable at x̄ for w if g is subdifferentially
regular at F (x̄) and parabolically epi-differentiable at F (x̄) for ∇F (x̄)w.
Guide. Develop this by combining 13.13 with Example 13.62(b).
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13.64 Proposition (properties of parabolic subderivatives). For f : IRn → IR,
any point x̄ with f(x̄) finite and any vector w with df(x̄)(w) finite, the function
d2f(x̄)(w | ·) : IRn → IR is lsc. For vectors v with df(x̄)(w) = 〈v, w〉 it satisfies

infz

{
d2f(x̄)(w |z) − 〈v, z〉

}
≥ d2f(x̄ |v)(w), 13(39)

where the left side equals

lim inf
τ ↘ 0, w′→w

[w′−w]/τ bounded

Δ2
τf(x̄ |v)(w′)

in contrast to the right side, which has this form without the boundedness.

Proof. As a lower epi-limit, d2f(x̄)(w | ·) is lsc. The left side of 13(39) is
identical to the lowest limit attainable for limν Δ

2
τν (x̄)(w |zν)−〈v, zν〉 relative

to τν ↘ 0 and a bounded sequence of vectors zν (as seen from the cluster points
z of such a sequence). In terms of wν = w +

1
2τ

νzν , which corresponds to
zν = 2[wν − w]/τν , we have, whenever df(x̄)(w) = 〈v, w〉, that
Δ2

τνf(x̄)(w |zν)− 〈v, zν〉

=
f(x̄+ τν(w + 1

2τ
νzν))− f(x̄)− τνdf(x̄)(w)− 〈v, 12τν 2zν〉

1
2τ

ν 2

=
f(x̄+ τν(w + 1

2τ
νzν)− f(x̄)− τν〈v, w + 1

2z
ν〉

1
2τ

ν 2
= Δ2

τνf(x̄ |v)(wν).

It’s clear then that the left side of 13(39) is the lowest value attainable as
limν Δτνf(x̄ |v)(wν) for sequences τν ↘ 0 and wν → w with [wν − w]/τν

bounded. Without the boundedness restriction we would get d2f(x̄ |v)(w) this
way, so the inequality in 13(39) is correct.

13.65 Definition (parabolic regularity). A function f : IRn → IR is parabolically
regular at a point x̄ for a vector v if f(x̄) is finite and the inequality in 13(39)
holds with equality for every w having df(x̄)(w) = 〈v, w〉, or in other words
if for such w with d2f(x̄ |v)(w) < ∞ there exists, among the sequences τν ↘ 0
and wν → w with Δ2

τνf(x̄ |v)(wν) → d2f(x̄ |v)(w), ones with the additional
property that lim supν |wν − w|/τν <∞.

A major source of interest in parabolic subderivatives and parabolic regu-
larity lies in second-order optimality conditions. A connection with the version
of such conditions in terms of second subderivatives in Theorem 13.24 can be
seen through the fact that, by 13.5, one has

dom d2f(x̄ |0) ⊂ {w ∣∣ df(x̄)(w) ≤ 0
}
,

with d2f(x̄ |0)(w) = −∞ if df(x̄)(w) < 0. For comparison, 13.64 gives us

infz d
2f(x̄)(w | z) ≥ d2f(x̄ |0)(w) whenever df(x̄)(w) = 0,
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and by definition this holds with equality when f is parabolically regular at x̄
for v = 0. These observations allow the optimality conditions in 13.24 to be
translated into statements about parabolic subderivatives.

13.66 Theorem (parabolic version of second-order optimality). Consider the
problem of minimizing a proper function f over IRn.

(a) If x̄ is locally optimal, then df(x̄)(w) ≥ 0 for all w, and in the case of
w �= 0 with df(x̄)(w) = 0, also infz d

2f(x̄)(w | z) ≥ 0.

(b) If f is parabolically regular at x̄ for v = 0 and has df(x̄)(w) ≥ 0 for
all w, and in the case of w �= 0 with df(x̄)(w) = 0 also infz d

2f(x̄)(w | z) > 0,
then x̄ is locally optimal, and moreover there exist ε > 0 and δ > 0 such that
f(x) ≥ f(x̄) + ε|x− x̄|2 when |x− x̄| ≤ δ.
Proof. This is obvious from Theorem 13.24, the general inequality in 13(39)
and the definition of parabolic regularity in 13.65(a), as applied to v = 0.

The necessary condition in Theorem 13.66(a) is equivalent to the one
in terms of second-order epi-derivatives in Theorem 13.24(a) as long as f is
parabolically regular at x̄ for v̄ = 0, although without that property it may be
weaker. Parabolic regularity is absolutely essential, however, in obtaining the
sufficient condition in 13.66(b).

An example of what can go wrong is furnished on IR2 by the function

f(x1, x2) = |x2 − x4/31 | − x21 at x̄ = (0, 0). This function is amenable at x̄ and
semidifferentiable there with

df(x̄)(w1, w2) = |w2|, ∂f(x̄) =
{
(v1, v2)

∣∣ v1 = 0, |v2| ≤ 1
}
,

hence 0 ∈ ∂f(x̄). It’s twice epi-differentiable at x̄ for v = 0 with

d2f(x̄ |0)(w1, w2) =

{
−2w2

1 if w2 = 0,
∞ if w2 �= 0,

so f doesn’t have a local minimum at x̄ because the second-order necessary
condition in 13.24(a) isn’t satisfied. In the context of 13.66, however, we not
only have df(x̄)(w) ≥ 0 for all w, but, for vectors w �= 0 with df(x̄)(w) = 0
(namely w = (w1, w2) with w1 �= 0, w2 = 0) also

d2f(x̄)(w | z) =∞ for all z ∈ IRn.

Hence infz d
2f(x̄)(w | z) > 0 for such w, and the second-order ‘sufficient’ con-

dition in 13.66(b) is fulfilled despite the lack of a local minimum; the condition
isn’t really sufficient of course unless f is parabolically regular at x̄ for v = 0,
and that’s false in this case.

The culprit in this example isn’t infinite-valuedness of d2f(x̄)(w | z) per se.
If f(x1, x2) were replaced by f0(x1, x2) = min

{
f(x1, x2), x

2
1

}
, the first-order

optimality conditions would still be satisfied at x̄ = (0, 0) and f0 would be twice
epi-differentiable there with d2f0(x̄ |0) = d2f(x̄ |0). But now d2f(x̄)(w |z) =
2w2

1 for all z ∈ IRn when w is a vector with df(x̄)(w) = 0. Again, because of
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the absence of parabolic regularity, the second-order inequality in 13.66(b) is
unable to detect that f doesn’t have a local minimum at x̄.

Fully amenable functions don’t suffer from this sort of parabolically irreg-
ular behavior, and indeed they exhibit an especially tight relationship between
parabolic subderivatives and second subderivatives.

13.67 Theorem (parabolic aspects of fully amenable functions). Let f : IRn →
IR be fully amenable at x̄. Then f is parabolically epi-differentiable at x̄ for
every vector w ∈ dom df(x̄) and parabolically regular at x̄ for every vector v
included in ∂f(x̄).

Indeed, for every w ∈ domdf(x̄) the function z �→ d2f(x̄)(w |z) is lower
semicontinuous, proper, convex and piecewise linear, and it is conjugate to the
function

v �→
{−d2f(x̄ |v)(w) if v ∈ ∂f(x̄ |w)
∞ if v /∈ ∂f(x̄ |w)

}
for ∂f(x̄ |w) := argmax

v∈∂f(x̄)

〈v, w〉,

which likewise is lsc, proper, convex and piecewise linear. With respect to any
local representation f = g◦F around x̄ as in the definition of full amenability
(with g piecewise linear-quadratic), one has

d2f
(
x̄
)(
w | z

)
= d2g

(
F (x̄)

)(∇F (x̄)w | w∇2F (x̄)w +∇F (x̄)z)
= d2g

(
F (x̄)

)(∇F (x̄)w)
+max

{〈
y, w∇2F (x̄)w +∇F (x̄)z〉 ∣∣∣ y ∈ Y (x̄ |w)

}
for Y (x̄ |w) := argmax

y∈∂g(F (x̄))

〈y,∇F (x̄)w〉.

13(40)

Proof. We’ll proceed in terms of the representation f = g◦F in the amenability
context. That immediately yields through 13.63 and 13.61 the parabolic epi-
differentiability of f along with the formula in 13(40), so we concentrate on
proving the duality relations.

Let h(z) = d2f(x̄)(w |z) and denote by k the function of v that’s claimed
to be conjugate to h. Let γ = d2g(F (x̄))(∇F (x̄)w). From 13(40) we have

h(z) = d2g
(
F (x̄)

)(∇F (x̄)w | w∇2F (x̄)w +∇F (x̄)z)
= γ + σY (x̄|w)

(
w∇2F (x̄)w +∇F (x̄)z) .

The set Y (x̄ |w) is not just convex, it is polyhedral, because ∂g(F (x̄)) is poly-
hedral. On the other hand, Theorem 13.14 tells us that k is a proper convex
function such that

−k(v) =
{
γ +max

{〈y, w∇2F (x̄)w〉 ∣∣ y ∈ Y (x̄, v)
}

if v ∈ ∂f(x̄ |w),
∞ otherwise,

where
Y (x̄, v) :=

{
y ∈ ∂g(F (x̄)) ∣∣∇F (x̄)∗y = v

}
.
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The pairs (v, y) such that v ∈ ∂f(x̄ |w) and y ∈ Y (x̄, v) are the ones with
y ∈ Y (x̄ |w) and ∇F (x̄)∗y = v. Thus, k(v) = −γ+miny ψ(v, y) for the convex,
piecewise linear function

ψ(v, y) =

{
−〈y, w∇2F (x̄)w〉 if y ∈ Y (x̄ |w) and ∇F (x̄)∗y = v,
∞ otherwise.

This description shows that k is piecewise linear (cf. 3.55(b)). We calculate

k∗(z) = sup
v

{〈v, z〉 − k(v)} = sup
v,y

{〈v, z〉+ γ − ψ(v, y)}
= γ + sup

y∈Y (x̄|w)

{〈∇F (x̄)∗y, z〉+ 〈y, w∇2F (x̄)w〉}
= γ + σY (x̄|w)

(
w∇2F (x̄)w +∇F (x̄)z) = h(z).

Thus, k∗ = h. It follows that h, like k, is proper, convex and piecewise linear
(see 11.14), and h∗ = k.

13.68 Corollary (parabolic aspects of fully amenable sets). If a set C ⊂ IRn is
fully amenable at x̄, then C is not only parabolically derivable at x̄ for every
w ∈ TC(x̄), but also parabolically regular at x̄ for every v ∈ NC(x̄).

Indeed, for every w ∈ TC(x̄) the second-order tangent set T 2
C(x̄ |w) is

nonempty and polyhedral, and its support function is given by

σ
T 2
C(x̄|w)

(v) =

{
−d2(δC)(x̄ |v)(w) if v ∈ NC(x̄) and v ⊥ w,
∞ otherwise.

Proof. Apply Theorem 13.67 to f = δC .

The parabolic derivability assertion in 13.68 reiterates, in different words,
the result of 13.13 for the case of polyhedral D.

Commentary

The first major result about generalized second-order differentiability of functions
was the theorem of Alexandrov [1939], according to which a finite, convex function
on an open convex subset of IRn has a quadratic expansion at almost every point. A
geometric counterpart to that result was independently obtained by Busemann and
Feller [1936] in an investigation of convex hypersurfaces. Infinite-dimensional analogs
have recently been explored by Borwein and Noll [1994].

Here we have found it advantageous not to interpret second-order differentiabil-
ity beyond the classical setting as referring automatically just to the existence of a
quadratic expansion, but to focus instead on the new notion in Definition 13.1(b).
That notion of extended second-order differentiability fits better with our broader
theme of ‘subdifferentiability’ while still supporting the derivation of results like
Alexandrov’s theorem. It’s always sufficient for the existence of a quadratic expan-
sion, as demonstrated in Theorem 13.2(b), and it’s necessary too when the function
f is ‘prox-regular’, according to 13.42. Equivalence thus holds for finite, convex
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functions in particular. Through the connection in 13.2(c) between extended second-
order differentiability of f and first-order differentiability of ∂f , we are able to apply
Rademacher’s theorem (in 9.60) to the graph of ∂f and in that way get the generic
existence of quadratic expansions to convex functions as a special case of 13.51.

The approach of using epigraphical instead of pointwise limits to define gen-
eralized second-derivatives originated with Rockafellar [1985b], [1988]. That work
involved both of the subderivative expressions in Definition 13.3, but it concentrated
on the situation where the lower epi-limit giving d2f(x̄ | v̄) coincides with the corre-
sponding upper epi-limit so as to yield the second-order epi-differentiability defined in
13.6(b). The goal was the establishment of the hitherto unsuspected fact, stated here
in 13.14, that this property holds for fully amenable functions and thus prevails in
the typical circumstances of finite-dimensional optimization, offering another tool for
the design and analysis of numerical methods. Also in that early work of Rockafellar
were most of the basic facts in 13.9 about piecewise linear-quadratic functions.

Second-order semidifferentiability, as a natural concept with its own attractions,
hasn’t previously been investigated. Its unfortunate shortcomings, powerfully illus-
trated in 13.10, make obvious the need a theory based on epi-convergence instead of
uniform convergence of difference quotient functions.

Ioffe [1991] began the systematic study of second-order subderivatives defined
by lower epi-limits rather than full epi-limits, as in 13.3. In that paper he obtained a
chain rule inequality somewhat resembling (but weaker than) the new one in 13.14,
as a complement to the chain rule equation of Rockafellar [1988] in the case of fully
amenable functions. Cominetti [1991] identified the properties in composition that
enable a chain rule equation for second-order subderivatives to be obtained more
generally. For infinite-dimensional chain rules involving integral functionals, see Do
[1992], Levy [1993], and Loewen and Zheng [1995].

For the formulas deduced from the chain rule and stated in 13.15, 13.16 and
13.18, see Poliquin and Rockafellar [1993], [1994], as well as Rockafellar [1989a], where
optimality conditions were developed out of second-order epi-derivatives as well; cf.
13.24 and 13.25. The special optimality conditions in the penalty format of 13.26 are
new but correspond to the same ideas in utilizing the duality for convex functions in
13.21, 13.22 and 13.23, which was established in Rockafellar [1990b] (cf. related work
of Gorni [1991], Seeger [1992b], Penot [1994b]).

In the theory of second-order tangents, the parabolic derivability of fully
amenable sets in 13.13 was proved by Rockafellar [1988]. There, as here, it was
the platform for proving that fully amenable functions are twice epi-differentiable;
cf. 13.14. The broader case of the chain rule in 13.13 in which D is convex but not
necessarily polyhedral is due to Cominetti [1990], who worked with the tangent cone
form of the constraint qualification. For nonconvex D, the rule is new.

Also developed in Rockafellar [1988] was the parabolic subderivative notion in
13.59, the focus being on parabolic epi-differentiability and the fact in 13.67 that
fully amenable functions enjoy that property. The duality in 13.67 between parabolic
subderivatives and second-order subderivatives of fully amenable functions was estab-
lished in that paper as well. The support function formula in 13.68 for the second-
order tangent sets associated with fully amenable sets, which furnishes parabolic
regularity, wasn’t made explicit there, but is simply the case where the function f is
taken to be the indicator δC .

Parabolic ‘directional derivatives’, defined in analogy to traditional first-order
directional derivatives but along parabolas instead of straight lines—or in other words
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by pointwise convergence of parabolic difference quotients instead of epi-convergence
as with parabolic subderivatives—were featured earlier by Ben-Tal [1980] as a tool
in the development of second-order optimality conditions; see also Ben-Tal and Zowe
[1982], [1985]. This approach was continued by Cominetti [1990], who looked at
second-order tangent sets in spaces of possibly infinite dimensions. Of course, because
parabolic directional derivatives don’t draw on epi-convergence, they don’t correspond
to second-order tangents to an epigraph in the way that parabolic subderivatives do
in 13.62(b).

The approach to second-order optimality through second-order tangents was re-
cently explored further by Bonnans, Cominetti and Shapiro [1996a], [1996b]. Those
researchers formulated a property of ‘second-order regularity’ which is sufficient (al-
though not necessary) for the parabolic regularity defined in 13.65, and they showed
that this property holds for certain sets outside the fully amenable class, e.g. the
cone of positive-definite, symmetric matrices. The necessary and sufficient condi-
tions for optimality that they obtained fit the pattern of the parabolic conditions in
13.66 and thus can be construed as optimality conditions in terms of second-order
subderivatives, echoing the ones in 13.24 (with some infinite-dimensional overtones).

For additional material on ‘higher-order tangents’, see Aubin and Frankowska
[1990] and Penot [1992]. For other work on second-order optimality in the face of non-
smoothness, see Ioffe [1979], Chaney [1982a], [1982b], [1983], [1987], Hiriart-Urruty,
Strodiot and Nguyen [1984], Burke [1987], Cominetti [1990], Cominetti and Correa
[1990], Studniarski [1991], Penot [1994a], and Poliquin and Rockafellar [1997]. The
precise relationship between Chaney’s ideas and the ones in this chapter has yet to
be clarified.

The bridge revealed in 13.20 between epi-derivatives of convex functions and the
gauges of certain convex sets provides the way of relating the second-order theory pre-
sented here to an approach of Hiriart-Urruty [1982a], [1982c], [1984], [1986] in which
those sets serve as the second-order objects and enjoy a calculus. Hiriart-Urruty’s
version of second-order differentiation has no apparent extension to nonconvex func-
tions. For more on it, see also Hiriart-Urruty and Seeger [1989a], [1989b], Seeger
[1992b], [1994], and Moussaoui and Seeger [1994].

The concept of prox-regularity in 13.27 was introduced along with the subdiffer-
ential continuity in 13.28 by Poliquin and Rockafellar [1996a], who also developed the
connections with convexity, normality and amenability in 13.30, 13.31 and 13.32. A
kindred notion of ‘proximal smoothness’ was formulated by Clarke, Stern and Wolen-
ski [1995] in the geometric framework of projections on nonconvex sets, and in a
global rather than local manner. They also got a result about projection mappings
like 13.38. Their work encompassed subsets of general Hilbert spaces.

The fact in 13.34, that a function f belongs to class C1+ if and only if both f
and −f are lower-C2, is new.

Theorem 13.30, which uses prox-regularity to tie second-order epi-derivatives of
f to proto-derivatives of ∂f , is a result of Poliquin and Rockafellar [1996a]. This path-
way of analysis, invoking Attouch’s theorem on graphical convergence of subgradient
mappings (cf. 12.35), was opened up by Rockafellar [1985b], [1990b], in the case of
convex functions and extended by Poliquin [1990b] to strongly amenable functions;
for an infinite-dimensional version of the latter, see Penot [1995]. Other results of
Poliquin and Rockafellar [1996a], [1996b], are seen in 13.45, 13.46 and 13.49, and in
the symmetry assertion of 13.51. The formula in 13.50 follows Poliquin and Rockafel-
lar [1993], [1994].
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The proto-derivative model in 13.47 for the perturbation of first-order optimality
conditions emerged in Rockafellar [1990a]. The one in 13.48 came up in Rockafellar
[1989b] for the variational inequality case (where f is the indicator of a closed, convex
set), but it has echoes in unpublished work of Robinson [1985] that wasn’t focused
on general proto-derivatives. It was extended in a number of ways by Levy and
Rockafellar [1994], [1996] and Levy [1996]. Other precedents for the model 13.48 are
found in the papers of Robinson [1977], [1980], [1982] on continuous dependence of
solutions to generalized equations; more recently, Robinson [1991] has worked with
semidifferentiability developed through Minty reparameterization.

For both perturbation models, the criteria for the Aubin property can be re-
garded as elaborations of ideas of Mordukhovich [1994]. Additional results on the
model in 13.47 can be found in Poliquin and Rockafellar [1992] for an important
special case. Lipschitzian properties (without proto-differentiability) in the general
context of 13.48 have been investigated by Dontchev and Hager [1994]. In the case
of 13.48 where ∂f = NC for a polyhedral set C, Dontchev and Rockafellar [1996]
have shown that the Aubin property of S implies localized single-valuedness, hence
semidifferentiability as well, and the criterion for the Aubin property can be stated
as a ‘critical face condition’.

The facts in Theorem 13.52 are largely attributable to Cominetti and Correa
[1986], [1990], apart for the articulation furnished here in terms of the strict derivative
mapping D∗(∇f)(x̄). The consequences for proximal mappings and projections in
13.53 and 13.54 haven’t previously been recorded. Also deserving credit for parts of
the picture in 13.52 are Hiriart-Urruty [1982b] and Páles and Zeidan [1996]. The 1990
paper of Cominetti and Correa developed strict second-order differentiability as well,
although not all of 13.56. The connection with second-order Lipschitz continuity in
13.55 was uncovered by Cominetti [1986]. It’s known also, as a sort of partial converse
to Theorem 13.52, that the finiteness of the double-difference quotient limit in 13(34)
requires that f be C1+; this was proved by Milosz [1988]. For other work on second-
order properties of functions of class C1+, see Yang and Jeyakumar [1992], [1995],
Yang [1994], [1996], and Georgiev and Zlateva [1996].

The derivative-coderivative inclusions in 13.57 and 13.58 come from Rockafellar
and Zagrodny [1997].

For another line of geometric development, aimed at generalizing the Dupin
indicatrix of differential geometry, see Hiriart-Urruty [1989a] and Noll [1992]. Second-
derivative ideas in terms of ‘jets’ have been explored by Ioffe and Penot [1995]. A
different type of second subderivative has been defined by Michel and Penot [1994].

An application of second-order nonsmooth analysis to a fundamental question of
statistics, as formulated with respect to the behavior of optimal solutions in problems
that depend on random variables, can be seen in King and Rockafellar [1993].



14. Measurability

Problems involving ‘integration’ offer rich and challenging territory for vari-
ational analysis, and indeed it’s especially around such problems, under the
heading of the calculus of variations, that the subject has traditionally been
organized. Models in which expressions have to be integrated with respect
to time are central to the treatment of dynamical systems and their optimal
control. When the systems are ‘distributed’, with states that, like density
distributions, are conceived as elements of a function space, integration with
respect to spatial variables or other parameters can enter the picture as well.
In economics, it may be desirable to integrate over a space of infinitesimal
agents. Applications in stochastic environments often concern expected values
that are defined by integration with respect to a probability measure, or may
demand a sturdy platform for working with concepts like that of a ‘random
set,’ a ‘random function’, or even a ‘random problem of optimization’.

Satisfactory handling of problem models in these categories usually re-
quires an appeal to measure theory, and that inevitably raises questions about
measurable dependence. This chapter is aimed at providing the technical ma-
chinery for answering such questions, so that analysis can go forward in full
harmony with the ideas developed in the preceding chapters, where variable
points are often replaced by variable sets, the geometry of graphs is replaced
by that of epigraphs, and so forth.

Formally, ‘measurability’ can be regarded as analogous to ‘continuity’. A
need for results about measurability can be anticipated in just about every
situation where results about continuity are worth knowing. Measurability has
distinctive features, however. While continuous selections, as discussed at the
end of Chapter 5, have a relatively limited role in the theory of continuity,
measurable selections are the tool for resolving many of the issues that have
to be faced in coping with measurability. Another feature is that a broader
range of spaces has to be admitted. For continuity, we could conveniently
focus our attention on mappings from one Euclidean space to another, thereby
lessening the mathematical burden without undue sacrifice of generality, at
least in an introductory phase of study. But for measurability it’s important
to proceed more abstractly, above all for the sake of stochastic applications.
Probability spaces can be subsets of some IRd, but commonly too they are
discrete, or some mixture of continuous and discrete. A complication that
must be accommodated as well is the presence of more than one probability
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measure, for instance a sequence of empirical measures that converges in some
way to an underlying ‘true’ measure.

This obliges us to operate in the framework of a measurable space instead
of a measure space. That space will be denoted by (T,A); here T is any
nonempty set and A is some σ-field of subsets of T , these being called the
measurable subsets of T , or the A-measurable subsets for emphasis. In many
situations, T may have topological structure relevant to the designation of A,
but that isn’t of immediate concern. Only occasionally will we be referring to
some measure μ on (T,A).

At the top of our agenda is the investigation of mappings S : T →→ IRn,
what it means for them to be ‘measurable’, and what criteria can be used to
check whether this property is at hand. We’ll turn then toward the study of
‘integrands’ f : T × IRn → IR as crucial elements in the expression of integral
functionals of the form

If [x] =

∫
T

f
(
t, x(t)

)
μ(dt) 14(1)

on spaces X of functions x : T → IRn. A hurdle that has to be surmounted
in getting If to be well defined is that the standard assumptions on the inte-
grand f that might be invoked to ensure the measurability of t �→ f

(
t, x(t)

)
when t �→ x(t) is measurable, such as measurability of f in the T argument
in combination with continuity in the IRn argument, aren’t adequate for the
settings in variational analysis where f(t, ·) is at best merely lsc on IRn. The
key to progress will be the class of integrands f that are epi-measurable, i.e.,
such that the set-valued mapping t �→ epi f(t, ·) is measurable.

A. Measurable Mappings and Selections

Measurability of set-valued mappings S : T →→ IRn can be described from
several different angles in analogy with the measurability of single-valued map-
pings, with which we suppose the reader is familiar. At the foundation is the
measurability of various inverse images

S−1(D) =
⋃

x∈D
S−1(x) =

{
t ∈ T ∣∣S(t) ∩D �= ∅}.

14.1 Definition (measurable mappings). A set-valued mapping S : T →→ IRn is
measurable if for every open set O ⊂ IRn the set S−1(O) ⊂ T is measurable, i.e.,
S−1(O) ∈ A. In particular, the set domS = S−1(IRn) must be measurable.

When S happens to be single-valued, this definition of measurability re-
duces to the ordinary one for single-valued mappings (in one of its equivalent
forms). An elementary class of examples beyond single-valuedness is furnished
by the constant mappings, with S(t) ≡ D for a set D ⊂ IRn. On the heels of
this is the class of ‘step’ mappings S : T →→ IRn generated by partitioning T
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into a collection of sets Tj ∈ A for j ∈ J , a countable (or finite) index set and,
for some choice of sets Dj ⊂ IRn, defining S(t) ≡ Dj for t ∈ Tj .

Further examples on such a level are S(t) = D + a(t) and S(t) = λ(t)D
for any set D ⊂ IRn, as long as the vector a(t) ∈ IRn and scalar λ(t) ∈ IR
depend measurably on t. In the first case this is clear from having S−1(O) =
a−1(O−D), where O−D is open when O is open. In the second case one has
S−1(O) = λ−1(U) for the open set U =

{
τ ∈ IR ∣∣O ∩ τD �= ∅}.

To tap into the wealth of other examples, it’s helpful to have a tool chest
of criteria for measurability beyond the definition itself. Closed-valuedness of
a mapping will need to be assumed in many cases, but that’s not much of a
handicap because closed-valued mappings S are typical in applications, and
anyway the property is constructive in the following sense.

14.2 Proposition (preservation with closure of images). For S : T →→ IRn,

t �→ S(t) measurable =⇒ t �→ clS(t) measurable.

Proof. For O ⊂ IRn, clearly O ∩ S(t) �= ∅ if and only if O ∩ clS(t) �= ∅.
Arguments about countability must frequently be made, since the σ-field

A only allows for countable unions and intersections. It’s no wonder then that
we’ll often have recourse to the rational numbers Q/ and the countable dense
subset Q/ n of IRn. It will be convenient to speak of rational closed balls IB(x, ρ)
and rational open balls int IB(x, ρ) when x ∈ Q/ n and ρ ∈ Q/ , ρ > 0.

14.3 Theorem (measurability equivalences under closed-valuedness). For closed-
valued S : T →→ IRn, each of the following is equivalent to S being measurable:

(a) S−1(O) ∈ A for all open sets O ⊂ IRn (the definition);

(b) S−1(C) ∈ A for all closed sets C ⊂ IRn;

(c) S−1(C) ∈ A for all compact sets C ⊂ IRn;

(d) S−1(B) ∈ A for all closed balls B ⊂ IRn;

(e) S−1(B) ∈ A for all rational closed balls B ⊂ IRn;

(f) S−1(O) ∈ A for all open balls O ⊂ IRn;

(g) S−1(O) ∈ A for all rational open balls O ⊂ IRn;

(h)
{
t ∈ T ∣∣S(t) ⊂ O} ∈ A for all open sets O ⊂ IRn;

(i)
{
t ∈ T ∣∣S(t) ⊂ C} ∈ A for all closed sets C ⊂ IRn;

(j) the function t �→ d(x, S(t)) : T → IR is measurable for each x ∈ IRn.

Proof. (a)⇒(c): For any nonempty, compact set B ⊂ IRn consider the sets
Bν :=

{
x ∈ IRn

∣∣ d(x,B) < 1/ν
}
for ν ∈ IN . Since S(t) ∩ B �= ∅ if and only

if S(t) ∩ Bν �= ∅ for all ν ∈ IN , we have S−1(B) =
⋂

ν S
−1(Bν). Thus, S(B)

is the intersection of a countable collection of measurable sets and therefore is
itself measurable.

(c)⇒(d)⇒(e): Closed balls are compact.
(e)⇒(a): Every open set O in IRn is the countable union of closed rational

balls, say O =
⋃

ν∈IN IB(xν , ρν) with xν ∈ Q/ n, ρν ∈ Q/ , ρ > 0. Then S−1(O) =⋃
ν∈IN S−1

(
IB(xν , ρν)

)
. As a countable union of sets in A, S−1(O) is in A.
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(c)⇔(b): Noting that every compact set is closed and that every closed
set C =

⋃
ν∈IN (C ∩ νIB) is the countable union of compact sets, one can draw

on the argument used in proving that (e)⇒(a).
(a)⇒(f)⇒(g)⇒(a): Since every open ball is an open set, and every rational

open ball is an open ball, it really suffices to check that (g)⇒(a). But that
implication is immediate from the fact that every open subset of IRn can be
expressed as the countable union of rational open balls.

(h)⇔(b) and (i)⇔(a): Here we simply use the fact that
{
t
∣∣S(t) ⊂ D

}
=

T \S−1(D′) for D′ = IRn \D.
(j)⇔(d): For any choice of α ∈ IR+, one has d(x, S(t)) ≤ α if and only if

S(t) ∩ (x+ αIB) �= ∅. (This utilizes the closedness of S(t).) Therefore,{
t ∈ T ∣∣ d(x, S(t)) ≤ α} = S−1(x+ αIB).

Condition (j) corresponds to the measurability of the set on the left, while (d)
corresponds to the measurability of the set on the right.

The equivalences in Theorem 14.3 reassure us that, as long as we keep to
closed-valued mappings, several properties that might be contemplated as alter-
native definitions of measurability are consistent with each other. The question
of consistency with alternative interpretations also comes up in another way,
however.

When a mapping S : T →→ IRn is closed-valued, it can be identified with a
single-valued mapping from the set domS into the ‘hyperspace’ cl-sets �=∅(IR

n),
which consists of all nonempty closed subsets of IRn. Measurability of that
single-valued mapping has a standard interpretation, namely that the inverse
image of every Borel subset in the hyperspace is a measurable subset of T . The
Borel field on cl-sets �=∅(IR

n) is the one generated by the topology of (Painlevé-
Kuratowski) set convergence, or equivalently with respect to the hyperspace
metric dl developed at the end of Chapter 4. Does this interpretation clash with
the definition of measurability in 14.1? No, according to the next theorem.

14.4 Theorem (measurability in hyperspace terms). A closed-valued mapping
S : T →→ IRn is measurable if and only if it is measurable when viewed as a
single-valued mapping from domS, a measurable subset of T , to the metric
hyperspace

(
cl-sets �=∅(IR

n), dl
)
.

Proof. There’s no loss of generality in taking domS = T . For clarity, let’s
denote by s the single-valued mapping from T to

(
cl-sets�=∅(IR

n), dl
)
that cor-

responds to S. The measurability of s means that s−1(B) ∈ A for all B ∈ B,
where B is the Borel field on

(
cl-sets �=∅(IR

n), dl
)
. The measurability of S, mean-

ing that S−1(O) ∈ A for every open set O ⊂ IRn, can be expressed in terms of
s through the fact that S−1(O) =

{
t ∈ T ∣∣ s(t) ∈ CO} = s−1(CO) for

CO :=
{
C ∈ cl-sets �=∅(IR

n)
∣∣C ∩O �= ∅}.

The issue comes down then to whether the σ-field E on cl-sets�=∅(IR
n) that

is generated by all sets of form CO with O ⊂ IRn open (which is called
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the Effrös field) is the same as B, the σ-field generated by all open sets in(
cl-sets�=∅(IR

n), dl
)
.

Clearly E ⊂ B, because the sets CO are open in cl-sets�=∅(IR
n), as follows

immediately from Theorem 4.5(a). For the opposite inclusion, we’ll show that
the balls IBdl(C, δ) for C ∈ cl-sets �=∅(IR

n), δ ∈ IR+, belong to E . This is all
that’s needed, since such balls generate B.

Let’s start by observing that for each x ∈ IRn the function d(x, ·) :
cl-sets �=∅(IR

n)→ IR+ is E-measurable; for any γ > 0, we have{
C
∣∣ d(x, C) < γ

}
= CO with O = int IB(x, γ).

Then for any Ĉ ∈ cl-sets �=∅(IR
n) and any ρ ≥ 0 the function C �→ dlρ(C, Ĉ) is

E-measurable, inasmuch as

dlρ(C, Ĉ) = sup
x∈ρIB

∣∣d(x, C)− d(x, Ĉ)∣∣ = sup
x∈Q/ n∩ρIB

∣∣d(x, C)− d(x, Ĉ)∣∣,
the set Q/ n ∩ ρIB being countable and dense in ρIB. Next, the function
C �→ dl(C, Ĉ) :=

∫∞
0
e−ρdlρ(C, Ĉ) dρ is E-measurable on cl-sets�=∅(IR

n); by
the definition of the integral it can be expressed as the limit of a countable
collection of E-measurable functions. Hence IBdl(Ĉ, δ) ∈ E .

The next result gets to the heart of the relationship between the single-
valued and set-valued versions of measurability for mappings into IRn itself.

14.5 Theorem (Castaing representations). The measurability of a closed-valued
mapping S : T →→ IRn is equivalent to each of the following conditions (in
combination with the measurability of domS):

(a) S admits a Castaing representation: there is a countable family {xν}ν∈IN

of measurable functions xν : domS → IRn such that

S(t) = cl
{
xν(t)

∣∣ ν ∈ IN}
for each t ∈ T ;

(b) there is a countable family {yν}ν∈IN of measurable functions yν :
domS → IRn such that

(i) for each ν ∈ IN , the set T ν =
{
t ∈ T ∣∣ yν(t) ∈ S(t)} is measurable,

(ii) for each t ∈ T , the set S(t) ∩ {
yν(t)

∣∣ ν ∈ IN}
is dense in S(t).

Proof. We begin by showing that these two conditions are equivalent to each
other. Clearly (a) implies (b). Now assume that (b) holds. Since domS =⋃

ν T
ν , we have domS ∈ A. Define the function w recursively as follows: take

w = y1 on T 1, and for ν = 2, . . . take w = yν on T ν \T ν−1. Let

xν(t) =

{
yν(t) for t ∈ T ν ,
w(t) for t ∈ domS \T ν .

Then xν is a measurable function, and xν(t) ∈ S(t) for all t ∈ domS. Since
S(t) ∩ {

yν(t)
∣∣ ν ∈ IN

}
is dense in S(t), we have S(t) = cl

{
xν(t)

∣∣ ν ∈ IN
}
.

Thus, we have a Castaing representation for S.
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Let’s now show that if S admits a Castaing representation {xν}ν∈IN , S
must be a measurable mapping. Let O be any open subset of IRn, and observe
that S−1(O) =

⋃
ν

{
t ∈ domS

∣∣xν(t) ∈ O
}
. This says that S−1(O) is the

countable union of measurable sets and consequently is itself measurable.
All that’s left is verifying that if the mapping S is measurable, it must

admit a Castaing representation. For any nonempty closed set C ⊂ IRn, let
πzC = C ∩ IB(

z, d(z, C)
)
. Let I be the countable index set consisting of all

(n+1)-tuples i = (z0, z1, . . . , zn) of vectors zj ∈ Q/ n such that z0, z1, . . . , zn are
affinely independent. For i ∈ I and t ∈ domS, let

xi(t) := πznπzn−1
· · ·πz1πz0S(t);

this vector is well defined as the necessarily unique point in the nonempty
intersection of a collection of n + 1 different spheres in IRn whose centers are
affinely independent. In particular, xi(t) is a point of S(t) nearest to z0. Since
z0 ranges over all of Q/ n, it’s clear that cl

{
xi(t)

∣∣ i ∈ I} = S(t).
To check that every xi is a measurable function, thereby confirming that

the family {xi}i∈I furnishes a Castaing representation for S, it suffices to show
that, for any z ∈ IRn, the mapping t �→ πzS(t) = PS(t)(z) is measurable.
(The general case will follow then by induction.) For each ν ∈ IN , define
Sν : T →→ IRn by

Sν(t) :=
{
x ∈ IRn

∣∣ d(x, S(t)) < ν−1, d(x, z) < d(z, S(t)) + ν−1
}
.

Observe that Sν(t) is open, and that it is nonempty if and only if t ∈ domS.
For any open set O and any countable, dense subset D of O, say D = O ∩Q/ n,
we have O ∩ πzS(t) �= ∅ if and only if D ∩ Sν(t) �= ∅ for all ν ∈ IN . Therefore,

(πzS)
−1(O) =

⋂
ν∈IN

⋃
x∈D

(Sν)−1(x).

The sets (Sν)−1(x) =
{
t ∈ T

∣∣ d(x, S(t)) < ν−1, d(x, z) < d(z, S(t)) + ν−1
}

belong to A by 14.2(h). Because the union and intersection operations in the
formula for (πzS)

−1(O) are countable, it follows that (πzS)
−1(O) ∈ A.

14.6 Corollary (measurable selections). A closed-valued, measurable mapping
S : T →→ IRn always admits a measurable selection: there exists a measurable
function x : domS → IRn such that x(t) ∈ S(t) for all t ∈ domS.

Proof. Any of the functions taking part in a Castaing representation for S is
a measurable selection for S.

14.7 Example (convex-valued and solid-valued mappings). A mapping S :
T →→ IRn is called solid-valued if S(t) = cl(intS(t)) for all t ∈ T , as is true in
particular when S is closed-convex-valued with intS(t) �= ∅ for all t ∈ T .

Such a mapping S is measurable if and only if it meets the simple test of
having S−1(x) ∈ A for every x ∈ IRn.

Detail. When S(t) is a closed, convex set with nonempty interior, we have
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S(t) = cl(intS(t)) by 2.33. In general for a solid-valued mapping, the necessity
of the proposed criterion for measurability follows from 14.3(c), because the
singleton {x} is a compact set.

For the sufficiency, consider for each point a ∈ Q/ n the measurable function
ya(t) ≡ a. The countable family of such functions has S(t)∩{ya(t) ∣∣ a ∈ Q/ n

}
=

S(t)∩Q/ n is dense in S(t), since S(t) = cl(intS(t)). Condition 14.5(b) is satisfied
then, and we conclude from it that S is measurable.

In the next theorem, recall that the σ-field A is said to be complete for
a measure μ on A if it contains, for each A ∈ A with μ(A) = 0, all subsets
A′ ⊂ A. The consequence of completeness that will be most important to us
is the fact that it ensures the measurability of subsets in T obtained as the
projections of certain measurable subsets G of T × IRn:

G ∈ A⊗ B(IRn) =⇒ {
t ∈ T ∣∣ ∃x ∈ IRn with (t, x) ∈ G} ∈ A. 14(2)

Here B(IRn) is the Borel σ-field on IRn and A⊗B(IRn) is the σ-field on T ×IRn

generated by all sets A ×D with A ∈ A and D ∈ B(IRn). (For references, see
the notes at the end of this chapter.)

14.8 Theorem (graph measurability). Let S : T →→ IRn be closed-valued. With
respect to the Borel field B(IRn), the implications (c) ⇒ (a) ⇒ (b) hold for
the following properties:

(a) S is a measurable mapping;

(b) gphS is an A⊗ B(IRn)-measurable subset of T × IRn;

(c) S−1(D) ∈ A for all sets D ∈ B(IRn).

When the space (T,A) is complete for some measure μ, these properties are
equivalent. Then one has (b) ⇒ (c) ⇒ (a) even if S is not closed-valued.

Proof. It’s evident that (c) implies (a), since B(IRn) contains all the open
subsets of IRn. This implication doesn’t require the closed-valuedness of S.

For the sake of establishing that (a) implies (b), note that, under the
assumption that S(t) is closed, a point x belongs to S(t) if and only if, for every
positive ρ ∈ Q/ , there exists a ∈ Q/ n such that x ∈ IB(a, ρ) and S(t)∩IB(a, ρ) �= ∅.
This means that

gphS =
⋂

0<ρ∈Q/

⋃
a∈Q/ n

[
S−1

(
IB(a, ρ)

)× IB(a, ρ)
]
.

By 14.3(d), each set S−1
(
IB(a, ρ)

)× IB(a, ρ) belongs to A×B(IRn). The union
and intersection are countable, so gphS belongs to A⊗B(IRn) by the definition
of this product σ-field.

Assume now that (b) holds and that A is complete for some measure μ.
It will be demonstrated that then (c) holds. Consider any set D ∈ B(IRn). We
have T ×D ∈ A ⊗ B(IRn), and since gphS ∈ A ⊗ B(IRn) by hypothesis, the
set G := gphS ∩ [T ×D] is in A⊗ B(IRn). As recalled in 14(2), completeness
ensures then that the set

{
t ∈ T ∣∣ ∃x with (t, x) ∈ G} belongs to A. But this
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set is S−1(D). Hence (c) is fulfilled. Closed-valuedness of S wasn’t needed for
this implication.

The equivalence in Theorem 14.8 under completeness is a more subtle fact
than might at first be appreciated. It’s tempting in some situations to replace
the Borel field B(IRn) by the Lebesgue field L(IRn), which consists of all sets
(D \N)∪ (N \D) with D ∈ B(IRn) and N a negligible subset of IRn (as defined
ahead of 9.60). The σ-field L(IRn) is complete for the n-dimensional Lebesgue
measure. But A ⊗ B(IRn) can’t be replaced by A⊗ L(IRn) in part (b) of the
theorem without disrupting the validity of the implication from (b) to (a).

This must especially be kept in mind in the very common setting where T
is a Lebesgue subset of some IRd and A is the restricted Lebesgue field

L(T ) := {
A ∈ L(IRd)

∣∣A ⊂ T}. 14(3)

Hence, it might seem that A ⊗ L(IRn) = L(T ) ⊗ L(IRn) is a natural choice
for consideration of graph measurability. But again, the L(T ) ⊗ L(IRn)-
measurability of the graph of a closed-valued mapping S : T →→ IRn won’t
generally ensure that S is measurable. The stronger condition of L(T )⊗B(IRn)-
measurability of the graph must be invoked. Moreover L(T ) ⊗ L(IRn) is only
a subset of L(T × IRn) and thus not necessarily complete; equality would hold
if T is a Borel set.

In the important case just mentioned, where T is a Borel subset of IRd,
it’s instructive to pose questions about the relationship between measurability
and continuity of mappings S : T →→ IRn. That can be done with A = L(T ) or
with A = B(T ), the latter being the restricted Borel field:

B(T ) := {
A ∈ B(IRd)

∣∣A ⊂ T}. 14(4)

The A-measurability of S is termed Borel measurability when A = B(T ), in
contrast to Lebesgue measurability when A = L(T ). Borel measurability always
entails Lebesgue measurability, since B(T ) ⊂ L(T ).
14.9 Exercise (measurability from semicontinuity). Suppose T is a Borel subset
of IRd (e.g., an open or closed subset), and let S : T →→ IRn be closed-valued.
If S is osc or isc relative to T , or in particular if S is continuous relative to T ,
then S is a measurable mapping with respect to A = B(T ) or A = L(T ).
Guide. Use criterion 14.3(j) after observing that semicontinuity of the map-
ping S yields the semicontinuity of the function t �→ d(x, S(t)); cf. 5.11.

As an illustration of the principle in 14.9 in the case where T = IRd, one
has for any mapping S : IRd →→ IRn that the horizon mapping S∞ : IRd →→ IRn is
Borel measurable (and therefore also Lebesgue measurable). This is observed
from the fact that gphS∞ = (gphS)∞, so that S∞ is osc regardless of any
assumptions, or lack of them, on S.

The next theorem generalizes Lusin’s criterion for Lebesgue measurability
to the context of set-valued mappings. By this criterion in the case of T ∈
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B(IRd) and the Lebesgue measure μ on A = L(T ), a function s : T → IRn

is measurable if and only if, for each ε > 0, there is a closed set Tε with
μ(T \Tε) < ε such that s is continuous relative to Tε.

14.10 Theorem (measurability versus continuity). Suppose T ∈ B(IRd) and let
S : T →→ IRn be closed-valued. Then, with respect to A = L(T ), and with
μ the restriction of d-dimensional Lebesgue measure to this field, each of the
following conditions is equivalent to S being measurable:

(a) for every ε > 0 there is a closed set Tε ⊂ T with μ(T \Tε) < ε, such
that S is continuous relative to Tε;

(b) for every ε > 0 there is a closed set Tε ⊂ T with μ(T \Tε) < ε, such
that S is osc relative to Tε;

(c) there is a mapping R : T →→ IRn with gphR ∈ B(T × IRn), such that R
is closed-valued and agrees with S on a set T ′ ⊂ T with T ′ ∈ A, μ(T \T ′) = 0.

(When μ(T ) <∞, the sets Tε in (a) and (b) can be taken to be compact.)

Proof. Obviously (a) implies (b). To prove that (b) implies (c), we proceed
as follows. For ε = 1/ν, ν ∈ IN , let T ν be a closed subset of T on which S
is osc as postulated in (b). The set Gν := [T ν × IRn] ∩ gphS is closed. Let
G =

⋃
ν G

ν and T ′ :=
⋃

ν T
ν . Then G ∈ B(T × IRn), while T ′ is measurable

with μ(T \T ′) = 0. The mapping R with gphR = G fills the demand in (c).
Next we verify that (c) suffices for the measurability of S. The mapping

R in (c) is measurable by 14.8, due to the completeness of A = L(T ). In other
words, for each open set O ⊂ IRn, the set R−1(O) =

{
t
∣∣R(t)∩O �= ∅} belongs

to L(T ). But R agrees with S except on a negligible set, so R−1(O) can differ
from S−1(O) =

{
t
∣∣S(t) ∩ O �= ∅} only by such a set. Hence S−1(O) ∈ L(T )

as well, and the measurability of S is confirmed.
For the remainder of the theorem, we assume that S is measurable and

show this yields the property in (a). We begin by demonstrating that the task
can be reduced to the case where μ(T ) <∞. We express

T =
⋃

ν∈IN
T ν with T ν :=

{
t ∈ T ∣∣ ν − 1 ≤ |t| < ν

}
.

Every T ν is a Borel set with μ(T ν) < ∞. If the property in (a) is valid on
sets of bounded measure, we can apply it with respect to each T ν . Given any
ε > 0, we can get a compact set T ν

ε ⊂ T ν such that S is continuous relative to
T ν
ε and μ(T ν \T ν

ε ) < ε2−ν . No more than finitely many of the disjoint sets T ν

touch any bounded region. Therefore S is continuous relative to Tε :=
⋃

ν T
ν
ε ,

which is a closed subset of T with μ(T \Tε) < ε.
From now on, therefore, we can assume that μ(T ) <∞. Restarting in this

mode, fix any ε > 0. The measurability of S entails the measurability of the set
domS, so there’s a compact set Aε ⊂ T \ domS with μ

(
[T \ domS] \Aε

)
<

ε/2. Relative to Aε, of course, S is continuous by virtue of being empty-
valued. Thus, we need only demonstrate that S is also continuous relative to
some compact set Bε ⊂ domS with μ(domS \Bε) < ε/2), since then S will be
continuous relative to the compact set Tε = Aε ∪Bε with μ(T \Tε) < ε.
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Consider any Castaing representation {xν}ν∈IN of S as provided in 14.5.
By Lusin’s theorem for measurable functions, there exists for each of the func-
tions xν : domS → IRn a compact set Bν

ε ⊂ domS with μ(domS \Bν
ε ) <

ε2−(ν+1), such that xν is continuous relative to Bν
ε . Let Bε =

⋂
ν B

ν
ε . Then Bε

is compact with μ(domS \Bε) < ε/2, and all the functions xν are continuous
relative to Bε. For any open set O ⊂ IRn, we have

S−1(O) ∩Bε =
⋃

ν
[ (xν)−1(O) ∩Bε ].

The set (xν)−1(O)∩Bε is open relative to Bε, since x
ν is continuous relative to

Bε, so that S−1(O) ∩Bε is open relative to Bε. In particular this means that
S is isc relative to Bε; cf. 5.7(c). We want continuity rather than just inner
semicontinuity, but the task of obtaining this has greatly been reduced.

Instead of the continuity in (a), we now only have to produce the outer
semicontinuity in (b) out of the assumptions that S is measurable and μ(T ) <
∞. Once again, it’s best just to restart with this simpler aim. Fixing an
arbitrary ε > 0, we need to construct a compact set Tε ⊂ T with μ(T \Tε) < ε,
such that the set

{
(t, x)

∣∣ t ∈ Tε, x ∈ S(t)} is closed. (This will also justify the
assertion at the end of the theorem.)

Enumerate by {Cν}ν∈IN the countable family of sets of having the form
IRn \ intB(a, ρ) with a ∈ Q/ n and 0 < ρ ∈ Q/ . For each t ∈ T , S(t) is the
intersection of the sets Cν ⊃ S(t). Take T ν := S−1(IRn \Cν) and T

ν
:= T \T ν .

Since S is measurable, T ν and T
ν
belong to A. Moreover

gphS =
⋂

ν
[ (T ν × IRn) ∪ (T

ν × Cν) ].

For each ν, there exist compact sets T ν
ε ⊂ T ν and T

ν
ε ⊂ T

ν
such that

μ
(
T \ (T ν

ε ∪T ν
ε)
)
< ε2−ν . Define Tε :=

⋂
ν(T

ν
ε ∪T ν

ε ). Then Tε is a compact set
such that μ(T \Tε) ≤ ε, and we have{

(t, x)
∣∣ t ∈ Tε, x ∈ S(t)} =

⋂
ν
[ (T ν

ε × IRn) ∪ (T
ν
ε × Cν) ].

The set on the right is closed, so our goal has been reached.

B. Preservation of Measurability

The results that come next provide tools for establishing the measurability
of set-valued mappings as they arise through operations performed on other
mappings, already known to be measurable.

14.11 Proposition (unions, intersections, sums and products). For each j ∈ J ,
an index set, let Sj : T →→ IRn be measurable. Then the following mappings
are measurable:

(a) t �→ ⋂
j∈J Sj(t), if J is countable, Sj closed-valued;
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(b) t �→ ⋃
j∈J Sj(t), if J is countable;

(c) t �→∑
j∈J λjSj(t) for arbitrary λj ∈ IR, if J is finite;

and in the case of Sj : T → IRnj instead of Sj : T → IRn, also the set product

(d) t �→ (
S1(t), . . . , Sr(t)

)
when J = {1, . . . , r}.

Proof. Beginning with (d), let’s denote the mapping in question by R and
recall that any open set O ⊂ IRn1 × · · · × IRnr can be expressed as a union
of a sequence of sets Oν = Oν

1 × · · · × Oν
r with Oν

j open in IRnj . (Open balls

Oν
j suffice.) Then R−1(O) =

⋃
ν

[⋂r
j=1 S

−1
j (Oν

j )
]
, where each set S−1

j (Oν
j )

belongs to A because Sj is measurable. Countable unions and intersections of
sets in A belong to A, so we have R−1(O) ∈ A. Thus, R is measurable.

In (c) we may as well take J = {1, . . . , r}. We can build on (d) by choosing
R to be the mapping just treated, but in the special case of nj = n for all j.
For any open set O ⊂ IRn consider the open set O′ ⊂ (IRn)r consisting of all
(x1, . . . , xr) such that

∑r
j=1 λjxj ∈ O. Then{

t
∣∣ (∑r

j=1λjSj

)
(t) ∩O �= ∅} =

{
t
∣∣ (S1(t), . . . , Sr(t)

) ∈ O′} = R−1(O′),

where R−1(O′) ∈ A by (d). Hence
(∑r

j=1 λjSj

)−1
(O) ∈ A, and we conclude

that the mapping
∑r

j=1 λjSj is measurable.
The argument for (b) is elementary. For any open set O ⊂ IRn we have

(
⋃

j∈J Sj)
−1(O) =

⋃
j∈J Sj

−1(O) ∈ A because Sj
−1(O) ∈ A.

For the closed-valued mapping S in (a), we’ll first treat the case where
J = {1, 2}. Consider any compact set C ⊂ IRn and the truncated mappings
Rj(t) := Sj(t) ∩ C, j = 1, 2. These inherit the measurability of S1 and S2 by
virtue of 14.3(c). We have

S−1(C) =
{
t
∣∣S1(t) ∩ S2(t) ∩ C �= ∅

}
=

{
t
∣∣ 0 ∈ R1(t)−R2(t)

}
= (R1 −R2)

−1
({0}).

Here R1 − R2 is measurable via (c) and closed-valued because R1 and R2 are
compact-valued (cf. 3.12). Hence (R1 − R2)

−1({0}) ∈ A by 14.3(c) again, so
S−1(C) ∈ A. Thus, S is measurable in this case, and it readily follows then by
induction that S is measurable as long as the index set J is finite.

Suppose now that J is countably infinite; we can take J = IN . For each
ν ∈ IN let Sν(t) =

⋂ν
j=1 Sj(t). The mappings Sν are measurable by the

preceding. For any compact set C ⊂ IRn we have S−1(C) =
⋂

ν(S
ν)−1(C).

Since (Sν)−1(C) ∈ A, it follows that S−1(C) ∈ A as required.

14.12 Exercise (hulls and polars). If S : T →→ IRn is measurable, so too are:

(a) t �→ conS(t), the convex hull of S(t);

(b) t �→ posS(t), the cone generated by S(t);

(c) t �→ affS(t), the affine hull of S(t);

(d) t �→ linS(t), the linear subspace generated by S(t);

(e) t �→ S(t)◦ =
{
v
∣∣ 〈v, x〉 ≤ 1 for all x ∈ S(t)};
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(f) t �→ S(t)∗ =
{
v
∣∣ 〈v, x〉 ≤ 0 for all x ∈ S(t)}.

Guide. For the mapping in (a), utilize Carathéodory’s Theorem 2.26 to iden-
tify the inverse image of an open set O ⊂ IRn with R−1(O′) for the mapping
R : t �→ S(t)×· · ·×S(t) [n+1 copies] and the open set O′ ⊂ (IRn)n+1 consist-
ing of all (x0, . . . , xn) such that

∑n
i=0 λixi ∈ O for some choice of λi ≥ 0 with∑n

i=0 λi = 1. The mappings in (b), (c) and (d) can be handled similarly.
For the polar mapping S◦ : t �→ S(t)◦ in (e), there’s no harm in assuming

that S is closed-valued; cf. 14.2. Argue that if C is a closed subset of IRn

and C0 is a dense subset of C, one has C◦ = C◦
0 ; this can be applied to S(t)

and S0(t) =
{
xν(t)

∣∣ ν ∈ IN}
for a Castaing representation for S. Next, show

that the measurability of the functions xν : domS → IRn ensures that of the
closed-valued mappings Hν : T →→ IRn defined by

Hν(t) =

{{
v
∣∣ 〈v, xν(t)〉 ≤ 1

}
when t ∈ domS,

∅ otherwise.

Finally, invoke the measurability in 14.11(a) for t �→ ⋂
ν H

ν(t). A parallel
argument takes care of the mapping S∗ : t �→ S(t)∗ in (f).

Other operations of interest in connection with the preservation of mea-
surability of a mapping S : T →→ IRn fall in the category of constructing a new
mapping by taking images of the sets S(t) under various transformations.

14.13 Theorem (composition of mappings).

(a) Let S : T →→ IRn be measurable and let M : IRn →→ IRm be isc. Then
the mapping M◦S : t �→M

(
S(t)

)
is measurable.

(b) Let S : T →→ IRn be closed-valued and measurable, and for each t ∈ T
consider an osc mapping M(t, ·) : IRn →→ IRm. Suppose the graphical mapping
t �→ gphM(t, ·) ⊂ IRn×IRm is measurable (as is true in particular whenM(t, ·)
is the same for all t). Then the mapping t �→M

(
t, S(t)

)
is measurable.

Proof. To establish (a), consider any open set O ⊂ IRm. We have
(M◦S)−1(O) =

{
t
∣∣S(t) ∩M−1(O) �= ∅} = S−1(O′) for the set O′ =M−1(O),

which is open because M is isc; cf. 5.7(c). Since S is measurable, we have
S−1(O′) ∈ A and consequently (M◦S)−1(O) ∈ A.

For the justification of (b), let R(t) = M
(
t, S(t)

)
and denote the closed-

valued mapping t �→ gphM(t, ·) by G. Let P project from IRn × IRm to IRm.
We have R = P ◦Q for Q(t) = [S(t)×IRm]∩G(t). The mapping t �→ S(t)×IRm

is closed-valued and measurable through 14.11(d), and its intersection Q with
G has these properties through 14.11(a). On the other hand, P is single-valued
and continuous. Then P ◦Q is measurable by the result in part (a).

14.14 Corollary (composition with measurable functions). For each t ∈ T con-
sider an osc mapping M(t, ·) : IRn →→ IRm, and suppose the graphical mapping
t �→ gphM(t, ·) ⊂ IRn × IRm is measurable (as is true in particular if M(t, ·)
is the same for all t). Then, whenever t �→ x(t) is measurable, the mapping
t �→M

(
t, x(t)

)
is closed-valued and measurable.
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14.15 Example (images under Carathéodory mappings). A single-valued map-
ping F : T × IRn → IRm is called a Carathéodory mapping when F (t, x) is
measurable in t for each fixed x and continuous in x for each fixed t. In terms
of such F , each of the following mappings is measurable as long as S is closed-
valued and measurable:

(a) t �→ F
(
t, S(t)

) ⊂ IRm with S : T →→ IRn;

(b) t �→ {
x ∈ IRn

∣∣F (t, x) ∈ S(t)} ⊂ IRn with S : T →→ IRm.

Detail. Case (a) corresponds to the composition in Theorem 14.13(b) with
M(t, ·) = F (t, ·), whereas case (b) hasM(t, ·) = F (t, ·)−1. The task therefore is
to verify that the sets G(t) := gphF (t, ·) ⊂ IRn×IRm, which are closed, depend
measurably on t. For this we construct a Castaing representation, so that mea-
surability can be drawn from 14.5. For each q ∈ Q/ n define zq(t) =

(
q, F (t, q)

)
.

Through the Carathéodory properties, the functions zq are measurable and
such that cl

{
zq(t)

∣∣ q ∈ Q/ n
}
= G(t) for each t. The countable family {zq}q∈Q/ n

thus furnishes a Castaing representation for G.

A variety of examples of measurable mappings can be seen under this
umbrella. For instance, if F (t, x) = A(t)x + a(t) for a matrix A(t) ∈ IRm×n

and a vector a(t) ∈ IRm whose elements depend measurably on a parameter
t ∈ T , then F is a Carathéodory mapping. For any closed set S(t) ⊂ IRn

depending measurably on t, the mapping t �→ A(t)S(t) + a(t) is measurable
by 14.15(a). The mapping t �→ cl[A(t)S(t) + a(t)] is both closed-valued and
measurable, as seen then through the principle in 14.2. In particular one could
take S(t) ≡ C for a closed set C ⊂ IRn.

On the other hand, for any closed set D ⊂ IRm, the closed-valued mapping
t �→ {

x
∣∣A(t)x+a(t) ∈ D}

is measurable by 14.15(b). In this case we’re looking
at a ‘feasible set’ that depends measurably on t ∈ T . A wide range of nonlinear
constraint systems can also be handled in this manner.

14.16 Theorem (implicit measurable functions). Let F : T × IRn → IRm be a
Carathéodory mapping, and let X(t) ⊂ IRn and D(t) ⊂ IRm be closed sets that
depend measurably on t ∈ T . Let

E =
{
t ∈ T ∣∣ ∃x ∈ X(t) with F (t, x) ∈ D(t)

}
.

Then E is measurable, and there is a measurable function x : E → IRn with

x(t) ∈ X(t) and F
(
t, x(t)

) ∈ D(t) for all t ∈ E. 14(5)

Proof. Let R(t) =
{
x ∈ IRn

∣∣F (t, x) ∈ D(t)
}
. The closed-valued mapping

R : T →→ IRn is measurable by 14.15(b). The mapping S : t �→ X(t) ∩ R(t) is
closed-valued and measurable then by 14.11(a). Hence domS is a measurable
set relative to which S has a measurable selection; cf. 14.6.

A result closely related to Theorem 14.16 will be provided in 14.35 in terms
of a system of equations and inequalities, perhaps infinitely many.
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14.17 Exercise (projection mappings). For S : T →→ IRn closed-valued and mea-
surable, consider for each t ∈ T the (osc) projection mapping PS(t) : IR

n →→ IRn.

(a) The mapping t �→ gphPS(t) is closed-valued and measurable.

(b) The mapping t �→ PS(t)

(
X(t)

)
is measurable if the mapping t �→ X(t) is

closed-valued and measurable; in particular, X(t) could be a singleton {x(t)}.
Guide. Get (a) from the foregoing observations by representing gphPS(t) as

the set of pairs (x, y) ∈ C(t) = IRn × S(t) such that |x − y| − d(x, S(t)) = 0.
Invoke 14.3(j) in the justification. Then get (b) from Theorem 14.13(b).

14.18 Exercise (mixed operations). For any closed-valued measurable mapping
S : T →→ IRd × IRn × IRm and any measurable function u : T → IRm, one has
the measurability of the mapping

t �→ {
x
∣∣ ∃w ∈ IRd with

(
w, x, u(t)

) ∈ S(t)} ⊂ IRn.

Guide. Show that F (t, w, x) =
(
w, x, u(t)

)
is a Carathéodory mapping and

apply 14.15(b). Then take images under (w, x) �→ x, utilizing 14.15(a).

14.19 Example (variable scalar multiplication). For measurable, closed-valued
mappings Sj : IRn →→ IRm, j = 1, . . . , r, the mapping S : t �→ ∑r

j=1 λj(t)Sj(t)
is measurable as long as the scalars λj(t) ∈ IR depend measurably on t.

Detail. This goes beyond 14.11(c) in allowing non-constant multipliers, but in
contrast to that earlier result imposes the assumption of closed-valuedness. The
rule is justified through 14.15(a) in applying the mapping F (t, x1, . . . , xr) =∑r

j=1 λj(t)xj to the product mapping in 14.11(d).

C. Limit Operations

Measurability of set-valued mappings is also preserved under taking various
kinds of limits.

14.20 Theorem (graphical and pointwise limits). For mappings Sν : T →→ IRn

that are measurable, the pointwise limit mappings

p-lim supν S
ν, p-lim infν S

ν, and p-limν S
ν (if it exists),

are closed-valued and measurable. In the case where T ∈ B(IRd) and A = B(T )
or A = L(T ) this conclusion applies also to the graphical limit mappings

g-lim supν S
ν, g-lim infν S

ν, and g-limν S
ν (if it exists).

Proof. We have
(
p-lim supν S

ν
)
(t) =

⋂
ν∈IN S̄ν(t) with S̄ν(t) = cl

⋃
κ≥ν S

κ(t).

The mappings S̄ν are closed-valued and measurable by 14.11(b) and 14.2, hence
p-lim infν S

ν has these properties by 14.11(a). The argument for p-lim infν S
ν

relies on the formula
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(
p-lim infν S

ν
)
(t) =

∞⋂
j=1

cl

[ ∞⋃
i=1

∞⋂
κ=i

cl
(
Sκ(t) + j−1IB

)]
,

which comes out of 4(2). The mappings t �→ Sν(t) + j−1IB are measurable by
14.11(c), and the principles of intersection and union in 14.11(a) and 14.11(b)
can again be invoked along with 14.2.

When p-limν S
ν exists, it coincides with p-lim infν S

ν and p-lim supν S
ν ,

and thus is measurable. Graphical limit mappings are always osc, and thus
through 14.9, closed-valued and measurable.

14.21 Exercise (horizon cones and limits).

(a) For any measurable mapping S : T →→ IRn, the horizon cone mapping
t �→ S(t)∞ is (closed-valued and) measurable.

(b) For any sequence of measurable mappings Sν : T →→ IRn, one has the
closed-valuedness and measurability of the horizon limit mappings

t �→ lim inf∞ν S
ν(t), t �→ lim sup∞

ν S
ν(t), t �→ lim∞

ν Sν(t) (if it exists).

Guide. Handle (a) by introducing Sν(t) = {0}∪{λS(t) ∣∣ 0 ≤ λ ≤ ν−1
}
. Argue

the measurability of Sν through a representation Sν = F ◦Rν with Rν(t) =
[0, ν−1]× [

S(t)∪ {0}] and F (λ, x) = λx, utilizing 14.15(a). Then apply to the
mappings Sν a fact in 14.20. Do similar constructions for (b).

By a simple mapping, one means a mapping whose range consists of only
finitely many points. Note that this condition means much more than just
having image sets of finite cardinality.

14.22 Proposition (limits of simple mappings). A closed-valued mapping S :
T →→ IRn is measurable if and only if it is the limit of a sequence of simple
measurable mappings.

Proof. In view of the Theorem 14.20, every pointwise limit of a sequence of
simple measurable mappings is a closed-valued measurable mapping. For the
converse, consider the sequence of mappings Sν : T →→ IRn defined by

Sν(t) =
(
S(t) + ν−1IB

) ∩ νIB ∩ ν−1Zn

where ν−1Zn is the lattice of points in IRn whose coordinates are multiples
of ν−1. Each Sν is a simple, measurable mapping, and it’s evident that
limν S

ν(t) = S(t).

For converging sequences of measurable mappings, one can always find
convergent sequences of measurable selections.

14.23 Proposition (convergence of measurable selections). Let S = p-lim infν S
ν

for closed-valued measurable mappings Sν : T →→ IRn with domSν = T .

(a) If, for each ν, sν is a measurable selection of Sν , and limν s
ν(t) = s(t)

for all t ∈ T , then s is a measurable selection of S. In the case where T is a
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closed subset of IRd and A = B(T ), so that the mapping g-lim infν S
ν makes

sense, s also gives a measurable selection of that mapping.

(b) For any Castaing representation {sκ}κ∈IN of S, there exist Castaing
representations {sν,κ}κ∈IN of the mappings Sν such that, for each κ, one has
limν s

ν,κ(t) = sκ(t) for all t ∈ T . In particular, for any measurable selection s
of S there exist measurable selections sν of Sν such that limν s

ν(t) = s(t) for
all t ∈ T .

Proof. For (a), recall that a pointwise limit of measurable functions is mea-
surable, and that lim infν S

ν(t) = (p-lim infν S
ν)(t). Also, (p-lim infν S

ν)(t) ⊂
(g-lim infν S

ν)(t) when the graphical limit mapping makes sense.

To prove (b), let’s first demonstrate that for any measurable selection
s : T → IRn of S there are measurable selections sν : domSν → IRn of the
mappings Sν such that sν(t)→ s(t) for all t ∈ T . For each ν ∈ IN , the mapping
Rν : T →→ IRn defined by

Rν(t) :=
{
x ∈ Sν(t)

∣∣ |x− s(t)| ≤ d(s(t), Sν(t)
)
+ ν−1

}
is closed-valued and measurable with domRν = T . The measurability follows
from that of t �→ d

(
s(t), Sν(t)

)
, which in turn is a consequence of 14.15 be-

cause (t, x) �→ d
(
s(t), x

)
has the Carathéodory properties: it’s continuous in

x, and it’s measurable in t as the composition of a continuous mapping with
a measurable one. According to 14.6, each mapping Rν admits a measurable
selection, say rν : T → IRn. Since

0 = d
(
s(t), S(t)

) ≥ lim supν d
(
s(t), Sν(t)

) ≥ 0

for all t ∈ T by 4.7, it follows that rν(t)→ s(t).

Now for each member sκ of the Castaing representation of S given in (b),
let rν,κ : T → IRn be a sequence of measurable selections of the mappings Sν

that converges pointwise to sκ, as just constructed. For each ν, let {xν,κ}κ∈IN ,
xν,κ : T → IRn, be a Castaing representation of Sν (as exists by 14.5), and for
each κ ∈ IN define

sν,κ(t) =

{
rν,κ(t) if κ ≤ ν;
xν,κ−ν(t) otherwise.

Then {sν,κ}κ∈IN furnishes a Castaing representation of Sν , and for each κ one
has limν s

ν,κ(t) = sκ(t) for all t ∈ T .

Given μ a measure on A, one can speak also of the almost everywhere (a.e.)
convergence of a sequence of mappings Sν : T →→ IRn to a mapping S : T →→ IRn.
This means that, for all t ∈ T , except possibly for t in a set T0 with μ(T0) = 0,
one has Sν(t)→ S(t); in other words, the mappings Sν converge pointwise to
S on T \T0. This relaxed property of pointwise convergence is indicated by

S = p-limν S
ν a.e., or Sν→p S a.e.
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Our objective now, in addition to providing some characterizations of a.e. con-
vergence, is to prove that, when μ(T ) < ∞, a.e. convergence implies almost
uniform (a.u.) convergence, by which one means that for every δ > 0 there is
a measurable set Tδ ⊂ T with μ(Tδ) < δ, such that, on T \Tδ, the mappings
Sν converge uniformly to S.

It will be helpful to use the following notation. In working with sets
A1, A2 ∈ A, we’ll write

A1 ⊂0 A2 when A1 ⊂ A2 ∪N for some N ∈ A with μ(N) = 0. 14(6)

Also, for any sequence {Aν}ν∈IN of subsets of T , we’ll write

∗lim infν A
ν =

⋃
ν∈N∞

⋂
ν∈N

Aν , ∗lim supν A
ν =

⋂
ν∈N∞

⋃
ν∈N

Aν . 14(7)

These are the set-theoretic inner and outer limits of the sequence {Aν}ν∈IN .
They can be interpreted as the inner and outer limits obtained in the frame-
work of the set convergence theory of Chapter 4 when generalized from IRn to
arbitrary topological spaces and then applied to T , equipped with the discrete
topology. From that vantage point, the formulas in 4.2(b) are still applica-
ble, but taking closures can be skipped since all sets are closed in the discrete
topology, and

⋃
ν∈N∞

⋂
ν∈N Aν =

⋂
ν∈N#

∞

⋃
ν∈N Aν .

14.24 Proposition (almost everywhere convergence). The following conditions
on closed-valued measurable mappings S, Sν : T →→ IRn, are equivalent with
respect to a measure μ on (T,A):

(a) Sν→p S a.e.;

(b) for any compact set B ⊂ IRn and any open set O ⊂ IRn, one has

∗lim supν(S
ν)−1(B) ⊂

0
S−1(B), S−1(O) ⊂

0
∗lim infν(S

ν)−1(O);

(c) for any x ∈ IRn and ρ > 0, one has

S−1
(
int IB(x, ρ)

) ⊂0 ∗lim infν(S
ν)−1

(
int IB(x, ρ)

)
⊂ ∗lim supν(S

ν)−1
(
IB(x, ρ)

) ⊂
0
S−1

(
IB(x, ρ)

)
;

(d) for μ-almost all t, one has d(x, Sν(t))→ d(x, S(t)) for all x ∈ IRn;

(e) limν μ
[
(Rν

ε)
−1

(
IB(x, ρ)

) ]
= 0 for all x ∈ IRn, ε > 0 and ρ > 0, where

Rν
ε (t) =

⋃
κ≥ν

( [
Sκ(t) \ (S(t) + εIB)

] ∪ [
S(t) \ (Sκ(t) + εIB)

] )
.

Proof. The equivalence between (a), (b), (c) and (d) follows immediately
from the definition of convergence a.e. and the various characterizations of set
convergence featured in Chapter 4. More specifically, (b) comes from 4.5(a)(b),
while (c) comes from 4.5(a′)(b′) and (d) from 4.7.

Let’s now turn to (a)⇔(e). Without loss of generality we can choose
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x = 0, and then the condition in (e) reads: for all ε > 0 and ρ > 0 one has
limν μ(W

ν
ε,ρ) = 0 for W ν

ε,ρ := (Rν
ε )

−1(ρIB). In view of 4.11(a)(b), we know that
Sν(t) → S(t) if and only if limν R

ν
ε (t) = ∅ for all ε > 0; by the first part of

that same result, this occurs if and only if, for all ε > 0 and ρ > 0, one can
find N ∈ N∞ such that t /∈W ν

ε,ρ when ν ∈ N .

Thus, Sν→p S a.e. if and only if there exists T0 with μ(T0) = 0 such that
whenever t /∈ T0, then for all ε > 0, ρ > 0 there’s an index set N ∈ N∞ such
that t /∈ W ν

ε,ρ for all ν ∈ N . Or equivalently, because the sequence of sets
{W ν

ε,ρ}ν∈IN is nonincreasing: Sν→p S a.e. if and only if there exists T0 of μ-
measure zero such that for all ε > 0 and ρ > 0, one has Wε,ρ :=

⋂
ν W

ν
ε,ρ ⊂ T0.

And this certainly implies that μ(W ν
ε,ρ)→ 0 since limν μ(W

ν
ε,ρ) = μ(Wε,ρ). On

the other hand, since μ(W ν
ε,ρ) → 0 for all ε > 0 and ρ > 0 if and only if the

same holds for all ε and ρ belong to Q/ +, the sets

T1 :=
⋃
ε>0

⋃
ρ>0

Wε,ρ, T2 :=
⋃
ε>0
ε∈Q/

⋃
ρ>0
ρ∈Q/

Wε,ρ

are identical. Here μ(T2) = 0 when μ(W ν
ε,ρ)→ 0, since T2 is then the countable

union of sets of measure zero; recall that limν μ(W
ν
ε,ρ) = μ(Wε,ρ). Hence

μ(T1) = 0, and because Sν(t)→ S(t) for t ∈ T \T1, one has Sν→p S a.e.

14.25 Proposition (almost uniform convergence). For closed-valued measurable
mappings S, Sν : T →→ IRn and a measure μ on (T,A) with μ(T ) <∞, one has

S = p-limν S
ν a.e. ⇐⇒ S = p-limν S

ν a.u.

Proof. Since μ(T ) < ∞, it’s evident that convergence a.u. implies conver-
gence a.e. For the converse, we rely on the metric characterization of uniform
convergence provided by Proposition 5.49. For λ ∈ IN , let

Aν
λ =

{
t ∈ T ∣∣ dl(Sκ(t), S(t)

)
> λ−1 for some κ ≥ ν}.

Due to convergence a.e., we have limν μ(A
ν
λ) = 0. Choose νλ with μ(A

νλ
λ ) <

δ/2λ and take Tδ :=
⋃∞

λ=1A
νλ
λ . Then μ(Tδ) ≤ δ and

T \Tδ =
⋂∞

λ=1

(
T \Aνλ

λ

)
=

⋂∞
λ=1

{
t
∣∣ dl(Sκ(t), S(t)

) ≤ λ−1, ∀κ ≥ νλ
}
;

in other words, if t ∈ T \Tδ, then for all ε > 0 one can choose N = {ν ≥ νλ} ∈
N∞ for some λ ≥ 1/ε and obtain dl

(
Sν(t), S(t)

) ≤ ε for all ν ∈ N . This says
that the mappings Sν converge a.u. to S.

Questions about the measurability of mappings involving tangent and nor-
mal vectors can be answered from this platform of limits and other operations.

14.26 Theorem (tangent and normal cone mappings). For any closed-valued
measurable mapping S : T →→ IRn and any measurable choice of x(t) ∈ S(t),
one has the closed-valuedness and measurability of the mappings
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t �→ TS(t)

(
x(t)

)
, t �→ T̂S(t)

(
x(t)

)
,

t �→ NS(t)

(
x(t)

)
, t �→ N̂S(t)

(
x(t)

)
.

Furthermore, the mapping t �→ gphNS(t) =
{
(x, v)

∣∣x ∈ S(t), v ∈ NS(t)(x)
}

is closed-valued and measurable.

Proof. The closed-valuedness of these mappings follows from their definitions;
cf. 6.2, 6.5 and 6.26. To obtain the measurability of G : t �→ gphNS(t), we’ll
appeal to the characterization of general normal vectors as limits of proximal
normals in 6.18(a). This says that G = p-lim supν G

ν for the mapping Gν :
T → IRn × IRn defined by

Gν(t) =
{
(x, v)

∣∣x ∈ PS(t)(x+ ν−1v)
}

=
{
(x, v)

∣∣F ν(x, v) ∈ gphPS(t)

}
for F ν(x, v) = (x, x+ ν−1v).

The measurability of Gν follows from 14.15(b) in the light of the measurability
of t �→ gphPS(t) in 14.17, and the measurability of G is clear then from 14.20.

The measurability of t �→ NS(t)

(
x(t)

)
is seen from the composition rule in

14.14, and the measurability of t �→ T̂S(t)

(
x(t)

)
then comes out of the polarity

T̂S(t)

(
x(t)

)
= NS(t)

(
x(t)

)∗
in 6.28(b) and the rule in 14.12(f).

Since TS(t)

(
x(t)

)
=

{
v ∈ IRn

∣∣ lim infα ↘ 0 α
−1d((t + αv, S(t)) = 0

}
and

(t, α) �→ lim infr ↘ 0 α
−1d((t + αv, S(t)) is a Carathéodory mapping, applying

14.15(b) yields the measurability of t �→ TS(t)

(
x(t)

)
. From the polarity rule in

14.12(f), we obtain the measurability of t �→ N̂S(t)

(
x(t)

)
, since N̂S(t)

(
x(t)

)
=

TS(t)

(
x(t)

)∗
by 6.28(a).

D. Normal Integrands

Up to now, we’ve been occupied with the issue of how a subset of IRn can
depend measurably on a parameter t in T , but we’re now going to shift the
focus to how an extended-real-valued function on IRn can depend measurably
on such a parameter. As in our treatment of continuity issues in Chapter 7,
there are two ways of looking at such dependence, and both are important in
concept and in practice.

On the one hand, we can think of a function-valued mapping that assigns
to each t ∈ T an element of the space fcns(IRn). This element can be sym-
bolized by f(t, ·). Through that notation, however, we can regard a bivariate
function f : T ×IRn → IR as furnishing the mathematical context instead. The
bivariate approach, which emphasizes f(t, x) in its dependence on both t and x,
is simpler and conforms to the usual way of dealing with a parameter element
t. But the function-valued approach is better at revealing, in our framework,
the assumptions that guarantee essential properties such as the measurability
of t �→ f

(
t, x(t)

)
when t �→ x(t) is measurable.
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In straddling between these approaches, we’ll study f : T × IRn → IR from
the perspective of two set-valued mappings associated with f , its epigraphical
mapping Sf and its domain mapping Df ,

Sf (t) := epi f(t, ·) = {
(x, α) ∈ IRn × IR ∣∣ f(t, x) ≤ α},

Df (t) := dom f(t, ·) = {
x ∈ IRn

∣∣ f(t, x) <∞}
.

14(8)

That will enable us to apply very advantageously the theory of measurable
set-valued mappings that has been built up.

14.27 Definition (normal integrands). A function f : T × IRn → IR will be
called a normal integrand if its epigraphical mapping Sf : T → IRn × IR is
closed-valued and measurable.

14.28 Proposition (basic consequences of normality). For any normal integrand
f : T × IRn → IR, the domain mapping Df : T →→ IRn is measurable, and one
has f(t, x) lsc in x for each fixed t and measurable in t for each fixed x. Indeed,
f
(
t, x(t)

)
is measurable in t when x(t) depends measurably on t.

But not every function f : T × IRn → IR with f(t, x) lsc in x and measur-
able in t is a normal integrand, nor does such a function necessarily yield the
measurability of f

(
t, x(t)

)
in t when x(t) depends measurably on t.

Proof. For any open set O ⊂ IRn we have D−1
f (O) = S−1

f (O × IR) and hence

D−1
f (O) ∈ A through the measurability of Sf . Thus, Df is measurable. Next,

for any measurable function x(·) : T → IRn and any α ∈ IR we have{
t
∣∣ f(t, x(t)) ≤ α

}
=

{
t
∣∣Sf (t) ∩R(t) �= ∅

}
= dom[Sf ∩R]

for the closed-valued mapping R : t �→ {x(t)}×(−∞, α], which is measurable by
14.11(d). The mapping Sf ∩R is measurable by 14.11(a), so dom[Sf ∩R] ∈ A
by 14.5. Thus

{
t
∣∣ f(t, x(t)) ≤ α

} ∈ A, and the function t �→ f
(
t, x(t)

)
is

measurable. Taking x(t) constant as a special case, we get the measurability
of f with respect to its first argument. The lower semicontinuity with respect
to its second argument is clear from the closedness of Sf (t) = epi f(t, ·).

For an elementary example of an integrand f that has f(t, x) measurable in
t and lsc in x, but isn’t a normal integrand, let n = 1, T = IR, A = L(IR). Take
D to be any subset of IR that isn’t in L(IR) (it’s well known in measure theory
that such sets exist), and define f(t, x) = 0 when t = x ∈ D but f(t, x) = ∞
otherwise. The measurability and lower semicontinuity properties hold trivially
in this case. But the closed-valued mapping Sf : IR → IR2 isn’t measurable,
for if it were, we would have gphSf ∈ L(IR) ⊗ B(IR2) by Theorem 14.8, and
that’s not true. The same example, through the choice x(t) = t, shows a lack
of measurability of t �→ f

(
t, x(t)

)
.

It will be convenient as well as suggestive to refer generally to a function
f : T×IRn → IR as an integrand when f(t, x) is measurable with respect to t for
every x ∈ IRn, and to speak of it as being a convex , or proper , or lsc integrand,
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etc., when f(t, x) exhibits such a property with respect to x for every t ∈ T .
This terminology of ‘integrands’ f will serve as a reminder that the t argument
in f(t, x) has a distinctly different role from the x argument and ultimately
relates to the possibility of some operation of integration taking place with
respect to a measure μ on (T,A). Such integration could be connected with
an integral functional as in 14(1). But alternatively, when μ is a probability
measure, say, it could be tied to the notion of f(t, ·) being a random element
of fcns(IRn), a function-valued random variable.

Proposition 14.28 tells us that every normal integrand is an lsc integrand,
but not conversely, and that the class of lsc integrands wouldn’t be able to up-
hold a theory of integral functionals, where the measurability of t �→ f

(
t, x(t)

)
is crucial. The assumption that f(t, x) is measurable with respect to t has to
be replaced by the assumption of epi-measurability , i.e., the measurability of
t �→ epi f(t, ·), in situations where only the lower semicontinuity of the func-
tions f(t, ·) can be expected, as for instance when the domain sets dom f(t, ·)
carry the expression of constraints. When the functions f(t, ·) are continuous,
however, a bridge to classical theory is available.

14.29 Example (Carathéodory integrands). Falling in the category of normal
integrands are all Carathéodory integrands, i.e., the functions f : T × IRn → IR
(finite-valued) such that f(t, x) is measurable in t for each x and continuous in
x for each t. Indeed, a function f : T × IR→ IR is a Carathéodory integrand if
and only if both f and −f are proper normal integrands.

Detail. When f is a Carathéodory integrand, its epigraphical mapping Sf has
the constraint representation

Sf (t) =
{
(x, α) ∈ IRn+1

∣∣F (t, x, α) ≤ 0
}

for F (t, x, α) = f(t, x)− α.

Here F is a Carathéodory mapping from T × IRn to IR1, and Sf is therefore
closed-valued and measurable on the basis of Sf (t) being the image of IR−
under F (t, ·)−1; cf. Example 14.15(b).

A function f(t, ·) is finite and continuous on IRn if and only if both f(t, ·)
and −f(t, ·) are proper and lsc. From 14.28, therefore, the Carathéodory con-
ditions correspond to f and −f being proper normal integrands.

14.30 Example (autonomous integrands). If f : T×IRn → IR has f(t, x) ≡ g(x)
with g : IRn → IR lsc, then f is a normal integrand.

Detail. Here the epigraphical mapping Sf is constant.

14.31 Example (joint lower semicontinuity). Suppose that T is a Borel subset
of IRd, and that f : T × IRn → IR is lsc. Then f is a normal integrand.

Detail. The epigraphical mapping Sf has closed graph; it’s osc. Then Sf is
measurable by 14.9.

The measurability of the domain mapping Df in Proposition 14.28 un-
derscores the flexibility afforded by the concept of a normal integrand f , in
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departing from that of a Carathéodory integrand. When f(t, x) is interpreted
as a cost expression which, in taking on the value ∞, imposes an implicit con-
straint on x, the feasible set of x’s that corresponds to t is Df (t). This set
depends measurably on t, and the same is true then for clD(t) by 14.2.

14.32 Example (indicator integrands). The indicator δC : T × IRn → IR of a
mapping C : T →→ IRn, with

δC(t, x) = δC(t)(x) =

{
0 if x ∈ C(t),
∞ if x /∈ C(t),

is a normal integrand if and only if C is closed-valued and measurable. For any
normal integrand f0 : T × IRn → IR, the function f = f0 + δC , with

f(t, x) =

{
f0(t, x) if x ∈ C(t),
∞ if x /∈ C(t),

is then a normal integrand having Df (t) = Df0(t) ∩ C(t). When f0 is a
Carathéodory integrand, this holds with Df (t) = C(t).

Detail. For f = f0+δC we have Sf (t) = Sf0(t)∩ [C(t)×IR] with Sf0(t) closed-
valued and depending measurably on t, like C(t). Then Sf is closed-valued and
measurable by the rules in 14.11(d) and 14.11(a), hence f is a normal integrand.
When f0 is a Carathéory integrand, it’s normal with Df0(t) = IRn; cf. Example
14.29. The case of f = δC specializes to f0 ≡ 0.

The set C(t) in this example could be specified by a system of equations
or inequalities that depends on t, and normal integrands may be involved there
as well.

14.33 Proposition (measurability of level-set mappings). A bivariate function
f : T ×IRn → IR is a normal integrand if and only if for all α ∈ IR, the level-set
mapping

t �→ lev≤α f(t, ·) =
{
x
∣∣ f(t, x) ≤ α}. 14(9)

is closed-valued and measurable. Moreover, the mapping t �→ {
x
∣∣ f(t, x) ≤

α(t)
}
is closed-valued and measurable as long as t �→ α(t) is measurable.

Proof. Let L(t) =
{
x
∣∣ f(t, x) ≤ α(t)

}
for measurable t �→ α(t) ∈ IR. The

mapping L : T →→ IRn is closed-valued because f(t, x) is lsc in x, so we can test
its measurability through the property in 14.3(b). The case of α(t) constant
with respect to t is covered as a special case.

Fix any closed set C ⊂ IRn and consider the closed-valued mapping R :
t �→ C × {

β ∈ IR ∣∣β ≤ α(t)
}
. This is measurable by 14.11(d), and we have

L−1(C) =
{
t
∣∣Sf (t) ∩R(t) �= ∅

}
= dom[Sf ∩R].

The epigraphical mapping Sf being closed-valued and measurable by the def-
inition of normality, we deduce from 14.11(a) that the mapping Sf ∩ R is
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measurable and hence that dom[Sf ∩ R] ∈ A. Thus, L−1(C) ∈ A, and the
measurability of L has been confirmed.

For the converse: let {Aν}ν∈IN be a collection of countable sets converging
to IR. The measurability of the mappings Sν(t) =

⋃
α∈Aν lev≤αf(t, ·) comes

from 14.11(b). Since, the epigraphical mappings Sf is the pointwise limit of
these mappings it’s closed-valued and measurable, cf. Theorem 14.20, i.e., f is
a normal integrand.

14.34 Corollary (joint measurability criterion). If f : T × IRn → IR is a normal
integrand, then f(t, x) is A ⊗ B(IRn)-measurable as a function of (t, x), in
addition to being lsc as a function of x. Conversely, these properties ensure
that f is a normal integrand when (T,A) is complete with respect to some
measure μ, as in particular when T = IRd and A = L(IRd).

Proof. The question hinges on the A⊗B(IRn)-measurability of the sets Gα :={
(t, x)

∣∣ f(t, x) ≤ α
}
, which are the graphs of the level-set mappings in 14(9).

These mappings are closed-valued and measurable when f is normal, and their
graphs Gα belong then to A⊗B(IRn) by Theorem 14.8. That theorem justifies
the converse claim as well when (T,A) is complete.

14.35 Exercise (closures of measurable integrands). Suppose f(t, ·) = cl f0(t, ·)
for an A⊗B(IRn)-measurable function f0 : T ×IRn → IR. If (T,A) is complete
with respect to some measure μ, then f is a normal integrand.

Guide. Verify that the mapping Sf0 has A ⊗ B(IRn)-measurable graph, and
then apply 14.8 and 14.2.

14.36 Theorem (measurability in constraint systems). In terms of a closed set
X(t) ⊂ IRn depending measurably on t ∈ T , define the set C(t) ⊂ IRn by

x ∈ C(t) ⇐⇒ x ∈ X(t) and fi(t, x)− αi(t)

{≤ 0 for i ∈ I1,
= 0 for i ∈ I2, 14(10)

where fi is a normal integrand for i ∈ I1 and a Carathéodory integrand for
i ∈ I2, these index sets being (finite or) countable, and the functions αi are
measurable. Then C(t) is closed and depends measurably on t.

In particular, therefore, the set A =
{
t
∣∣C(t) �= ∅} ⊂ T is measurable, and

it is possible for each t ∈ A to select a point x(t) ∈ C(t) in such a manner that
the function t �→ x(t) is measurable.

Proof. Define Li(t) to consist of the points x ∈ IRn satisfying fi(t, x) ≤ αi(t)
for i ∈ I1 and i ∈ I2, and define L′

i(t) by the opposite inequality for i ∈ I2. The
closed-valued mappings Li : t �→ Li(t) and L′

i : t �→ L′
i(t) are measurable by

Theorem 14.32 (and the characterization of Carathéodory integrands in 14.28).
The mapping C : t �→ C(t) is given by their intersection with X : t �→ X(t), so
it’s closed-valued measurable by 14.11(a). The set A = domC is measurable
then, and a measurable selection exists by 14.6.

14.37 Theorem (measurability of optimal values and solutions). For any normal
integrand f : T × IRn → IR, let
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p(t) = inf f(t, ·), P (t) = argmin f(t, ·).
Then the function p : T → IR is measurable and the mapping P : T →→ IRn is
closed-valued and measurable.

In particular, therefore, the set A =
{
t
∣∣ argminx f(t, x) �= ∅

} ⊂ T is
measurable, and it is possible for each t ∈ A to select a minimizing point x(t)
in such a manner that the function t �→ x(t) is measurable.

Proof. Consider the mapping R : t �→ F
(
Sf (t)

)
obtained by taking F to be the

projection from IRn×IR to IR. This is measurable by 14.15(a), and the same is
true then for t �→ clR(t) by 14.2. But clR(t) =

{
α ∈ IR ∣∣ p(t) ≤ α}. Hence p is

measurable. Then since P (t) =
{
x
∣∣ f(t, x) ≤ p(t)

}
we have the measurability

of P as well by Proposition 14.33. The assertion about the existence of a
measurable selection for P is justified by 14.6.

14.38 Exercise (Moreau envelopes and proximal mappings). Consider a proper,
normal integrand f : T × IRn → IR such that, for each t ∈ T , f(t, ·) is prox-
bounded with threshold λf (t). For a measurable function λ : T →→ IR with
0 < λ(t) < λf (t) for all t ∈ T , let

e(t, x) := [eλ(t)ft](x), P (t, x) := [Pλ(t)ft](x), where ft = f(t, ·).
Then e is a Carathéodory integrand, while P (t, ·) is an osc mapping with graph
depending measurably on t. When f is a convex integrand, so that λf (t) =∞
for all t, P is a (single-valued) Carathéodory mapping: T × IRn → IRn.

Regardless of convexity, both e
(
t, x(t)

)
and P

(
t, x(t)

)
depend measurably

on t when x(t) depends measurably on t.

Guide. Work from the definition of Moreau envelopes and proximal mappings
in 1.22 and the continuity properties in 1.25. First show for fixed x ∈ IRn that
e(t, x) is measurable with respect to t; do this by applying Theorem 14.37.
Then get the measurability of t �→ G(t) = gphP (t, ·) by representing G(t) :={
(x, w)

∣∣ g(t, x, w) ≤ e(t, x)} for a certain normal integrand g : T ×IRn×IRn →
IR and construing this to mean that G(t) is the image under (x, w, α) �→ (x, w)
of the set of (x, w, α) satisfying g(t, x, w) ≤ α and −e(t, x) ≤ −α. (Rely on
14.33, 14.29 and 14.15(a).)

Make use of 2.26 in the convex case. In order to justify the final assertions,
appeal to 14.28 and 14.14.

Very similar to the case of Moreau envelopes in 14.38 is that of Pasch-
Hausdorff envelopes, as considered in 9.11. From any normal integrand f :
T × IRn →→ IR and any κ ∈ IR+ one can form

fκ(t, x) = infw
{
f(t, w) + κ|w − x|},

and as long as it doesn’t take on −∞, fκ will be a Carathéodory integrand.
The normality of an integrand f corresponds through Theorem 14.5 to the

existence of a Castaing representation for its epigraphical mapping Sf . When
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f is a convex integrand (i.e., f(t, x) is convex in x for each t), a comparable
characterization can be given in terms of the domain mapping Df instead,
although that might not be closed-valued.

14.39 Proposition (normality test for convex integrands). Let f : T × IRn → IR
be such that, for every t ∈ T , the function f(t, ·) is lsc and convex. Then f
is a normal integrand if and only if there is a countable family {xν}ν∈IN of
measurable functions xν : T �→ IRn such that

(a) for each ν ∈ IN , t �→ f(t, xν(t)) is measurable;

(b) for each t ∈ T , {xν(t) ∣∣ ν ∈ IN} ∩Df (t) is dense in Df (t).

In the case where intDf (t) �= ∅ for all t with Df (t) �= ∅, there is a simpler
test: f is a normal integrand if and only if f(t, x) is measurable in t for each
x. Thus, every lsc convex integrand is a normal integrand.

Proof. Suppose first that f is normal. Its epigraphical mapping Sf is then
closed-valued and measurable and, by Theorem 14.5, admits a Castaing rep-
resentation {(xν , αν)}ν∈IN with (xν , αν) : domSf → IRn × IR measurable.
Extending each xν by taking xν(t) = 0 (say) when t /∈ domSf , we get a family
{xν}ν∈IN satisfying (b). We have (a) satisfied as well by virtue of 14.34.

For the converse, consider a family satisfying (a) and (b). The density
in (b) and the lower semicontinuity and convexity of f(t, x) with respect to
x ensure that f(t, ·) = cl g(t, ·) for the function g(t, ·) : T → IR defined by
g(t, x) = f(t, xν(t)) if x = xν(t) for some ν, but g(t, x) = ∞ otherwise; cf.
Theorem 2.35 (which can be invoked for rintDf (t) if intDf (t) = ∅). From
this we see that the countable family {yν,β}(ν,β)∈IN×Q/ with yν,β(t) = (xν(t), β)
consists of measurable functions and has the property that, for each t ∈ T , the
set

{
yν,β(t)

∣∣ (ν, β) ∈ IN ×Q/ } ∩ Sf (t) is dense in Sf (t). We also have for each

(ν, β) ∈ IN ×Q/ that
{
t ∈ T ∣∣ yν,β(t) ∈ Sf (t)

}
=

{
t ∈ T ∣∣ f(t, xν(t)) ≤ β

}
, and

this set T ν,β is measurable by (a). The set domSf =
⋃

ν,β T
ν,β is measurable

then as well. We have arrived at the pattern in Theorem 14.5(b) and thereby
know that Sf is closed-valued and measurable.

The sufficiency of the test at the end of the proposition is justified by taking
xν(t) ≡ qν for an enumeration {qν}ν∈IN of Q/ n and invoking the fact that any
convex set with nonempty interior lies within the closure of that interior (see
2.33). The necessity of this condition in the special case described is apparent
from 14.28 (last part) as applied to constant functions.

Note that it’s not possible to drop the convexity assumption from 14.39
without impairing the propositions’ validity. The reason is that for a nonconvex
function h on IRn, even if h is lsc, one can’t be sure of having epi h = cl

{
(x, α) ∈

D× IR ∣∣α ≥ h(x)} when D is dense in domh. For example, let h ≡ 1 on (0, 1]
and take h(0) = 0, but elsewhere h ≡ ∞. Then h is lsc. Let D be any countable
dense subset of (0, 1). Then (0, 0) belongs to epi h but isn’t a cluster point of
any sequence in [D × IR] ∩ epih.

For lsc integrands, it’s possible to describe epi-measurability, and thus
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normality, in terms of the measurability of certain families of extended real-
valued functions generated by ‘optimization’.

14.40 Proposition (scalarization of normal integrands). Let f : T × IRn → IR
have f(t, x) lsc in x for every t. For each D ⊂ IRn, define

pD(t) := inf
x∈D

f(t, x).

Then f is a normal integrand if and only if all the functions in
{
pD

∣∣D ∈ D}
are measurable, where D is any of the following collections of subsets of IRn:

(a) all open sets;

(b) all open balls;

(c) all rational open balls;

(d) all closed sets;

(e) all compact sets;

(f) all closed balls;

(g) all rational closed balls.

Proof. For (a), (b),. . . , let’s denote the properties of measurability for the
associated collections of functions pD by (a′), (b′), etc. We have to demonstrate
that these properties are equivalent to each other and to the normality of f .
Obviously (a′) ⇒ (b′) ⇒ (c′) and (d′) ⇒ (e′) ⇒ (f ′) ⇒ (g′). Furthermore, (g′)
⇒ (a′) on the basis that any open set is the union of countably many rational
closed balls, and wheneverD =

⋃
ν D

ν the function pD is the pointwise infimum
of the functions pDν and thereby inherits their measurability.

Next, we observe that the normality of f implies (d′) through Theorem
14.37 as applied to f plus the indicator of D, which gives another normal
integrand as seen in 14.32.

The task that remains is to demonstrate how (c′) implies the normality
of f . This comes down to the measurability of the epigraphical mapping Sf ,
inasmuch as the closed-valuedness of Sf is assured by the lower semicontinuity
assumption on f . In general, for a set D ⊂ IRn and arbitrary β ∈ IR we have{

t ∈ T ∣∣ pD(t) < β
}
=

{
t ∈ T ∣∣Sf (t) ∩ [D × (−∞, β)] �= ∅}

=
{
t ∈ T ∣∣Sf (t) ∩ [D × (α, β)] �= ∅} for any α < β,

with the second equality holding because Sf (t) is an epigraph. We’re operating
now under the assumption that every such subset of T that arises from a
rational open ball D belongs to A. Every open set O ⊂ IRn × IR can be
expressed as the union of a sequence of sets Oν = Dν × (αν , βν) with Dν

a rational open ball. Then S−1
f (Oν) ∈ A and S−1

f (O) =
⋃

ν S
−1
f (Oν), so

S−1
f (O) ∈ A. The measurability of Sf follows.

Note that in the cases of Proposition 14.40 where the collection D consists
of balls, one doesn’t really need all balls of the type in question, but just a rich
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enough family to provide a neighborhood system of every point of IRn. This is
evident from the proof.

14.41 Corollary (alternative interpretation of normality). For f : T × IRn → IR
to be a normal integrand, it is necessary and sufficient to have that

(a) f(t, x) is lsc in x for each t, and

(b) for each x there exists ε > 0 such that, for all δ ∈ (0, ε), the function
t �→ inf

{
f(t, x′)

∣∣x′ ∈ IB(x, δ)
}
is measurable.

Proof. This corresponds to (f) of 14.40 with the observation just made.

Corollary 14.41 illuminates the difference between normal integrands and
lsc integrands very clearly. To get normality out of an integrand that’s lsc, the
measurability of t �→ f(t, x) has to be broadened to the property in 14.41(b).
The measurability of t �→ f(t, x), by itself, just corresponds to the extreme
form of that property in which the ball reduces to a single point.

When the σ-field A is complete, with T a Borel subset of IRd, normal
integrands can be also characterized in terms of certain continuity properties
in a manner reminiscent of Lusin’s theorem.

14.42 Theorem (continuity properties of normal integrands). Let T ∈ B(IRd),
and let f : T × IRn → IR have f(t, x) lsc in x for each t. Then, with A = L(T )
and μ the restriction of d-dimensional Lebesgue measure to this field, each of
the following conditions is equivalent to f being a normal integrand:

(a) for every ε > 0 there is a closed set Tε ⊂ T with μ(T \Tε) < ε, such
that t �→ f(t, ·) is epi-continuous relative to Tε;

(b) for every ε > 0 there is a closed set Tε ⊂ T with μ(T \Tε) < ε, such
that f is lsc relative to Tε × IRn;

(c) there exists B(T × IRn)-measurable g : T × IRn → IR with g(t, ·) lsc,
such that f(t, ·) = g(t, ·) for all t in a set T ′ ⊂ T with T ′ ∈ A, μ(T \T ′) = 0.

(When μ(T ) <∞, the sets Tε in (a) and (b) can be taken to be compact.)

Proof. Essentially this applies Theorem 14.10 to epigraphical mappings. With
respect to Sf we have 14.10(a) equivalent to (a) through the definition of epi-
continuity, and 14.10(b) equivalent to (b) because an epigraphical mapping
is osc if and only if the underlying function is lsc. Furthermore, (c) yields
14.10(c): the graph of R = Sg belongs to B(T × IRn × IR) because it consists
of all (t, x, α) with g(t, x) − α ≤ 0, and the function (t, x, α) �→ g(t, x) − α is
Borel measurable because g is Borel measurable.

Through these implications and the equivalences in 14.10 itself, we can
finish up by arguing that (b) ensures (c). For each ν ∈ IN let T ν have the
property in (b) with respect to ε = 1/ν, and let T ′ =

⋃
ν T

ν . Then T ′ ∈ A,
μ(T \T ′) = 0. Let g agree with f on T ′×IRn but have the value∞ everywhere
else. Then for each α ∈ IR we have{

(t, x)
∣∣ g(t, x) ≤ α} =

⋃
ν

{
(t, x)

∣∣ t ∈ T ν , f(t, x) ≤ α},
the sets in the union being closed, so g is A⊗ B(IRn)-measurable.
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14.43 Corollary (Scorza-Dragoni property). Let T ∈ B(IRd) with A = L(T )
and μ the restriction of d-dimensional Lebesgue measure to this field. Then for
any Carathéodory integrand f : T × IRn → IR and any ε > 0 there is a closed
set Tε ⊂ T with μ(T \Tε) < ε, such f is continuous relative to Tε × IRn.

Proof. The theorem is applicable to both f and −f ; cf. 14.29.

E. Operations on Integrands

We now turn to the study of the operations that can be used in generating
integrands and ascertaining the extent to which they preserve normality.

14.44 Proposition (addition and pointwise max and min). For each j ∈ J , an
index set, let fj : T × IRn → IR be a normal integrand. Then the following
functions f are normal integrands:

(a) f(t, x) = supj∈J fj(t, x) if J is countable;

(b) f(t, x) = infj∈J fj(t, x) if J is countable and this expression is lsc in x
(as when J is finite); or more generally the function obtained by applying clx
(lsc regularization in the x argument) to this expression;

(c) f(t, x) =
∑

j∈J λjfj(t, x) for arbitrary λj ∈ IR+, if J is finite;

and in the case of fj : T × IRnj → IR also

(d) f(t, x1, . . . , xr) = f1(t, x1)+ · · ·+fr(t, xr) when J = {1, . . . , r} and the
functions fj(t, ·) are proper.

Proof. We can immediately get (a) and (b) by applying the rules in 14.11(a)
and 14.11(b) to the epigraphical mappings Sfj . Looking next at (d), we intro-
duce the mappings E : t �→ Sf1(t)× · · · × Sfr(t) and S(t) = L

(
E(t)

)
with

L : (x1, α1, . . . , xr, αr) �→ (x1, . . . , xr, α1 + · · ·+ αr).

We have E closed-valued in consequence of the closed-valuedness of each Sfj ,
and E is measurable then by 14.11(d). Then S is measurable by the compo-
sition rule in 14.15(a). Clearly Sf (t) = S(t), and since Sf (t) is closed-valued
(because, for proper functions, the addition formula preserves lower semiconti-
nuity in x, cf. 1.39), we see that f is a normal integrand.

The argument for (c) is the same as the one for (d), except that L is
replaced by the mapping

M : (x1, α1, . . . , xr, αr) �→
{
(x, α1 + · · ·+ αr) if x1 = · · · = xr = x,
∅ otherwise.

This mapping is osc and allows utilization of 14.13(b); the convention 0·[±∞] =
0 enters when λj = 0,

14.45 Proposition (composition operations).
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(a) If f : T × IRn → IR is given by f(t, x) = g
(
t, F (t, x)

)
for a normal

integrand g : T × IRm → IR and a Carathéodory mapping F : T × IRn → IRm,
then f is a normal integrand.

(b) If f : T × IRn → IR is given by f(t, x) = θ
(
t, g(t, x)

)
for a normal

integrand g : T × IRn → IR and a normal integrand θ : T × IR → IR, with
θ(t, α) nondecreasing in α and the convention used that

θ(t,∞) = sup
{
θ(t, α)

∣∣α ∈ IR}, θ(t,−∞) = inf
{
θ(t, α)

∣∣α ∈ IR},
then f is a normal integrand.

(c) If f : T × IRn → IR is given by f(t, x) = g
(
t, x, u(t)

)
for a normal

integrand g : T ×IRn×IRm → IR and a measurable function u : T → IRm, then
f is a normal integrand.

Proof. We have f(t, x) lsc with respect to x in all cases (for (b) see 1.40), so
only the measurability of Sf has to be checked. In (a), define the Carathéodory
mapping G : T × IRn × IR→ IRm × IR by G(t, x, α) =

(
F (t, x), α

)
. We have

Sf (t) =
{
(x, α)

∣∣G(t, x, α) ∈ Sg(t)
}
,

so Sf is measurable by 14.15(b). Then (c) follows immediately as well; think
of

(
x, u(t)

)
as F (t, x). To obtain (b) we observe that

Sf (t) =M
(
t, Sg(t)

)
with M(t, x, α) :=

{
(x, β)

∣∣ θ(t, α) ≤ β}.
Here gphM(t, ·, ·) = {

(x, α, y, β)
∣∣ (α, β) ∈ Sθ(t), x = y

}
, so this is a closed set

depending measurably on t; cf. 14.11(d). The measurability of Sf is assured
then by 14.13(b).

14.46 Corollary (multiplication by nonnegative scalars). If f : T × IRn → IR
is given by f(t, x) = λ(t)g(t, x) for a normal integrand g : T × IRn → IR and a
measurable function λ : T → IR+, then f is a normal integrand.

Proof. Take θ(t, α) = λ(t)α in part (b) of the preceding theorem.

14.47 Proposition (inf-projection of integrands). Let p(t, u) = infx f(t, x, u) for
a normal integrand f : T × IRn × IRn → IR. If p(t, u) is lsc in u (as holds in
particular if, for each t, f(t, x, u) is level-bounded in x locally uniformly in u),
then p is a normal integrand.

More generally, the function p̄(t, u) = clu p(t, u) (where clu refers to lsc
regularization in the u argument) is always a normal integrand.

Proof. This comes out of 14.13(a) and the representation Sp = L◦Sf with L
the projection from (x, u, α) to (u, α). When lsc regularization is applied to
ensure closed-valuedness of Sf , the closure operation in 14.2 is brought in.

14.48 Example (epi-addition and epi-multiplication).

(a) If f(t, ·) = cl
[
f1(t, ·) · · · fm(t, ·)] with each fi : T × IRn → IR a

normal integrand, then f is a normal integrand.
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(b) If f(t, ·) = λ(t)�g(t, ·) for a normal integrand g : T × IRn → IR and
scalars λ(t) ≥ 0 depending measurably on t, then f is a normal integrand.

Detail. The situation in (a) can be placed in the parametric context of 14.47,
but it’s easier perhaps to note that Sf = cl

[
Sf1 + · · · + Sfm

]
; cf. 1.28. The

normality of f corresponds to the closed-valuedness and measurability of Sf ,
and that’s present because measurability of set-valued mappings is preserved
when taking sums and closures, as seen in 14.11(c) and 14.2.

In case (b) we have Sf (t) = λ(t)Sg(t) when λ(t) > 0, but Sf (t) = epi δ{0}
when λ(t) = 0; cf. the definition of epi-multiplication in 1(14). Let T0 be the
set of t values for which the latter alternative occurs, i.e., T0 = λ−1({0}). The
restriction of Sf to T0 is measurable as a constant-valued mapping, whereas
the restriction of Sf to T \T0 is measurable in consequence of 14.19. Hence
for any open set O ⊂ IRn × IR the set

{
t ∈ T0

∣∣Sf (t) ∩ O �= ∅
}
and the set{

t ∈ T \T0
∣∣Sf (t) ∩ O �= ∅

}
are both measurable. The union of these sets is

S−1
f (O), so that’s measurable as well. Thus, Sf is measurable, and since it’s

also closed-valued we conclude that f is a normal integrand.

14.49 Exercise (convexification of normal integrands). If f : T × IRn → IR is a
normal integrand and g(t, ·) = cl con f(t, ·), then g is a normal integrand.

Guide. Apply 14.12(a) and 14.2 to the epigraphical mapping Sf .

Normality too is preserved under taking conjugates. This could be derived
by invoking 14.12(f), but it’s instructive and more convenient to rely instead
on the properties of normal integrands that have been obtained so far. The
conjugate f∗ and biconjugate f∗∗ of a normal integrand f : T × IRn → IR are
defined by applying the Legendre-Fenchel transform in the IRn argument with
the T argument fixed:

f∗(t, v) := sup
x∈IRn

{〈v, x〉 − f(t, x)},
f∗∗(t, x) := sup

v∈IRn

{〈v, x〉 − f∗(t, v)
}
.

14(11)

Recall that f∗∗(t, ·) ≤ f(t, ·), and that equality holds when f(t, ·) is proper, lsc
and convex; cf. Theorem 11.1.

14.50 Theorem (conjugate integrands). If f : T × IRn → IR is a normal inte-
grand, its conjugate f∗ and biconjugate f∗∗ are normal integrands.

Proof. Let T0 =
{
t ∈ T ∣∣ f(t, ·) �≡ ∞}

= domSf (measurable), and consider
any countable family {(xν , αν)}ν∈IN of measurable functions (xν , αν) : T0 →
IRn × IR that furnishes a Castaing representation of Sf (the existence being
guaranteed by 14.5). For each ν ∈ IN , define gν : T × IRn → IR by

gν(t, v) :=

{ 〈xν(t), v〉 − αν(t) if t ∈ T0,
−∞ if t ∈ T \T0.



672 14. Measurability

We have f∗ = supν g
ν by 14(11) and the density property of a Castaing rep-

resentation (in 14.5(a)). The restriction of gν to T0 × IRn is a Carathéodory
integrand and thus is a normal integrand (by 14.29), so the restriction of Sgν to
T0 is closed-valued and measurable. But also Sgν (t) ≡ IRn×IR for t ∈ T \T0, so
the restriction of Sgν to T \T0 is closed-valued and measurable as well. Hence
Sgν is closed-valued and measurable on T , and gν is a normal integrand on
T × IRn. The fact that f∗ = supν g

ν ensures then through 14.43(a) that f∗ is
a normal integrand. The conjugate of f∗ is f∗∗, so the normality of f∗ in turn
implies the normality of f∗∗.

14.51 Example (support integrands). Associate with S : T →→ IRn the function
σS : T × IRn → IR defined by

σS(t, v) := σS(t)(v) = sup
{〈v, x〉 ∣∣x ∈ S(t)}.

If S is measurable, then σS is a convex normal integrand. Conversely, if σS is
a normal integrand and S is closed-convex-valued, then S is measurable.

In particular, when S is compact-convex-valued, S is measurable if and
only if σS(t, v) is measurable in t for each fixed v.

Detail. We get this by specializing 14.50 to the integrand δS in 14.32; cf. 11.4
and 11.1. For the last assertion, we appeal also to 14.39.

14.52 Exercise (envelope representations through convexity).

(a) A function f : T × IRn → IR that nowhere takes on −∞ is a convex
normal integrand if and only if there is a collection {(vν , αν)}ν∈IN of measurable
functions (vν , αν) : T → IRn × IR such that

f(t, x) = supν∈IN

{〈vν(t), x〉 − αν(t)
}
.

(b) A mapping S : T →→ IRn is closed-convex-valued and measurable if and
only if there is a collection {(vν , αν)}ν∈IN of measurable functions (vν , αν) :
T → IRn × IR such that

S(t) =
{
x ∈ IRn

∣∣ 〈vν(t), x〉 ≤ αν(t) for all ν ∈ IN}
.

Guide. Get the sufficiency in (a) from 2.9(b), 14.44 (and 14.39). Deduce
the necessity in (a) from Proposition 14.49 by way of a Castaing representation
(cf. 14.5) for the epigraphical mapping associated with the conjugate integrand.
Derive (b) from (a) in the framework of the conjugacy between the indicator
integrand δS (cf. 14.32) and the support integrand σS in 14.51.

Next we take up the question of how normality of integrands is preserved
under limit operations.

14.53 Proposition (limits of integrands). Consider any sequence {fν}ν∈IN of
normal integrands fν : T × IRn → IR.

(a) (epi-limits) If f : T × IRn → IR is given by f(t, ·) = e-limν f
ν(t, ·)

for all t ∈ T , then f is a normal integrand. The same is true if f(t, ·) =
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e-lim supν f
ν(t, ·) for all t, or if f(t, ·) = e-lim infν f

ν(t, ·) for all t.
(b) (pointwise limits) If f : T × IRn → IR has f(t, ·) = cl[p-limν f

ν(t, ·)]
for all t ∈ T , then f is a normal integrand. The same is true if f(t, ·) =
cl[p-lim supν f

ν(t, ·)] for all t. It holds if f(t, ·) = cl[p-lim infν f
ν(t, ·)] for all t

under the assumption that (T,A) is complete for some measure μ.

Proof. To justify (a), we note that when f(t, ·) = e-limν f
ν(t, ·) for all t we

have Sf = p-limν Sfν . The closed-valuedness and measurability of Sf follows
then from that of the mappings Sfν , cf. Theorem 14.20. The same argument
takes care of e-lim sup and e-lim inf.

To justify (b), we look first at the case where f(t, ·) = cl[p-lim supν f
ν(t, ·)].

This means Sf (t) = cl
⋃

ν S
ν(t) for Sν(t) =

⋂
κ≥ν Sfκ(t). The mappings Sfν (t)

are closed-valued and measurable, so Sν has these properties by way of 14.11(a).
Then Sf is closed-valued and measurable by 14.11(b) in combination with 14.2,
so that f is a normal integrand. In the case of f(t, ·) = cl[p-limν f

ν(t, ·)] we of
course have f(t, ·) = cl[p-lim supν f

ν(t, ·)] in particular.
The case of f(t, ·) = cl[p-lim infν f

ν(t, ·)] suffers from the fact that, al-
though we can write Sf (t) = cl

⋂
ν S

ν(t) for Sν(t) =
⋃

κ≥ν Sfκ(t), the map-
pings Sν , while measurable by 14.11(b), might not be closed-valued, and the
measurability of S : t �→ ⋂

ν S
ν(t) could then be in doubt because 14.11(a)

wouldn’t be applicable. When (T,A) is complete for some measure μ, however,
we can work instead with the joint measurability criterion in 14.34. We have
f(t, ·) = cl f0(t, ·) for the function f0 = p-lim infν f

ν , which is A⊗B(IRn) mea-
surable because each fν is A⊗B(IRn) measurable in consequence of normality.
Then f is a normal integrand by 14.35.

14.54 Exercise (horizon integrands and horizon limits).

(a) For any normal integrand f : T×IRn → IR, the function h : T×IRn → IR
defined by h(t, ·) = f(t, ·)∞ is a normal integrand.

(b) For any sequence {fν}ν∈IN of normal integrands fν : T × IRn → IR,
the function h : T × IR→ IR defined by h(t, ·) = e-lim inf∞ν fν(t, ·) is a normal
integrand. The same is true for h(t, ·) = e-lim sup∞

ν fν(t, ·) and for h(t, ·) =
e-lim∞

ν f
ν(t, ·), when that horizon epi-limit exists for all t ∈ T .

Detail. Apply 14.21 to the epigraphical mappings.

An integrand f : T × IRn → IR is simple when rgeDf and rge f are finite
sets. This means that, for each x ∈ IRn, the function t �→ f(t, x) is measurable
with only finitely many values and in fact is identically ∞ unless x belongs to
a certain finite F ⊂ IRn.

14.55 Exercise (approximation by simple integrands). Any simple integrand
is a normal integrand, in particular. An integrand f : T × IRn is normal if
and only if there is a sequence of simple integrands fν : T × IRn such that
f(t, ·) = e-limν f

ν(t, ·) for every t ∈ T .
Guide. Establish the normality of a simple integrand from the definitions.
Deduce the limit assertion from 14.53 and 14.22.
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14.56 Theorem (subderivatives and subgradient mappings). For any proper
normal integrand f : T × IRn → IR, and any choice of x(t) ∈ Df (t) depending
measurably on t ∈ T , the subderivative functions

(t, w) �→ d̂f
(
t, x(t)

)
(w), (t, w) �→ df

(
t, x(t)

)
(w)

are normal integrands, and the subgradient mappings

t �→ ∂̂f
(
t, x(t)

)
, t �→ ∂f

(
t, x(t)

)
, t �→ ∂

∞
f
(
t, x(t)

)
,

are closed-valued and measurable. Also measurable are the mappings

t �→ gph ∂f(t, ·), t �→ gph ∂
∞
f(t, ·).

Proof. Let α(t) = f(t, x(t)), noting that from 14.28 this depends measurably
on t. In the case of the subderivative functions we have from 8.2 and 8.17 that

epi d̂f(t, x(t)) = T̂Sf (t)

(
x(t), α(t)

)
, epi df(t, x(t)) = TSf (t)

(
x(t), α(t)

)
,

so the mappings t �→ epi d̂f(t, x(t)) and t �→ epi df(t, x(t)) are closed-valued
and measurable, as seen from 14.26. Similarly in the case of the subgradient
mappings, we have from 8.9 that

∂̂f(t, x(t)) =
{
v
∣∣ (v,−1) ∈ N̂Sf (t)

(x(t), α(t))
}
,

∂f(t, x(t)) =
{
v
∣∣ (v,−1) ∈ NSf (t)

(x(t), α(t))
}
,

∂
∞
f(t, x(t)) =

{
v
∣∣ (v, 0) ∈ NSf (t)

(x(t), α(t))
}
,

and the closed-valuedness and measurability follows from the normal cone part
of 14.26 in collaboration with 14.15(b). (For instance, we have ∂f(t, x(t)) ={
v
∣∣F (v) ∈ S(t)} for F (v) = (v,−1) and S(t) = NSf (t)

(x(t), α(t)).) The mea-
surability of the graphical mappings likewise follows from that of the graphical
mapping in 14.26 by this argument.

The graphical mappings at the end of Theorem 14.56, while measurable,
aren’t necessarily closed because the subgradient definitions in 8.3 only take
f -attentive limits in x, not general limits. This restriction falls away in dealing
with subdifferentially continuous functions like convex functions and amenable
functions (cf. 13.28, 13.30, 13.32). Thus for instance, when f is a convex normal
integrand, the mappings in question are closed-valued as well as measurable.
Indeed, for such integrands there is also a converse property.

14.57 Proposition (subgradient characterization of convex normality). Let f :
T × IRn → IR be such that f(t, x) is a proper, lsc, convex function of x ∈ IRn

for each t ∈ T . Then f is a normal integrand if and only if the following hold:

(a) the mapping t �→ gph ∂f(t, ·) is measurable;

(b) there is a measurable function x̄ : T → IRn such that ∂f(t, x̄(t)) �= ∅
for all t ∈ T and the function t �→ f(t, x̄(t)) is measurable.
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Proof. The assumptions on f imply that the mapping S : t �→ gph ∂f(t, ·) is
nonempty-closed-valued (since ∂f(t, ·) is maximal monotone by 12.17). If f is
a normal integrand we have (a) as a consequence of 14.56, as noted above, and
we can choose (x(t), v(t)) ∈ S(t) depending measurably on t; cf. 14.6. Then
(b) holds through 14.28.

Conversely, if (a) and (b) hold, let {(xν , vν)}ν∈IN give a Castaing represen-
tation for S; cf. 14.5(a). Select v̄(t) ∈ ∂f(t, x̄(t)) to depend measurably on t, as
is possible through 14.6, because the mapping t �→ ∂f(t, x̄(t)) is closed-valued
and measurable by 14.56. By the central argument in the proof of Theorem
12.25, f(t, x) is supremum of the expressions

f(t, x̄(t)) + 〈v̄(t), x0 − x̄(t)〉+ 〈vm, x̄(t)− xm〉
+ 〈vm−1, xm − xm−1〉+ · · ·+ 〈v0, x1 − x0〉

over all choices of (xk, vk) ∈ S(t) (with m arbitrary). Because of the density
of

{
(xν(t), vν(t))

∣∣ ν ∈ IN}
in S(t) that goes with having a Castaing represen-

tation, we still get f(t, x) if we restrict to pairs (xk, vk) = (xνk(t), vνk(t)). In
this way we can focus on a countable collection of expressions, each of which,
as a function of t and x, is a Carathéodory integrand. Then by 14.44(a), f is
a normal integrand.

F. Integral Functionals

The theory of normal integrands is aimed especially at facilitating work with
integral functionals If as expressed in 14(1). Although we won’t, in this book,
take up the many issues of infinite-dimensional variational analysis raised by
such functionals, we’ll develop now a key fact about the interchange of integra-
tion and minimization, which comes easily out of the results already obtained
and demonstrates the usefulness of measurable selections.

To proceed with this we must first clear up a potential ambiguity in the
what an integral might mean when an extended-real-valued function is inte-
grated. Our approach to this is consistent with the extended arithmetic in
Chapter 1, where we adopted the conventions that 0·∞ = 0 = 0·(−∞) and
∞+ (−∞) = (−∞) +∞ =∞. Again we let ∞ dominate over −∞ by taking∫

T

α(t)μ(dt) =

∫
T

max{α(t), 0}μ(dt) +
∫
T

min{α(t), 0}μ(dt)

for any measurable function α : T → IR and measure μ on A, so that∫
T

α(t)μ(dt) <∞ when

∫
T

max{α(t), 0}μ(dt) <∞,∫
T

α(t)μ(dt) =∞ when

∫
T

max{α(t), 0}μ(dt) =∞.
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More specifically,
∫
T
α(t)μ(dt) is called the upper integral of α with respect

to μ under this interpretation, but in line with our handling of extended
arithmetic, we take the “upper” for granted. Note that there’s no ambigu-
ity with

∫
T
max{α(t), 0}μ(dt), which has a standard value, finite or∞, or with∫

T
min{α(t), 0}μ(dt), which is finite or −∞. Nor does 0 really have to be

singled out; it’s easy to see that the adopted convention conforms to taking∫
T

α(t)μ(dt) = inf
{∫

T

β(t)μ(dt)
∣∣∣β ∈ L1(T,A, μ), β ≥ α

}
.

14.58 Proposition (integral functionals). Under the extended interpretation of
integration, the functional If : X → IR given by

If [x] =

∫
T

f
(
t, x(t)

)
μ(dt) for x ∈ X

is well defined for any normal integrand f : T × IRn → IR and any space X of
measurable functions x : T → IRn. Furthermore,

If [x] <∞ =⇒ x(t) ∈ Df (t) = dom f(t, ·) μ-almost everywhere.

Proof. The measurable dependence of x(t) on t ∈ T ensures that of α(t) =
f(t, x(t)) by 14.28. Then If [x] is well defined in the manner explained above,
and one has If [x] < ∞ if and only if

∫
T
max{f(t, x(t)), 0}μ(dt) < ∞. Then

certainly μ
({t | f(t, x(t)) =∞}) = 0.

The domain property at the end of this result shows how “pointwise”
constraints on x(t) can be passed through an integral functional to become
constraints on the function x ∈ X . When f has the form f(t, ·) = f0(t, ·)+δC(t)

in Example 14.32, for instance, we get If [x] = If0 [x] when x(t) ∈ C(t) for μ-
almost every t, but If [x] =∞ otherwise.

Typical spaces X of interest with respect to an integral functional If are
the Lebesgue spaces Lp(T,A, μ; IRn) and the space of constant functions x. In
the latter case, X can be identified with IRn itself, and If becomes, in this
restriction, a function on IRn obtained by (potentially) “infinite addition” of
nonnegative scalar multiples of the functions f(t, ·) for t ∈ T . When T has
topological structure, the space C(T ; IRn) of continuous functions x : T → IRn

is a candidate for X as well. Spaces of differentiable functions can also enter
the scene along with Sobolev spaces, Orlicz spaces and more. A useful example
that encompasses all the others is M(T,A; IRn), the space of all measurable
functions x : T → IRn.

In their role in the theory of integral functionals, these spaces fall into two
very different categories, distinguished by the presence or absence of a certain
property of decomposability.

14.59 Definition (decomposable spaces). A space X of measurable functions
x : T → IRn is decomposable in association with a measure μ on A if for every
function x0 ∈ X , every set A ∈ A with μ(A) < ∞ and bounded, measurable
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function x1 : A→ IRn, X also contains the function x : T → IRn defined by

x(t) =

{
x0(t) for t ∈ T \A,
x1(t) for t ∈ A.

In the preceding examples, the spaces M(T,A; IRn) and Lp(T,A, μ; IRn)
are decomposable, whereas C(T ; IRn) and the space of constant functions are
not (except for some extreme choices of T ). To be decomposable, a space X
that’s linear (and therefore contains the function 0) must in particular contain
every bounded measurable function that vanishes outside some set of finite
measure.

The main consequence of decomposability is the following result, which
plays a fundamental role in many applications that involve a search for ex-
tremals. Basically, the result tells us when it’s possible to replace optimality
conditions in a functional space by pointwise conditions of optimality in IRn.

14.60 Theorem (interchange of minimization and integration). Let X be a space
of measurable functions from T to IRn that is decomposable relative to μ, a
σ-finite measure on A. Let f : T × IRn → IR be a normal integrand. Then the
minimization of If over X can be reduced to pointwise minimization in the
sense that, as long as If �≡ ∞ on X , one has

inf
x∈X

∫
T

f
(
t, x(t)

)
μ(dt) =

∫
T

[
inf

x∈IRn
f(t, x)

]
μ(dt).

Moreover, as long as this common value is not −∞, one has for x̄ ∈ X that

x̄ ∈ argmin
x∈X

If [x] ⇐⇒ x̄(t) ∈ argmin
x∈IRn

f(t, x) for μ-almost every t ∈ T.

Proof. Let p(t) = infx f(t, x) and P (t) = argminx f(t, x), recalling from 14.37
that these depend measurably on t. For any x ∈ X we have f

(
t, x(t)

) ≥ p(t) for
all t; hence infX If ≥

∫
T
p(t)μ(dt) where we can assume that infX If > −∞.

To prove the inequality in the other direction, it suffices to show for finite
β >

∫
T
p(t)μ(dt) that there exists x ∈ X with If (x) < β. We can build, in

part, on the assumption that there exists x0 ∈ X with If [x0] <∞.

Because
∫
T
p(t)μ(dt) < ∞, we know that

∫
T
max{p(t), 0}μ(dt) < ∞

and therefore, in terms of pε(t) = max{p(t),−ε−1}, that
∫
T
pε(t)μ(dt) →∫

T
p(t)μ(dt) as ε ↘ 0. Let ψ : T → IR be measurable with ψ(t) > 0 and∫

T
ψ(t)μ(dt) < ∞; the existence of such a function is guaranteed by the σ-

finiteness of μ. The measurable function αε(t) := εψ(t) + pε(t) has∫
T

αε(t)μ(dt) = ε

∫
T

ψ(t)μ(dt) +

∫
T

pε(t)μ(dt)→
∫
T

p(t)μ(dt) < β,

but also αε(t) > p(t) for all t, so that the sets Sε(t) =
{
x ∈ IRn

∣∣ f(t, x) ≤ αε(t)
}

are nonempty. Fix any ε small enough that
∫
T
αε(t)μ(dt) < β. The mapping

Sε : T �→ IRn is measurable by 14.33, so it has a measurable selection: there
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exists by 14.6 a measurable function x1 : T �→ IRn with x1(t) ∈ Sε(t) for every
t ∈ T . Then ∫

T
f
(
t, x1(t)

)
μ(dt) < β.

By σ-finiteness we can express T as the union of an increasing sequence of
sets T ν ∈ A with μ(T ν) < ∞. Let Aν :=

{
t ∈ T ν

∣∣ |x1(t)| ≤ κ
}
. The sets Aν

likewise belong to A and increase to T with μ(Aν) < ∞, and for x1 and the
earlier function x0 ∈ X we have∫

T \Aν

f(t, x0(t)μ(dt)→ 0,

∫
Aν

f(t, x1(t)μ(dt)→
∫
T

f(t, x1(t)μ(dt). 14(12)

Define xν : T → IR to agree with x0 on T \Aν and with x1 on A
ν . Then xν ∈ X

by our assumption that X is decomposable relative to μ. Furthermore,

If [x
ν ] =

∫
T \Aν

f
(
t, x0(t)

)
μ(dt) +

∫
Aν

f
(
t, x1(t)

)
μ(dt),

so that If [x
ν ]→ ∫

T
f
(
t, x1(t)

)
μ(dt) < β by 14(12) as ν →∞, and consequently

If [x
ν ] < β for ν sufficiently large.
We pass now to the claim about a function x̄ ∈ X attaining the minimum

of If on X . Since f
(
t, x̄(t)

) ≥ inf f(t, ·) = p(t) for all t, that’s equivalent to

having μ
({t | f(t, x̄(t)) > p(t)}) = 0 under our assumption that

∫
T
p(t)μ(dt) is

finite. This is identical to the stated criterion, because f(t, x̄(t)) > p(t) means
that x̄(t) /∈ argmin f(t, ·).
14.61 Exercise (simplified interchange criterion). Let f : T × IRn → IR be a
normal integrand, and let Mf be the collection of all x ∈ M(T,A; IRn) with
If [x] <∞, the measure μ in this functional being σ-finite. The conclusions of
Theorem 14.60 then hold for any space X withMf ⊂ X ⊂M(T,A; IRn).

Proof. Glean this as a simplification of the proof of previous theorem.

An illustration of how the interchange of minimization and integration can
work in practice is provided by the following example.

14.62 Example (reduced optimization). For a σ-finite measure μ on A and a
normal integrand g : T × (IRn × IRm)→ IR, consider a problem of the form:

(P) minimize J [x] + Ig[x, u] over all (x, u) ∈ X × U
on spaces X ⊂M(T,A; IRn) and U ⊂M(T,A; IRm) with U decomposable; the
functional J : X → IR is arbitrary. Letting

f(t, x) = inf
u∈IRm

g(t, x, u)

and assuming the properties of g are such as to ensure that f(t, ·) is lsc on IRn

for each t ∈ T , consider also the problem

(P ′) minimize J [x] + If [x] over all x ∈ X .
If inf(P) < ∞, one has inf(P) = inf(P ′). If also inf(P) > −∞, the pairs
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(x̄, ū) ∈ X × U furnishing an optimal solution to (P) are the ones such that x̄
is an optimal solution to (P ′) and

ū(t) ∈ argmin
u∈IRm

g
(
t, x̄(t), u

)
for μ-almost every t ∈ T.

Thus in principle, (P) can be solved by solving (P ′) for x̄ and then taking ū to
be any measurable selection in U for the mapping S : t �→ argmin g

(
t, x̄(t), ·).

Detail. In either problem (P) or (P ′), the rules of extended arithmetic dictate
that the expression being minimized is ∞ unless J [x] < ∞. We can therefore
focus our attention on x ∈ X with J [x] < ∞, which necessarily exist when
inf(P) < ∞ or inf(P ′) < ∞. Note that the assumption about the functions
f(t, ·) being lsc guarantees through 14.47 that f is a normal integrand on
T × IRn, so that the integral functional If in (P ′) is well defined. (Refer to
1.28 for conditions on g that provide this lower semicontinuity property of f .)

Fixing any x ∈ X with J [x] < ∞, define h : T × IRm → IR by h(t, u) =
g(t, x(t), u). According to 14.45, h is a normal integrand, and inf h(t, ·) =
f
(
t, x(t)

)
. In applying Theorem 14.60 to Ih, we see that

inf
u∈U

Ig[x, u] = inf
u∈U

Ih[u] =

∫
T

[
inf

u∈IRd
h(t, u)

]
μ(dt) =

∫
T

f
(
t, x(t)

)
= If [x]

whenever If [x] < ∞. This fact and the others coming from Theorem 14.60
yield the result stated here.

Commentary

Measurability of set-valued mappings has its roots in earlier studies of projections of
classes of subsets of a product space, if these are viewed as graphs, but it mainly got
going because of applications in control theory and, soon after, in economics. Pioneers
like Filippov [1959] and Ważewski [1961] were motivated by technical questions arising
in connection with differential inclusions, whereas Aumann [1965] and Debreu [1966]
were interested in economic models involving ‘infinitesimal agents’. The thesis of
Castaing [1967] was instrumental in fostering a systematic development of the subject
in terms of ‘multivalued’ mappings which could be added, intersected, composed with
other mappings, and so forth, as here.

Debreu dealt with set-valued mappings as single-valued mappings from a mea-
surable space into a metric hyperspace of compact sets. He saw measurability from
that angle, which had the advantage of revealing how standard facts about measur-
able functions could be utilized. But he was also confined by the Pompeiu-Hausdorff
metric and its unsuitability for handling unboundedness and nonemptiness.

That wasn’t so with Castaing, who identified the measurability of a general set-
valued mapping S with that of the sets S−1(C) for C closed. He showed that this was
equivalent, for closed-valued S, to the measurability of S−1(O) for O open. Other
researchers, notably Ioffe and Tikhomirov [1974], adopted the latter property as the
definition of the measurability of S. We have followed that here, because it makes
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little difference in the long run, due to the closure rule in 14.2, and yet it simplifies
constructions like those in 14.11(b)(c), 14.12(a)(b), 14.13(a) and 14.15(a), where the
closure operation would otherwise have to be incorporated at every step.

Castaing demonstrated the equivalence of his approach to measurability with
that of Debreu when nonempty-compact-valued mappings are involved. In Theorem
14.4 we have gone further by passing from an argument based on the Pompeiu-
Hausdorff metric to one based on the integrated set metric, thereby removing the
compactness restriction that was inherent in this setting. The proof is inspired by
those of Salinetti and Wets [1986] and Hess [1983], [1986], who obtains the equivalence
of the Effrös and Borel fields by endowing cl-sets�=∅(IR

n) with a uniform structure
generated from uniform convergence of distance functions; cf. Theorem 4.35.

The basic tests in Theorem 14.3 for the measurability of a mapping S were
established by Castaing [1967] and Rockafellar [1969c], with the latter concentrating
on IRn as the range space and making explicit the simplifying features of that case;
see also Rockafellar [1976a]. (Note: In this commentary we’ll focus only on IRn,
although many of the cited works go beyond that.)

Debreu and Castaing further provided graphical criteria like those in 14.8 for
some situations. Theorem 14.8 in its present form appeared in Rockafellar [1969c],
but the underpinnings go back to some of the earliest work on measurable selections
and to the theory of Suslin sets and their projections. See Sainte-Beuve [1974] for
a broadened discussion of the projection fact quoted before the statement of this
theorem. The Borel measurability of gphS (when T is a Borel subset of IRd) was the
property adopted as the measurability of S by Aumann [1965]; cf. 14.8(c).

The powerful characterization of measurability in terms of a Castaing represen-
tation in Theorem 14.5(a) comes from Castaing [1967] as well. Our proof, however,
in taking advantage of IRn, is that of Rockafellar [1976a], where also the alternative
representation in 14.5(b) was developed together with its convenient application to
convex-valued mappings in 14.7. The measurable selection result in 14.6, while de-
picted here as an immediate consequence of the existence of a Castaing representation,
can mainly be attributed to Kuratowski and Ryll-Nardzewski [1965]. But there is a
long history of precedents of varying generality, including an early proof by Rokhlin
[1949] that was later found to be inadequate; see Wagner [1977] and Ioffe [1978a] for
the full picture.

The set-valued extension of Lusin’s theorem, obtained in equating the measura-
bility of S with the property in 14.10(a), builds on Plís [1961] and Castaing [1967] by
allowing the sets S(t) now to be unbounded, not just compact. Castaing made this
Lusin mode of characterization his main tool in many arguments, for example in es-
tablishing the measurability of t �→ ⋂

i∈I Si(t) when each Si is measurable. But that
technique requires T to have topological structure and for the discussion to revolve
around a complete measure µ that’s compatible with such structure; in his case the
Si’s also had to be compact-valued. Those restrictions are avoided in our strategy for
proving such results, which follows Rockafellar [1969c] for 14.11 and 14.12 and Rock-
afellar [1976a] for 14.13, 14.14 and 14.15. The latter article was the first to employ
the measurability of the mapping t �→ gphM(t, ·) as in 14.13.

The relation F (t, x(t)) ∈ D(t) in 14(5) reduces to the equation F (t, x(t)) =
c(t) when D(t) is the singleton set {c(t)}. That case of the implicit measurable
function theorem in 14.16, often referred to as Filippov’s lemma, gave impetus to
the study of measurable set-valued mappings and measurable selections because of a
key application to differential equations with control parameters. The original result
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of Filippov [1959] required F to be continuous; Ważewski [1961] extended it to the
Carathéodory conditions of continuity in x and measurability in t. Those conditions
were developed much earlier by Carathéodory in his research on the existence of
solutions to ordinary differential equations.

For results on the representation of a closed-valued measurable mapping S in
the form S(t) = F (t, C) for a Carathéodory mapping F , see Ioffe [1978b]. Such a
representation may require allowing C to be a space more general than just a closed
subset of IRd for some d.

Pointwise inner and outer limits of a sequence of measurable mappings, and the
characterization in 14.22 of a measurable mapping as the limit of simple mappings,
were already treated by Castaing [1967] in the compact-valued case. Our approach,
however, follows that of Salinetti and Wets [1981], who drop the compact-valued re-
striction. The graphical limits in Theorem 14.20 are new, as are the horizon aspects
in 14.21. The results about the convergence of measurable selections in 14.23 can be
found in Salinetti and Wets [1981] and were further elaborated in Lucchetti, Papa-
georgiou and Patrone [1987]. The characterizations of almost everywhere and uniform
convergence in 14.24 and 14.25 likewise go back to Salinetti and Wets [1981].

Aubin and Frankowska [1990] proved the measurability of the tangent cone map-
ping in Theorem 14.26. The measurability of the regular tangent cone mapping and
the normal cone mappings in Theorem 14.26 hasn’t been dealt with before now. But
a subgradient result of Rockafellar [1969c], when applied to indicators, yields, as a
special case, the measurability of the normal cone mapping when the mapping S is
closed-convex-valued.

In problems involving integral functionals If such as in the ‘calculus of vari-
ations’, it was traditional to take the integrand f(t, x) to be continuous in t and
x jointly, or indeed differentiable to whatever extent was convenient. Later, the
Carathéodory conditions of continuity in x and measurability in t came to the fore,
especially in connection with the existence of optimal trajectories. With the emer-
gence of modern control theory, however, inequality constraints became important,
and this caused a shift in perspective once the idea of representing constraints through
infinite penalties took hold.

That idea was a hallmark of the early work of Moreau and Rockafellar on the
foundations of convex analysis in the mid 1960s, as explained in the notes to Chapter
1. It was natural to translate it to integral functionals by admitting integrands f
that are extended-real-valued, so as to be able to represent ‘pointwise’ constraints of
the sort described in 14.58. But when f(t, x) can be ∞, there’s little sense in asking
f(t, x) to depend continuously on x. The Carathéodory conditions are no longer
suitable and have to be replaced by something else.

One could hope that it might be enough simply to replace the continuity of
f(t, x) in x by lower semicontinuity, while maintaining the measurability of f(t, x) in
t, but no. Counterexamples, of the kind on which the second part of 14.28 is based,
show that although lower semicontinuity in x is certainly right, the assumption of
measurability in t for each fixed x isn’t adequate.

The way out of this impasse was found by Rockafellar [1968b] in the concept of
a ‘normal convex integrand’, which in its initial formulation rested on the property
in 14.39 and thus depended heavily on f(t, x) being convex in x. That paper was
actually submitted for publication in 1966. When Castaing’s thesis came out in
1967, Rockafellar realized that his normality condition was equivalent to requiring
the epigraphical mapping t �→ epi f(t, ·) to be closed-valued and measurable; see
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Rockafellar [1969c].
Normal convex integrands and their associated convex integral functionals be-

came a focus of work on ‘fully convex’ problems in optimal control and the calculus of
variations, cf. Rockafellar [1970b], [1971a], [1972], ‘convolution integrals’, cf. Ioffe and
Tikhomirov [1968], and infinite-dimensional convex analysis, cf. Rockafellar [1971b],
[1971c], Ioffe and Levin [1972], Bismut [1973], and Castaing and Valadier [1977],
as well as applications in stochastic programming, cf. Rockafellar and Wets [1976a],
[1976b], [1976c], [1976d], [1977].

In the face of all this effort going into convex integral functionals, nonconvex
integrands received comparatively little attention at first. Berliocchi and Lasry [1971],
[1973], were the first to speak of normal integrands f beyond the case of f(t, x) convex
in x. They didn’t take the closed-valuedness and measurability of t �→ epi f(t, ·) as
the definition, however. Instead they essentially adopted the property in Theorem
14.42(c) for that purpose, which was possible because they were concerned only with
spaces T ∈ B(IRd). They showed that such normality agreed with that of Rockafellar
[1968b] in the presence of convexity. Their definition was adopted by Ekeland and
Temam [1974] in a book that broke new ground in treating nonconvex problems
in the calculus of variations, including some problems related to partial differential
equations. Around the same time, the book of Ioffe and Tikhomirov [1974] came out
with other innovations in treating problems in the calculus of variations and optimal
control. Those authors were the first to take the approach of epi-measurability directly
in defining normal integrands without convexity.

The different views of the ‘normality’ of an integrand were reconciled in the
lecture notes of Rockafellar [1976a], where Theorem 14.42 was first proved. The
Berliocchi-Lasry property in 14.42(c) was translated in that work to a corresponding
property of measurable set-valued mappings, which appears here as the characteri-
zation in Theorem 14.10(c). Many basic facts that had been established for convex
normal integrands in Rockafellar [1969c] were extended at that time to the noncon-
vex case as well. Examples are the normality of sums and composites of normal
integrands (in 14.44 and 14.45), the measurability of level-set mappings (in 14.33)
and the inf function and argmin mapping (in 14.37), and the joint measurability cri-
terion (in 14.34). The property of 14.43, generalizing that of Scorza-Dragoni [1948],
was translated to normal integrands earlier by Ekeland and Temam [1974].

The new characterization of normality in 14.41 is based on the idea in 14.40 of
‘scalarizing’ normal integrands, which is due to Korf and Wets [1997]. The results in
14.38 (Moreau envelopes), 14.46 (scalar multiplication), 14.47 (inf-projections), 14.48
(epi-addition and epi-multiplication) and 14.49 (convexification) are newly presented
here too. They add to the known catalogue of operations preserving normality.

Theorem 14.50, about the normality of the conjugate of a normal integrand,
goes all the way back to Rockafellar [1968b], however, where it was seen as a key
test of the concept. The consequences for support functions (in 14.51) and envelope
representations (in 14.52) come from Rockafellar [1969c]; see Valadier [1974] for more
on the support function case. The measurability properties of subderivatives and
subgradients in Theorem 14.56 are new beyond the convex case of subgradients in
Rockafellar [1969]. The subgradient characterization of convex normal integrands in
14.57 is due to Attouch [1975].
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Proposition 14.53, about the limit of normal integrands, extends the results of
Salinetti and Wets [1986]. The horizon developments in 14.54 are new, as are those
in 14.55 about simple integrands.

Decomposable spaces were introduced by Rockafellar [1968b] for the purpose of
identifying the circumstances in which the conjugate of a convex integral functional If
on a linear space X would be the integral functional If∗ associated with the conjugate
integrand f∗ on a space Y that is ‘paired’ with X . The crucial part of the argument
rested on interchanging minimization with integration. A need for similar patterns of
reasoning came up later in connection with models of reduced optimization—various
special cases of 14.62—which were developed in optimal control, cf. Rockafellar [1975],
and in stochastic analysis, cf. Rockafellar and Wets [1976d]. The basic interchange
rule in Theorem 14.60, however, wasn’t distilled from the mix of ideas until Rockafellar
[1976a].

For more on conjugate integral functionals and their properties, see also Rock-
afellar [1971b], [1971c]. Especially of interest in this theory are criteria for weakly
compact level sets of integral functionals and the features that duality takes on when
one is dealing with nonreflexive spaces, as for instance in calculating the conjugate of
an integral functional on a space C(T ; IRn) of continuous functions as a functional on
the dual space of measures.
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Index of Statements

1.1 Example (equality and inequality constraints).
1.2 Example (box constraints).
1.3 Example (penalties and barriers).
1.4 Example (principle of abstract minimization).
1.5 Definition (lower limits and lower semicontinuity).
1.6 Theorem (characterization of lower semicontinuity).
1.7 Lemma (characterization of lower limits).
1.8 Definition (level boundedness).
1.9 Theorem (attainment of a minimum).
1.10 Corollary (lower bounds).
1.11 Example (level boundedness relative to constraints).
1.12 Exercise (continuity of functions).
1.13 Exercise (closures and interiors of epigraphs).
1.14 Exercise (growth properties).
1.15 Exercise (lower and upper limits of sequences).
1.16 Definition (uniform level boundedness).
1.17 Theorem (parametric minimization).
1.18 Proposition (epigraphical projection).
1.19 Exercise (constraints in parametric minimization).
1.20 Example (distance functions and projections).
1.21 Example (convergence of penalty methods).
1.22 Definition (Moreau envelopes and proximal mappings).
1.23 Definition (prox-boundedness).
1.24 Exercise (characteristics of prox-boundedness).
1.25 Theorem (proximal behavior).
1.26 Proposition (semicontinuity under pointwise max and min).
1.27 Proposition (properties of epi-addition).
1.28 Exercise (sums and multiples of epigraphs).
1.29 Exercise (calculus of indicators, distances, and envelopes).
1.30 Example (vector-max and log-exponential functions).
1.31 Exercise (images of epigraphs).
1.32 Proposition (properties of epi-composition).
1.33 Definition (local semicontinuity).
1.34 Exercise (consequences of local semicontinuity).
1.35 Proposition (interchange of order of minimization).
1.36 Exercise (max and min of a sum).
1.37 Exercise (scalar multiples versus max and min).
1.38 Proposition (lower limits of sums).
1.39 Proposition (semicontinuity of sums, scalar multiples).
1.40 Exercise (semicontinuity under composition).
1.41 Exercise (level-boundedness of sums and epi-sums).
1.42 Theorem (minimizing sequences).
1.43 Proposition (variational principle; Ekeland).
1.44 Example (proximal hulls).
1.45 Exercise (proximal inequalities).
1.46 Example (double envelopes).
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2.1 Definition (convex sets and convex functions).
2.2 Theorem (convex combinations and Jensen’s inequality).
2.3 Exercise (effective domains of convex functions).
2.4 Proposition (convexity of epigraphs).
2.5 Exercise (improper convex functions).
2.6 Theorem (characteristics of convex optimization).
2.7 Proposition (convexity of level sets).
2.8 Example (affine functions, half-spaces and hyperplanes).
2.9 Proposition (intersection, pointwise supremum and pointwise limits).
2.10 Example (polyhedral sets and affine sets).
2.11 Exercise (characterization of affine sets).
2.12 Lemma (slope inequality).
2.13 Theorem (one-dimensional derivative tests).
2.14 Theorem (higher-dimensional derivative tests).
2.15 Example (linear-quadratic functions).
2.16 Example (convexity of vector-max and log-exponential).
2.17 Example (norms).
2.18 Exercise (addition and scalar multiplication).
2.19 Exercise (set products and separable functions).
2.20 Exercise (convexity in composition).
2.21 Proposition (images under linear mappings).
2.22 Proposition (convexity in inf-projection and epi-composition).
2.23 Proposition (convexity in set algebra).
2.24 Exercise (epi-sums and epi-multiples).
2.25 Example (distance functions and projections).
2.26 Theorem (proximal mappings and envelopes under convexity).
2.27 Theorem (convex hulls from convex combinations).
2.28 Exercise (simplex technology).
2.29 Theorem (convex hulls from simplices; Carathéodory).
2.30 Corollary (compactness of convex hulls).
2.31 Proposition (convexification of a function).
2.32 Proposition (convexity and properness of closures).
2.33 Theorem (line segment principle).
2.34 Proposition (interiors of epigraphs and level sets).
2.35 Theorem (continuity properties of convex functions).
2.36 Corollary (finite convex functions).
2.37 Corollary (convex functions of a single real variable).
2.38 Example (discontinuity and unboundedness).
2.39 Theorem (separation).
2.40 Proposition (relative interiors of convex sets).
2.41 Exercise (relative interior criterion).
2.42 Proposition (relative interiors of intersections).
2.43 Proposition (relative interiors in product spaces).
2.44 Proposition (relative interiors of set images).
2.45 Exercise (relative interiors in set algebra).
2.46 Exercise (closures of functions).
2.47 Definition (piecewise linearity).
2.48 Exercise (graphs of piecewise linear mappings).
2.49 Theorem (convex piecewise linear functions).
2.50 Lemma (polyhedral convexity of unions).
2.51 Exercise (functions with convex level sets).
2.52 Example (posynomials).
2.53 Example (weighted geometric means).
2.54 Exercise (eigenvalue functions).
2.55 Exercise (matrix inversion as a gradient mapping).
2.56 Proposition (convexity property of matrix inversion).
2.57 Exercise (convex functions of positive-definite matrices).
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3.1 Definition (cosmic convergence to direction points).
3.2 Theorem (compactness of cosmic space).
3.3 Definition (horizon cones).
3.4 Exercise (cosmic closedness).
3.5 Theorem (horizon criterion for boundedness).
3.6 Theorem (horizon cones of convex sets).
3.7 Exercise (convex cones).
3.8 Proposition (convex cones versus subspaces).
3.9 Proposition (intersections and unions).
3.10 Theorem (images under linear mappings).
3.11 Exercise (products of sets).
3.12 Exercise (sums of sets).
3.13 Definition (pointed cones).
3.14 Proposition (pointedness of convex cones).
3.15 Theorem (convex hulls of cones).
3.16 Exercise (images under nonlinear mappings).
3.17 Definition (horizon functions).
3.18 Definition (positive homogeneity and sublinearity).
3.19 Exercise (epigraphs of positively homogeneous functions).
3.20 Exercise (sublinearity versus linearity).
3.21 Theorem (properties of horizon functions).
3.22 Corollary (monotonicity on lines).
3.23 Proposition (horizon cone of a level set).
3.24 Exercise (horizon cones from constraints).
3.25 Definition (coercivity properties).
3.26 Theorem (horizon functions and coercivity).
3.27 Corollary (coercivity and convexity).
3.28 Example (coercivity and prox-boundedness).
3.29 Exercise (horizon functions in addition).
3.30 Proposition (horizon functions in pointwise max and min).
3.31 Theorem (coercivity in parametric minimization).
3.32 Corollary (boundedness in convex parametric minimization).
3.33 Corollary (coercivity in epi-addition).
3.34 Theorem (cancellation in epi-addition).
3.35 Corollary (cancellation in set addition).
3.36 Corollary (functions determined by their Moreau envelopes).
3.37 Corollary (functions determined by their proximal mappings).
3.38 Proposition (vector inequalities).
3.39 Example (matrix inequalities).
3.40 Exercise (operations on cones and positively homogeneous functions).
3.41 Definition (convexity in cosmic space).
3.42 Exercise (cone characterization of cosmic convexity).
3.43 Exercise (extended line segment principle).
3.44 Exercise (cosmic convex hulls).
3.45 Proposition (extended expression of convex hulls).
3.46 Corollary (closures of convex hulls).
3.47 Corollary (convex hulls of coercive functions).
3.48 Exercise (closures of positive hulls).
3.49 Exercise (convexity of positive hulls).
3.50 Example (gauge functions).
3.51 Exercise (entropy functions).
3.52 Theorem (generation of polyhedral cones; Minkowski-Weyl).
3.53 Corollary (polyhedral sets as convex hulls).
3.54 Exercise (generation of convex, piecewise linear functions).
3.55 Proposition (polyhedral and piecewise linear operations).

4.1 Definition (inner and outer limits).
4.2 Exercise (characterizations of set limits).
4.3 Exercise (limits of monotone and sandwiched sequences).
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4.4 Proposition (closedness of limits).
4.5 Theorem (hit-and-miss criteria).
4.6 Exercise (index criterion for convergence).
4.7 Corollary (pointwise convergence of distance functions).
4.8 Exercise (equality in distance limits).
4.9 Proposition (set convergence through projections).
4.10 Theorem (uniformity of approximation in set convergence).
4.11 Corollary (escape to the horizon).
4.12 Corollary (limits of connected sets).
4.13 Example (Pompeiu-Hausdorff distance).
4.14 Exercise (limits of cones).
4.15 Proposition (limits of convex sets).
4.16 Exercise (convergence of convex sets through truncations).
4.17 Exercise (limits of star-shaped sets).
4.18 Theorem (extraction of convergent subsequences).
4.19 Proposition (cluster description of inner and outer limits).
4.20 Exercise (cosmic limits through horizon limits).
4.21 Exercise (properties of horizon limits).
4.22 Example (eventually bounded sequences).
4.23 Definition (total set convergence).
4.24 Proposition (horizon criterion for total convergence).
4.25 Theorem (automatic cases of total convergence).
4.26 Theorem (convergence of images).
4.27 Theorem (total convergence of linear images).
4.28 Example (convergence of projections of convex sets).
4.29 Exercise (convergence of products and sums).
4.30 Proposition (convergence of convex hulls).
4.31 Exercise (convergence of unions).
4.32 Theorem (convergence of solutions to convex systems).
4.33 Exercise (convergence of convex intersections).
4.34 Lemma (distance function relations).
4.35 Theorem (uniformity in convergence of distance functions).
4.36 Theorem (quantification of set convergence).
4.37 Proposition (distance estimates).
4.38 Corollary (Pompeiu-Hausdorff distance as a limit).
4.39 Proposition (distance between convex truncations).
4.40 Exercise (properties of Pompeiu-Hausdorff distance).
4.41 Lemma (estimates for the integrated set distance).
4.42 Theorem (metric description of set convergence).
4.43 Corollary (local compactness in metric spaces of sets).
4.44 Example (distances between cones).
4.45 Proposition (separability and approximation by finite sets).
4.46 Theorem (metric description of cosmic set convergence).
4.47 Corollary (metric description of total set convergence).
4.48 Exercise (cosmic metric properties).

5.1 Example (constraint systems).
5.2 Example (generalized equations and implicit mappings).
5.3 Example (algorithmic mappings and fixed points).
5.4 Definition (continuity and semicontinuity).
5.5 Example (profile mappings).
5.6 Exercise (criteria for semicontinuity at a point).
5.7 Theorem (characterizations of semicontinuity).
5.8 Example (feasible-set mappings).
5.9 Theorem (inner semicontinuity from convexity).
5.10 Example (parameterized convex constraints).
5.11 Proposition (continuity of distances).
5.12 Proposition (uniformity of approximation in semicontinuity).
5.13 Exercise (uniform continuity).
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5.14 Definition (local boundedness).
5.15 Proposition (boundedness of images).
5.16 Exercise (local boundedness of inverses).
5.17 Example (level boundedness as local boundedness).
5.18 Theorem (horizon criterion for local boundedness).
5.19 Theorem (outer semicontinuity under local boundedness).
5.20 Corollary (continuity of single-valued mappings).
5.21 Corollary (continuity of locally bounded mappings).
5.22 Example (optimal-set mappings).
5.23 Example (proximal mappings and projections).
5.24 Exercise (continuity of perturbed mappings).
5.25 Theorem (closedness of images).
5.26 Exercise (horizon criterion for a closed image).
5.27 Proposition (cosmic semicontinuity).
5.28 Definition (total continuity).
5.29 Proposition (criteria for total continuity).
5.30 Exercise (images of converging sets).
5.31 Definition (pointwise limits of mappings).
5.32 Definition (graphical limits of mappings).
5.33 Proposition (graphical limit formulas at a point).
5.34 Exercise (uniformity in graphical convergence).
5.35 Example (graphical convergence of projection mappings).
5.36 Theorem (extraction of graphically convergent subsequences).
5.37 Theorem (approximation of generalized equations).
5.38 Definition (equicontinuity properties).
5.39 Exercise (equicontinuity of single-valued mappings).
5.40 Theorem (graphical versus pointwise convergence).
5.41 Definition (continuous and uniform limits of mappings).
5.42 Exercise (distance function descriptions of convergence).
5.43 Theorem (continuous versus uniform convergence).
5.44 Theorem (graphical versus continuous convergence).
5.45 Corollary (graphical convergence of single-valued mappings).
5.46 Proposition (graphical convergence from uniform convergence).
5.47 Theorem (Arzelà-Ascoli, set-valued version).
5.48 Theorem (uniform convergence of monotone sequences).
5.49 Proposition (metric version of continuous and uniform convergence).
5.50 Theorem (quantification of graphical convergence).
5.51 Proposition (addition of set-valued mappings).
5.52 Proposition (composition of set-valued mappings).
5.53 Theorem (images of converging mappings).
5.54 Exercise (convergence of positive hulls).
5.55 Theorem (generic continuity from semicontinuity).
5.56 Corollary (generic continuity of extended-real-valued functions).
5.57 Example (projections as continuous selections).
5.58 Theorem (Michael representations of isc mappings).
5.59 Corollary (extensions of continuous selections).

6.1 Definition (tangent vectors and geometric derivability).
6.2 Proposition (tangent cone properties).
6.3 Definition (normal vectors).
6.4 Definition (Clarke regularity of sets).
6.5 Proposition (normal cone properties).
6.6 Proposition (limits of normal vectors).
6.7 Exercise (change of coordinates).
6.8 Example (tangents and normals to smooth manifolds).
6.9 Theorem (tangents and normals to convex sets).
6.10 Example (tangents and normals to boxes).
6.11 Theorem (gradient characterization of regular normals).
6.12 Theorem (basic first-order conditions for optimality).
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6.13 Example (variational inequalities and complementarity).
6.14 Theorem (normal cones to sets with constraint structure).
6.15 Corollary (Lagrange multipliers).
6.16 Example (proximal normals).
6.17 Proposition (proximality of normals to convex sets).
6.18 Exercise (approximation of normals).
6.19 Exercise (characterization of boundary points).
6.20 Theorem (envelope representation of convex sets).
6.21 Corollary (polarity correspondence).
6.22 Exercise (pointedness and polarity).
6.23 Example (orthogonal subspaces).
6.24 Example (polarity of normals and tangents to convex sets).
6.25 Definition (regular tangent vectors).
6.26 Theorem (regular tangent cone properties).
6.27 Proposition (normals to tangent cones).
6.28 Theorem (tangent-normal polarity).
6.29 Corollary (characterizations of Clarke regularity).
6.30 Corollary (consequences of Clarke regularity).
6.31 Theorem (tangent cones to sets with constraint structure).
6.32 Exercise (regular tangents under a change of coordinates).
6.33 Definition (recession vectors).
6.34 Exercise (recession cones and convexity).
6.35 Proposition (recession vectors from tangents and normals).
6.36 Theorem (interior tangents and recession).
6.37 Corollary (internal approximation in tangent limits).
6.38 Exercise (convexified normal and tangent cones).
6.39 Exercise (constraint qualification in tangent cone form).
6.40 Example (Mangasarian-Fromovitz constraint qualification).
6.41 Proposition (tangents and normals to product sets).
6.42 Theorem (tangents and normals to intersections).
6.43 Theorem (tangents and normals to image sets).
6.44 Exercise (tangents and normals under set addition).
6.45 Lemma (polars of polyhedral cones; Farkas).
6.46 Theorem (tangents and normals to polyhedral sets).
6.47 Exercise (exactness of tangent approximations).
6.48 Exercise (separation of convex cones).
6.49 Proposition (generic continuity of normal-cone mappings).

7.1 Definition (lower and upper epi-limits).
7.2 Proposition (characterization of epi-limits).
7.3 Exercise (alternative epi-limit formulas).
7.4 Proposition (properties of epi-limits).
7.5 Exercise (epigraphical escape to the horizon).
7.6 Theorem (extraction of epi-convergent subsequences).
7.7 Proposition (level sets of epi-convergent functions).
7.8 Exercise (convergence-preserving operations).
7.9 Exercise (equi-semicontinuity properties of sequences).
7.10 Theorem (epi-convergence versus pointwise convergence).
7.11 Theorem (epi-convergence versus continuous convergence).
7.12 Definition (uniform convergence, extended).
7.13 Proposition (characterizations of uniform convergence).
7.14 Theorem (continuous versus uniform convergence).
7.15 Proposition (epi-convergence from uniform convergence).
7.16 Exercise (Arzelà-Ascoli theorem, extended).
7.17 Theorem (epi-limits of convex functions).
7.18 Corollary (uniform convergence of finite convex functions).
7.19 Example (functions mollified by averaging).
7.20 Definition (semiderivatives).
7.21 Theorem (characterizations of semidifferentiability).
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7.22 Corollary (differentiability versus semidifferentiability).
7.23 Definition (epi-derivatives).
7.24 Proposition (geometry of epi-differentiability).
7.25 Definition (subdifferential regularity).
7.26 Theorem (derivative consequences of regularity).
7.27 Example (regularity of convex functions).
7.28 Example (regularity of max functions).
7.29 Proposition (characterization of epi-convergence via minimization).
7.30 Proposition (epigraphical nesting).
7.31 Theorem (inf and argmin).
7.32 Exercise (eventual level boundedness).
7.33 Theorem (convergence in minimization).
7.34 Example (bounds on converging convex functions).
7.35 Definition (eventually prox-bounded sequences).
7.36 Exercise (characterization of eventual prox-boundedness).
7.37 Theorem (epi-convergence through Moreau envelopes).
7.38 Exercise (graphical convergence of proximal mappings).
7.39 Definition (epi-continuity properties).
7.40 Exercise (epi-continuity versus bivariate continuity).
7.41 Theorem (optimal-set mappings).
7.42 Corollary (fixed constraints).
7.43 Corollary (solution mappings in convex minimization).
7.44 Example (projections and proximal mappings).
7.45 Exercise (local minimization).
7.46 Theorem (epi-convergence under addition).
7.47 Exercise (epi-convergence of sums of convex functions).
7.48 Proposition (epi-convergence of max functions).
7.49 Definition (horizon limits of functions).
7.50 Exercise (horizon limit formulas).
7.51 Definition (total epi-convergence).
7.52 Proposition (properties of horizon limits).
7.53 Theorem (automatic cases of total epi-convergence).
7.54 Theorem (horizon criterion for eventual level-boundedness).
7.55 Corollary (continuity of the minimization operation).
7.56 Proposition (convergence of epi-sums).
7.57 Exercise (epi-convergence under inf-projection).
7.58 Theorem (quantification of epi-convergence).
7.59 Theorem (quantification of total epi-convergence).
7.60 Exercise (epi-distance estimates).
7.61 Proposition (auxiliary epi-distance estimate).
7.62 Example (functions satisfying a Lipschitz condition).
7.63 Example (conditioning functions in solution stability).
7.64 Theorem (approximations of optimality).
7.65 Corollary (linear and quadratic growth at solution set).
7.66 Example (proximal estimates).
7.67 Exercise (projection estimates).
7.68 Proposition (distances between convex level sets).
7.69 Theorem (estimates for approximately optimal solutions).

8.1 Definition (subderivatives).
8.2 Theorem (subderivatives versus tangents).
8.3 Definition (subgradients).
8.4 Exercise (regular subgradients from subderivatives).
8.5 Proposition (variational description of regular subgradients).
8.6 Theorem (subgradient relationships).
8.7 Proposition (subgradient semicontinuity).
8.8 Exercise (subgradients versus gradients).
8.9 Theorem (subgradients from epigraphical normals).
8.10 Corollary (existence of subgradients).
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8.11 Corollary (subgradient criterion for subdifferential regularity).
8.12 Proposition (subgradients of convex functions).
8.13 Theorem (envelope representation of convex functions).
8.14 Exercise (normal vectors as indicator subgradients).
8.15 Theorem (optimality relative to a set).
8.16 Definition (regular subderivatives).
8.17 Theorem (regular subderivatives versus regular tangents).
8.18 Theorem (subderivative relationships).
8.19 Corollary (subderivative criterion for subdifferential regularity).
8.20 Exercise (subdifferential regularity from smoothness).
8.21 Proposition (subderivatives of convex functions).
8.22 Theorem (interior formula for regular subderivatives).
8.23 Exercise (regular subderivatives from subgradients).
8.24 Theorem (sublinear functions as support functions).
8.25 Corollary (subgradients of sublinear functions).
8.26 Example (vector-max and the canonical simplex).
8.27 Exercise (subgradients of the Euclidean norm).
8.28 Example (support functions of cones).
8.29 Proposition (properties expressed by support functions).
8.30 Theorem (subderivative-subgradient duality for regular functions).
8.31 Exercise (elementary max functions).
8.32 Proposition (calmness from below).
8.33 Definition (graphical derivatives and coderivatives).
8.34 Example (subdifferentiation of smooth mappings).
8.35 Example (subgradients and subderivatives via profile mappings).
8.36 Proposition (positively homogeneous mappings).
8.37 Proposition (basic derivative and coderivative properties).
8.38 Definition (graphical regularity of mappings).
8.39 Example (graphical regularity from graph-convexity).
8.40 Theorem (characterizations of graphically regular mappings).
8.41 Proposition (proto-differentiability).
8.42 Exercise (proto-differentiability of feasible-set mappings).
8.43 Exercise (semidifferentiability of set-valued mappings).
8.44 Exercise (subdifferentiation of derivatives).
8.45 Definition (proximal subgradients).
8.46 Proposition (characterizations of proximal subgradients).
8.47 Corollary (approximation of subgradients).
8.48 Exercise (approximation of coderivatives).
8.49 Theorem (Clarke subgradients).
8.50 Proposition (recession properties of epigraphs).
8.51 Example (nonincreasing functions).
8.52 Example (convex functions of a single real variable).
8.53 Example (subdifferentiation of distance functions).
8.54 Exercise (generic continuity of subgradient mappings).

9.1 Definition (Lipschitz continuity and strict continuity).
9.2 Theorem (Lipschitz continuity from bounded modulus).
9.3 Example (linear and affine mappings).
9.4 Example (nonexpansive and contractive mappings).
9.5 Exercise (rate of convergence to a fixed point).
9.6 Example (distance functions).
9.7 Theorem (strict continuity from smoothness).
9.8 Exercise (calculus of the modulus).
9.9 Exercise (scalarization of strict continuity).
9.10 Proposition (strict continuity in pointwise max and min).
9.11 Example (Pasch-Hausdorff envelopes).
9.12 Exercise (extensions of Lipschitz continuity).
9.13 Theorem (subdifferential characterization of strict continuity).
9.14 Theorem (Lipschitz continuity from convexity).
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9.15 Exercise (subderivatives under strict continuity).
9.16 Theorem (subdifferential regularity under strict continuity).
9.17 Definition (strict differentiability).
9.18 Theorem (subdifferential characterization of strict differentiability).
9.19 Corollary (smoothness).
9.20 Corollary (continuity of gradient mappings).
9.21 Corollary (upper subgradient property).
9.22 Exercise (criterion for constancy).
9.23 Proposition (local boundedness of positively homogeneous mappings).
9.24 Proposition (derivatives and coderivatives of single-valued mappings).
9.25 Exercise (differentiability properties of single-valued mappings).
9.26 Definition (Lipschitz continuity of set-valued mappings).
9.27 Definition (sub-Lipschitz continuity).
9.28 Definition (strict continuity of set-valued mappings).
9.29 Proposition (alternative descriptions of strict continuity).
9.30 Theorem (Lipschitz versus sub-Lipschitz continuity).
9.31 Theorem (sub-Lipschitz continuity via strict continuity).
9.32 Example (transformations acting on a set).
9.33 Theorem (truncations of convex-valued mappings).
9.34 Corollary (strict continuity from graph-convexity).
9.35 Example (polyhedral graph-convex mappings).
9.36 Definition (Aubin property and graphical modulus).
9.37 Exercise (distance characterization of the Aubin property).
9.38 Theorem (graphical localization of strict continuity).
9.39 Lemma (extended formulation of the Aubin property).
9.40 Theorem (Mordukhovich criterion).
9.41 Theorem (reinterpretation of normal vectors and subgradients).
9.42 Exercise (epi-Lipschitzian sets and directionally Lipschitzian functions).
9.43 Theorem (metric regularity and openness).
9.44 Example (metric regularity in constraint systems).
9.45 Example (openness from graph-convexity).
9.46 Proposition (inverse properties).
9.47 Example (global metric regularity from polyhedral graph-convexity).
9.48 Theorem (metric regularity from graph-convexity; Robinson-Ursescu).
9.49 Exercise (Lipschitzian properties of derivative mappings).
9.50 Proposition (semidifferentiability from proto-differentiability).
9.51 Example (semidifferentiability of feasible-set mappings).
9.52 Example (semidifferentiability from graph-convexity).
9.53 Definition (strict graphical derivatives).
9.54 Theorem (single-valued localizations).
9.55 Corollary (single-valued Lipschitzian invertibility).
9.56 Theorem (implicit mappings).
9.57 Example (calmness of piecewise polyhedral mappings).
9.58 Theorem (Lipschitz continuous extensions of single-valued mappings).
9.59 Proposition (Lipschitzian properties in limits).
9.60 Theorem (almost everywhere differentiability; Rademacher).
9.61 Theorem (Clarke subgradients of strictly continuous functions).
9.62 Theorem (coderivative duality for strictly continuous mappings).
9.63 Corollary (coderivative criterion for Lipschitzian invertibility).
9.64 Exercise (strict differentiability and derivative continuity).
9.65 Theorem (singularities of Lipschitzian equations; Mignot).
9.66 Definition (graphically Lipschitzian mappings).
9.67 Theorem (subgradients via mollifiers).
9.68 Proposition (constraint relaxation).
9.69 Proposition (extremal principles).

10.1 Theorem (Fermat’s rule generalized).
10.2 Example (subgradients in proximal mappings).
10.3 Proposition (normals to level sets).
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10.4 Example (level sets with epi-Lipschitzian boundary).
10.5 Proposition (separable functions).
10.6 Theorem (basic chain rule).
10.7 Exercise (change of coordinates).
10.8 Example (composite Lagrange multiplier rule).
10.9 Corollary (addition of functions).
10.10 Exercise (subgradients of Lipschitzian sums).
10.11 Corollary (partial subgradients and subderivatives).
10.12 Example (parametric version of Fermat’s rule).
10.13 Theorem (subdifferentiation in parametric minimization).
10.14 Corollary (parametric Lipschitz continuity and differentiability).
10.15 Example (subdifferential interpretation of Lagrange multipliers).
10.16 Proposition (Lipschitzian meaning of constraint qualification).
10.17 Exercise (geometry of sets depending on parameters).
10.18 Exercise (epi-addition).
10.19 Proposition (nonlinear rescaling).
10.20 Definition (piecewise linear-quadratic functions).
10.21 Proposition (properties of piecewise linear-quadratic functions).
10.22 Exercise (piecewise linear-quadratic calculus).
10.23 Definition (amenable sets and functions).
10.24 Example (prevalence of amenability).
10.25 Exercise (consequences of amenability).
10.26 Exercise (calculus of amenability).
10.27 Exercise (calculus of semidifferentiability).
10.28 Example (semidifferentiability of eigenvalue functions).
10.29 Definition (subsmooth functions).
10.30 Proposition (smoothness versus subsmoothness).
10.31 Theorem (consequences of subsmoothness).
10.32 Example (subsmoothness of Moreau envelopes).
10.33 Theorem (subsmoothness and convexity).
10.34 Corollary (higher-order subsmoothness).
10.35 Exercise (calculus of subsmoothness).
10.36 Exercise (subsmoothness and amenability).
10.37 Theorem (coderivative chain rule).
10.38 Corollary (Lipschitzian properties under composition).
10.39 Exercise (outer composition with a single-valued mapping).
10.40 Theorem (inner composition with a single-valued mapping).
10.41 Theorem (coderivatives of sums of mappings).
10.42 Corollary (Lipschitzian properties under addition).
10.43 Exercise (addition of a single-valued mapping).
10.44 Proposition (variational principle for subgradients).
10.45 Exercise (variational principle for regular subgradients).
10.46 Proposition (ε-regular subgradients).
10.47 Proposition (calmness as a constraint qualification).
10.48 Theorem (mean-value, extended).
10.49 Theorem (extended chain rule for subgradients).
10.50 Corollary (normals for Lipschitzian constraints).
10.51 Corollary (pointwise max of strictly continuous functions).
10.52 Exercise (nonsmooth Lagrange multiplier rule).
10.53 Proposition (representations of subsmoothness).
10.54 Lemma (smooth bounds on semicontinuous functions).
10.55 Theorem (properties under epi-addition).
10.56 Example (subsmoothness of distance functions).
10.57 Theorem (subsmoothness in parametric optimization).
10.58 Proposition (minimization estimate for a convex function).

11.1 Theorem (Legendre-Fenchel transform).
11.2 Exercise (improper conjugates).
11.3 Proposition (inversion rule for subgradient relations).
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11.4 Example (support functions and cone polarity).
11.5 Theorem (horizon functions as support functions).
11.6 Exercise (support functions of level sets).
11.7 Exercise (conjugacy as cone polarity).
11.8 Theorem (dual properties in minimization).
11.9 Example (classical Legendre transform).
11.10 Example (linear-quadratic functions).
11.11 Example (self-conjugacy).
11.12 Example (log-exponential function and entropy).
11.13 Theorem (strict convexity versus differentiability).
11.14 Theorem (piecewise linear-quadratic functions in conjugacy).
11.15 Lemma (linear-quadratic test on line segments).
11.16 Corollary (minimum of a piecewise linear-quadratic function).
11.17 Corollary (polyhedral sets in duality).
11.18 Example (piecewise linear-quadratic penalties).
11.19 Example (general polarity of sets).
11.20 Exercise (dual properties of polar sets).
11.21 Proposition (conjugate composite functions from polar gauges).
11.22 Proposition (conjugation in product spaces).
11.23 Theorem (dual operations).
11.24 Corollary (rules for support functions).
11.25 Corollary (rules for polar cones).
11.26 Example (distance functions, Moreau envelopes and proximal hulls).
11.27 Exercise (proximal mappings and projections as gradient mappings).
11.28 Example (piecewise linear-quadratic envelopes).
11.29 Example (norm duality for sublinear mappings).
11.30 Exercise (uniform boundedness of sublinear mappings).
11.31 Exercise (duality in calculating adjoints of sublinear mappings).
11.32 Proposition (operations on piecewise linear-quadratic functions).
11.33 Corollary (conjugate formulas in piecewise linear-quadratic case).
11.34 Theorem (epi-continuity of the Legendre-Fenchel transform; Wijsman).
11.35 Corollary (convergence of support functions and polar cones).
11.36 Theorem (cone polarity as an isometry; Walkup-Wets).
11.37 Corollary (Legendre-Fenchel transform as an isometry).
11.38 Lemma (dual calculations in parametric optimization).
11.39 Theorem (dual problems of optimization).
11.40 Corollary (general best-case primal-dual relations).
11.41 Example (Fenchel-type duality scheme).
11.42 Theorem (piecewise linear-quadratic optimization).
11.43 Example (linear and extended linear-quadratic programming).
11.44 Example (dualized composition).
11.45 Definition (Lagrangians and dualizing parameterizations).
11.46 Example (multiplier rule in Lagrangian form).
11.47 Example (Lagrangians in the Fenchel scheme).
11.48 Proposition (convexity properties of Lagrangians).
11.49 Definition (saddle points).
11.50 Theorem (minimax relations).
11.51 Corollary (saddle point conditions for convex problems).
11.52 Example (minimax problems).
11.53 Theorem (perturbation of saddle values; Golshtein).
11.54 Example (perturbations in extended linear-quadratic programming).
11.55 Definition (augmented Lagrangian functions).
11.56 Exercise (properties of augmented Lagrangians).
11.57 Example (proximal Lagrangians).
11.58 Example (sharp Lagrangians).
11.59 Theorem (duality without convexity).
11.60 Definition (exact penalty representations).
11.61 Theorem (criterion for exact penalty representations).
11.62 Example (exactness of linear or quadratic penalties).
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11.63 Exercise (generalized conjugate functions).
11.64 Example (proximal transform).
11.65 Example (full quadratic transform).
11.66 Example (basic quadratic transform).
11.67 Theorem (double-min duality in optimization).

12.1 Definition (monotonicity).
12.2 Example (positive semidefiniteness).
12.3 Proposition (monotonicity of differentiable mappings).
12.4 Exercise (operations that preserve monotonicity).
12.5 Definition (maximal monotonicity).
12.6 Proposition (existence of maximal extensions).
12.7 Example (maximality of continuous monotone mappings).
12.8 Exercise (graphs and images under maximal monotonicity).
12.9 Exercise (maximal monotonicity in one dimension).
12.10 Exercise (operations that preserve nonexpansivity).
12.11 Proposition (monotone versus nonexpansive mappings).
12.12 Theorem (maximality and single-valued resolvants).
12.13 Example (Yosida regularization).
12.14 Lemma (inverse-resolvant identity).
12.15 Theorem (Minty parameterization of a graph).
12.16 Exercise (displacement mappings).
12.17 Theorem (monotonicity versus convexity).
12.18 Corollary (normal cone mappings).
12.19 Proposition (proximal mappings).
12.20 Corollary (projection mappings).
12.21 Example (projections on subspaces).
12.22 Exercise (projections on a polar pair of cones).
12.23 Exercise (Moreau envelopes and Yosida regularizations).
12.24 Definition (cyclical monotonicity).
12.25 Theorem (characterization of convex subgradient mappings).
12.26 Exercise (cyclical monotonicity in one dimension).
12.27 Example (monotone mappings from convex-concave functions).
12.28 Example (hypomonotone mappings).
12.29 Proposition (monotonicity of piecewise polyhedral mappings).
12.30 Proposition (subgradients of piecewise linear-quadratic functions).
12.31 Example (piecewise linear projections).
12.32 Theorem (graphical convergence of monotone mappings).
12.33 Corollary (convergent subsequences).
12.34 Exercise (maximal monotone limits).
12.35 Theorem (subgradient convergence for convex functions; Attouch).
12.36 Exercise (convergence of convex function values).
12.37 Theorem (normal vectors to domains).
12.38 Corollary (local boundedness of monotone mappings).
12.39 Corollary (full domains and ranges).
12.40 Exercise (uniform local boundedness in convergence).
12.41 Theorem (near convexity of domains and ranges).
12.42 Corollary (ranges and growth).
12.43 Theorem (maximal monotonicity under composition).
12.44 Corollary (maximal monotonicity under addition).
12.45 Example (truncation).
12.46 Exercise (restriction of arguments).
12.47 Example (monotonicity along lines).
12.48 Example (monotonicity in variational inequalities).
12.49 Exercise (alternative expression of a variational inequality).
12.50 Example (variational inequalities for saddle points).
12.51 Theorem (solutions to a monotone generalized equation).
12.52 Exercise (existence of solutions to variational inequalities).
12.53 Definition (strong monotonicity).
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12.54 Proposition (consequences of strong monotonicity).
12.55 Corollary (inverse strong monotonicity).
12.56 Theorem (contractions from strongly monotone mappings).
12.57 Example (contractions in solving variational inequalities).
12.58 Definition (strong convexity).
12.59 Exercise (strong monotonicity versus strong convexity).
12.60 Proposition (dualization of strong convexity).
12.61 Exercise (hypoconvexity properties of proximal functions).
12.62 Proposition (hypoconvexity and subsmoothness of double envelopes).
12.63 Theorem (continuity properties).
12.64 Exercise (proto-derivatives of monotone mappings).
12.65 Theorem (differentiability and semidifferentiability).
12.66 Corollary (generic single-valuedness from monotonicity).
12.67 Theorem (structure of maximal monotone mappings).
12.68 Proposition (strict continuity of ε-subgradient mappings).

13.1 Definition (twice differentiable functions).
13.2 Theorem (extended second-order differentiability).
13.3 Definition (second subderivatives).
13.4 Definition (positive homogeneity of degree p).
13.5 Proposition (properties of second subderivatives).
13.6 Definition (twice semidifferentiable and twice epi-differentiable functions).
13.7 Exercise (characterizations of second-order semidifferentiability).
13.8 Example (connections with second-order differentiability).
13.9 Proposition (piecewise linear-quadratic functions).
13.10 Example (lack of second-order semidifferentiability of max functions).
13.11 Definition (second-order tangent sets and parabolic derivability).
13.12 Proposition (properties of second-order tangents).
13.13 Proposition (chain rule for second-order tangents).
13.14 Theorem (chain rule for second subderivatives).
13.15 Corollary (second-order epi-differentiability from full amenability).
13.16 Example (second-order epi-differentiability of max functions).
13.17 Exercise (indicators and geometry).
13.18 Exercise (addition of a twice smooth function).
13.19 Proposition (second subderivatives of a sum of functions).
13.20 Proposition (second subderivatives of convex functions).
13.21 Theorem (second-order epi-differentiability in duality).
13.22 Corollary (conjugates of fully amenable functions).
13.23 Example (piecewise linear-quadratic penalties).
13.24 Theorem (second-order conditions for optimality).
13.25 Example (second-order optimality with smooth constraints).
13.26 Exercise (second-order optimality with penalties).
13.27 Definition (prox-regularity of functions).
13.28 Definition (subdifferential continuity).
13.29 Exercise (characterization of subdifferential continuity).
13.30 Example (prox-regularity from convexity).
13.31 Exercise (prox-regularity of sets).
13.32 Proposition (prox-regularity from amenability).
13.33 Proposition (prox-regularity versus subsmoothness).
13.34 Proposition (functions with strictly continuous gradient).
13.35 Exercise (perturbations of prox-regularity).
13.36 Theorem (subdifferential characterization of prox-regularity).
13.37 Proposition (proximal mappings and Moreau envelopes).
13.38 Exercise (projections on prox-regular sets).
13.39 Lemma (difference quotient relations).
13.40 Theorem (proto-differentiability of subgradient mappings).
13.41 Corollary (subgradient proto-differentiability from amenability).
13.42 Corollary (second derivatives and quadratic expansions).
13.43 Corollary (normal cone mappings and projections).
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13.44 Example (polyhedral sets).
13.45 Exercise (semidifferentiability of proximal mappings).
13.46 Proposition (Lipschitzian geometry of subgradient mappings).
13.47 Theorem (perturbation of optimality conditions).
13.48 Theorem (perturbation of solutions to variational conditions).
13.49 Proposition (prox-regularity and amenability of second subderivatives).
13.50 Exercise (subgradient derivative formula in full amenability).
13.51 Theorem (almost everywhere second-order differentiability).
13.52 Theorem (generalization of second-derivative symmetry).
13.53 Corollary (symmetry in derivatives of proximal mappings).
13.54 Corollary (symmetry in derivatives of projections).
13.55 Exercise (second-order Lipschitz continuity).
13.56 Proposition (strict second-order differentiability).
13.57 Theorem (derivative-coderivative inclusion).
13.58 Corollary (subgradient coderivatives of fully amenable functions).
13.59 Definition (parabolic subderivatives).
13.60 Example (parabolic aspects of twice smooth functions).
13.61 Exercise (parabolic aspects of piecewise linear-quadratic functions).
13.62 Example (parabolic subderivatives versus second-order tangents).
13.63 Exercise (chain rule for parabolic subderivatives).
13.64 Proposition (properties of parabolic subderivatives).
13.65 Definition (parabolic regularity).
13.66 Theorem (parabolic version of second-order optimality).
13.67 Theorem (parabolic aspects of fully amenable functions).
13.68 Corollary (parabolic aspects of fully amenable sets).

14.1 Definition (measurable mappings).
14.2 Proposition (preservation with closure of images).
14.3 Theorem (measurability equivalences under closed-valuedness).
14.4 Theorem (measurability in hyperspace terms).
14.5 Theorem (Castaing representations).
14.6 Corollary (measurable selections).
14.7 Example (convex-valued and solid-valued mappings).
14.8 Theorem (graph measurability).
14.9 Exercise (measurability from semicontinuity).
14.10 Theorem (measurability versus continuity).
14.11 Proposition (unions, intersections, sums and products).
14.12 Exercise (hulls and polars).
14.13 Theorem (composition of mappings).
14.14 Corollary (composition with measurable functions).
14.15 Example (images under Carathéodory mappings).
14.16 Theorem (implicit measurable functions).
14.17 Exercise (projection mappings).
14.18 Exercise (mixed operations).
14.19 Example (variable scalar multiplication).
14.20 Theorem (graphical and pointwise limits).
14.21 Exercise (horizon cones and limits).
14.22 Proposition (limits of simple mappings).
14.23 Proposition (convergence of measurable selections).
14.24 Proposition (almost everywhere convergence).
14.25 Proposition (almost uniform convergence).
14.26 Theorem (tangent and normal cone mappings).
14.27 Definition (normal integrands).
14.28 Proposition (basic consequences of normality).
14.29 Example (Carathéodory integrands).
14.30 Example (autonomous integrands).
14.31 Example (joint lower semicontinuity).
14.32 Example (indicator integrands).
14.33 Proposition (measurability of level-set mappings).
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14.34 Corollary (joint measurability criterion).
14.35 Exercise (closures of measurable integrands).
14.36 Theorem (measurability in constraint systems).
14.37 Theorem (measurability of optimal values and solutions).
14.38 Exercise (Moreau envelopes and proximal mappings).
14.39 Proposition (normality test for convex integrands).
14.40 Proposition (scalarization of normal integrands).
14.41 Corollary (alternative interpretation of normality).
14.42 Theorem (continuity properties of normal integrands).
14.43 Corollary (Scorza-Dragoni property).
14.44 Proposition (addition and pointwise max and min).
14.45 Proposition (composition operations).
14.46 Corollary (multiplication by nonnegative scalars).
14.47 Proposition (inf-projection of integrands).
14.48 Example (epi-addition and epi-multiplication).
14.49 Exercise (convexification of normal integrands).
14.50 Theorem (conjugate integrands).
14.51 Example (support integrands).
14.52 Exercise (envelope representations through convexity).
14.53 Proposition (limits of integrands).
14.54 Exercise (horizon integrands and horizon limits).
14.55 Exercise (approximation by simple integrands).
14.56 Theorem (subderivatives and subgradient mappings).
14.57 Proposition (subgradient characterization of convex normality).
14.58 Proposition (integral functionals).
14.59 Definition (decomposable spaces).
14.60 Theorem (interchange of minimization and integration).
14.61 Exercise (simplified interchange criterion).
14.62 Example (reduced optimization).
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Index of Notation

IR: the real numbers
IR: the extended real numbers
IN : the natural numbers
Q/ : the rational numbers
IB: closed unit ball
|x|: Euclidean norm
〈x, y〉: canonical inner product
Ck+: strictly continuous derivatives
C \D: relative complement
bdryC: boundary
clC: closure
intC: interior
rintC: relative interior
csmC: cosmic closure
hznC: horizon
conC: convex hull of set C
con f : convex hull of function f
posC, pos f : positive hull
dom f : effective domain
epi f : epigraph
hypo f : hypograph
dirw: the direction of w
gphS: graph of S
cl f : lsc regularization
clS: graphical closure
lip f : Lipschitz modulus of function f
lipF , lipS: Lipschitz modulus of mappings
C∞: horizon cone
f∞: horizon function
S∞: horizon mapping
lev≤α f : lower level set

df(x̄): subderivative function

d̂f(x̄): regular subderivative function
∂f(x̄): subgradient set

∂̂f(x̄): regular subgradient set
∂∞f(x̄): horizon subgradient set
∂̄f(x̄): convexified subgradient set
d2f(x̄), d2f(x̄ |v): second subderivatives
eλf : Moreau envelope
Pλf : proximal mapping
PC : projection mapping
TC(x̄): tangent cone

T̂C(x̄): regular tangent cone

NC(x̄): normal cone

N̂C(x̄): regular normal cone
RC(x̄): local recession cone
K∗: polar cone
C◦: polar set
f∗, f∗∗: conjugate, biconjugate
δC : indicator function
σC : support function
γC : gauge function
dC(x), d(x,C): distance from C
logexp: log-exponential function
vecmax: vector-max function
DS(x̄ | v̄), DS(x̄): graphical derivative

D̂S(x̄ | v̄), D̂S(x̄): regular derivative
D∗S(x̄ | v̄), D∗S(x̄): coderivative

D̂∗S(x̄ | v̄), D̂∗S(x̄): regular coderivative
D∗S(x̄ | v̄), D∗S(x̄): strict derivative
f g: epi-addition
λ�f : epi-multiplication
N (x̄): neighborhood collection
N∞: subsets of IN containing all ν suffi-

ciently large
N#

∞: infinite subsets of IN
g-lim: graphical limits
p-lim: pointwise limits
e-lim: epigraphical limits
h-lim: hypographical limits
lim∞, lim inf∞, lim sup∞: horizon limits

→p : pointwise convergence
→e : epigraphical convergence

→h : hypographical convergence

→c : cosmic convergence

→t : total convergence

→g : graphical convergence
→
C : convergence within C
→
f : f -attentive convergence
→
N : convergence indexed by N
sets, cl-sets: spaces of sets
fcns, lsc-fcns: spaces of functions
maps, osc-maps: spaces of mappings

d̂lρ: estimates of set and epi-distances
dl, dlρ: set distances, epi-distances
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addition rules, 85, 93, 230, 445, 471, 493
for coderivatives, 456+
for graphical derivatives, 457
in epi-convergence, 247, 275
in monotonicity, 534, 557
in subdifferentiation, 430+, 441
in subsmoothness, 452
second-order, 602+
set-valued, 151, 184

adjoint mappings, 329, 348, 498+
norms of, 497, 530

affine
functions, 42, 474+
hulls, 64, 652
independence, 54
mappings, 352
sets, 43+
supports, 308+

Alexandrov’s theorem, 638
algorithmic mappings, 151
almost differentiable functions, 483
almost strictly convex functions, 483, 542
amenable functions, 442+, 471, 595, 599,

612, 621+, 625+, 632, 637+, 639+
in subsmoothness, 452

amenable sets, 442+, 621, 638, 639
argmin, argmax, 2, 8, 11
Arzelà-Ascoli theorem, 180, 192, 195, 252,

294
asymptotic cone, 106
asymptotic equicontinuity, 173+, 248+
Attouch’s theorem, 552, 640
Aubin property, 376+, 393, 417

calculus, 453, 455, 457
in convergence, 402
inverse form, 386
of derivative mappings, 391

augmented Lagrangians, 518+
augmenting functions, 519+
autonomous integrands, 662

balls, 25, 48, 111
rational, 644

barrier functions, 4, 20, 35+

barycentric coordinates, 54
B-differentiability, 294
biconjugate functions, 474
bifunction, 270
Borel σ-fields, 648
boundary characterization, 214
boxes, 3, 204, 211

calmness, 322, 348, 351, 391, 399, 420
as a constraint qualification, 348, 459, 471

cancellation rules, 94+, 107
Castaing representations, 646, 657, 680
Carathéodory integrands, 662+, 681
Carathéodory mappings, 654+, 680
Carathéodory’s theorem, 55, 75
celestial model, 78
chain rules, 427+, 438, 445, 462+, 470

for coderivatives, 452+
geometric, 202, 208+, 221+, 236
in conjugacy, 493
second-order, 593+, 639

Clarke regularity: see regularity
closedness criteria, 84+
closures, 14

in convexity, 57+
of epigraphs, 14+
of functions, 14, 59, 67, 88, 100
of graphs, 154+

cluster points, 9
in set limits, 121, 145

coderivatives, 324+, 348, 631+
approximation, 336
calculus, 452+, 470
duality with graphical derivatives, 330,

405
nonsingularity condition, 387
of single-valued mappings, 366
regular, 324+

coercivity, 91+, 99+, 530, 557
convex case, 92
dualization, 479
in epi-convergence, 266, 280+
in minimization, 93

co-finiteness, 107



Index of Topics 727

compactification, 79, 81, 105
compactness principles, 82

in epi-convergence, 252, 283, 293
in graphical convergence, 170, 551
in set convergence, 120+, 140, 142, 145,

147
σ-compactness, 189
complementarity, 208, 236
complete measurable spaces, 648
composite optimization, 428+, 464, 509,

608+
composition, 30, 50, 151, 184

calculus: see chain rules
in epi-convergence, 247, 276
in monotonicity, 556
in subsmoothness, 452

concave functions, 39, 42
conditioning functions, 286+, 297
cones, 80, 232+

as epigraphs, 87+
as representing directions, 80, 106
convergence, 119
convex, 83+, 86, 215
derivable, 198
horizon, 80+
operations, 97
normal: see normals
pointed, 86, 99, 107, 385
polyhedral, 103+
set distances, 138
tangent: see tangents

conjugate functions, 473+, 604+
generalized, 525+, 532
in one dimension, 530
self-conjugacy, 482
via cone polarity, 478, 530

conjugate points, 480
connected sets, 55, 75, 117, 145
constancy criterion, 364, 417
constraint qualifications, 209, 236, 310, 348,

429, 432, 435+, 442, 459, 463+, 470+
in tangent form, 225
Lipschitzian interpretation, 436, 471
Mangasarian-Fromovitz, 226+, 236+
Slater, 237

constraint relaxation, 4, 413, 420
constraints, 2+, 12, 150, 208+, 221, 231, 272

implicit, 2
parameterized, 18, 150

contingent cone, 232
contingent derivatives, 345, 294
continuous convergence, 175+, 195

of difference quotients, 256, 332
metric description, 181
relation to epigraphical, 250
relation to graphical, 178+
relation to uniform, 177, 252

continuity, 13, 152+, 192+

cosmic, 164+, 194
from semicontinuity, 152, 160
Lipschitz: see Lipschitz continuity
of gradient mappings, 363, 406, 448
of monotone mappings, 567+
of operations, 125+, 145+, 275+, 292, 296
of subgradient mappings, 573
strict: see strict continuity
subdifferential, 610+
total, 164+, 184+, 194
uniform, 157
with local boundedness, 161

contractive mappings, 353, 563+
control theory, 192, 679, 682
convergence

almost everywhere, 657+
almost uniform, 658+
attentive to a function, 271+, 301
continuous: see continuous convergence
cosmic, 122+, 145, 301, 416
directional, 197
epigraphical: see epi-convergence
graphical: see graphical convergence
of coderivatives, 402
of convex hulls, 128
of difference quotients, 197+, 256+, 326,

331
of images, 125+, 129+
of intersections, 131
of matrices, 352
of measurable mappings, 655+
of monotone mappings, 551+
of positive hulls, 186
of projections, 127
of subgradient mappings, 402, 552
of unions, 128
pointwise, 166+, 170+, 194, 239+, 252
quantification, metrics, 131+
rough, 145
to a direction point, 79
total, 124+, 146, 279+
uniform: see uniform convergence
variational: see epi-convergence

convex analysis, 74+
convex combinations, 39+, 53+
convex-concave functions, 511+, 514+, 532,

548
convex functions, 38, 74+

continuity properties, 59+, 359
derivative tests, 45+
differentiability properties, 360+, 364,

403+, 603+
in subsmoothness, 450
operations, 49+
subdifferential regularity, 261

convex hulls, 53+, 99+, 107+, 155, 652
compactness, 56
convergence, 128



728 Index of Topics

cosmic, 99
of functions, 57, 99, 474, 671

convex integrands, 666, 674
convex optimization, 41+, 237
convex sets, 38+, 74+

algebra, 51
cosmic version, 98, 107
operations, 49+
polyhedral: see polyhedral sets

convex-valued mappings, 148, 155+, 184,
189+, 195, 375+

cosmic closure, 77, 80+
cosmic convexity, 97+
cosmic limits, 79, 122, 145
cosmic metric, 141+, 164
cosmic space, 77, 104
counter-coercivity, 91+
cyclical monotonicity, 547+

decomposable spaces, 676+, 682
derivability, 197+, 201, 217, 221, 233

epigraphical, 260
parabolic, 591+

derivable cone, 198, 217, 233
derivatives

directional, 257, 582+
epigraphical: see epi-derivatives
graphical: see graphical derivatives
subdifferentiation of, 333, 348

determinants, 73
diagrams of relationships,

in graphical differentiation, 329
in subdifferentiation, 320
in variational geometry, 221

difference quotients, 197, 255+, 299, 236
second-order, 583+, 633

differentiability 255+, 258, 367
almost everywhere, 344, 403+, 448, 469,

571, 626+
duality with strict convexity, 483
of subgradient mappings, 581, 621
strict, 362, 368, 396, 406, 416, 457, 464
second-order, 580+, 587, 609, 621, 626,

630, 638, 641
Dini derivatives, 345
Dini normals, 236
Dini subgradients: see subgradients, regular
directional derivatives, 257+, 582+
directionally Lipschitzian functions, 385, 417
direction of a vector, 77
direction points, 77+, 105, 233
displacement mappings, 541
ρ-distance, 134+, 146+
distance functions, 6, 19, 24, 26, 550

dualization, 495
in constraint relaxation, 413
in semicontinuity, 156+
in set convergence, 110, 113, 132+, 176

in uniform convergence, 176
Lipschitz continuity of, 353
subdifferentiation, 340, 344, 348, 415
subsmoothness, 468
under prox-regularity, 618

domain mappings, 661
domains, 5, 40, 149+
duality gap, 518+, 532
dualizing parameterizations, 508+, 519
dual operations, 493+, 530
dual problems, 502+, 518, 531

double-min type, 527+, 532
nonconvex, 519+, 521, 532

effective domains, 5, 40
eigenvalue functions, 73, 76, 446, 471
Ekeland’s principle, 31, 472
entropy functions, 102, 107, 296, 482
envelopes

double, Lasry-Lions, 33, 37, 244, 450, 567
in generalized conjugacy, 525+
Moreau: see Moreau envelopes
Pasch-Hausdorff, 296, 357, 420, 665
representing convex functions, 309, 344,

473+, 672
representing convex sets, 214
representing sublinear functions, 309

epi-addition, 23+, 36, 437, 467, 493, 670
cancellation rule, 94
convexity, 51
role of coercivity, 94

epi-composition, 27+, 37, 51, 493, 498
epi-continuity, 270, 296

of Legendre-Fenchel transform, 500, 530+
epi-convergence, 240+, 292+

convex case, 252, 267, 276, 280
cosmic, 279, 283
dualization, 499
in minimization, 262+, 281, 295
in second-order theory, 639
of indicators, 244
operations, 247, 275+, 292, 296+
quantification, metrics, 282+, 296+
relation to continuous, 250, 275
relation to pointwise, 247+
relation to uniform, 250+
total, 279+, 283, 297, 502
via level sets, 246, 293

epi-derivatives, 259+, 294, 295
parabolic, 633+
second-order, 586+, 595, 599+, 625, 639+

epi-distances, 531, 282+, 297
epigraphical projection, 18+, 35
epigraphs, 7, 34+

conical, 88
convex, 40
polyhedral, 104+

epigraphical mappings, 270, 661



Index of Topics 729

epigraphical nesting, 264, 296
epi-hypo-convergence, 532
epi-limits, 240+
epi-Lipschitzian sets, 385+, 417, 425, 470
epi-measurability, 662, 681+
epi-multiplication, 24+, 37, 100, 475, 478,

670
epi-sums, 23
equations, 150

generalized, 150, 172, 561
Lipschitzian, 406

equi-coercive sequences, 280
equicontinuity, 173+, 195, 248
equilibrium conditions, 208+
equi-lsc, 248+, 293
aymptotic 248+
escape to the horizon, 116, 170, 245
Euclidean norm, 6, 318
eventually bounded sequences, 123, 126, 249
expansions, 580+, 587+, 621, 638
extended arithmetic, 15+, 37, 354
extended-real-valued functions, 1
extended linear-quadratic programming, 506
extremal principles, 414, 420, 458, 528, 532

fans, 418
Farkas’ lemma, 230
feasible-set mappings, 154, 154, 156, 194,

331, 392, 419, 664
feasible solutions, 6
Fenchel duality scheme, 505+, 510, 531
Fermat’s rule, 421+, 432, 459, 469+
Filippov’s lemma, 680
filters, 109
fixed points, 151, 353
Fréchet normals, 236
full cone, 81
function spaces, 270, 281+, 676
function-valued mappings, 270

gap distance, 113, 144
gauge functions, 101+, 490+
geometric derivability: see derivability
geometric means, 72
generalized linear mappings, 329
generic continuity, 187+, 195+, 232, 237,

343, 348
almost everywhere sense, 570

generic differentiability: see differentiability,
a.e.

generic single-valuedness, 571, 573
Golshtein’s theorem, 515, 532
gradient mappings, 363, 406, 448, 580, 609,

614+, 627
inversion 480

gradients, 47
graph distances, 182, 195

graph-convex mappings, 155, 159, 348, 376,
390, 393, 417+, 454, 456+

graphical convergence, 166+, 194
compactness property, 170
of difference quotients, 331
of measurable mappings, 655, 681
of monotone mappings, 551+
of projection mappings, 169
of subgradient mappings, 552+, 640
quantification, metrics, 182
relation to pointwise, 170+
relation to uniform, 178+
total, 185+
uniformity in the large, 168

graphical derivatives, 324+, 347+, 631+
duality with coderivatives, 330, 348, 631+
norms of, 366
of single-valued mappings, 366
regular, 324+
strict, 393+, 419, 627+

graphically Lipschitzian mappings, 234, 408,
420, 622

graphical modulus, 377+
graphs of mappings, 148
grill, 109
growth properties, 14, 91+, 106, 288+, 479,

556

half-spaces, 42+, 204, 214+
Hahn-Banach theorem, 75
Hausdorff metric: see Pompeiu-Hausdorff

distance
hemispherical model, 79
Hessian matrices, 47, 480, 580+, 621, 627+
hit-and-miss criteria, 112, 144+
horizon, 77, 80+, 116
horizon cones, 80+, 106+, 163, 237

convex case, 82
epigraphical, 87+, 106
graphical, 159
of level sets, 90+

horizon functions, 87+, 673
as support functions, 477, 530
convex case, 88+
of indicators, 89
of quadratic functions, 89
of translates, 89

horizon limits, 122+, 145, 184, 278+, 296,
301, 656, 673

horizon mappings, 159, 163, 185+, 194
hyperplanes, 43+, 62
hyperspaces of sets, 134+, 144, 146, 182,

645, 679
metrics, 138+, 146

hypo-convergence, 242+, 252
hypoconvexity, 567
hypographs, 13, 41
hypomonotone mappings, 549, 575, 577, 618
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image sets, 149
boundedness, 158
closedness, 84, 163
convergence, 125+, 165+, 186
convexity, 50
horizon cones, 84, 87
variational geometry, 228+

implicit mappings, 150, 397, 419, 654
improper functions, 5, 41, 475
indicator functions, 6+, 26, 35

as integrands, 663
convex, 40
epi-convergence, 244
second-order properties, 600, 621
subderivatives of, 300, 600
subgradients of, 310

indicator mappings, 270
infimum, 1
inf-addition, 15
inf-compactness, 12, 35, 37, 266
inf-convolution, 23
inf-projection, 16+, 51, 93, 101, 281, 433+,

493, 498
inner semicontinuity, 144, 152+, 190, 193+

from convexity, 155
integral functionals, 76, 643, 675+, 681+

conjugate, 682+
integration, 192, 643

of subgradient mappings, 547+
interchange rules, 28, 677, 682
interior, 14

in convexity, 58
of a level set, 59
of an epigraph, 14, 59
relative, 64+, 75

inverse images: see image sets
inverse of a mapping, 149
inverse-resolvant identity, 540, 576
invertibility, single-valued, 396, 406, 419
isc mappings: see inner semicontinuity

Jacobian, 202
generalized, 419

Jensen’s inequality, 39
jets, 641

Lagrange multipliers, 208, 211, 236, 428+,
464, 471, 509, 608+

interpretation, 435+
Lagrangian functions, 508, 531, 548, 608

augmented, 519
proximal, 520

Lebesgue σ-fields, 649
Legendre-Fenchel transform, 473+, 480, 529

as an isometry, 501, 530
epi-continuity, 500+

level boundedness, 11+, 30, 35, 159, 266+

eventual, 266
uniform, 16+, 159

level coercivity, 91+, 530
dualization, 479

level sets, 8+, 424, 470, 663
convexity, 42+, 71
distance estimates, 291
in epi-convergence, 246
support functions of, 478

limiting subgradients, 345
limits, 108+

continuous, 175+
cosmic, 79, 122+, 145
epigraphical, 240+
graphical, 167+
horizon, 122+, 145, 278+, 297
inner, outer, 109+, 144, 167+
lower, upper, 8, 13+, 15, 22, 29+
pointwise, 166+
uniform, 175+

linear functions, mappings, 329, 352, 481
linear programming, 236, 506, 531
linear-quadratic functions, 48
line segment principle, 58, 98
line segments, 38
Lipschitz continuity, 349+, 415

constants, 350+, 370+
directional, 385
extensions, 358, 400, 420
from convexity, 359
in derivatives, 295, 391
in epi-distances, 285
in limits, 401+
local, 350, 373
modulus, 350+, 416
of derivative mappings, 391+
of set-valued mappings, 368+, 453+, 457
relation to strict continuity, 349+, 373,

416
second-order, 630, 641

Lipschitzian invertibility, 396, 416
local boundedness, 157+, 160+, 184+, 19r3

194, 454
of monotone mappings, 554
relative, 162

localizations of mappings, 394, 419, 615
locally closed sets, 28
local minimization, 273
local semicontinuity, 28
log-determinant function, 73, 76
log-exponential function, 27, 48, 72, 76, 89,

482
lower bounds, 12
lower-Ck functions, 447+, 452, 465, 471, 496,

613+
lower limits, 8+, 29+
lower semicontinuity, 8+, 16, 22, 30, 35+

local, 28+
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of mappings, 193+
lsc functions: see lower semicontinuity
lsc regularization, 14
Lusin’s criterion, 649+, 680

majorize, 56
mapping terminology, 148+
marginal functions, 470
matrix functions, 73
matrix inversion, 73
matrix orderings, 73, 97
max functions, 356, 431, 443, 446+, 471,

590, 600
epi-convergence, 277
subdifferentiation, 261, 321, 446+, 463

maximal monotonicity, 535+
maximum, 1
meager sets, 187
mean-value theorem, 461, 472
measurable mappings, 643+, 679+

measurability-preserving operations, 651+
measurable sets, spaces, 643+
metric regularity, 386+, 417+

global, 389
in constraint systems, 388

Michael representations, 190, 192, 195
minimax problems, 512, 514+, 531
minimax relations, 512
minimization estimates, 287+, 469
minimizing sequences, 30+
minimum, 1,5, 6, 11+

convergence, 262+
Minkowski addition, 24, 37, 151
Minkowski-Weyl theorem, 76, 103, 107
minorize, 56
Minty parameterization, 540+, 545
mollifiers, 254, 294, 409, 420
monotone mappings, 192, 533+, 575+

as relations in IR2, 343, 536, 547+, 575
continuity, differentiability, 567+
convergence, 551, 554
cyclical, 547
domains, ranges, 553+
local boundedness, 554
maximal, 535+, 575
maximality rules, 556+
nonexpansive, 537, 543+
strict, 559
strong, 562+

monotone sequences, 111
Mordukhovich criterion, 379+, 418
Moreau envelopes, 20+, 24, 26, 31, 450, 468,

472, 526, 617+, 665
convex case, 52, 75, 95, 268
in duality, 495+
in epi-convergence, 244, 268, 296, 552
in Yosida regularization, 546
piecewise linear-quadratic, 550

subsmoothness, 450
multivalued mappings, 148, 575

near convexity, 555
neighborhoods, 6, 54
nondecreasing, nonincreasing functions, 89,

339, 348, 386
nonexpansive mappings, 353, 537+, 543
nonnegative, nonpositive orthant, 3
nonsmooth manifolds, 234
nonsmoothness, 23+, 26, 196
normal cone mappings, 202, 550, 621, 624,

641
measurability, 659, 681
monotonicity, 543, 545, 618
via projections, 213

normal cones: see normals
normal integrands, 660+, 681+

continuity properties, 668
convergence, 672
operations on, 669, 682

normals, 199+, 232+
approximation, 214, 237
calculus rules, 202, 208, 227+
Clarke convexified, 225+, 234, 415
convex case, 203+, 477
duality with tangents, 200, 216, 219+, 225
epigraphical, 304
graphical, 324
limiting, 234+
Lipschitzian interpretation, 383
proximal, 212+, 234+
regular, 199+, 205, 213, 235
to boxes, 204+
to cones, 219, 237, 477

norms, 6, 49, 101
matrix, 352
positively homogeneous mappings, 364+,

417, 530
polar, 491
subgradients of, 318

nowhere dense sets, 187

openness with linear rate, 386+, 417+
optimality, 205+, 233, 236, 310, 422, 428+,

432+, 459
local, global, 6, 41
second-order, 606+, 635+

optimal-set mappings, 16, 162, 272+, 281
optimal solutions, 6, 16+, 479, 488, 503+
ε-optimality, 30, 291
measurable parameterization, 662

optimal values, 6, 11, 16
dualization, 479
measurable parameterization, 664

orderings, 73, 94+, 107
orthant, 3
orthogonality, 216
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osc hull, 155
osc mappings: see outer semicontinuity
outer semicontinuity, 144, 152+, 184+, 193+

cosmic, 165+
in local boundedness, 160
relative, 162
total, 165

Pasch-Hausdorff envelopes, 296, 357+, 420,
665

Painlevé-Kuratowski convergence, 111+,
144+

parabolic derivability, 591+, 634, 639
parabolic regularity, 635+, 639
parabolic subderivatives, 633+
parametric minimization, 16+, 35+, 93,

105, 107, 272+, 283, 296, 433, 459, 468,
502+

paratingent derivatives, 419
partial subdifferentiation, 431, 442
penalty functions, 4, 18, 35+, 414, 489, 506,

509, 529, 605+, 608, 639
epi-convergence, 245
exact, 523+, 532

penalty methods, 18, 35, 293
perturbations, 150

in duality, 502+, 517, 518+, 531
in minimax format, 515+, 532
of continuity, 162
of solutions, 623+, 641+

piecewise linearity, 67+, 76, 104+, 107, 399,
420, 471, 550+

conjugacy, 484
operations, 105

piecewise linear-quadratic functions, 440+,
496, 550, 588, 595, 605+, 637, 639

attainment of minimum, 488, 530
conjugacy, 484, 530
operations on, 498+, 530
subdifferentiation, 440
subgradient characterization, 550

piecewise linear-quadratic optimization, 506,
513

piecewise polyhedral mappings, 399, 418,
420, 550+

piecewise polyhedral sets, 76
pointedness of cones, 85, 99, 107, 386
pointwise infimum, supremum, 22+
polar cones, 215+, 477+, 495, 546

convergence, 500+
isometry, 501, 531
polyhedral, 230, 489, 530

polar gauges, norms, 491+
polar sets, 490+
polyhedral functions, 104+
polyhedral sets, 43, 76, 491, 496, 592, 621

as convex hulls, 104+, 107
as epigraphs, 76, 104+

operations, 105
unions, 69
variational geometry, 231, 237

Pompeiu-Hausdorff distance, 111, 117+, 120,
124, 137+, 144, 146, 161, 192, 368+,
417

positive-definiteness, 47+, 533+
positive-definite programming, 107
positively homogeneous

functions, 87, 97+, 258+, 280
higher order, 584
mappings, 328, 365, 497

positive hulls, 100+, 103+, 186, 652
posynomials, 71, 76
profile mappings, 152, 248, 250+, 294, 325
projection mappings, 18, 162, 273, 340, 618,

621, 629, 655
as selections, 188
as gradient mappings, 496
convex case, 51+, 213
estimates, 290
graphical convergence, 169
in set convergence, 114, 145, 169
in variational geometry, 212+
maximal monotonicity, 545+
onto domains, 553+
piecewise linear, 550

proper functions, 5
proper integrands, 661
proto-derivatives, 331+, 348, 391, 395 417,

419, 640+
of monotone mappings, 569
of projection mappings, 621
of subgradient mappings, 619+, 640

prox-boundedness, 21+, 92, 296
eventual, 267+

proximal hulls, 31+, 495+, 526
proximal mappings, 20+, 37, 162, 273, 422,

617+, 621, 629+, 665
as gradient mappings, 496
convex case, 52, 75, 96
estimates, 289
graphical convergence, 269
in epi-convergence, 269, 552
maximal monotonicity, 543
piecewise linear, 550

proximal normals: see normals
proximal smoothness, 640
proximal subgradients, 333+, 345
proximal threshold, 21+
proximal transform, 526
prox-regularity, 610+, 619, 625, 638, 640

subdifferential characterization, 615
pseudo-inverse of a matrix, 481
pseudo-Lipschitz: see Aubin property
pseudo-metrics, 134, 135

quadratic expansions, 580+, 587+, 621, 638
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quadratic functions, 48, 481, 484
quadratic programming, 236, 507, 530
quadratic transform, 526+, 532
quasi-convexity, 76
quasi-differentiable functions, 346

Rademacher’s theorem, 403+, 415, 420, 639
range of a mapping, 149
rays, 77
ray space model, 78, 98, 307
recession vectors, 222+, 237

convex case, 106, 222
epigraphical, 338+, 348

reduced optimization, 678, 682
regularity

Clarke, 199+, 209, 220+, 232, 235, 368,
424, 444

graphical, 348, 368, 380, 387, 392, 455,
464, 497

metric: see metric regularity
parabolic, 635+, 639+
prox-: see prox-regularity
second-order, 640
subdifferential, 260+, 295, 307, 313+, 344,

409, 422, 444, 448
relative interiors, 64+, 75

in monotonicity, 555
resolvants, 539+, 550, 553, 569+
Robinson-Ursescu theorem, 390, 418
rough convergence, 145

saddle points, 512+, 560+
Sard’s theorem, 420
scalar multiples, 438
Scorza-Dragoni property, 668
second-order theory, 234, 579+
selections

continuous, 188+, 192, 195, 574
measurable, 647, 656, 680

self-conjugacy, 482
semiderivatives, 256+, 295, 345, 360, 367,

417, 419, 455, 457, 471
calculus, 446, 457
from regularity, 261
in perturbations, 641+
in subsmoothness, 448+
of mappings, 332, 348, 367, 392+, 419,

455, 457, 570
of projections, proximal mappings, 621+
of subgradient mappings, 619+
second-order, 586+, 604, 639

separable functions, 49, 426, 493
separable spaces, 141, 147, 183
separation of sets, 62+, 75, 129, 231, 234

nonconvex, 414+, 420
sequences, 108+

minimizing, 30+
set algebra, 25

set convergence, 108+, 144+
compactness property, 120+
convex case, 119+
cosmic, 122+, 141+
projection characterization, 169
quantification, metrics, 131+
total, 124+, 142
uniformity, 114

set distances, 117, 135+, 139, 146+, 176
between cones, 140

set-valued mappings, 148+
simple mappings, 656
simplex, 54

canonical, 318
single-valuedness, 148
singularity, 406
solid sets, 647
solution estimates, 286+, 469
smooth manifolds, 203
smoothness, 23, 304, 314, 325, 363, 447, 634
star-shaped sets, 120, 145
stationary points, 470+, 528
stereographic metric, 146
stochastic programming, 641, 681, 682
strict continuity 349+, 416

calculus of, 356+, 453+
differentiability consequences, 403
from convexity, 359
graphical localization, 378
in optimization, 435
in subsmoothness, 448
of convex-valued mappings, 375+
of derivatives, classes Ck+, 355, 627, 630
of set-valued mappings, 370+
of ε-subgradient mappings, 574
modulus, 350, 371+
relation to Lipschitz, 349+, 373, 416
scalarization, 356, 366
subdifferential characterization, 358

strict convexity, 38, 483
strong convexity, 565+
strict derivatives, 361, 368, 396, 406, 419,

457, 464
graphical, 393+, 627+
second-order, 630

strict monotonicity, 533, 559
strong monotonicity, 562+
subderivatives, 299+, 325, 345, 348

Clarke type, 416
convex case, 314, 340
distance functions, 340
duality with subgradients, 301, 316, 320,

344
of integrands, 673
parabolic, 633+, 639
regular, 311+, 344
second-order, 584+, 594+
under strict continuity, 360+
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subdifferential continuity, 610+
subgradient mappings, 366, 542, 554, 573,

673+
coderivatives, 622+, 627+
continuity properties, 302, 573
convergence, 292, 335, 348, 402, 552, 554
derivative properties, 573, 581, 619, 625+
inversion, 476, 480, 511, 531
monotonicity properties, 542+, 547+, 549,

575+, 615+
piecewise polyhedral, 550

subgradients, 301+, 325
‘approximate’, 347
approximation, 335
Clarke convexified, 336, 344, 346, 403,

415, 472
convergence, 335
convex case, 308, 340, 343, 363, 422, 547
duality with subderivatives, 301, 316, 320,

344
existence, 307
horizon, 301+, 336
in infinite-dimensional spaces, 347, 415
in viscosity theory, 347
of distance functions, 340
of norms, support functions, 318, 477
Lipschitzian interpretation, 383, 423
mollifier, 409
proximal, 333+, 345
regular, 301
ε-regular, 346, 458, 472
singular, 345+
upper, 302, 363
variational principles, 458

sublinear functions, 87, 101, 309, 317+
subgradients of, 318

sublinear mappings, 328, 348, 497+, 530
sub-Lipschitz continuity, 370+, 417

inverse form, 389
relation to Lipschitz continuity, 373

subsequence notation, 108+
subsmooth functions, 447+, 466, 468+, 471

from amenability, 452
prox-regularity of, 613
relation to convexity, 450, 549
rules for preserving, 452
second derivatives, 626+, 630+

subspaces, 83, 216, 477, 545
sup-addition, 15
support functions, 317+, 477, 495, 672

convergence, 500
entropy case, 482
of domains, 477, 556
of level sets, 478, 482
of polyhedral sets, 489

supporting half-spaces, 204
supremum, 1
symmetry in second derivatives, 621, 627

tangent cone mappings, 220
measurability, 659, 581

tangent cones: see tangents
tangents, 197, 232+

calculus rules, 202, 221+, 227+, 236+
convex case, 203+
convexified, 225
derivable, 197, 217
duality with normals, 200, 203+, 216,

219+, 225
epigraphical, 300, 312
graphical, 324
higher-order, 591+, 634, 639+
interior, 224+, 237
regular, 217, 220+, 385
relation to recession, 224+
to boxes, 204

threshold of prox-boundedness, 21+, 267
translates of sets, 25
triangle inequalities, 135, 137
truncations, 137, 161

in set convergence, 145, 147
inverse, 162
of convex-valued mappings, 375
of monotone mappings, 557

uniform convergence, 175+, 250+
extended-real-valued, 251+, 294
metric description, 181
of convex functions, 253+
of difference quotients, 257+
of monotone sequences, 181
relation to continuous, 177, 252
relation to epigraphical, 252, 294
relation to graphical, 178

uniform set approximation, 114, 157, 168
uniqueness in optimality, 41
upper-Ck functions, 447, 467+, 471, 614+
upper integrals, 675
upper limits, 13+
upper Lipschitzian, 420
upper semicontinuity, 13+, 36+

of mappings, 193+
usc functions: see upper semicontinuity
usc regularization, 14

variational inequalities, conditions, 208, 236,
292, 559+, 565, 624

variational principles, 31, 37, 414, 458
vector inequalities, 96+, 107
vector-max function, 27, 48, 89, 318
Vietoris topology, 145, 194

Walkup-Wets theorem, 501, 531
well-posedness, 36
Wijsman’s theorem, 500, 530
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Yosida regularization, 38, 540+, 546

zero cone, 80
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Baire, R. L. [1905], Leçons sur les Fonctions Discontinues, Gauthier-Villars, Paris, (edited by
A. Denjoy).

Baire, R. L. [1927], Sur l’origine de la notion de semi-continuité, Bulletin de la Sociéte
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lication 8120, Universiteé de Paris IX “Dauphine”.

Ioffe, A. D. [1981b], Nonsmooth analysis: differential calculus of non-differentiable mappings,
Transactions of the American Mathematical Society, 266, 1–56.
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cas convexe non différentiable, Comptes Rendus de l’Académie des Sciences de Paris,
318, 613–618.

Nadler, S. B. [1978], Hyperspaces of Sets, Dekker, New York.

Nijenhuis, A. [1974], Strong derivatives and inverse mappings, American Mathematical
Monthly, 81, 969–980.

Noll, D. [1992], Generalized second fundamental form for Lipschitzian hypersurfaces by way
of second epi-derivatives, Canadian Mathematical Bulletin, 35, 523–536.

Noll, D. [1993], Second order differentiability of integral functionals on Sobolev spaces and
L2-spaces, Journal für die Reine und Angewandte Mathematik, 436, 1–17.

Nurminskii, E. [1978], Continuity of ε-subgradient mappings, Kibernetika (Kiev), 5, 148–149.

Olech, C. [1968], Approximation of set-valued functions by continuous functions, Colloquia
Mathematica, 19, 285–293.
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Yen, N. D. [1992], Hölder continuity of solutions to a parametric variational inequality, Tech-
nical Report 3.188(706), Universitá di Pisa.
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