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1. Introduction

Any problem of optimization in IRn can be posed abstractly as one of minimizing a function
f : IRn → IR := IR∪±∞ over all of IRn; constraints are represented by infinite penalization.
It is natural then that f be lower semicontinuous (l.s.c.). In this setting, useful for many
purposes, consider a point x̄ where f achieves its minimum, f(x̄) being finite. For any
λ > 0, x̄ also minimizes the Moreau envelope function

eλ(x) := min
x′

{
f(x′) +

1
2λ

∣∣x′ − x
∣∣2} , (1.1)

which provides a regularization of f . While f may have ∞ values and exhibit discontinu-
ities, eλ is finite and locally Lipschitz continuous, and it approximates f in the sense that
eλ increases pointwise to f as λ↘0. Among other regularizing effects, eλ has one-sided
directional derivatives at all points, even Taylor expansions of degree 2 almost everywhere,
and at x̄ it is differentiable with

eλ(x̄) = f(x̄), ∇eλ(x̄) = 0. (1.2)

When f is convex, eλ is convex too and actually of class C1+: differentiable with locally
Lipschitz continuous gradient mapping ∇eλ.

The prospect is raised that if the properties of eλ around x̄ were adequately understood
in their relation to f , it might be possible to develop methods for minimizing eλ which
in effect would open new approaches to minimizing f despite nonsmoothness. Here we
analyze eλ in ways suggested by this notion. Although we do not explore the algorithmic
potential directly, we try to identify the circumstances in which eλ has favorable second-
order properties around x̄ for the support of numerical work. These include the existence of
a Hessian matrix at x̄ and the presence of continuity of some sort at x̄ in certain generalized
second-derivatives of eλ.

In this effort we are following the lead of Lemaréchal and Sagastizábal [13], who have
recently drawn attention to the numerical motivations, noting the connections between
Moreau envelopes eλ and basic techniques like the proximal point algorithm. They re-
placed the canonical squared Euclidean norm in (1.1) by a quadratic form corresponding
to any symmetric, positive definite matrix, as obviously would be useful for computational
purposes. In theoretical discussions the canonical notation can be retained for simplicity,
since the extension can also be viewed as amounting just to a linear change of variables.

Other work building on [13] has been carried out by Qi in [30]. For motivations
coming from recent efforts at establishing superlinearly convergent algorithms for solving
nonsmooth optimization problems, we refer to [1], [5], [8], [9], [18], [28], and [29].
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Lemaréchal and Sagastizábal concentrated in [13] on the case of finite, convex functions
f . In this paper, however, we drop both finiteness and convexity as prerequisites on f so
as to be able to cover a greater range of problems of optimization. We aim in particular
at including the extended-real-valued functions f that correspond to standard models in
nonlinear programming, for instance the minimization of

f(x) =
{

f0(x) for x ∈ C,
∞ for x /∈ C,

(1.3)

when C is specified by a system of constraints, say

C =
{
x

∣∣ (
f1(x), . . . , fm(x)

)
∈ D

}
(1.4)

with D a closed, convex set in IRm and the functions fi of class C2, and with f0 likewise
such a function or perhaps nonsmooth of the form

f0(x) = max
{
f01(x), . . . , f0s(x)

}
(1.5)

for functions f0k of class C2.

To achieve such coverage we must be careful in selecting the general class of functions
f on which to focus our efforts. Obviously the class has to be very broad, if all l.s.c. convex
functions are to be encompassed along with functions of the kind just described. Yet if the
class were taken to be too broad, it would not have enough structure to secure properties
of the kind we are looking for in the envelopes eλ.

Fortunately a natural choice can be made: the class of prox-regular functions f . Such
functions, introduced and investigated in [25], include all “strongly amenable” functions,
hence all the examples mentioned so far and much more. The theory of their generalized
derivatives is available in a form that makes translation of properties between f and eλ

relatively straightforward. The key facts about prox-regular functions developed in [25]
will be reviewed in Section 2. Prox-regularity of f at x̄ ensures in particular that eλ is of
class C1+ on a neighborhood of x̄.

Functions that are C1+ have been the focus of much research recently. The reader
interested in the study of generalized second-order directional derivatives and Hessians of
these functions will want to consult the work of Cominetti and Correa [6], Hiriart-Urruty
[10], Jeyakumar and Yang [12], Páles and Zeidan [17], and Yang and Jeyakumar [39]. Note
that here the function eλ is not only C1+ but also lower-C2.

In the exploration of second-order aspects of eλ, the following notions will be useful.
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Definition 1.1. Consider a function g on IRn and a point x̂ where g is differentiable.

(a) g has a second-order expansion at x̂ if there is a finite, continuous function h such

that the second-order difference quotient functions

∆2
x̂,tg(ξ) :=

[
g(x̂ + tξ)− g(x̂)− t〈∇g(x̂), ξ〉

]/1
2 t2

converge to h uniformly on bounded sets as t↘0. The expansion is strict if g is differen-

tiable not only at x̂ but on a neighborhood of x̂, and the functions

∆2
x,tg(ξ) :=

[
g(x + tξ)− g(x)− t〈∇g(x), ξ〉

]/1
2 t2

converge to h uniformly on bounded sets as t↘0 and x → x̂.

(b) g has a Hessian matrix H at x̂, this being a symmetric n × n matrix, if g has a

second-order expansion with h(ξ) = 〈ξ, Hξ〉. The Hessian is strict if the expansion is strict.

(c) g is twice differentiable at x̂ if its first partial derivatives exist on a neighborhood

of x̂ and are themselves differentiable at x̂, i.e., the second partial derivatives of g exist at

x̂. Then ∇2g(x̂) denotes the matrix formed by these second partial derivatives.

A second-order expansion in the sense of Definition 1.1 automatically requires the
function h also to be positively homogeneous of degree 2: h(λξ) = λ2h(ξ) for λ > 0, and
in particular, h(0) = 0. In traditional notation it means that

g(x̂ + tξ) = g(x̂) + t〈∇g(x̂), ξ〉+ 1
2 t2h(ξ) + o

(
t2|ξ|2

)
for such a function h that is finite and continuous. The existence of a Hessian corresponds
to h actually being quadratic. Note that, in general, this property might be present
without the Hessian matrix H being the matrix ∇2g(x̂) of classical twice differentiability,
since the latter requires more for its definition than the mere assumption that the first
partial derivatives of g exist at x̂.

Our fundamental theorem, in Section 3, says that when f is prox-regular at a point
x̄ ∈ argmin f (= argmin eλ), the existence of a second-order expansion of eλ at x̄ (when
λ is sufficiently small) is equivalent to the “twice epi-differentiability” of f at x̄. This is
especially illuminating because it shows one cannot expect the regularized function eλ to
have significant second-order properties without some such second-order property already
being present in f , moreover a kind of property satisfied by many, but definitely not all,
convex or lower-C2 functions. This is in sharp contrast with the first-order theory, where
no first-order assumptions on f are needed to conclude that eλ is differentiable (in fact
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C1+) around a point x̄ ∈ argmin f when f is prox-regular. Twice epi-differentiability is
enjoyed by all fully amenable functions in particular, so second-order expansions of eλ

nonetheless are the rule for most applications.

Proceeding from this theorem, we are able to demonstrate another special feature of
the Moreau envelopes eλ when f is prox-regular. A Hessian H exists for eλ at x̄ ∈ argmin f

if and only if the gradient mapping ∇eλ is differentiable at x̄, in which case H is the matrix
∇(∇eλ)(x̄) = ∇2eλ(x̄) of second-partial derivatives—which therefore must be symmetric.
This is somewhat surprising, since the ordinary criterion for the symmetry of the matrix
of second derivatives of a function is that the function be of class C2, whereas here the first
derivatives are only known to be Lipschitz continuous, hence perhaps only differentiable
almost everywhere.

We show further that the existence of a Hessian for eλ does not require the finiteness
of f , but merely that the corresponding second-order epi-derivative function for f be a
“generalized quadratic function” (i.e., a quadratic function on a certain subspace, but ∞
elsewhere). This covers situations where, for example, f has the nonlinear programming
form (1.3)–(1.5) and x̄ is a point where f is not differentiable, much less twice differentiable.
But in particular, if f does have a Hessian at a point x̄ ∈ argmin f , then eλ inherits this
property.

In Section 4 we establish that eλ cannot have a strict second-order expansion at
x̄ ∈ argmin f unless it actually has a strict Hessian there. We characterize this situation in
many ways, tying it to various properties of ∇eλ and f . Our efforts disclose that this is the
one and only case, short of eλ actually being C2 around x̄, where second-order properties
of eλ and f exhibit a degree of local stability.

2. Prox-Regularity and Derivatives

Continuing under the assumption that f is a proper, l.s.c. function on IRn, we denote by
∂f(x) the set of limiting proximal subgradients of f at any point x ∈ dom f . For a recent
exposition of the theory of subgradients, see Loewen [16].

Definition 2.1. The function f is prox-regular at x̂ relative to v̂ if x̂ ∈ dom f , v̂ ∈ ∂f(x̂),
and there exist ε > 0 and r > 0 such that

f(x′) > f(x) + 〈v, x′ − x〉 − r

2

∣∣x′ − x
∣∣2 (2.1)

whenever
∣∣x′− x̂

∣∣ < ε and
∣∣x− x̂

∣∣ < ε, with x′ 6= x and
∣∣f(x)−f(x̂)

∣∣ < ε, while
∣∣v− v̂

∣∣ < ε

with v ∈ ∂f(x).
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It is obvious that if f is convex, it is prox-regular at x̂ for every subgradient v̂ ∈ ∂f(x̂).
The same is true for lower-C2 functions, primal-lower-nice (p.l.n.) functions, and strongly
amenable functions, cf. [25]. Strong amenability of f at x̂ refers to the existence of a
representation f = g ◦ F in a neighborhood of x̂ for a mapping F : IRn → IRm of class
C2 and a proper, l.s.c., convex function g : IRm → IR satisfying at x̂ with respect to the
convex set D = dom g the basic constraint qualification that

there is no vector y 6= 0 in ND

(
F (x̂)

)
with ∇F (x̂)∗y = 0. (2.2)

Amenability itself merely requires F to be of class C1, whereas full amenability is the
subcase of strong amenability where g is also piecewise linear-quadratic.

Full amenability already covers most applications that arise in the framework of non-
linear programming and its extensions. A function f as in (1.3)–(1.5), for instance, is fully
amenable at any point x̂ ∈ C at which the constraint qualification (2.2) is satisfied with
F = (f1, . . . , fm), cf. [33] and [35]. If D consists of the vectors u = (u1, . . . , um) with
ui ≤ 0 for i = 1, . . . , s but ui = 0 for i = s + 1, . . . ,m, so that C is specified by con-
straints fi(x) ≤ 0 and fi(x) = 0, this constraint qualification reduces to the standard one
of Mangasarian-Fromovitz. For more on amenability, see [22]–[24]; for composite functions
more broadly, see [3], [11]–[12], [14]–[15], [19]–[27].

Note that when f is convex, the parameter ε > 0 in the definition of prox-regularity
can be taken arbitrarily large, while the parameter r > 0 can be taken arbitrarily small .
This lends a stronger interpretation to some of the results below.

For any ε > 0, we speak of the f-attentive ε-localization of ∂f at (x̂, v̂) in referring to
the mapping T : IRn →→ IRn defined by

T (x) =
{ {

v ∈ ∂f(x)
∣∣ |v − v̂| < ε

}
when |x− x̂| < ε and |f(x)− f(x̂)| < ε,

∅ otherwise.
(2.3)

The graph of T is the intersection of gph ∂f with the product of an f -attentive neighbor-
hood of x̂ and an ordinary neighborhood of v̂. (The f -attentive topology on IRn is the
weakest topology in which f is continuous.)

In cases where f is subdifferentially continuous at x̂ for v̂, in the sense that f(x) →
f(x̂) automatically when (x, v) → (x̂, v̂) in the graph of ∂f , the |f(x)− f(x̂)| < ε enforc-
ing f -attentiveness in (2.3) could be dropped without affecting any or the results below.
All amenable functions, in particular, l.s.c. convex functions and lower-C2 functions, are
subdifferentially continuous.

Theorem 2.2 [25](Thm. 3.2). The function f is prox-regular at a point x̂ relative to v̂ if

and only if the vector v̂ is a proximal subgradient of f at x̂ and there exist ε > 0 and r > 0
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such that, for the f -attentive ε-localization T of ∂f , the mapping T + rI is monotone, i.e.,

one has 〈v1 − v0, x1 − x0〉 ≥ −r
∣∣x1 − x0

∣∣2 whenever
∣∣xi − x̂

∣∣ < ε,
∣∣f(xi)− f(x̂)

∣∣ < ε, and∣∣vi − v̂
∣∣ < ε with vi ∈ ∂f(xi), i = 0, 1.

Concepts of generalized second-order differentiability beyond those already given in
Definition 1.1 will be crucial in our analysis. Recall f is twice epi-differentiable at x̂ for a
vector v̂ if v̂ ∈ ∂f(x̂) and the second-order difference quotient functions ∆2

x̂,v̂,tf : IRn → IR

defined by
∆2

x̂,v̂,tf(ξ) =
[
f(x̂ + tξ)− f(x̂)− t〈v̂, ξ〉

]/1
2 t2 for t > 0 (2.4)

epi-converge to a proper function as t↘0. The limit is then the second epi-derivative
function f ′′x̂,v̂ : IRn → IR; see [23], [33] and [35]. (Epi-convergence of functions refers to set
convergence of their epigraphs.) We say that f is strictly twice epi-differentiable at x̂ for
v̂ if more generally the functions

∆2
x,v,tf(ξ) =

[
f(x + tξ)− f(x)− t〈v, ξ〉

]/1
2 t2 for t > 0 (2.5)

epi-converge as t↘0, x → x̂ with f(x) → f(x̂), and v → v̂ with v ∈ ∂f(x). When ∂f(x̂)
is a singleton consisting of v̂ alone (as when f is strictly differentiable at x̂), the notation
f ′′x̂,v̂ can be simplified to f ′′x̂ and we can just speak of f being twice epi-differentiable, or
strictly twice epi-differentiable, at x̂, the particular vector v̂ being implicit.

Next, a set-valued mapping T : IRn →→ IRn is proto-differentiable at x̂ for v̂ if v̂ ∈ T (x̂)
and the set-valued mappings

∆x̂,v̂,tT : ξ 7→
[
T (x̂ + tξ)− v̂

]/
t for t > 0 (2.6)

graph-converge as t↘0 (i.e., their graphs converge as subsets of IRn× IRn). If so, the limit
mapping is denoted by T ′x̂,v̂ and called the proto-derivative of T at x̂ for v̂; see [24], [34],
[36]. This mapping assigns to each ξ ∈ IRn a subset T ′x̂,v̂(ξ) of IRn, which could be empty
for some choices of ξ. We say that T is strictly proto-differentiable at x̂ for v̂ if more
generally the mappings

∆x,v,tT : ξ 7→
[
T (x + tξ)− v

]/
t for t > 0 (2.7)

graph-converge as t↘0, x → x̂ and v → v̂ with v ∈ T (x). Again, in the case where T (x̂) is
a singleton consisting of v̂ only (as for instance in the case where T is actually single-valued
everywhere), the notation T ′x̂,v̂(ξ) can be simplified to T ′x̂(ξ), and we can just speak of T

being proto-differentiable at x̂, or strictly proto-differentiable at x̂.

6



Theorem 2.3 [25](Thm. 6.1). Suppose that f is prox-regular at x̂ for v̂ with respect to

ε and r, and let T be the f -attentive ε-localization of ∂f at (x̂, v̂). Then f is twice epi-

differentiable at x̂ for v̂ if and only if T is proto-differentiable at x̂ for v̂, in which event

one has

T ′x̂,v̂(ξ) = ∂
[ 1
2f ′′x̂,v̂

]
(ξ) for all ξ.

Furthermore, f is strictly twice epi-differentiable at x̂ for v̂ if and only if T is strictly

proto-differentiable at x̂ for v̂.

Henceforth we concentrate on the case of minimizing points x̄ ∈ argmin f . Such points
have v̄ = 0 as subgradient v̄ ∈ ∂f(x̄). As a companion to the envelope function eλ we
utilize the proximal mapping Pλ : IRn →→ IRn defined by

Pλ(x) := argmin
x′

{
f(x′) +

1
2λ

∣∣x′ − x
∣∣2} . (2.8)

Theorem 2.4 [25](Thms. 4.4, 4.6, 5.2). Suppose that f is prox-regular at x̄ ∈ argmin f

for v̄ = 0 with respect to ε and r, and let T be the f -attentive ε-localization of ∂f at (x̄, 0).
Then for any λ ∈ (0, 1/r) there is a convex neighborhood Xλ of x̄ such that

(a) the mapping Pλ is single-valued and Lipschitz continuous on Xλ with

Pλ = (I + λT )−1,
∣∣Pλ(x′)− Pλ(x)

∣∣ ≤ λ

1− λr

∣∣x′ − x
∣∣, Pλ(x̄) = x̄,

(b) the function eλ is C1+ and lower-C2 on Xλ with

eλ +
r

2(1− λr)
| · |2 convex , ∇eλ = λ−1

[
I − Pλ

]
=

[
λI + T−1

]−1
.

3. Second-Order Expansions

Before looking at second-order expansions of the Moreau envelope functions eλ, we inspect
the case of f itself.

Theorem 3.1. Suppose that f is prox-regular at x̂ for v̂. Then the following are equivalent

and imply that f is lower-C2 on a neighborhood of x̂, with

f(x̂ + tξ) = f(x̂) + t
〈
v̂, ξ

〉
+ 1

2 t2f ′′x̂,v̂(ξ) + o
(
t2|ξ|2

)
. (3.1)

(a) f is differentiable at x̂, ∇f(x̂) = v̂, and f has a second-order expansion at x̂.
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(b) f is twice epi-differentiable at x̂ for v̂ with f ′′x̂,v̂ finite everywhere.

Proof. The equivalence of (b) with the expansion (3.1) is asserted by [25](Thm. 6.7) with
the function f ′′x̂,v̂ being in this case lower-C2 (hence continuous), and the same for f on
some neighborhood of x̂. This in turn implies (a) through Definition 1.1 with h = f ′′x̂,v̂.
Conversely, if we had (a) the functions ∆2

x̂,v̂,tf would in particular epi-converge to h, so
h = f ′′x̂,v̂. This would give (b).

It might be conjectured that when f is prox-regular at x̄ ∈ argmin f for v̄ = 0 and
also twice epi-differentiable for these elements, the second-order epi-derivative function f ′′x̄,v̄

ought to be convex (in addition to being nonnegative, l.s.c. and positively homogeneous of
degree 2). But this is false, even if f ′′x̄,v̄ is finite everywhere. An example in IR2 is

f(x1, x2) = |x1x2| = max{−x1x2, x1x2 }

at the origin. This function is lower-C2, hence certainly prox-regular everywhere, but its
second-order epi-derivative function at the origin is f itself, which is not convex.

Theorem 3.2. Suppose that f is lower-C2 on a neighborhood of x̂ and also differentiable

on such a neighborhood (or equivalently, that f can be represented around x̂ as the differ-

ence between a differentiable convex function and a C2 function). Then the following are

equivalent:

(a) f has a Hessian matrix H at x̂;

(b) ∇f is differentiable at x̂ with Jacobian matrix H;

(c) f is twice differentiable at x̂, and H = ∇2f(x̂).

Proof. The parenthetical alternative to the hypothesis on f is known from [37]. From this
it is clear that differentiable, lower-C2 functions f are C1 with ∂f(x) =

{
∇f(x)

}
. Then

Theorem 2.3 is applicable with T simply a localization of ∇f . Denote by Ha and Hb the
matrices that appear in (a) and (b) respectively. Conditions (a) and (b) both imply that
f has a second-order expansion at x̂ with h(ξ) = 〈ξ,Haξ〉 = 〈ξ, Hbξ〉. Theorem 3.1 tells
us that f is twice epi-differentiable at x̂ for v̂ = ∇f(x̂) with f ′′x̂,v̂(ξ) = h(ξ). This in turn
means by Theorem 2.3 that

Hb(ξ) = ∇2f(x̂)(ξ) =
(
∂f

)′
x̂,v̂

(ξ) = ∂
[ 1
2f ′′x̂,v̂

]
(ξ) = Ha(ξ) = 1

2

[
Hb + Hb

T
]
(ξ) for all ξ

(recall that Ha is symmetric). This yields the equivalence of (a) and (b), while (c) just
restates (b).

8



Theorem 3.2 is not new—it has recently been proved even in a Banach-space version by
Borwein and Noll [2](Theorem 3.1) for convex functions f , from which it readily extends
to lower-C2 functions. Our proof is different, however, in its reliance on fundamental
relationships between second-order epi-derivatives of functions and proto-derivatives of
their subgradient mappings.

Corollary 3.3. For a function f of the kind in Theorem 3.2, and in particular for any

differentiable convex function f , twice differentiability at x̂ automatically implies the sym-

metry of the second-derivative matrix ∇2f(x̂).

This fact is interesting because second-derivative matrices do not have to be symmetric
for differentiable functions in general. The standard criterion for ensuring symmetry is
continuous twice differentiability of f , but that is not assumed in the situation at hand.
Also, apart from the symmetry issue, the existence of a Hessian H for a differentiable
function f does not automatically mean, unless f is lower-C2 as in Theorem 3.2, the
existence of the second-derivative matrix ∇2f(x̂). This is confirmed by the example of

f(x) =
{
|x|2 sin(1/|x|2) for x 6= 0,
0 for x = 0,

which is everywhere differentiable and has Hessian H = 0 at x̂ = 0, but has ∇f not even
bounded on a neighborhood of 0, much less differentiable there; no Jacobian exists at all
for ∇f at 0. These facts highlight the special nature of lower-C2 functions, and more
specifically finite convex functions, in the absence of such pathology.

Our basic result about second-order expansions of envelope functions will involve first-
order expansions of their gradient mappings. For this we need another definition.

Definition 3.4. A single-valued mapping G from an open neighborhood of x̂ ∈ IRn into

IRm has a first-order expansion at a point x̂ ∈ O if there is a continuous mapping D such

that the difference quotient mappings

∆x̂,tG :
[
G(x̂ + tξ)−G(x̂)

]/
t for t > 0

converge to D uniformly on bounded sets as t↘0. The expansion is strict if actually the

mappings

∆x,tG :
[
G(x + tξ)−G(x)

]/
t for t > 0

converge to D uniformly on bounded sets as t↘0 and x → x̂.

When a first-order expansion exists, the mapping D giving the approximating term
must not only be continuous but positively homogeneous: D(λξ) = λD(ξ) for λ > 0, and
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in particular D(0) = 0. The expansion can be expressed by

G(x̂ + tξ) = G(x̂) + tD(ξ) + o
(
|tξ|

)
.

Differentiability of G at x̂ in the classical sense is the case where D happens to be a linear
mapping. If D is linear and the expansion is strict, one has the strict differentiability of
G at x̂.

In general, the existence of a first-order expansion means the directional differentia-
bility of G at x̂. It is equivalent (in our finite-dimensional setting) to the existence, for
every vector ξ̂ ∈ IRn, of the directional derivative limit

lim
ξ→ξ̂
t↘ 0

G(x̂ + tξ)−G(x̂)
t

.

Likewise, a strict first-order expansion means strict directional differentiability at x̂ and
corresponds to the existence for every ξ̂ of the more complicated limit where x̂ is replaced
by x, and x → x̂ along with ξ → ξ̂ and t↘0. Either way, the mapping D in Definition 3.4
gives for each ξ̂ the directional derivative D(ξ̂).

The existence of a first-order expansion can also be identified with a special case of
proto-differentiability (a concept applicable to single-valued mappings in particular). In-
deed, G has a first-order expansion at x̂ in terms of D if and only if G is proto-differentiable
at x̂ and the proto-derivative mapping G′x̂ has no empty values. Then D = G′x̂, so we get

G(x̂ + tξ) = G(x̂) + tG′x̂(ξ) + o
(
|tξ|

)
.

Theorem 3.5. Suppose that f is prox-regular at x̄ ∈ argmin f for v̄ = 0 with respect to

ε and r, and let λ ∈ (0, 1/r). Then the following properties are equivalent:

(a) f is twice epi-differentiable at x̄ for v̄ = 0;

(b) eλ is twice epi-differentiable at x̄ for v̄ = 0;

(c) eλ has a second-order expansion at x̄;

(d) ∇eλ has a first-order expansion at x̄;

(e) ∇eλ is proto-differentiable at x̄;

(f) Pλ has a first-order expansion at x̄;

(g) Pλ is proto-differentiable at x̄.

In that event the expansions

eλ(x̄ + tξ) = eλ(x̄) + t2dλ(ξ) + o
(
|tξ|2

)
,

∇eλ(x̄ + tξ) = t∇dλ(ξ) + o
(
|tξ|

)
,

Pλ(x̄ + tξ) = x̄ + t
[
I − λ∇dλ(ξ)

]
+ o

(
|tξ|

)
,
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hold for a function dλ that is both C1+ and lower-C2, the gradient mapping ∇dλ being

Lipschitz continuous globally. In fact dλ is the Moreau λ-envelope for 1
2f ′′x̄,v̄; one has

dλ(ξ) = min
ξ′

{
1
2
f ′′x̄,v̄(ξ′) +

1
2λ

∣∣ξ′ − ξ
∣∣2} for all ξ. (3.2)

Moreover

∂
[ 1
2dλ

]
=

[
λI + D−1

]−1 = λ−1
[
I − (I + λD)−1

]
for D := ∂

[ 1
2f ′′x̄,v̄

]
. (3.3)

Proof. The equivalence of (a) and (b) is asserted along with (3.2) and (3.3) by [25](Cor. 6.6).
On the other hand, the equivalence of (b) and (c) follows from applying Theorem 3.1 to
eλ in place of f , which is possible because of the properties of eλ in Theorem 2.4(b). In
the same context, (b) is equivalent to (e) through Theorem 2.3.

As noted prior to the statement of the theorem, the existence of a first-order expansion
is a special case of proto-differentiability; (d) implies (e). Conversely, the local Lipschitz
continuity of ∇eλ guarantees that the difference quotient mappings

ξ 7→
[
∇eλ(x̄ + tξ)−∇eλ(x̄)

]
/t

enjoy the same Lipschitz constant on some neighborhood of ξ = 0 for sufficiently small t >

0, so that graphical convergence of these mappings, as demanded by proto-differentiability,
is impossible unless they converge pointwise. But uniformly Lipschitz continuous mappings
that converge pointwise must converge uniformly on bounded sets, moreover to a limit
mapping that likewise is single-valued Lipschitz continuous with the same constant on a
neighborhood of 0. In this case the limit mapping is positively homogeneous, so the latter
properties hold not just on a neighborhood of 0 but globally on IRn. Thus, (e) implies
(d) and the single-valuedness and global Lipschitz continuity of the proto-derivative (eλ)′x̄.
The relationships with Pλ come immediately now out of Theorem 2.4.

Corollary 3.6. The properties in Theorem 3.5 hold when f is fully amenable at x̄.

Proof. Fully amenable functions are twice epi-differentiable everywhere, cf. [33].

Moving on now to the question of the existence and characterization of Hessian ex-
pansions, we require two special concepts.

Definition 3.7. A function h : IRn → IR is a generalized (purely) quadratic function if it

is expressible in the form

h(x) =
{

1
2 〈x,Qx〉 if x ∈ N ,
∞ if x /∈ N ,

(3.4)
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where N is a linear subspace of IRn and Q is a symmetric n × n matrix. A possibly

set-valued mapping D : IRn →→ IRm is a generalized linear mapping if its graph is a linear

subspace of IRn × IRm.

Generalized quadratic functions can be interpreted as “quadratic functions with +∞
as a possible eigenvalue” (the subspace N⊥ complementary to N being the eigenspace for
that eigenvalue). They are precisely the functions h on IRn whose subgradient mappings ∂h

are generalized linear mappings, the graph of ∂h necessarily being in fact an n-dimensional
subspace of IRn × IRn; see [32](Section 4).

Theorem 3.8. Suppose that f is prox-regular at x̄ ∈ argmin f for v̄ = 0 with respect to

ε and r, and let λ ∈ (0, 1/r). Then the following properties are equivalent:

(a) f is twice epi-differentiable at x̄ for v̄, and f ′′x̄,v̄ is generalized quadratic;

(b) eλ has a Hessian matrix Hλ at x̄;

(c) ∇eλ is differentiable at x̄ with Jacobian matrix Hλ;

(d) eλ is twice differentiable at x̄ for v̄, and Hλ = ∇2eλ(x̄);

(e) Pλ is differentiable at x̄ with Jacobian matrix I − λHλ;

(f) the f -attentive ε-localization T of ∂f at (x̄, v̄) is proto-differentiable there, and the

proto-derivative mapping T ′x̄,v̄ is generalized linear.

Proof. We have (b), (c) and (e) equivalent as the special case of Theorem 3.5(a)(b)(f)
in which dλ is quadratic. Next, (d) is just another way of saying (c), which is also the
same as asserting that the mapping ∇eλ is proto-differentiable at x̄ for v̄ = 0 and the
graph of the proto-derivative mapping is a linear subspace of IRn (cf. the remarks about
proto-differentiability in the proof of Theorem 3.5). Through the last formula in Theorem
2.4, which sets up a linear transformation in IRn × IRn under which the graph of ∇eλ

corresponds locally to that of T , proto-differentiability of ∇eλ corresponds to that of T .
Thus, (c) is equivalent to (f). But by Theorem 2.3, (f) is equivalent to (a).

Theorem 3.9. Suppose that f is prox-regular at x̄ ∈ argmin f for v̄ = 0 with respect to ε

and r. Then there exist λ0 > 0 and a neighborhood U of (x̄, v̄) such that for all 0 < λ < λ0

and (x, v) ∈ gphT ∩U (with T the f -attentive ε-localization of ∂f at (x̄, v̄)) the following

properties are equivalent:

(a) f is twice epi-differentiable at x for v, and f ′′x,v is generalized quadratic;

(b) eλ has a Hessian matrix Hλ at x + λv;

(c) ∇eλ is differentiable at x + λv with Jacobian matrix Hλ;
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(d) eλ is twice differentiable at x + λv for v, and Hλ = ∇2eλ(x + λv);

(e) Pλ is differentiable at x + λv with Jacobian matrix I − λHλ;

(f) the f -attentive ε-localization T of ∂f at (x, v) is proto-differentiable there, and the

proto-derivative mapping T ′x,v is generalized linear.

Proof. We can assume that x̄ = 0, f(x̄) = 0. Fix x and v ∈ ∂f(x) with |x| < ε/4, |v| < ε

and |f(x)| < ε. We claim that by choosing R > r sufficiently large, we can make the
function f̄(x′) := f(x′)−〈v, x′−x〉+(R/2)|x′−x|2 have x ∈ argmin f̄ . To see this, notice
that because f is prox-regular at 0 for 0 we have for any R and any x′ with |x′| < ε that

f̄(x′) ≥ f(x) + 〈v, x′ − x〉 − (r/2)|x′ − x|2 − 〈v, x′ − x〉+ (R/2)|x′ − x|2

= f(x) +
(
(R− r)/2

)
|x′ − x|2 ≥ f(x) = f̄(x).

On the other hand we have for any R and any x′ with |x′| ≥ ε (and hence in particular
with |x′ − x| ≥ (3/4)ε ) that

f̄(x′) ≥ f(0)− 〈v, x′ − x〉+ (R/2)|x′ − x|2 = f(x)− f(x)− 〈v, x′ − x〉+ (R/2)|x′ − x|2

≥ f(x) + (R/2)|x′ − x|2 − ε|x′ − x| − ε.

This last quantity is greater that f(x) provided |x′ − x| ≥ (1/R)
[
ε +

√
ε2 + 2Rε

]
. By

choosing R large enough we can have this last quantity less than (3/4)ε. Then f̄(x′) ≥ f̄(x)
for all x′, so x ∈ argmin f̄ .

With R having been chosen large enough that x ∈ argmin f̄ , and with the observation
that f̄ is prox-regular at x for 0, we now turn our attention to the Moreau λ-envelope of
f̄ , which we denote by f̄λ. This is given by

f̄λ(w) = inf
x′

{
g(x′) +

1
2λ
|x′ − w|2

}
= inf

x′

{
f(x′)− 〈v, x′ − x〉+

R

2
|x′ − x|2 +

1
2λ
|x′ − w|2

}
= inf

x′

{
f(x′) +

1
2µ
|u− x′|2

}
− 1

2µ
|u|2 +

1
2λ
|w|2 + 〈v, x〉+

R

2
|x|2

= eµ(u)− 1
2µ
|u|2 +

1
2λ
|w|2 + 〈v, x〉+

R

2
|x|2,

where µ = λ/(λR + 1) and u = µ[v + Rx + (1/λ)w]; to obtain the penultimate step in the
preceding calculation simply note that

1
2µ
|u− x′|2 =

1
2µ
|u|2 − 〈v + Rx + (1/λ)w, x′〉+

(R

2
+

1
2λ

)
|x′|2.
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From the formula for f̄λ we see that the second-order properties of f̄λ at x for 0
translate to second-order properties of eµ at µ[v + Rx + (1/λ)x] = µv + x for v (since by
Theorem 2.4, ∇eµ(x+µv) = v). Besides, f̄ is twice epi-differentiable at x for 0 if and only
if f is twice epi-differentiable at x for v.

Now we apply the equivalent properties in Theorem 3.8 not just at (x̄, v̄) but locally.

Corollary 3.10. Suppose that f is prox-regular at a point x̂ for v̂ with constants ε and

r. Then there is a neighborhood U of (x̂, v̂) such that for all (x, v) ∈ gphT ∩ U (with T

the f -attentive ε-localization of ∂f at (x̂, v̂)) the following properties are equivalent:

(a) f is twice epi-differentiable at x for v and f ′′x,v is generalized quadratic;

(b) T is proto-differentiable at x for v, and the proto-derivative mapping T ′x,v is gener-

alized linear.

Proof. Take (x, v) ∈ gphT with |x − x̂| < (ε/2). We have f(x′) ≥ f(x) + 〈v, x′ − x〉 −
(r/2)|x′−x|2 whenever |x′− x̂| < ε. Therefore, for some neighborhood U of x the function
g(x′) := f(x′) − 〈v, x′ − x〉 + (r/2)|x′ − x|2 + δU (x′) has x ∈ argmin g and 0 ∈ ∂g(x). In
addition, the function g is prox-regular at x for 0. Now apply Theorem 3.8 to g at x for 0;
the equivalent properties for g easily translate into equivalent properties for f .

Corollary 3.11. Suppose that f is prox-regular at x̄ ∈ argmin f for v̄ = 0 with respect

to ε and r.

(a) If for some λ ∈ (0, 1/r) the function eλ has a Hessian matrix at x̄, this must be true

for every λ ∈ (0, 1/r).

(b) If for some λ ∈ (0, 1/r) the mapping ∇eλ is differentiable at x̄, this must be true

for every λ ∈ (0, 1/r).

(c) If for some λ ∈ (0, 1/r) the mapping Pλ is differentiable at x̄, this must be true for

every λ ∈ (0, 1/r).

Corollary 3.12. Suppose f is lower-C2 on a neighborhood of x̄ ∈ argmin f and there

exists s > 0 such that f(x) ≤ f(x̄) + s|x− x̄|2 for all x in some neighborhood of x̄. Then

for λ > 0 sufficiently small, eλ has a Hessian at x̄ if and only if f itself has a Hessian at x̄.

Proof. The bound given on the growth of f around x̄ has the consequence that if the
second-order epi-derivative function f ′′x̄,v̄ exists it must be finite.
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4. Stability of Approximation

The existence of a second-order expansion of eλ at x̄ provides a type of second-order
approximation which may be useful for a number of purposes. To get full benefit from
such an approximation in a numerical context, however, it must display some degree of
stability. In a standard framework of analysis relying on differentiability, the property to
focus on is that of eλ being of class C2 on a neighborhood of x̄; then Hessian matrices exist
at points x near x̄ and depend continuously on x. We must ascertain what property of f is
necessary and sufficient for this, but also try to explore less demanding notions of stability
which might nonetheless provide a numerical handle in the environment where eλ is not
C2, just C1+ and lower-C2 around x̄ (through Theorem 2.4).

Strict second-order expansions of eλ (Definition 1.1) and strict first-order expansions
of ∇eλ (Definition 3.4) offer promising territory. Strict differentiability, as the case of a
strict first-order expansion where the approximating mapping is linear, is known to have
the interpretation as the single-point localization of the C1 property, and something similar
might be anticipated for the existence of a strict Hessian in relation to the C2 property.
In exploring this, we appeal to the strict versions of proto-differentiability and twice epi-
differentiability defined before Theorem 2.3.

Theorem 4.1. Suppose that f is prox-regular at x̄ ∈ argmin f for v̄ = 0 with respect to

ε and r, and let λ ∈ (0, 1/r). Then the following properties are equivalent and imply that

f ′′x̄,v̄ is generalized quadratic and T ′x̄,v̄ is generalized linear:

(a) f is strictly twice epi-differentiable at x̄ for v̄;

(b) eλ has a strict Hessian at x̄;

(c) ∇eλ is strictly differentiable at x̄;

(d) eλ is twice differentiable at x̄, and ∇2eλ(x) → ∇2eλ(x̄) as x → x̄ in the set of points

where eλ is twice differentiable;

(e) eλ is strictly twice epi-differentiable at x̄ for v̄;

(f) ∇eλ is strictly proto-differentiable at x̄ for v̄;

(g) Pλ is strictly differentiable at x̄;

(h) Pλ is strictly proto-differentiable at x̄;

(i) the f -attentive ε-localization T of ∂f at (x̄, v̄) is strictly proto-differentiable there.

Proof. Theorem 2.3 as applied to eλ in the context of the properties of this function in
Theorem 2.4(b) yields the equivalence of (b) with (c) and more generally that of (e) with
(f). In principle, (f) is a weaker property than (c), but we shall argue next that, in this
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context, (f) implies (c) through (d).

The linear mappings ξ 7→ ∇2eλ(x)ξ at points x where eλ is twice differentiable are
limits of difference quotient mappings for ∇eλ at such points, which in particular can be
construed as graphical limits. The definition of strict proto-differentiability of ∇eλ at x̄

ensures (through diagonalization) that such linear mappings must graph-converge to the
proto-derivative mapping (∇eλ)′x̄ as x → x̄. Graphical convergence of linear mappings
coincides with pointwise convergence of such mappings and requires the limit to be linear;
thus it corresponds to convergence of the coefficient matrices. Therefore (f) implies (d).

When (d) holds, however, powerful information is provided through the fact in The-
orem 2.4(b) that the mapping ∇eλ is Lipschitz continuous around x̄, hence differentiable
almost everywhere in some neighborhood of x̄ (Rademacher’s Theorem). This means that
eλ is twice differentiable at almost every x in some neighborhood of x̄. The norms

∣∣∇2eλ(x)
∣∣

are uniformly bounded in such a neighborhood. Indeed, any upper bound to these norms
serves as a local Lipschitz constant for ∇eλ, and vice versa. In this framework we see
that for the locally Lipschitz continuous mapping Dλ(x) = ∇eλ(x)−∇eλ(x̄) condition (c)
implies the existence for any ε > 0 of δ > 0 such that ε serves as a Lipschitz constant for
Dλ on the δ-ball around x̄. But this is equivalent to Dλ being strictly differentiable at x̄

with the zero matrix as its Jacobian. Hence (d) implies (c).

So far we have established the equivalence of conditions (b)–(f). Clearly (g) and (h)
are equivalent to (b) and (f) through the formula in Theorem 2.4 connecting Pλ with ∇eλ.
On the other hand, (a) and (i) are equivalent by Theorem 2.3. It remains only to argue
that (i) corresponds to (f). This is true because strict proto-differentiability is a geometric
property of the graph of a mapping and is preserved under any linear transformation of
the graph. The formula connecting ∇eλ with T in Theorem 2.4 sets up an invertible linear
transformation between the graphs of these mappings.

Finally note that the equivalence of (g) and (h) shows that for the mapping Pλ strict
proto-differentiability automatically entails generalized linearity (actually true linearity)
of the proto-derivative mapping. Since the graphs of T and Pλ are “isomorphic” under a
certain linear transformation in graph space, the same must hold for T as well. Once we
know that T ′x̄,v̄ is generalized linear, we have that f ′′x̄,v̄ is generalized quadratic.

Theorem 4.2. Under the hypothesis of Theorem 4.1, and with T the f -attentive ε-

localization of ∂f at (x̄, v̄), the following conditions can be added to the list of equivalences:

(a) f ′′x,v epi-converges (to something) as (x, v) → (x̄, v̄) with f(x) → f(x̄) in the set of

pairs (x, v) with v ∈ ∂f(x) for which f is twice epi-differentiable;
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(b) (eλ)′′x epi-converges as x → x̄ in the set where eλ is twice epi-differentiable;

(c) (∇eλ)′x graph-converges as x → x̄ in the set where ∇eλ is proto-differentiable;

(d) (∇Pλ)′x graph-converges as x → x̄ in the set where Pλ is proto-differentiable;

(e) T ′x,v graph-converges as x → x̄ and v → v̄ in the set of pairs (x, v) with v ∈ T (x)
for which T is proto-differentiable;

(f) f ′′x,v epi-converges as (x, v) → (x̄, v̄) with f(x) → f(x̄) in the set of pairs (x, v) with

v ∈ ∂f(x) for which f is twice epi-differentiable and f ′′x,v is generalized quadratic;

(g) T ′x,v graph-converges as x → x̄ and v → v̄ in the set of pairs (x, v) with v ∈ T (x)
for which T is proto-differentiable and T ′x,v is generalized linear.

Proof. The proof of Theorem 4.1 already shows that (c) can be added to the list of
equivalences. We have (c) equivalent to (d) and (e) because of the formulas relating these
mappings in Theorem 2.4: not only proto-differentiability but proto-derivatives correspond
when the graphs of mappings can be identified under an invertible linear transformation.
Under our assumption that f is prox-regular at x̄ for v̄ with respect to ε and r, we know
that T + rI is monotone (Theorem 2.2), so that T ′x,v + rI is monotone when the proto-
derivative exists. But by Theorem 2.3, T ′x,v is the subgradient mapping for 1

2

(
f ′′x,v + r| · |2

)
so its monotonicity implies the convexity of 1

2

(
f ′′x,v + r| · |2

)
[19]. Graphical convergence

of T ′x,v + rI as (x, v) ∈ (x̄, v̄) with v ∈ T (x) is equivalent then by Attouch’s theorem to
epi-convergence of 1

2

(
f ′′x,v + r| · |2

)
as (x, v) ∈ (x̄, v̄) with v ∈ T (x); the latter is the same

as having (x, v) ∈ (x̄, v̄) with v ∈ ∂f(x) and f(x) → f(x̄) by [25](Prop. 2.3). Hence (e) is
equivalent to (a).

Similarly by Attouch’s theorem, we have the equivalence of (c) with (b) because this
likewise can be reduced to the convex case because of the convexity property asserted in
Theorem 2.4(b). Finally, (f) and (g) come into the picture as viable substitutes for (a) and
(e), respectively, because the graph of T is a Lipschitz manifold of dimension n around
(x̄, v̄) [25](Thm. 4.7) and consequently has a linear tangent space at almost every pair
(x, v) in some neighborhood of (x̄, v̄), cf. [32]. At such (x, v), this subspace is the graph
of T ′x,v, which therefore is generalized linear, and the function 1

2f ′′x,v having T ′x,v as its
subgradient mapping is accordingly a generalized quadratic function.

Again we note, as in Corollary 3.11, that if one of the λ-dependent properties in
Theorems 4.1 and 4.2 holds for some λ ∈ (0, 1/r), they all hold for every λ ∈ (0, 1/r).

Corollary 4.3. Suppose that f is prox-regular at a point x̂ for v̂ with constants ε and r.

Then there is a neighborhood U of (x̂, v̂) such that for all (x, v) ∈ gphT ∩ U (where T is
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the f -attentive ε-localization of ∂f at (x̂, v̂)) the following properties are equivalent and

imply that f ′′x,v is generalized quadratic and T ′x,v is generalized linear:

(a) f is strictly twice epi-differentiable at x for v

(b) T is strictly proto-differentiable at x for v;

(c) f ′′x′,v′ epi-converges (to something) as (x′, v′) → (x, v) with f(x′) → f(x) in the set

of pairs (x′, v′) with v′ ∈ ∂f(x′) for which f is twice epi-differentiable;

(d) T ′x′,v′ graph-converges (to something) as x′ → x and v′ → v in the set of pairs

(x′, v′) with v′ ∈ T (x′) for which T is proto-differentiable;

(e) f ′′x′,v′ epi-converges (to something) as (x′, v′) → (x, v) with f(x′) → f(x) in the

set of pairs (x′, v′) with v′ ∈ ∂f(x′) for which f is twice epi-differentiable and f ′′x′,v′ is

generalized quadratic;

(f) T ′x′,v′ graph-converges (to something) as x′ → x and v′ → v in the set of pairs

(x′, v′) with v′ ∈ T (x′) for which T is proto-differentiable and T ′x′,v′ is generalized linear.

Proof. The proof is similar to that of Corollary 3.10 except that at the end we use
Theorems 4.1 and 4.2 instead.

The existence of a strict Hessian for eλ at x̄ is a very natural property to look for
in any numerical method for minimizing eλ that relies on second-order approximations.
It is remarkable that this property is equivalent to so many others in Theorems 4.1 and
4.2, especially those of f and the localization T of ∂f . In taking any step further toward
stability or continuity properties of generalized derivatives of f it appears one has to pass
to the case described in the next theorem, our last.

We have already made use of the fact proved in [25](Thm. 4.7) that when f is prox-
regular at x̄ for v̄, an f -attentive localization of the graph of ∂f around (x̄, v̄) is a Lipschitz
manifold. Such a manifold, as defined in [32], can be identified locally under some invertible
linear transformation from IRn × IRn onto itself with the graph of a Lipschitz continuous
mapping. Similarly we can speak of a smooth manifold in the case where identification is
made with the graph of a C1 mapping.

Theorem 4.4. Suppose that f is prox-regular at x̄ ∈ argmin f for v̄ = 0 with respect to

ε and r. Let T be the f -attentive ε-localization of ∂f at (x̄, v̄). Then there exists λ0 > 0
such that for all 0 < λ < λ0 the following properties are equivalent;

(a) eλ is C2 on a neighborhood of x̄;

(b) eλ is strictly twice epi-differentiable on a neighborhood of x̄;
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(c) Pλ is C1 on a neighborhood of x̄;

(d) Pλ is strictly proto-differentiable on a neighborhood of x̄;

(e) f is twice epi-differentiable at x for v with respect to all (x, v) sufficiently near

to (x̄, v̄) in the graph of T , moreover f ′′x,v depends epi-continuously on (x, v), i.e., f ′′x′,v′

epi-converges to f ′′x,v as (x′, v′) → (x, v) with f(x′) → f(x) and v′ ∈ ∂f(x′);

(f) f is strictly twice epi-differentiable at x for v with respect to all (x, v) sufficiently

near to (x̄, v̄) in the graph of T ;

(g) the graph of T is a smooth manifold relative to some neighborhood of (x̄, v̄);

(h) T is strictly proto-differentiable at x for v with respect to all (x, v) sufficiently near

to (x̄, v̄) in the graph of T .

Proof. We can assume that x̄ = 0, f(x̄) = 0. Fix x and v ∈ ∂f(x) with |x| < ε/4, |v| < ε

and |f(x)| < ε. As in the proof of Theorem 3.9, we take R > r sufficiently large so that
x ∈ argmin f̄ where f̄(x′) := f(x′)−〈v, x′−x〉+(R/2)|x′−x|2. Note that f̄ is prox-regular
at x for 0. Again from the proof of Theorem 3.9 we have

f̄λ(w) = eµ(u)− 1
2µ
|u|2 +

1
2λ
|w|2 + 〈v, x〉+

R

2
|x|2,

where µ = λ/(λR + 1) and u = µ[v + Rx + (1/λ)w].

From the formula for f̄λ we see that f̄λ is strictly twice epi-differentiable at x for 0 if
and only if eµ is strictly twice epi-differentiable at µ[v +Rx+(1/λ)x] = µv +x for v (since
by Theorem 2.4, ∇eµ(x + µv) = v). Besides, f̄ is strictly twice epi-differentiable at x for
0 if and only if f is strictly twice epi-differentiable at x for v.

Now we apply the equivalent properties in Theorems 4.1 and 4.2 not just at (x̄, v̄) but
locally, keeping in mind that a mapping is C1 on an open set if and only if it is strictly
differentiable there, and the fact that there is a one-to-one correspondence between the
points x′ close to 0 and the points x + µv with v ∈ T (x) (by Theorem 2.4). The local
identification of the graph of T with a Lipschitz manifold is achieved through parameter-
ization by Pλ, so the smoothness of Pλ under the present circumstances corresponds to
having the graph of T be in fact a smooth manifold.

Corollary 4.5. If f is C2 on a neighborhood of a point x̄ ∈ argmin f , then for all λ > 0
sufficiently small, the function eλ is C2 on a neighborhood of x̄.

Corollary 4.6. Suppose f is lower-C2 on a neighborhood of a point x̄ ∈ argmin f and

there exists s > 0 such that f(x) ≤ f(x̄) + s|x− x̄|2 for all x in some neighborhood of x̄.

Then for λ > 0 sufficiently small, eλ is C2 around x̄ if and only if f itself is C2 around x̄.
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Proof. By adding s0|x− x̄|2 to f for sufficiently high s0, we can reduce to the case where
f is actually convex on a neighborhood of x̄. As already observed in the proof of Corollary
3.12, the bound on the growth of f around x̄ has ensures that if the second-order epi-
derivative function f ′′x̄,v̄ exists it must be finite. But when f is convex, its derivatives f ′′x,v

are convex as well. Such a function, being positively homogeneous of degree 2, is finite
everywhere if it is finite on a neighborhood of 0. When convex functions epi-converge to a
convex function that is finite on a neighborhood of 0, they must eventually themselves be
finite on a neighborhood of 0, cf. [38]. In the setting of Theorem 4.4(c), therefore, we must
have finite quadratic, convex functions that depend epi-continuously on (x, v). In light of
Theorem 3.1, this is the same as f being C2 around x̄.

Corollary 4.7. A function f is C2 on a neighborhood of a point x̂ if and only if f is

prox-regular at x̂ and there exist v̂ ∈ ∂f(x̂) and ε > 0 such that, whenever

v ∈ ∂f(x) with |v − v̂| < ε, |x− x̂| < ε, f(x) + f(x̂) + ε,

f is strictly twice epi-differentiable at x for v, the function f ′′x̂,v̂ itself being finite. Then

the relation v ∈ ∂f(x) reduces locally to v = ∇f(x), while f ′′x,v(ξ) =
〈
ξ,∇2f(x)ξ

〉
.

Proof. The necessity is obvious. For the sufficiency we can use the fact that v̂ is in
particular a proximal subgradient of f at x̂ to add a quadratic function to f so as to
reduce to the case where x̂ ∈ argmin f and v̂ = 0. Then the equivalences in Theorem 4.4
come into force. The finiteness of f ′′x̂,v̂ puts us at the same time in the picture of Theorems
3.1 and 3.2; the generalized quadratic functions f ′′x,v for (x, v) near enough to (x̂, v̂) have
to be ordinary quadratic functions.
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