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1. WHAT IS OPTIMIZATION?

Optimization problem: Maximizing or minimizing some function relative to some set,
often representing a range of choices available in a certain situation. The function
allows comparison of the different choices for determining which might be “best.”

Common applications: Minimal cost, maximal profit, best approximation, optimal de-
sign, optimal management or control, variational principles.

Goals of the subject: Understanding the practical and theoretical aspects of:

Modeling issues: What to look for in setting up an optimization problem? What fea-
tures are advantageous or disadvantageous? What aids to formulation are avail-
able? How can problems usefully be categorized?

Analysis of solutions: What is meant by a “solution?” When do solutions exist, and
when are they unique? How can solutions be recognized and characterized? What
happens to solutions under perturbations?

Numerical methods: How can solutions be determined by iterative schemes of compu-
tation? What modes of local simplification of a problem are appropriate? How
can different solution techniques be compared and evaluated?

Distinguishing features of optimization as a mathematical discipline:

Descriptive math −→ prescriptive math: Much of mathematics in the past has been
devoted to describing how systems behave, e.g. in the laws of physics. The advent
of computers, however, has brought an emphasis on using mathematics to make
systems behave in chosen ways, and choices lead to questions of optimization.

Equations −→ inequalities: Optimization typically deals with variables that have to lie
within certain ranges, dictated by the limitations of what choices are allowable,
and this leads to a dominance of relationships that are expressed by inequalities
rather than equations.

Linear/nonlinear −→ convex/nonconvex: The familiar division between linearity and
nonlinearity is less important in optimization than the one between convexity and
nonconvexity, which for its appreciation requires a new investment in concepts.

Differential calculus −→ subdifferential calculus: The prevalence of inequalities, along
with the special properties of “max” and “min” as operations, raise the need for
a methodology that doesn’t rely so much as classical mathematics on supposing
surfaces to be smooth and functions to be differentiable everywhere.
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Finite-dimensional optimization: The case where a choice corresponds to selecting the
values of a finite number of real variables, called decision variables. For purposes of
general discussion, such as now, the decision variables may be denoted by x1, . . . , xn

and each allowable choice therefore identified with a point x = (x1, . . . , xn) ∈ IRn.

Feasibility: The points x representing allowable choices are said to be feasible. They
form the subset of IRn over which the maximization or minimization takes place.

Constraints: Conditions on the decision variables that are used to specify the set of
feasible points x in IRn.

Equality and inequality constraints: Conditions of the form fi(x) = ci, fi(x) ≤ ci or
fi(x) ≥ ci for certain functions fi on IRn and constants ci in IR. (Note: Strict
inequalities are avoided in constraints, for reasons which will be clear later.)

Range constraints: Conditions restricting the values of some decision variables to lie
within certain closed intervals of IR. Very important in many situations, for
instance, are nonnegativity constraints: some variables xj may only be allowed
to take values ≥ 0; the interval then is [0,∞). Range constraints can also arise
from the desire to keep a variable between certain upper and lower bounds.

Linear constraints: This covers range constraints and conditions fi(x) = ci, fi(x) ≤ ci,
or fi(x) ≥ ci, in which the function fi is linear—in the standard sense of being
expressible as sum of constant coefficients times the variables x1, . . . , xn.

Data parameters: Problem statements usually involve not only decision variables but
symbols designating “given” constants and coefficients. Conditions on such ele-
ments, such as the nonnegativity of a particular coefficient, are not among the
“constraints” in a problem of optimization, however crucial they may be from
some other perspective.

Knowns and unknowns: A good way to think about the important distinction between
decision variables and data parameters is as follows. This may help you through
confusing situations where certain “parameters” might actually be decision variables
and certain “variables” actually data parameters. In practice, of course, all kinds of
symbols besides x get used, and it can get hard to tell things apart.

The decision variables in an optimization problem are unknowns that are open
to manipulation in the process of maximization or minimization, whereas the data
parameters aren’t open to manipulation when it comes to solving a particular prob-
lem, but instead would be furnished with specific numerical values as inputs to any
solution procedure.
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Mathematical programming: This is a synonym for finite-dimensional optimization.
Its usage predates “computer programming,” which actually arose from attempts at
solving optimization problems on early computers. “Programming,” in the sense
of optimization, survives in problem classifications such as linear programming,
quadratic programming, convex programming, integer programming, and so forth.

EXAMPLE 1: Engineering design

General description: In the design of some object, system or structure, the values
of certain parameters can be chosen subject to some conditions expressing their
ranges and interrelationships. The choice determines the values of a number of
other variables on which the desirability of the end product depends, such as
cost, weight, speed, bandwidth, reliability, . . . . Among the choices of the design
parameters that meet certain performance specifications, what’s “best” by some
overall criterion?

An illustration, optimal proportions of a can: The following example, although
toy-sized, brings out many features of optimization modeling. A cylindrical can
of a given volume V0 is to be proportioned in such a way as to minimize the total
cost of the material in a box of 12 cans, arranged in a 3 × 4 pattern. The cost
expression takes the form c1S1 + c2S2, where S1 is the surface area of the 12 cans
and S2 is the surface area of the box. The coefficients c1 and c2 are nonnegative.
A side requirement is that no dimension of the box can exceed a given size D0.

design parameters: r = radius of can, h = height of can

volume constraint: πr2h = V0 (or ≥ V0, see below!)

surface area of cans: S1 = 12(2πr2 + 2πrh) = 24πr(r + h)

box dimensions: 8r × 6r × h

surface area of box: S2 = 2(48r2 + 8rh+ 6rh) = 4r(24r + 7h)

size constraints: 8r ≤ D0, 6r ≤ D0, h ≤ D0

nonnegativity constraints: r ≥ 0, h ≥ 0 (!)

Summary: The decision variables are r and h, and the choices that are available can
be identified with the set C ⊂ IR2 consisting of all (r, h) satisfying the conditions

r ≥ 0, h ≥ 0, 8r ≤ D0, 6r ≤ D0, h ≤ D0, πr2h = V0.

The first five conditions can be thought of as range constraints and the sixth as
an equality constraint on f1(r, h) = πr2h. Over the set C we wish to minimize

f0(r, h) = c1
[
24πr(r + h)

]
+ c2

[
4r(24r + 7h)

]
= d1r

2 + d2rh,
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where d1 = 24πc1 + 96c2 and d2 = 24πc1 + 28c2. The symbols V0, D0, c1 and c2,
and ultimately d1 and d2, are data parameters. Although c1 ≥ 0 and c2 ≥ 0, these
aren’t “constraints” in the problem. As for S1 and S2, they were only introduced
as temporary symbols and didn’t end up as decision variables.

Redundant constraints: It is obvious that the condition 6r ≤ D0 is implied by the other
constraints and therefore could be dropped without affecting the problem. But
in problems with many variables and constraints such redundancy may be hard
to recognize. The elimination of redundant constraints could pose a practical
challenge as serious as that of solving the optimization problem itself.

Inactive constraints: It could well be true that the optimal pair (r, h) (unique??) is such
that either the condition 8r ≤ D0 or the condition h ≤ D0 is satisfied as a strict
inequality, or both. In that case the constraints in question are inactive in the
local characterization of optimal point, although they do affect the shape of the
set C. Again, however, there is little hope, in a problem with many variables and
constraints, of determining by some preliminary procedure just which constraints
will be active and which will not. This is the crux of the difficulty in many
numerical approaches.

Redundant variables: It would be possible to solve the equation πr2h = V0 for h in
terms of r and thereby reduce the given problem to one in terms of just r, rather
than (r, h). Fine—but besides being a technique that is usable only in special
circumstances, the elimination of variables from (generally nonlinear) systems of
equations is not necessarily helpful. There may be a trade-off between the lower
dimensionality achieved in this way and other properties.

Inequalities versus equations: The constraint πr2h = V0 could be written in the form
πr2h ≥ V0 without affecting anything about the solution. This is because of
the nature of the cost function; no pair (r, h) in the larger set C ′, obtained
by substituting this weaker condition for the equation, can minimize f0 unless
actually (r, h) ∈ C. While it may seem instinctive to prefer the equation to
the inequality in the formulation, the inequality turns out to be superior in the
present case because the set C ′ happens to be “convex,” whereas C isn’t.

Convexity: Even with the reformulation just suggested, the problem wouldn’t be fully
of convex type because the function of r and h being minimized isn’t itself “con-
vex”; further maneuvers might get around that. The lesson is that the formulation
of a problem can be subtle, when it comes to bringing out features of importance
in optimization. Knowledge and experience play a valuable role.
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EXAMPLE 2: Utilization of Resources

General description: Actions are to be taken that hopefully will result in profit, but
these actions, which correspond to selecting the values of a number of variables,
draw on some limited resources. What is the best way to allocate the resources so
as to maximize the profit, or for that matter to optimize the actions with respect
to some other criterion? There are many variants, such as using resources to
meet given needs while minimizing cost or pollution. In this class of problems
inequality constraints are especially prominent.

An illustration, tourist sales: We keep to toy reality for the purpose of concentrat-
ing better on key aspects of optimization modeling. The summer Olympic Games
are coming to town, and a teenage entrepreneur is planning to make money off
tourists by selling them souvenir sun hats and umbrellas. He can get plain sun
hats and umbrellas at costs of c1 and c2 dollars each, respectively, and then use
a kit he has in order to imprint them with a souvenir logo. With the logo he can
sell them for p1 and p2 dollars each, in unlimited quantity.

He does have limitations from two directions, however. First, he has only k

dollars to invest in the venture. Second, he has to store his items between the
time he can get them and the time of the Games. He has a total of b cubic meters
of space that he can use for free in his own basement, and there’s an extra e

cubic meters of space available in his neighbor’s house—but to the extent that
he uses that he’ll have to pay d dollars per cubic meter over the storage period.
Sun hats and umbrellas take up s1 and s2 cubic meters of storage space each,
respectively. How many sun hats and umbrellas should he stock up, and how
much space should he rent from the neighbor, if any? The “resource” limits here
are in the capital k, the free space b, and the rental space e.

actions: x1 = hats ordered, x2 = umbrellas ordered, x3 = space rented

range constraints: x1 ≥ 0, x2 ≥ 0, 0 ≤ x3 ≤ e

storage constraint: s1x1 + s2x2 ≤ b+ x3

investment constraint: c1x1 + c2x2 + dx3 ≤ k

profit expression: (p1 − c1)x1 + (p2 − c2)x2 − dx3

Summary: The decision variables are x1, x2 and x3. Besides the range constraints
there are two inequality constraints in terms of functions of these variables—this
is better seen by writing the storage requirement in the form s1x1+s2x2−x3 ≤ b.
All these constraints together determine a feasible set of points (x1, x2, x3) ∈ IR3.
Over this set the function given by the profit expression is to be maximized.
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Linearity: Note that in this formulation a linear function of the decision variables
is being maximized subject to a system of linear constraints.

Continuous versus integer variables: It would make sense to restrict the variables x1

and x2 to have whole values only, since there’s no meaning to selling a fraction
of a hat or umbrella. That would have major effects on the ease with which the
problem could be solved, however. It’s customary therefore to represent discrete
quantities by continuous variables, as a practical simplification as long as the
magnitudes are large relative to the “quantum of discreteness.”

In some situations we couldn’t take that view. If the optimization problem
involved a decision about whether to build a shopping center or not, and we
modeled that as a zero-one variable (no=0, yes=1), we surely would want to
steer away from fractions.

Integer programming: Problems with integer variables constitute a special, more
difficult area of optimization which we won’t be treating.

Breaks in cost structure: The way storage costs have been treated in this example
deserves close attention. We could have set the problem up instead with x1, x2

and a decision variable y standing for the amount of storage space to be used; the
relation between these variables would then be handled as an equation constraint,
s1x1 + s2x2− y = 0. Then y would be restricted to the interval [0, b+ e], and the
profit expression to be maximized would be (p1−c1)x1 +(p2−c2)x2−g(y), where
g(y) denotes the storage cost for y cubic meters. What would the function g look
like? We would have g(y) = 0 for 0 ≤ y ≤ b but g(y) = d[y− b] for b ≤ y ≤ b+ e.
It wouldn’t be linear, just “piecewise linear” with a breakpoint at y = b, where
it would have a kink and not be differentiable.

In contrast, the formulation above achieved linearity. How? That was done by
widening the range of possible actions. The entrepreneur was permitted (in the
variable x3) to rent space from his neighbor even if, on the basis of the quantities
x1 and x2 he had chosen, he didn’t need all of it. No constraint was added to
prevent squandering money on useless space. Allowing such squandering was
harmless because it would be eliminated in the course of optimizing.

Extension to uncertain prices, a worst-case model: Often in planning for the
future there are uncertainties about some of the data parameters. That’s a major
issue which we can’t get into here, but a simple tactic is worth discussing now for
its mathematical features, which often come up in other circumstances as well.
The tourist sales example is a good vehicle for explaining this.
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The prices p1 and p2 for the sun hats and umbrellas could depend on how the
weather turns out at the time of the Games. Let’s imagine p1 and p2 correspond
to normal weather, but there are two other possibilities: very sunny or very rainy.
In the very sunny case the two prices would instead be p′1 and p′2 (higher for hats,
lower for umbrellas), whereas in the very rainy case they would be p′′1 and p′′2

(lower for hats, higher for umbrellas). Then the entrepreneur would in fact face
three possible sales outcomes, given by the expressions p1x1 + p2x2, p′1x1 + p′2x2

and p′′1x1 + p′′2x2. There might be a statistical approach to coping with this, but
an alternative is to maximize, subject to the given constraints, the function

f(x1, x2, x3) = min
{
p1x1 + p2x2, p

′
1x1 + p′2x2, p

′′
1x1 + p′′2x2

}
− c1x1 − c2x2 − dx3.

This function gives the worst of all the possible profit outcomes that could result
from a particular choice of x1, x2 and x3. (Note that “min” refers merely to the
numerical operation of taking the lowest value from a collection of numbers, here
a collection of three numbers which happen to depend on x1, x2 and x3.)

Nonlinearity: Even though the function f is built up from linear expressions, it’s not
itself linear. Moreover it has kinks at which its differentiability fails.

Linearizing device for worst-case models: This example can be reformulated to get rid
of the nonlinearity. The trick is to introduce another variable, u say, and think
of the problem as one in x1, x2, x3 and u in which the old constraints are kept,
but there are new constraints p1x1 + p2x2 − u ≥ 0, p′1x1 + p′2x2 − u ≥ 0 and
p′′1x1 + p′′2x2 − u ≥ 0, and the expression to maximize is u− c1x1 − c2x2 − dx3.

EXAMPLE 3: Management of Systems

General description: A sequence of decisions must be made in discrete time which
will affect the operation of some kind of “system,” often of an economic nature.
As in Example 2, the decisions, each in terms of choosing the values of a number
of variables, have to respect limitations in resources, and the aim is to minimize
cost or maximize profit or efficiency, say, but over a particular time horizon.

An illustration, inventory management: A warehouse with total capacity a (in
units of volume) is to be operated over time periods t = 1, . . . , T as the sole facility
for the supply of a number of different commodities (or medicines, or equipment
parts, etc.), indexed by j = 1, . . . , n. The demand for commodity j during period
t is the known amount dtj ≥ 0 (in volume units)—this is a deterministic approach
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to modeling the situation. In each period t it is possible not only to fill demands
but to acquire additional supplies up to certain limits, so as to maintain stocks.
The problem is to plan the pattern of acquiring supplies in such a way as to
maximize the net profit over the T periods, relative to the original inventory
amounts and the desired terminal inventory amounts.

inventory variables: xtj units of commodity j at the end of period t

inventory constraints: xtj ≥ 0,
∑n

j=1 xtj ≤ a for t = 1, . . . , T

initial inventory: x0j units of j given at the beginning

terminal constraints: xTj = bj (given amounts) for j = 1, . . . , n

inventory costs: stj dollars per unit of j held from t to t+ 1

supply variables: utj units of j acquired during period t

supply constraints: 0 ≤ utj ≤ atj (given availabilities)

supply costs: ctj dollars per unit of j acquired during t

dynamical constraints: xtj = max
{
0, xt−1,j + utj − dtj

}
rewards: ptj dollars per unit of filled demand

filled demand: min
{
dtj , xt−1,j + utj

}
units of j during period t

net profit:
∑T

t=1

∑n
j=1

(
ptj min

{
dtj , xt−1,j + utj

}
− stjxtj − ctjutj

)
Summary: The latter expression, as a function of xtj and utj for t = 1, . . . , T and

j = 1, . . . , n (these being the decision variables), is to be maximized subject to the
inventory constraints, terminal constraints, supply constraints and the dynamical
constraints, which are regarded as determining a feasible set of points in IR2Tn.
The symbols dtj , a, x0j , bj , sij , atj , ctj and pj stand for data parameters.

Large-scale context: The number of variables and constraints that can be involved in
a problem may well be very large, and the interrelationships may be too complex
to appreciate in any direct manner. This calls for new ways of thinking and for
more reliance on guidelines provided by theory.

Uncertainty: Clearly, the assumption that the demands dtj are known precisely in
advance is unrealistic for many applications, although by solving the problem in
this case one might nonetheless learn a lot. To pass from deterministic modeling
to stochastic modeling, where each dtj is a random variable (and the same perhaps
for other data elements like atj), it is necessary to expand the conceptual horizons
considerably. The decision vector (ut1, . . . , utn) at time t must be viewed as an
unknown function of the “information” available to the decision maker at that
time, rather than just at the initial time, but this type of optimization is beyond
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us here. A worst-case approach could be taken, although this likewise would
seriously raise the level of complication.

Dependent variables: The values of the variables xtj are determined by the values of the
variables utj for t = 1, . . . , T and j = 1, . . . , n through the dynamical equations
and the initial values. In principal, therefore, a specific expression in the latter
variables could be substituted for each xtj , and the dimensionality of the problem
could thereby be cut sharply. But this trick, because it hides basic aspects of
structure, could actually make the problem harder to analyze and solve.

Constraints versus penalties: The requirements that
∑n

j=1 xtj ≤ a for t = 1, . . . , T
and that xTj = bj , although innocent-looking, are troublesome. Better modeling
would involve some recourse in the eventuality of these conditions not being
satisfied. For instance, instead of a constraint involving the capacity one could
incorporate into the function being minimized a penalty term, which kicks in when
the total inventory being stored rises above a (perhaps with the interpretation
that extra storage space has to be rented).

Max and min operations: The “max” operation in the dynamics and the “min” op-
eration in the expression of the net profit force the consideration of functions
that aren’t differentiable everywhere and thus don’t submit to ordinary calculus.
Sometimes this is unavoidable and points to the need for fresh developments in
analysis. Other times it can be circumvented by reformulation. The present ex-
ample fits with the latter. Really, it would be better to introduce more variables,
namely vtj as the amount of good j used to meet demands at time t. In terms of
these additional variables, constrained by 0 ≤ vtj ≤ dtj , the dynamics turn out
to be linear ,

xtj = xt−1,j + utj − vtj ,

and so too does the profit expression, which is now

T∑
t=1

n∑
j=1

(
ptjvtj − stjxtj − ctjutj

)
.

Hidden assumptions: The alternative model just described with variables vtj is better
in other ways too. The original model had the hidden assumption that demands
in any period should always be met as far as possible from the stocks on hand. But
this might be disadvantageous if rewards will soon be higher but inventory can
only be built up slowly due to the constraints on availabilities. The alternative
model allows sales to be held off in such circumstances.
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EXAMPLE 4: Identification of Parameter Values

General description: It’s common in science and engineering to model behavior by a
mathematical law, like an equation, which however can’t be implemented without
specifying the values of various parameters (“constants”) that appear in it. A
basic task is to determine the parameter values that provide the best fit to the
available data, known through experiment or observation. This is central to
statistics (regression, maximum likelihood), econometrics, error analysis, etc.

In speaking of “best” fit, reference is evidently being made to some criterion
for optimization, but there isn’t always just one. Note also a linguistic pitfall:
“the” best fit suggests uniqueness of the answer being sought, but even relative
to a single criterion there might be a tie, with different answers equally good.

This kind of optimization is entirely technical: the introduction of something
to be optimized is just a mathematical construct. Still, in analyzing and comput-
ing solutions the challenges are the same as in other areas of optimization.

An illustration, “least squares” estimates: Starting out very simply, suppose
that two variables x and y are being modeled as related by a linear law y = ax+b,
either for inherent theoretical reasons or as a first-level approximation. The
values of a and b are not known a priori but must be determined from the data,
consisting of a large collection of pairs (xk, yk) ∈ IR2 for k = 1, . . . , N . These pairs
have been gleaned from experiments (where random errors of measurement could
arise along with other discrepancies due to oversimplifications in the model). The
error expression

E(a, b) =
N∑

k=1

∣∣yk − (axk + b)
∣∣2

is often taken as representing the goodness of the fit of the parameter pair (a, b).
The problem is to minimize this over all (a, b) ∈ IR2.

Note that, from the optimization perspective, a and b are decision variables,
whereas the symbols xk and yk stand for data parameters. Words can be slippery!

Multidimensional extension: More generally, instead of a real variable x and a real
variable y one could be dealing with a vector x ∈ IRn and a vector y ∈ IRm,
which are supposed to be related by a formula y = Ax+b for a matrix A ∈ IRm×n

and a vector b ∈ IRm. Then the error expression E(A, b) would depend on the
m× (n+ 1) components of A and b.

Incorporation of constraints: The problem, as stated so far, concerns the unconstrained
minimization of a certain quadratic function of a and b, but it’s easy to find
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situations where the parameters might be subject to side conditions. For instance,
it may be known on the basis of theory for the model in question that 1/2 ≤ a ≤
3/2, while b ≥ −1. In the multidimensional case of y = Ax + b, there could
be conditions on A such as positive semidefiniteness. (In the applications that
make use of least squares estimation, such conditions are sometimes neglected by
practitioners, and the numerical answer obtained is simply “fixed up” if it doesn’t
have the right form. But that’s clearly not good methodology.)

Nonlinear version: A so-called problem of linear least squares has been presented, but
the same ideas can be used when the underlying relation between x and y is
supposed to be nonlinear. For instance, a law of the form y = eax − ebx would
lead to an error expression

E(a, b) =
N∑

k=1

∣∣yk − (eaxk − ebxk)
∣∣2.

In minimizing this with respect to (a, b) ∈ IR2, we would not be dealing with a
quadratic function, but something much more complicated. The graph of E in a
problem of nonlinear least squares could have lots of “bumps” and “dips,” which
could make it hard to find the minimum computationally.

Beyond squares: Many other expressions for error could be considered instead of a sum
of squares. Back in the elementary case of y = ax+ b, one could look at

E(a, b) =
N∑

k=1

∣∣yk − (axk + b)
∣∣.

A different (a, b) would then be “best.” The optimization problem would have a
technically different character as well, because E would lack differentiability at
points (a, b) where yk − (axk + b) = 0 for some k. Attractive instead, as a worst
case approach, would be the error expression

E(a, b) = max
k=1,...,N

∣∣yk − (axk + b)
∣∣.

The formula in this case means that the value assigned by E to the pair (a, b) is
the largest value occurring among the errors |yk − (axk + b)|, k = 1, . . . , N . It’s
this maximum deviation that we wish to make as small as possible. Once more,
E isn’t a differentiable function on IR2.
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Tricks of reformulation: When E(a, b) is given by the max, the problem of min-
imizing it can be simplified by introducing an another variable u and try-
ing to minimize its value over the combinations (a, b, u) ∈ IR3 such that
u ≥ |yk − (axk − b)| for k = 1, . . . , N . Each inequality u ≥ |yk − (axk − b)|
can moreover be replaced by u− yk + axk − b ≥ 0 and u+ yk − axk + b ≥ 0.
Similarly, when E(a, b) =

∑N
k=1 |yk−(axk +b)| one can minimize u1+ · · ·+uN

over all (a, b, u1, . . . , uN ) satisfying uk ≥ |yk − (axk + b)| for k = 1, . . . , N .

Inverse problems: This term is often used for parameter identification problems that
involve differential equations. There is a model of behavior in which a differential
equation dictates what should happen, i.e., what “outputs” should be occur in
response to given “inputs,” but the coefficients in the equation aren’t fully known
and have to be inferred from experimental data.

Geological investigations: An example is that of exploring subterranean strata by send-
ing signals (as inputs) which pass through the earth and, after being modified
by that process, are picked up (as outputs) by sensors. The “coefficients” in this
case are physical parameters, like densities, that describe what the underlying
rocks are like and where the layers begin and end.

Tomography: A similar application is found in the medical technology of trying to
reconstruct the internal geometry of a patient’s body from data that has been
collected by passing x-rays through the body from different angles.

Image reconstruction or enhancement: Data received through radar or a satellite cam-
era may be fuzzy, distorted or marred by signal interference. How can one use it
to best advantage in approximating the true image that gave rise to it? This is
a kind of parameter identification problem in which the parameters measure the
shades of grayness of the pixels in an image.

EXAMPLE 5: Variational Principles

General description: The kinds of equations that are the focus of much of numerical
analysis are often associated in hidden ways with problems of optimization. A
variational principle for an equation F (x) = 0, involving a mapping F : IRn 7→
IRn, is an expression of F as the gradient mapping ∇f associated with function
f : IRn 7→ IR. It leads to the interpretation of the desired x as satisfying a first-
order optimality condition with respect to f . Sometimes there are reasons to
conclude that that the equation’s solution actually minimizes f , at least “locally.”
Then a way of solving F (x) = 0 by optimization is opened up.
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Quite similar in concept are numerous examples where one wishes to solve
an equation A(u) = 0 where u is some unknown function and A is a differential
operator, so that an ordinary or partial differential equation is at issue. A vari-
ational principle characterizes the desired u as providing the minimum, say, of
some expression. Many equations of physics have such an interpretation.

On a different front, conditions of price equilibrium in economics can some-
times be characterized as stemming from the actions of a multitude of “economic
agents,” like producers and consumers, all optimizing from their own perspec-
tives. Yet again, the equilibrium state following the reactions which take place in
a complicated chemical brew may be characterized through a variational principle
as the configuration of substances that minimizes a certain energy function.

Status in optimization: In the study of variational principles, optimization theory can
provide interesting insights quite independently of whether a numerical solution
to a particular case is sought or not.

EXAMPLE 6: Optimal Control

General description: The evolution of a system in continuous time t can often be
characterized by an ordinary differential equation ẋ(t) = f(t, x(t)) with x(0) = x0

(initial condition), where ẋ(t) = (dx/dt)(t). (Equations in higher derivatives are
typically reducible to ones of first order.) Here x(t), called the state of the
system, is a point in IRn. This is descriptive mathematics. We get prescriptive
mathematics when the ODE involves parameters for which the values can be
chosen as a function of time: ẋ(t) = f(t, x(t), u(t)), where u(t) ∈ U ⊂ IRm.

Without going into the details necessary to provide a rigorous foundation, the
idea can be appreciated that under certain assumptions there will be a mapping
which assigns to each choice of a control function u(·) over a time interval [0, T ]
a corresponding state trajectory x(·). Then, subject to whatever restrictions
may be necessary or desirable on these functions, one can seek the choice of
u(·) which is optimal according to some criterion. Such a problem would be
infinite-dimensional, but a finite-dimensional version would arise as soon as the
differential equation is approximated by a difference equation in discrete time.

Stochastic version: The system may be subject to random disturbances which the
controller must react to. Further, there may be difficulty in knowing exactly
what the state is at any time t, due to measurement errors and shortcomings
of the sensors. Control must be framed in terms of feedback mappings, giving
the response at time t to the information available right then about x(t).
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Adaptive version: Also intriguing as a mathematical challenge, but largely out of
reach of current concepts and techniques, is adaptive control , where the con-
troller has not only to react to events but learn the basics of the system being
controlled as time goes on. A major difficulty in this area is deciding what
to optimize and for that matter what can or can’t be assumed about the
imperfectly known system.

Control of PDE’s: The state of a system may be given by an element of a function
space rather than a point in IRn, as for instance when the problem revolves
around the temperature distribution at time t over a solid body represented
by a closed, bounded region Ω ⊂ IR3. The temperature can be influenced by
heating or cooling elements arrayed on the surface of the body. How should
these elements be operated in order to bring the temperature of the body
uniformly within a certain range—in the shortest possible time, or with the
least expenditure of energy?

EXAMPLE 7: Combinatorial optimization

General description: Many problems involve the optimal ordering or arrangements
of discrete objects or actions, or either-or choices which might be represented by
zero-one variables. Examples are found in the scheduling of processing jobs in
manufacturing, or the scheduling of airline flights and crews, but also in shortest-
path problems and the like.

Models involving networks (directed graphs) are often useful in this regard and
can produce enormous simplifications, but in general such optimization problems
may be hard to solve and even intractable. Work on them goes on nonetheless
because of their practical importance. Success is often measured in heuristic
schemes that at least are able to generate improvements over the status quo.

Overview of where we are now headed: Because we’ll be concentrating on finite-
dimensional optimization (as in Examples 1, 2, 3, and 4), no infinite-dimensional
applications to variational principles (as in Example 5) or optimal control (as in Ex-
ample 6) will be covered directly, nor will special tools for combinatorial optimization
(as in Example 7) be developed. The ideas we’ll develop are highly relevant, though,
as background for such other areas of optimization. In particular, infinite-dimensional
problems are often approximated by finite-dimensional ones through some kind of
discretization of time, space, or probability.
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2. PROBLEM FORMULATION

To set the stage for solving a problem of optimization, it’s necessary first to formulate
it in a manner not only reflecting the situation being modeled, but so as to be amenable to
computational techniques and theoretical analysis. This raises a number of fundamental
issues, which range from the problem format to be adopted to criteria for when a problem
is “well posed.”

Basic problem: Minimize a function f0 : IRn → IR, the objective function, over a specified
set C ⊂ IRn, the feasible set.

Max versus min: Maximizing a function g is equivalent to minimizing −g, so there’s
no loss of generality in concentrating on minimization. This is the convention in
much of optimization theory.

Solution concepts. Different things can be sought in a problem of optimization. The
following terms identify the main concepts.

Feasible solution: Any point x that belongs to C, regardless of the value it gives to
f0. Just finding such a point could be difficult numerically in cases where the
constraints are complicated or numerous, and indeed, the very existence of a
feasible solution may sometimes be an open question. This is just a first-level
solution concept, but important nevertheless.

Optimal solution: A point x̄ furnishing the minimum value of f0 over C, i.e., a feasible
solution such that f0(x̄) ≤ f0(x) for all other feasible solutions x. This is more
specifically what is called a globally optimal solution, when contrast must be made
with the next concept.

Locally optimal solution: A point x̄ ∈ C such that, for some neighborhood U of x̄,
one has f0(x̄) ≤ f0(x) for all x ∈ C ∩ U . Optimality in this case isn’t asserted
relative to C as a whole, but only relative to a sufficiently small ball U around x̄.
In practice it may be very hard to distinguish whether a numerical method has
produced a globally optimal solution or just a locally optimal one, if that much.

Optimal set: The set of all (globally) optimal solutions (if any).

Optimal value: The greatest lower bound to the values of f0(x) as x ranges over C.
There may or may not be a point x̄ ∈ C at which f0 actually attains this value.
Furthermore, although the optimal value is always well defined, it could fail to
be finite. It is −∞ when f0 is not bounded below on C, and on the other hand,
it is ∞ by convention if C = ∅.
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Constraint manipulation: Constraints can be expressed in more than one way, and
some forms of expression may be more convenient in one context than another.

Function constraints: In conditions like fi(x) = ci, or fi(x) ≤ ci, or fi(x) ≥ ci, fi is
called a constraint function.

(1) An equality constraint fi(x) = ci can be expressed equivalently, if desired, as a
pair of inequality constraints: fi(x) ≤ ci and fi(x) ≥ ci.

(2) An inequality constraint fi(x) ≥ ci can be expressed also as −fi(x) ≤ −ci.

(3) An inequality constraint fi(x) ≤ ci can be expressed also as −fi(x) ≥ −ci.

(4) An inequality constraint fi(x) ≤ ci can be expressed as an equality constraint
fi(x) + si = ci involving an additional decision variable si, itself constrained
to be nonnegative. Such a variable is called a slack variable.

(5) Any constraint fi(x) = ci, or fi(x) ≤ ci, or fi(x) ≥ ci, can be expressed in
terms of gi(x) = fi(x)− ci as gi(x) = 0, or gi(x) ≤ 0, or gi(x) ≥ 0.

Geometric, or abstract constraints: For methodological purposes it’s often convenient
to represent only some of the constraints in a problem in terms of constraint
functions fi and to lump the rest together in the abstract form x ∈ X. This is
especially handy for treating range constraints.

Example: For instance, a requirement on x = (x1, . . . , xn) that 0 ≤ x1 ≤ 1 could
be represented by two function constraints g1(x) ≥ 0 and g2(x) ≤ 1 with
g1(x) = g2(x) = 1 ·x1 + 0 ·x2 + · · · + 0 ·xn, but it could also be incorporated
into the description of a set X to which x must belong.

Boxes: A set X ⊂ IRn is a box if it is a product I1 × · · · × In of closed intervals Ij ⊂ IR.
To require x ∈ X is to require xj ∈ Ij for j = 1, . . . , n. This is just what it means to
have range constraints on x. Here Ij could be bounded or even consist of just one
point, or it could be unbounded or even (−∞,∞).

Nonnegative orthant: the box IRn
+ = [0,∞)× · · ·× [0,∞). For X = IRn

+, the constraint
x ∈ X means that the components xj of x have to be nonnegative.

Whole space: the box IRn = (−∞,∞) × · · · × (−∞,∞). For X = IRn, the constraint
x ∈ X trivializes; each component xj of x is “free.”

Linear and affine functions: A function g on IRn is called affine if it can be expressed
in the form g(x1, . . . , xn) = d0 + d1x1 + · · · + dnxn for some choice of constants
d0, d1, . . . , dn. Many people simply refer to such a function as linear, and in this they
are following a long tradition, but in higher mathematics the term linear is reserved
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for the special case of such a function where the constant term vanishes: d0 = 0.
Thus, g is linear when there’s a vector d = (d1, . . . , dn) ∈ IRn such that

g(x) = d ·x (the inner product, or dot product, of two vectors)

Linear constraints: Conditions fi(x) = ci, fi(x) ≤ ci or fi(x) ≥ ci in which the function
fi is linear—or affine. Or, conditions x ∈ X in which X is a box.

Standard problem format in finite-dimensional optimization:

(P)
minimize f0(x) over all x = (x1, . . . , xn) ∈ X ⊂ IRn satisfying

fi(x)
{
≤ 0 for i = 1, . . . , s,
= 0 for i = s+ 1, . . . ,m.

The feasible set C for (P) consists of all the points x ∈ X that satisfy
all the constraints fi(x) ≤ 0 or fi(x) = 0. Here in particular X could be
all of IRn, in which case the condition x ∈ X would impose no restriction
whatever. More typically, however, X might be chosen to be some box other
than IRn, in which case the requirement that x ∈ X is a way of representing
range constraints on x that underlie (P).

Unconstrained minimization: the case where X = IRn and “m = 0,” i.e., no equality
or inequality constraints are present, so that C = IRn.

Linear programming: the case where a linear (or affine) function f0 is minimized subject
to linear constraints: the functions f1, . . . , fm are affine and the set X is a box
(e.g. X = IRn or X = IRn

+).

Quadratic programming: like linear programming, but the objective function f0 is al-
lowed to have quadratic terms, as long as it remains convex , as defined later.
(Note: in quadratic programming the constraints are still only linear!)

Nonlinear programming: this term is used in contrast to linear programming, but a
much more important watershed will eventually be seen in the distinction between
convex programming and nonconvex programming.

Geometric considerations: In problems with a few, simple constraints, the feasible
set C might be decomposable into a collection of “pieces,” each of which could be
inspected separately in an attempt to locate the minimum of the objective function.
For instance, if C were a (solid) cube in IR3, one could look at what happens at the
8 corners, along the 12 edges, on the 6 faces, and in the cube’s interior.
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For most problems of interest in modern applications, however, there is little hope
in such an approach. The number of “pieces” would be astronomical, or there would
be no easy organization or listing of them. A further difficulty would lie in identifying
which of the constraints might be redundant. Then too, there could be problems of
degeneracy, where the constraints line up in odd ways and spoil the possibility of
a good description of the “pieces” of C. As if this weren’t enough trouble, there is
the real prospect that C might be disconnected. These considerations force a differ-
ent perspective on the analyst, who must look instead for a new kind of geometric
framework on which to base computational schemes.

Geometry of linear constraints: Initial insight into a kind of geometry that does pro-
vide important support in optimization can be gained through the following ideas,
which will later be subsumed under the broader heading of “convexity.”

Half-spaces and hyperplanes: Subsets of IRn of the form
{
x

∣∣ d ·x = c
}

for a vector
d = (d1, . . . , dn) 6= (0, . . . , 0) and some constant c ∈ IR are called hyperplanes,
while those of the form

{
x

∣∣ d ·x ≤ c
}

or
{
x

∣∣ d ·x ≥ c
}

are called closed half-
spaces. (With strict inequality, the latter would be open half-spaces.) A linear
equality or inequality constraint on x thus corresponds to making x belong to a
certain hyperplane or closed half-space (unless the linear function is ≡ 0, in which
case the set isn’t a hyperplane or half-space but just ∅ or IRn, depending on c).

Polyhedral sets: A set C ⊂ IRn is called polyhedral if it can be represented as the
intersection of a collection of finitely many hyperplanes or closed half-spaces, or
in other words, specified by a finite system of linear constraints. (The whole space
IRn is regarded as fitting this description by virtue of being the intersection of the
“empty collection” of hyperplanes. The empty set fits because it can be viewed
as the intersection of two parallel hyperplanes with no point in common.)

Argument: When a set is specified by a collection of constraints, it is the intersection
of the sets specified by each of these constraints individually.

Inequalities alone: In the definition of “polyhedral” it would be enough to speak
just of closed half-spaces, inasmuch as any hyperplane is itself the intersection
of the two closed half-spaces associated with it.

Boxes as a special case: Any box is in particular a polyhedral set, since it’s determined
by upper or lower bounds on coordinates xj of x = (x1, . . . , xn), each of which
could be expressed in the form d ·x ≤ c or d ·x ≥ c for a vector d lining up with
some coordinate axis. A box is thus an intersection of certain closed half-spaces.
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Linear subspaces as a special case: Polyhedral sets don’t have to have “corners” or
“edges.” For instance, any subspace of IRn is polyhedral, since by linear algebra
it can be specified by finitely many homogeneous linear equations.

Geometric interpretation of linear programming: The feasible set C in any linear
programming problem is a certain polyhedral set. The function f0 being minimized
over C is a linear function, so (unless f0 ≡ 0) its “isosurfaces”

{
x

∣∣ f0(x) = α
}
, as α

ranges over IR, form a family of parallel hyperplanes Hα. The gradient of f0, which
is the same at all points x, is a certain vector that points in a direction perpendicular
to all these hyperplanes, toward increases in α.

In this picture, f0 takes on a value α somewhere in C if and only if the hyperplane
Hα meets C, i.e., hasHα∩C 6= ∅. In minimizing f0 over C, one is seeking the “lowest”
of these hyperplanes that still meets C.

Penalties and the choice of objectives: The standard problem format suggests that
a modeler should approach a situation looking for a family of functions fi of certain
decision variables xj , one of these functions being the objective function, and the
rest, constraint functions. But reality can be murkier. The distinction between what
should be set up as a constraint and what should be incorporated into the expression
to be minimized may be quite subtle and even in some cases just a matter of the
notation being adopted.

Hard versus soft constraints: Some kinds of constraints are “hard” in the sense of
representing intrinsic conditions that can’t be violated. For instance, a vector
(x1, . . . , xn) may give a system of probabilities or weights through the stipulation
that x1 ≥ 0, · · · , xn ≥ 0 and x1 + . . .+xn = 1. It wouldn’t make sense to consider
the alternative where x1 ≥ −.0001 and x1 + · · · + xn = .9999. Constraints of
such type are often built into the specification of the set X in problems in the
standard format.

Other constraints may have quite a different, “soft” character. For instance,
in asking that a mechanism under design have a strength coefficient of at least
.78, the modeler may be expressing a general desire that could be changed a bit
once the costs and trade-offs are better known. A coefficient value of .76 may be
quite acceptable, once it is realized that the difference could cost a fortune.

Penalty expressions: In dealing with soft constraints fi(x) ≤ 0 or fi(x) = 0, it may be
better in many cases to introduce a penalty expression instead. Thus, instead of
enforcing an exact constraint, a term ϕi◦fi could be added to the objective where
(for the inequality constraint) ϕi(t) = 0 when t ≤ 0 but ϕi(t) > 0 when t > 0. A
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popular choice is a “linear” approach to penalties,

ϕi(fi(x)) = αi max
{
0, fi(x)

}
with penalty parameter αi > 0,

but many other choices are available, with penalties growing in other ways. It’s
worthwhile sometimes to relax the requirement of ϕi to just ϕi(t) ≤ 0 for t ≤ 0,
with a negative penalty interpreted as a reward (for satisfying the inequality with
room to spare).

Multiple objectives: Contrary to what we hear every day, it is impossible to design
something to be the quickest, the cheapest and the most convenient all at the
same time. While a number of variables may be of keen interest in a situation,
the best that can be done is to optimize one of them while keeping the others
within reasonable ranges.

As a compromise, one can look to minimizing an expression like a weighted
combination of the variables or more generally, in the case of variables given by
functions f1, . . . , fm, an expression ϕ

(
f1(x), . . . , fm(x)

)
.

Max functions and nonsmoothness: A “max function” is a function defined as the
pointwise maximum of a collection of other functions, for instance

g(x) = max
{
g1(x), . . . , gr(x)

}
.

Here the “max” refers to the operation of taking, as the definition of the value g(x),
the highest of the r values g1(x), . . . , gr(x) (not necessarily all different). Such a
function g is generally nonsmooth; a function g is called smooth if its first partial
derivatives exist everywhere and behave continuously, but the max expression goes
against this. Sometimes it’s preferable to deal with a nonsmooth function directly,
but other times smoothness can be achieved by a reformulation.

Scheme for minimizing a max function: Consider the problem of minimizing, over some
X ⊂ IRn, a function g of the form just given. Suppose g1, . . . , gr are themselves
smooth on IRn. By introducing an additional variable u ∈ IR, we can re-express
the problem equivalently as

minimize f0(x, u) := u over all (x, u) ∈ X ′ = X × IR ⊂ IRn+1 satisfying

fk(x, u) := gk(x)− u ≤ 0 for k = 1, . . . , r,

where functions f0, f1, . . . , fr are smooth on IRn × IR.
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Scheme for handling linear penalties: Suppose, for the sake of illustrating a technique,
that every constraint in (P) has been replaced by a “linear penalty” expression.
The task then is to minimize

f0(x) +
s∑

i=1

αi max
{
0, fi(x)

}
+

m∑
i=s+1

αi

∣∣fi(x)
∣∣

over all x ∈ X ⊂ IRn, where the coefficients αi are positive. With additional
variables ui ∈ IR and the vector (u1, . . . , um) denoted by u ∈ IRm, we can write
this as the problem of minimizing

f̄0(x, u) := f0(x) +
m∑

i=1

αiui

over all (x, u) ∈ IRn × IRm satisfying x ∈ X and

fi(x)− ui ≤ 0 and ui ≥ 0 for i = 1, . . . , s,

fi(x)− ui ≤ 0 and − fi(x)− ui ≤ 0 for i = s+ 1, . . . ,m.

Aspects of good problem formulation: In many areas of mathematics, a problem
targeted for the application of a numerical method is not considered to be well
formulated unless the existence of a unique solution is assured, and the solution
is stable in the sense of being affected only slightly when the data elements of the
problem are shifted slightly. In optimization, however, the goals of uniqueness and
stability are unrealistic in the way they are usually interpreted, and that of existence
has to be adapted to the multiple notions of what may be meant by a solution.

Issues to consider in the general framework of optimization theory:

Does a feasible solution exist?

Does an optimal solution exist (global optimality)?

Can there be more than one optimal solution?

What happens to the set of feasible solutions under perturbations of problem data?

What happens to the set of optimal solutions under perturbations of problem data?

What happens to the optimal value under perturbations of problem data?

Note: The optimal value always exists and is unique.
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The role of sequences: These issues are all the more important in view of the fact that
most problems have to be solved by a numerical method. Such methods don’t just
produce an answer, but instead (however this might be masked by the software)
generate a sequence of solution candidates which, it is hoped, get closer and closer
to something perhaps acceptable in lieu of a true optimal solution.

Unless certain basic conditions are fulfilled, in particular ensuring the existence
of an optimal solution, the candidates might not get progressively closer to anything
meaningful at all. Anyway, they might not satisfy the problem’s constraints exactly.
Many questions then arise.

Example: potential trouble in one-dimensional minimization. Even in the case
of minimizing a function over an interval in IR, pitfalls are apparent. An optimal
solution can fail to exist because the function is unbounded below, or because the op-
timal value can be approached only in an asymptotic sense (getting arbitrarily close,
but without attainment), or simply because the function lacks continuity properties.
Gradual changes in the shape of the graph of the function, in the case of multiple
dips and humps, can induce jumps and multiplicities in the behavior of the optimal
solution set. All of these phenomena can make trouble for methods that are supposed
to generate a sequence of points tending somehow toward a minimizing point.

Example: potential trouble in linear programming. As explained earlier, the fea-
sible set C in a linear programming problem is a certain polyhedral set. It could
be empty if the constraints are improperly chosen or even if they are perturbed
only slightly from their proper values. Furthermore, in minimizing a linear function
over such a set one can obtain as the set of optimal solutions a “corner,” an entire
“edge” or “face,” or other such portion. Indeed a gradual, continuous change in the
coefficients of the linear objective function can induce jumps in the answer.

Thus, even in the most elementary so-called linear cases of optimization, there can
be difficulties under all three of the headings of existence, uniqueness and stability of
solutions. In particular, two numerical formulations of a problem that differ only in
roundoff in input data—the number of decimal points allocated to the representation
of the various coefficients—could in principle have unique optimal solutions very
different from each other. Because only linear programming is involved, the two
optimal values would be close together, according to theoretical results we haven’t
discussed. But for more general classes of problems there can be discontinuities even
in the behavior of optimal values unless special assumptions are invoked.
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Existence of optimal solutions: The good news is that readily verifiable criteria are
available to ensure that at least one optimal solution exists. The goal here will be
to develop such a criterion, not just for the sake of a bare existence result, but in a
form suited to the analysis of sequential approaches to finding solutions. This obliges
us to work with the possibility that, in the course of calculations, constraints might
only be satisfied approximately.

Approximate feasibility: Of special concern in connection with the stability of the
feasible set C is what happens when constraints are only required to be satisfied
to within a certain error bound. For any ε > 0, the set of ε-feasible solutions to a
problem in standard format is

Cε :=
{
x ∈ X

∣∣∣ fi(x) ≤ ε for i = 1, . . . , s;
∣∣fi(x)

∣∣ ≤ ε for i = s+ 1 . . . ,m
}
.

Clearly Cε includes C, so the minimum value of f0 over Cε is less than or equal to
the minimum over C, the optimal value in the given problem.

Well posed problems: The key concept that we’ll work with in connection with the
existence and approximation of solutions is the following. An optimization problem
in the standard format will be deemed to be well posed when:

(a) the set X ⊂ IRn is closed as well as nonempty,

(b) the functions f0, f1, . . . , fm on IRn are continuous,

(c) For some ε > 0, the set Cε defined above has the property that, for every value
α ∈ IR, the set Cε ∩

{
x

∣∣ f0(x) ≤ α
}

is bounded.

Easy special cases: Condition (a) is fulfilled when X is a nonempty box, or indeed any
nonempty polyhedral set. Condition (b) is fulfilled when the functions are linear
or affine, or are given by polynomial expressions in the variables xj .

Condition (c) is satisfied when X itself is bounded (since Cε ⊂ X), or alterna-
tively if for every α ∈ IR the set X ∩

{
x

∣∣ f0(x) ≤ α
}

is bounded. Also, (c) is sure
to be satisfied if for some ε > 0 any one of the functions fi for i = 1, . . . , s has
the property that the set

{
x ∈ X

∣∣ fi(x) ≤ ε
}

is bounded, or one of the functions
fi for i = s+ 1, . . . ,m is such that the set

{
x ∈ X

∣∣ |fi(x)| ≤ ε
}

is bounded.

Caution: This concept refers to the manner in which an application of optimization has
been set up as a problem (P) in standard format: it’s a property of the problem’s
formulation and depends on the specification of the functions fi, the index s and
the set X. A given application might be formulated in various ways as (P), not
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only in the choice of decision variables but according to whether its requirements
are taken as inequality constraints, equality constraints, or lumped into the ab-
stract constraint x ∈ X. In some modes it could turn out to be well posed, but
in others perhaps not. This is true in particular because the “perturbations”
introduced in terms of ε affect the inequality and equality constraints differently,
and don’t affect the abstract constraint at all.

Review of terminology and notation for dealing with sequences: For the benefit
of students wanting a refresher, we briefly go over some of the facts and ideas of
advanced calculus now coming into play here. Throughout these notes, we use su-
perscript ν, the Greek letter “nu”, as the running index for sequences so as to avoid
conflicts with the indices that may appear in reference to coordinates, powers, etc.
For instance, a sequence in IRn will be comprised of points xν for ν = 1, 2, . . ., where
xν = (xν

1 , . . . , x
ν
n). A “sequence” means an “infinite sequence,” but the points don’t

all have to be different. As a special case, every xν could be the same point c, giving
a constant sequence. Implicitly always ν →∞ when we write things like limν x

ν .

Convergence: A sequence of points xν = (xν
1 , . . . , x

ν
n) in IRn is said to converge to

a point x = (x1, . . . , xn) (and therefore be a convergent sequence) if for each
coordinate index j one has xν

j → xj as ν →∞, or equivalently

|xν − x| → 0, where |x| := (x2
1 + · · ·+ x2

n)1/2 (Euclidean norm).

Then x is the limit of the sequence; this is written as xν → x, or x = limν→∞ xν .

Continuity: A function f : IRn → IR is continuous if whenever xν → x in IRn one
has f(xν) → f(x). The standard ways of verifying continuity involve such facts
as the sum, product, max, or composition of continuous functions being contin-
uous, along with the knowledge that certain elementary functions, for instance
polynomial functions, exponential functions, sine and cosine functions, etc., are
continuous.

For a mapping F : IRn → IRm, continuity is defined similarly by the condition
that xν → x implies F (xν) → F (x). In terms of a coordinate representation
F (x) =

(
f1(x), . . . , fm(x)

)
, this is equivalent to each of the component functions

fi : IRn → IR being continuous.

Closedness: A set S ⊂ IRn is said to be closed if for every sequence of points xν ∈ S

(ν = 1, 2, . . .) that converges to a point x ∈ IRn, one has x ∈ S. A set is open if
its complement in IRn is closed. In the extreme cases of S = IRn and S = ∅, S is
both open and closed at the same time.
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Intersections and unions: The intersection of any family of closed sets is closed. The
union of any family of finitely many closed sets is closed.

Example: Level sets of continuous functions. If a function f is continuous, then for
every choice of c ∈ IR the set

{
x

∣∣ f(x) ≤ c
}

and the set
{
x

∣∣ f(x) ≥ c
}

are
both closed. So too is the set

{
x

∣∣ f(x) = c
}
, which is their intersection.

Example: Closedness of feasible sets. In an optimization problem in standard for-
mat, the feasible set C is closed if the set X is closed and the functions
f1, . . . , fm are continuous. This is because C is the intersection of X with m
other sets of the form

{
x

∣∣ fi(x) ≤ 0
}

or
{
x

∣∣ fi(x) = 0
}
, each of which is itself

closed by the foregoing. As for X being closed in this context, that could
come for instance from X belonging to the next category.

Example: Boxes and other polyhedral sets. These are the feasible sets for systems of
linear constraints, so they are closed because affine functions are continuous.
A common case is that of the nonnegative orthant IRn

+.

Boundedness: A set S ⊂ IRn is called bounded if it lies within some (large enough)
ball, or in other words, if there exists ρ ∈ (0,∞) such that |x| ≤ ρ for all x ∈ S.
An equivalent characterization in terms of the coordinates xj of x is that there
exist (finite) bounds αj and βj such that for every x ∈ S one has αj ≤ xj ≤ βj

for j = 1, . . . , n. As a special case, the empty subset ∅ of IRn is bounded.

Compactness: Closely related to closedness and boundedness is another property, which
ultimately is crucial in any discussion of existence of solutions. A set S is called
compact if every sequence {xν}∞ν=1 of points in S has at least one subsequence
{xνκ}∞κ=1 that converges to a limit. The Heine-Borel Theorem asserts that a set
S ⊂ IRn is compact if and only if S is both closed and bounded.

Cluster points: A point that is the limit of some subsequence of a given sequence,
although not necessarily the limit of the sequence as a whole, is called a cluster
point of the sequence. It follows from the theorem just quoted that every bounded
sequence in IRn has at least one cluster point (since a bounded sequence can in
particular be viewed as being in some large, closed ball, which by the theorem
will be a compact set).

This leads to the occasionally useful criterion that a sequence {xν}∞ν=1 in IRn

converges (in its entirety) if and only if it is bounded and (because of certain
circumstances) can’t possibly have two different cluster points.
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Standard criterion for the attainment of a minimum or maximum: A basic fact
of calculus related to optimization is the following. If a continuous function is mini-
mized over a nonempty , compact set in IRn, the minimum value is attained at some
point (not necessarily unique) in the set. Likewise, the maximum value is attained
somewhere in the set.

Shortcomings for present purposes: This criterion could immediately be applied to
optimization problems in standard format by making assumptions that guarantee
not only the closedness of the feasible set C (as already discussed) but also its
boundedness. Then, as long as the objective function f0 being minimized over C is
continuous, an optimal solution will exist. But in many problems the feasible set
isn’t bounded. For instance, in “unconstrained” optimization we have C = IRn.
Therefore, we need a result that’s more general.

THEOREM 1 (existence of optimal solutions). Consider an optimization problem (P)
in standard format, and assume it is well posed. Then the feasible set is closed. If the

feasible set is also nonempty, then the optimal set is nonempty and the optimal value is

finite. Furthermore, the optimal set is compact.

Proof. The assumption that the problem is well posed entails (in conditions (a) and (b)
of the definition of that property) the closedness of X and continuity of f1, . . . , fm. These
properties have already been seen above to imply that the feasible set C is closed.

Under the assumption now that C is also nonempty, let x̃ denote any point of C and
let α̃ = f0(x̃). The problem of minimizing f0 over C has the same optimal solutions, if any,
as the problem of minimizing f0 over C̃ = C ∩

{
x

∣∣ f0(x) ≤ α̃
}
. The set C̃ is nonempty,

because it contains x̃. It is closed by virtue of being the intersection of the closed set C
and the set

{
x

∣∣ f0(x) ≤ α̃
}
, which is closed because f0 is continuous by condition (b).

Furthermore, it is bounded because of condition (c) in the definition of well posedness.
Therefore, C̃ is compact. It follows from the standard criterion for the attainment of a
minimum that the problem of minimizing f0 over C̃ has an optimal solution. Hence the
given problem, of minimizing f0 over C, has an optimal solution as well.

Let x̄ denote an optimal solution, not necessarily the only one, and let ᾱ = f0(x̄).
Then ᾱ is the optimal value in the problem, and because f0 is a real-valued function this
optimal value is finite. The optimal set is

{
x ∈ C

∣∣ f0(x) = ᾱ
}
, and this is the same as{

x ∈ C
∣∣ f0(x) ≤ ᾱ

}
because strict inequality is impossible. The same argument applied

to the set C̃ tells us that this set, like C̃, is compact.
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Example: problems with only an abstract constraint. As a simple case to which
the existence criterion in Theorem 1 can be applied, consider the problem

minimize f0(x) over all x ∈ X ⊂ IRn,

where there are no side conditions of the form fi(x) ≤ 0 or fi(x) = 0. The basic
criterion for good formulation comes down in this case to

(a) the set X ⊂ IRn is closed as well as nonempty,

(b) the function f0 is continuous,

(c) the set
{
x ∈ X

∣∣ f0(x) ≤ α
}

is bounded in IRn for all values of α ∈ IR.

Under these conditions, therefore, f0 attains its minimum over X, and the set of
minimizing points is compact. In particular, (a) and (c) hold when X is compact,
but the case of unconstrained optimization, where X = IRn is also covered, namely
by having f0 be continuous with the sets

{
x ∈ IRn

∣∣ f(x) ≤ α
}

all bounded.

Example: the gap distance between two sets. For two nonempty, closed sets C1 and
C2 in IRn, the gap distance between C1 and C2 is the optimal value in the problem of
minimizing |x1 − x2| (Euclidean distance) over all x1 ∈ C1 and x2 ∈ C2, or in other
words, over all pairs (x1, x2) in the set X = C1×C2. While this optimal value is well

defined, as always, are there optimal solutions to this problem? That is, do there
exist pairs (x̄1, x̄2) ∈ C1×C2 for which |x̄1− x̄2| is the minimum value? A sufficient
condition for the existence of such a pair, as provided by Theorem 1 through the
preceding example, is the boundedness of the sets

{
(x1, x2) ∈ C1×C2

∣∣ |x1−x2| ≤ ρ
}
.

This obviously holds if both C1 and C2 are bounded, but one can show actually that
the boundedness of just one of the sets is enough.

If the gap distance between C1 and C2 is 0, does that mean these sets have at least

one point in common? Not necessarily; this hinges on the existence of an optimal
solution to the problem described. If (x̄1, x̄2) is an optimal solution, and the optimal
value is 0, then obviously x̄1 = x̄2, and this is a point in C1 ∩ C2. An example
where the gap distance is 0 but C1 ∩C2 = ∅ is furnished in IR2 by taking C1 to be a
hyperbola having C2 as one of its asymptotes.

Special existence criterion in linear and quadratic programming: When (P) is a
linear or quadratic programming problem, the existence of optimal solutions can be
concluded more easily, without the burden of establishing well-posedness. It’s enough
to verify that the feasible set is nonempty and the optimal value is not −∞. This
criterion suffices because of the simple structure of such problems, which precludes
“nasty asymptotic behavior,” but a proof won’t be given here.
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Uniqueness of optimal solutions: The bad news is that there is no criterion, verifiable
directly in terms of a problem’s structure and data without going into computation,
that can be imposed on a general nonconvex problem to ensure the existence of at
most one optimal solution. This topic will be taken up later, after some theory of
convexity has been built up.

Existence of feasible solutions: Generally speaking, there is no good criterion to apply
to a system of constraints in order to ascertain on a theoretical level that there is
at least one point satisfying the system. However, a numerical approach is possible.
For a constraint system in the standard problem format, a numerical method of
optimization could be applied to the auxiliary problem of minimizing the function

g(x) :=
s∑

i=1

αi max
{
0, fi(x)

}
+

m∑
i=s+1

αi

∣∣fi(x)
∣∣

over all x ∈ X, where the introduced penalty coefficients αi are all positive (e.g.
αi = 1). Obviously, g(x) = 0 for each x ∈ X satisfying the desired constraints,
whereas g(x) > 0 for all other choices of x ∈ X. Thus if the optimal value in the
auxiliary problem is 0 the optimal solutions to the auxiliary problem are precisely
the feasible solutions to the original problem, but if the optimal value in the auxiliary
problem is positive, there are no feasible solutions to the original problem.

Note that the minimization of g(x), as proposed, could be handled by the refor-
mulation trick developed earlier for “linear” penalties in general.

Convergence to a solution: As groundwork for the consideration of numerical methods,
it’s important to broaden Theorem 1 to cover sequences such as could be generated
by such methods. The ε provision in “well-posedness” will be utilized in this. We
keep the discussion focused on a problem in standard format and notation.

Feasible sequence: A sequence of points xν all belonging to the feasible set, or in other
words, satisfying xν ∈ X, fi(xν) ≤ 0 for i ∈ [1, s], and fi(xν) = 0 for i ∈ [s+1,m].

Optimizing sequence: A feasible sequence of points xν such that, for the optimal value
ᾱ in the problem, f0(xν) → ᾱ. (Note that this property says nothing about the
points xν themselves converging or even remaining bounded as ν →∞!)

Asymptotically feasible sequence: A sequence of points xν ∈ X with the property that
max

{
0, fi(xν)

}
→ 0 for i = 1, . . . , s, and fi(xν) → 0 for i = s + 1, . . . ,m.

An equivalent description of this property is that xν ∈ Cεν for some choice of
shrinking “error bounds” εν → 0.
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Asymptotically optimizing sequence: An asymptotically feasible sequence of points xν

with the additional property that, in terms of the optimal value ᾱ in the problem,
one has max

{
ᾱ, f0(xν)

}
→ ᾱ.

Comments: For some kinds of unconstrained problems or problems with linear con-
straints only, methods can be devised that generate an optimal sequence. Usu-
ally, however, the most one can hope for is an asymptotically optimizing sequence.
The properties of such sequences are therefore of fundamental interest. Note that
every optimizing sequence is in particular an asymptotically optimizing sequence.

THEOREM 2 (optimality from sequences). Consider an optimization problem (P) in

standard format, and suppose that it is well posed, and that its feasible set is nonempty.

Then any (optimizing or) asymptotically optimizing sequence
{
xν

}∞
ν=1

is bounded, and

all of its cluster points (at least one exists) are optimal solutions to (P). Furthermore, the

sequence
{
f0(xν)

}∞
ν=1

of function values converges to the optimal value in (P).

If in fact (P) has a unique optimal solution x̄, any (optimizing or) asymptotically

optimizing sequence must converge (as a whole) to x̄.

Proof. Let ε be an error bound value for which condition (c) in the definition of well
posedness is satisfied. Denote the optimal value by ᾱ, and consider any number α ∈ (ᾱ,∞).
For any asymptotically optimizing sequence

{
xν

}∞
ν=1

, we have xν ∈ X and there is an index
ν̄ such that, for all ν ≥ ν̄, we have

fi(xν) ≤ ε for i ∈ [1, s], |fi(xν)| ≤ ε for i ∈ [s+ 1,m], f0(xν) ≤ α.

In other words, all the points xν with ν ≥ ν̄ lie in the set
{
x ∈ Cε

∣∣ f0(x) ≤ α
}
. This set

is bounded because of condition (c). Therefore, the sequence
{
xν

}∞
ν=1

is bounded.

Let x̄ denote any cluster point of the sequence; x̄ = limκ→∞ xνκ for some subsequence{
xνκ

}∞
κ=1

. Because X is closed by condition (a), and xνκ ∈ X, we have x̄ ∈ X. From the
continuity of the functions fi in condition (b), we have fi

(
xνκ

)
→ fi(x̄), and through the

asymptotic optimality of the sequence
{
xν

}∞
ν=1

this implies that

fi(x̄) ≤ 0 for i ∈ [1, s], fi(x̄) = 0 for i ∈ [s+ 1,m], f0(x̄) ≤ ᾱ.

Since no feasible solution can give the objective function a value lower than the optimal
value ᾱ, we conclude that x̄ is an optimal solution.

To justify the final assertion of the theorem, we note that in the case described the
asymptotically optimizing sequence, which is bounded, can’t have two different cluster
points, so it must converge. The only limit candidate is the unique optimal solution.
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Sad truth: It merits emphasis that the case at the end of Theorem 2 is generally the
only one in which a proposed numerical method that is truly able to generate
an asymptotically optimizing sequence (some don’t even claim to do that) is
guaranteed to produce points converging to a particular optimal solution.

Puncturing an illusion: Isn’t the last assertion of Theorem 2 always true, at least for
optimizing sequences? No, it relies on (P) being well posed. Otherwise, there
are counterexamples even for unconstrained minimization. For instance, consider
minimizing f0(x) = x2/(1 + x4) over x ∈ IR. Obviously f0(0) = 0 but f0(x) > 0
when x 6= 0, so x̄ = 0 is the unique optimal solution. But the graph of f0 is
asymptotic to the x-axis in both directions, so any sequence of points that tends
to +∞, or to −∞, is an optimizing sequence which fails to converge to x̄.

Boundedness avoids the trouble: In the proof of Theorem 2, the role of condition (c) in
the definition of (P) being well posed is to guarantee that {xν}∞ν=1 is bounded.
The same conclusions would hold if the boundedness of this sequence were as-
sumed outright , even if (c) might not be satisfied (but (a) and (b) in the definition
are satisfied). To put this another way, asymptotically optimizing sequences can’t
really get into trouble unless they are unbounded.

Comparison of possible solution methods: Different numerical techniques for trying
to solve an optimization problem can be quite different in their behavior.

Is the method valid for the application at hand? Has it rigorously been justified, and
are the assumptions on which its justification depends satisfied for the problem
being solved? If not, the output may be worthless. In this respect a frequent
abuse is the neglect of convexity or differentiability assumptions.

What does the method actually claim to find, and how reliable is the claim? Methods
that are said to “solve” a problem often just try to approximate a point for which
various conditions associated mathematically with optimality, but not necessarily
guaranteeing optimality, are fulfilled. Some methods generate more information
about a problem and its potential solutions than do others, and this auxiliary
information could be useful on the side.

How robust is the method? Here the issue is whether the technique works dependably
or is liable to get stuck on problems for which the “flavor” isn’t quite to its liking.
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Rates of convergence: An important consideration in comparing methods is their speed
in producing an “answer.” Real conclusions can only come from experiments with
well selected test problems, but there’s a theoretical discipline which makes compar-
isons on the basis of the rate at which the distance of f0(xν) to the optimal value ᾱ
decreases, or the distance of xν from an optimal solution x̄ decreases.

Linear convergence: For instance, one can try to ascertain the existence of a constant
c such that |xν+1 − x̄| ≤ c|xν − x̄| for all indices ν beyond some ν̄. Then the
method is said to converge linearly at the rate c. If two methods both guarantee
convergence if this type, but one method typically yields a lower value of c than
the other, then that method can be expected to find solutions faster—at least if
computations are continued until the convergence behavior takes over.

Note: Rates of convergence usually apply only to some undetermined “tail portion”
of the sequence that’s generated. They say nothing about behavior early on.

Quadratic convergence: Modes of convergence can also differ more profoundly. A
method with |xν+1 − x̄| ≤ c|xν − x̄|2 for all indices ν beyond some ν̄ is said to
converge quadratically at the rate c. Such a method is likely to be much quicker
than one that converges only linearly, but it may carry additional overhead or be
applicable only in special situations.

Finite convergence: A method may converge finitely in the sense of being sure to termi-
nate after only finitely many iterations (no infinite sequence then being involved
at all). That’s true for example in some methods of solving linear programming
problems or optimization problems involving flows in networks. For such numer-
ical procedures still other forms of theoretical comparison have been developed
in terms of computational “complexity.”

Nonstandard formats for optimization: Although the standard format dominates
the way most people think about optimization, other approaches can also be useful,
or from a theoretical angle, sometimes better.

Abstract format for optimization: Sometimes it’s good to think of an optimization
problem with respect to x ∈ IRn as simply a problem of minimizing some function
f : IRn → IR over all of IRn, where IR = [−∞,∞]. Ordinarily −∞ doesn’t come
in as a value that f takes on, but ∞ can serve as a an infinite penalty. For
instance, in the case of a problem already formulated in the standard way as (P),
we can define

f(x) =
{
f0(x) if x is feasible,
∞ if x is not feasible.
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Minimizing f over all x ∈ IRn can be viewed then as equivalent to (P). This is
primarily useful in contexts of theory, of course; when it comes to computation,
the structure of f must anyway be explicit. The function f just defined is known
as the essential objective function in (P).

Epigraphical geometry: The geometry in this case centers not on the graph of f
but on its epigraph, which is the set

{
(x, α) ∈ IRn × IR

∣∣ f(x) ≤ α
}
. The

importance of considering epigraphs, instead of just the traditional graphs of
functions, has already been seen in the study of “max functions”

Composite format in optimization: An approach to problem formulation that’s richer in
possibilities than the standard format draws on the ideas of the essential objective
function by looking to

minimize f(x) = ϕ
(
f0(x), f1(x), . . . , fm(x)

)
over all x ∈ X ⊂ IRn

for a choice of functions f0, f1, . . . , fm and a “modeling” function ϕ : IRm+1 → IR.
This includes the standard format as the special case where

ϕ(u0, u1, . . . , um) =
{
u0 if ui ≤ 0 for i ∈ [1, s] and ui ≤ 0 for i ∈ [s+ 1,m],
∞ otherwise.

It also, however, very easily covers penalty representations of constraints in a
direct manner.

Overview of the different formats: While the standard format has a long tradition be-
hind it and has become almost synonymous with “optimization,” the theoretical
power and modeling advantages of the composite format are now encouraging a
trend in that direction, at least among specialists. The abstract format is primar-
ily a tool for thinking about problems in various ways for theoretical purposes,
rather than an approach to modeling, but for that it is often very helpful. In this
introductory course the standard format will receive the main attention, but the
impression should be resisted that all optimization models should be forced into
that channel. In the long run it’s better to have a broader perspective.
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3. UNCONSTRAINED MINIMIZATION

Many of the complications encountered in problems of optimization are due to the
presence of constraints, but even when there are no constraints a number of important
issues arise as to the nature of optimal solutions and the possible ways they might be
determined. In treating these issues in the case of a smooth objective function, we will
want to take full advantage of the properties incorporated into the standard definition of
differentiability for a function of n-variables.

Vector notation: The inner product (or dot product) of two vectors is the value

z ·w = z1w1 + · · ·+ znwn for z = (z1, . . . , zn) and w = (w1, . . . , wn),

as we’ve already been using. In books with extensive linear algebra this is often
expressed instead by zTw under the convention that vectors are interpreted spe-
cial matrices—“column vectors”—unless the transpose operation (indicated by a
superscript T ) turns them into “row vectors.” Here we follow the typographi-
cally preferable pattern of always writing vectors horizontally but viewing them
as “column vectors” in formulas where they get multiplied by matrices.

Angles between vectors: When z 6= 0 and w 6= 0, one has z ·w = |z||w| cos θ, where θ is
the angle between z and w (and |z| and |w| their lengths). Thus, z ·w is positive,
zero, or negative according to whether the angle is acute, right, or obtuse.

Review of differentiability: The differentiability of a function f on IRn means more
than the existence of its first partial derivatives, which after all would just refer to
behavior along various lines parallel to the n coordinate axes. Rather, it’s a property
expressing the possibility of a kind of approximation of f (namely, “linearization”)
that is present regardless of any change of coordinates that might be introduced. For
our purposes here, we’ll avoid subtle distinctions by keeping to the mainstream case
where differentiability can be combined with continuity.

Standard differentiability classes: A function f on IRn is continuously differentiable,
or of class C1, if its first partial derivatives exist everywhere and are continuous
everywhere. It’s twice continuously differentiable, or of class C2, if this holds for
second partial derivatives, and in general of class Ck its kth partial derivatives exist
and are continuous everywhere. Then actually f and all its partial derivatives of
orders less than k must be continuous as well.

Localization: Similarly one can speak of f as being a Ck function relative to some open
set, for instance an open neighborhood of some point x̄.
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Gradient vectors and Hessian matrices: If f is of class C1 on a neighborhood of a
point x̄ it has the first-order expansion

f(x) = f(x̄) +∇f(x̄) · [x− x̄] + o
(
|x− x̄|

)
,

where the vector ∇f(x̄) has the partial derivatives (∂f/∂xj)(x̄) as its components
and is called the gradient of f at x̄. The classical “o(t)” notation refers to an error
term with the property that o(t)/t → 0 as t → 0. This notation is often confusing
to students, but really it is just a sort of code for writing down, in a manner deemed
more convenient, the assertion that

lim
x→x̄
x6=x̄

f(x)− f(x̄)−∇f(x̄) · [x− x̄]
|x− x̄|

= 0,

which says that the affine function l(x) = f(x̄)+∇f(x̄) · [x− x̄] furnishes a first-order
approximation f ≈ l at x̄. Likewise, if f is of class C2 on a neighborhood of x̄ it
further has the second-order expansion

f(x) = f(x̄) +∇f(x̄) · [x− x̄] + 1
2 [x− x̄] ·∇2f(x̄)[x− x̄] + o(|x− x̄|2),

where ∇2f(x̄) is the n×n matrix with the partial derivatives (∂2f/∂xi∂xj)(x̄) as its
components and is called the Hessian of f at x̄. This time the “o” notation is code
for the assertion that

lim
x→x̄
x6=x̄

f(x)− f(x̄)−∇f(x̄) · [x− x̄]− 1
2 [x− x̄] ·∇2f(x̄)[x− x̄]

|x− x̄|2
= 0.

The quadratic function q(x) = f(x̄) +∇f(x̄) · [x− x̄] + 1
2 [x− x̄] ·∇2f(x̄)[x− x̄] then

furnishes a second-order approximation f ≈ q at x̄.

Hessian symmetry: When f0 is of class C2, the matrix ∇f0(x̄) is sure to be symmetric,
but otherwise this might fail.

Vector-valued functions and Jacobian matrices: A mapping, or vector-valued function,
F : IRn → IRm with F (x) =

(
f1(x), . . . , fm(x)

)
is of class Ck when its component

functions fi are. As long as F is of class C1 around x̄ it has the first-order
expansion

F (x) = F (x̄) +∇F (x̄)[x− x̄] + o
(
|x− x̄|

)
,

where ∇F (x̄) is the m×n matrix with the partial derivatives (∂fi/∂xj)(x̄) as its
components and is called the Jacobian of F at x̄.
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A connection: In the case of a function f of class C2 on a neighborhood of x̄, the
gradient mapping ∇f : x→ ∇f(x) has Jacobian ∇(∇f)(x̄) = ∇2f(x̄) at x̄.

Local information: For a C2 function f0 on IRn, the gradient ∇f0(x̄) and Hessian
∇2f0(x̄) provide local information about f0 at x̄ = (x̄1, . . . , x̄n) which can well be
put to use in numerical methods for minimizing f0. The main idea is to consider
what happens to f0 along various lines through x̄. Any such line can represented
parametrically as the set of points of the form x̄ + τw for −∞ < τ < ∞ for some
vector w 6= 0, The direction of w = (w1, . . . , wn) gives the direction of the line.

The values of f0 along such a line can be investigated parametrically through
the expression ϕ(τ) := f0(x̄ + τw), where ϕ(0) = f0(x̄). In particular, one can try
to minimize ϕ(τ) in τ , at least part way, in order to come up with a point x̄ + τw

yielding a lower value of f0 than does x̄. A crucial fact in this respect is that

ϕ′(0) =
d

dτ
f0(x̄+ τw)

∣∣∣
τ=0

= ∇f0(x̄) ·w,

this being known as the directional derivative at f0 relative to w. By looking at the
sign of this quantity we can tell whether the values of f0 will go up or down as we
start to move away from x̄ in the direction of w. On the other hand, one has

ϕ′′(0) =
d2

dτ2
f0(x̄+ τw)

∣∣∣
τ=0

= w ·∇2f0(x̄)w,

and this quantity can be crucial in determining second-order effects.

Geometric interpretation of gradients: A well known fact coming out of this is that
∇f(x̄), when it isn’t the zero vector, points in the direction in which f0 increases
at the fastest rate, and that its length gives that rate. Likewise, −∇f(x̄) points
in the direction in which f0 decreases at the fastest rate.

Why? Divide ∇f0(x̄) by its length |∇f0(x̄)| to get a vector w̄ that points in the
same direction but has length 1. For any vector w of length 1, the rate of
change of f0 at x̄ in the direction of w is ∇f0(x̄) ·w according to the analysis
above, and in terms of w̄ this comes out as |∇f0(x̄)|w̄ ·w = |∇f0(x̄)| cos θ,
where θ is the angle between w̄ and w. This rate equals |∇f0(x̄)| when w lines
up with w̄, but otherwise falls short.

Optimality considerations, first-order: Such parametric analysis along lines leads to
concepts that are fundamental to understanding whether f0 has a local minimum at
x̄, or if not, how to proceed to a point where the value of f0 is lower than at x̄.
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Descent vectors: A vector w is called a descent vector for f0 at x̄ if ∇f0(x̄) ·w < 0, so
that the function ϕ(τ) = f0(x̄+τw) has ϕ′(0) < 0. This ensures that ϕ(τ) < ϕ(0)
for all τ in some interval (0, ε), and therefore f0(x̄+ τw) < f0(x̄) for 0 < τ < ε.
When the object is to minimize f0, we therefore get an improvement in replacing
x̄ by x̄+ τw for any value τ > 0 that isn’t too large.

Stationary points: A point x̄ is stationary for f0 if ∇f0(x̄) = 0. This is equivalent to
the condition that ∇f0(x̄) ·w = 0 for every vector w, and it thus means that no
descent vector exists at x̄.

Basic first-order condition: If f0 has a local minimum at x̄, then ∇f0(x̄) = 0. Indeed,
otherwise there would exist a descent vector w at x̄ (for instance w = −∇f0(x̄)).
Thus, every point giving a local minimum must be a stationary point for f0.

A trap not to fall into: The converse is false: a stationary point doesn’t always
provide a local minimum. This is obvious as soon as attention is focused on
it, since the one-dimensional case already provides numerous examples, but
many people slip up on it nonetheless.

Optimality considerations, second-order: The stationary-point condition just dis-
cussed only involves first partial derivatives, as embodied in the gradient ∇f0(x̄). In
order to obtain conditions that are sufficient for local optimality, rather than just
necessary, it’s essential to work with second partial derivatives, unless a property
called “convexity” (soon to be treated) comes to the rescue. Because the second
partial derivatives of f0 at x̄ are embodied in the Hessian ∇2f0(x̄), the following
notions of linear algebra come into play. Recall that a matrix A ∈ IRn×n is

positive definite if w ·Aw > 0 for all w 6= 0,

positive semidefinite if w ·Aw ≥ 0 for all w.

THEOREM 3 (local optimality conditions without constraints). For a function

f0 : IRn → IR of class C2, consider the problem of minimizing f0 over all x ∈ IRn.

(a) (necessary condition). If x̄ is a locally optimal solution, then ∇f0(x̄) = 0 and

∇2f0(x̄) is positive semidefinite.

(b) (sufficient condition). If x̄ is such that ∇f0(x̄) = 0 and ∇2f0(x̄) is positive definite,
then x̄ is a locally optimal solution. Moreover, in these circumstances the local optimality

of x̄ is strict, in the sense that there exists a δ > 0 such that

f0(x) > f0(x̄) for all points x with 0 < |x− x0| < δ.

36



Proof. (a) If x̄ is locally optimal for f0 on IRn, then in particular it will be true for each
choice of w ∈ IRn that the function ϕ(τ) := f0(x̄ + τw) has a local minimum at τ = 0.
Since ϕ′(0) = ∇f0(x̄) ·w and ϕ′′(0) = w ·∇2f0(x̄)w, as noted earlier, we conclude that
∇f0(x̄) ·w = 0 for every w ∈ IRn and w ·∇2f0(x̄)w ≥ 0 for every w ∈ IRn. This means
that ∇f0(x̄) = 0 and ∇2f0(x̄) is positive semidefinite.

(b) The reverse argument is more subtle and can’t just be reduced to one dimension,
but requires utilizing fully the second-order expansion of f0 at x̄. Our assumptions give
for A := ∇2f0(x̄) that f0(x) = f0(x̄) + 1

2 [x− x̄] ·A[x− x̄] + o
(
|x− x̄|2

)
. According to the

meaning of this, we can find for any ε > 0 a δ > 0 such that∣∣f0(x)− f0(x̄)− 1
2 [x− x̄] ·A[x− x̄]

∣∣
|x− x̄|2

< ε when 0 < |x− x̄| < δ,

and in particular,

f0(x)− f0(x̄) > 1
2 [x− x̄] ·A[x− x̄]− ε|x− x̄|2 when 0 < |x− x̄| < δ.

Because A is positive definite, 1
2w ·Aw is positive when w 6= 0; it depends continuously on

w and therefore achieves its minimum over the closed, bounded set consisting of the vectors
w with |w| = 1 (the unit sphere in IRn). Denoting this minimum by λ, we have λ > 0 and
1
2 [τw] ·A[τw] ≥ λτ2 for all τ ∈ IR when |w| = 1. Since any difference vector x− x̄ 6= 0 can
be written as τw for τ = |x−x̄| and w = [x−x̄]/|x−x̄|, we have 1

2 [x−x̄] ·A[x−x̄] ≥ λ|x−x̄|2

for all x. The estimate from twice differentiability then yields

f0(x)− f0(x̄) > (λ− ε)|x− x̄|2 when 0 < |x− x̄| < δ.

Recalling that ε could have been chosen arbitrarily small, in particular in the interval
(0, λ), we conclude that there’s a δ > 0 such that f0(x) > f0(x̄) when 0 < |x − x̄| < δ.
Thus, f has a local minimum at x̄.

Local versus global optimality: Because the results in Theorem 3 relate only to the
properties of f0 in some neighborhood of x̄, and give no estimate for the size of
that neighborhood (it might be tiny, for all we know), an important question is left
unanswered. How can we tell whether a given point x̄ furnishes a global minimum
to f0? The best approach to answering this question, and often in practice the only
one, is through the concept of convexity.

Convex functions: A function f on IRn is convex if for every choice of points x0 and x1

with x0 6= x1, and every choice of τ ∈ (0, 1), one has

f
(
(1− τ)x0 + τx1

)
≤ (1− τ)f

(
x0

)
+ τf

(
x1

)
for all τ ∈ (0, 1).
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Interpretation: The expression x(τ) := (1−τ)x0 +τx1 = x0 +τ(x1−x0) parameterizes
the line through x0 in the direction of w = x1−x0, with x(0) = x0 and x(1) = x1.
When 0 < τ < 1, x(τ) is an intermediate point on the line segment joining x0

with x1, specifically the point reached in moving the fraction τ of the distance
from x0 to x1 along this segment. The inequality says that the value of f at this
intermediate point doesn’t exceed the interpolated value obtained by going the
fraction τ of the way from the value f(x0) to the value f(x1) (whichever direction
that might involve, depending on which of the two values might be larger).

Relativization to lines: Since the condition involves only three collinear points at a
time, we have the principle that f is convex on IRn if and only if for every

line L in IRn, f is convex relative to L; in fact, instead of lines it would be
enough to speak of line segments. Here a line is a set of points in IRn that
can be expressed as

{
x+ τw

∣∣ −∞ < τ <∞
}

for some x and w with w 6= 0,
whereas a line segment is the same thing but with 0 ≤ τ ≤ 1.

Related properties: A function f is called

strictly convex: if the inequality always holds with <,

concave: if the inequality always holds with ≥,

strictly concave: if the inequality always holds with >.

Affine functions as an example: It can be shown that f is affine on IRn, as already
defined, if and only if f is simultaneously convex and concave.

Jensen’s inequality: The definition of convexity implies more generally that for any
points xk ∈ IRn and weights λk ≥ 0 for k = 0, 1, . . . , p with

∑p
k=0 λk = 1, one has

f
(
λ0x0 + λ1x1 + · · ·+ λpxp

)
≤ λ0f

(
x0

)
+ λ1f

(
x1

)
+ · · ·+ λpf

(
xp

)
.

Tests for convexity using derivatives: The following facts help in identifying examples
of convex functions that are differentiable. Later there will be other tactics available,
which can be used to ascertain the convexity of functions that have been put together
in certain ways from basic functions whose convexity is already known.

Monotonicity of first derivatives in one dimension: For f differentiable on IR,
f is convex ⇐⇒ f ′ is nondecreasing,

f is strictly convex ⇐⇒ f ′ is increasing,

f is concave ⇐⇒ f ′ is nonincreasing,

f is strictly concave ⇐⇒ f ′ is decreasing,

f is affine ⇐⇒ f ′ is constant.
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Incidentally, these generalize also to functions of a single variable that merely have
a right derivative and a left derivative at every point. For instance, a piecewise
linear cost function is convex if and only if the slope values for consecutive pieces
form an increasing sequence. Also as first derivative conditions,

f is convex ⇐⇒ f(y) ≥ f(x) + f ′(x)(y − x) for all x and y,

f is strictly convex ⇐⇒ f(y) > f(x) + f ′(x)(y − x) for all x and y, x 6= y.

Signs of second derivatives in one dimension: For f twice differentiable on IR,

f is convex ⇐⇒ f ′′(x) ≥ 0 for all x,

f is strictly convex ⇐= f ′′(x) > 0 for all x.

Notice that the final condition is not an equivalence but only an implication in
one direction! An example is f(x) = x4, with f ′′(x) = 12x2. This function is
strictly convex on IR because f ′(x) = 4x3 is an increasing function. But f ′′(x)
fails to be positive everywhere: f ′′(0) = 0.

THEOREM 4 (derivative tests for convexity in higher dimensions). For a once

differentiable function f on IRn,

f is convex ⇐⇒ f(y) ≥ f(x) +∇f(x) · [y − x] for all x and y,

f is strictly convex ⇐⇒ f(y) > f(x) +∇f(x) · [y − x] for all x and y, x 6= y,

and in the case of f being twice differentiable function, also

f is convex ⇐⇒ ∇2f(x) is positive semidefinite for all x,

f is strictly convex ⇐= ∇2f(x) is positive definite for all x.

Proof. The trick in every case is to reduce to the corresponding one-dimensional criterion
through the principle that f has the property in question if and only if it has it relative
to every line segment. The first of the conditions will suffice in illustrating this technique.
To say that f is convex is to say that for every choice of points x0 and x1 with x0 6= x1

the function ϕ(τ) := f
(
(1 − τ)x0 + τx1

)
= f

(
x0 + τ(x1 − x0)

)
is convex on the interval

(0, 1). From the chain rule one calculates that

ϕ′′(τ) = w ·∇2f(x)w for x = (1− τ)x0 + τx1, w = x1 − x0.

The convexity of f is thus equivalent to having w ·∇2f(x)w ≥ 0 for every possible choice
of x and w 6= 0 such that x is an intermediate point of some line segment in the direction
of w. This holds if and only if ∇2f(x) is positive semidefinite for every x. The arguments
for the other three conditions are very similar in character.
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Local strict convexity: A function f is strictly convex locally around x̄ if the strict
convexity inequality holds over the line segment joining x0 and x1 whenever these
points lie within a certain neighborhood of x̄.

The proof of Theorem 3 show that for this to be true in the case of a function
f of class C2 it suffices to have the Hessian ∇2f(x) be positive definite at all
points x in some neighborhood of x̄. In fact it suffices to have ∇2f(x̄) itself be
positive definite, because any matrix having entries close enough to those of a
positive definite matrix must likewise be positive definite, and here the entries of
∇2f(x) depend continuously on x. (The stability of positive definiteness under
perturbations follows from identifying the positive definiteness of a matrix A with
the positivity of the function q(w) = w ·Aw on the compact set consisting of the
vectors w with |w| = 1.)

Tests of positive definiteness: For a symmetric matrix A ∈ IRn×n there are many tests
of whether A is positive definite or positive semidefinite, as may be found in
texts on linear algebra, but they aren’t always easy to apply. Computer tests are
available as well. Perhaps the main thing to remember is that any symmetric
matrix A is similar to a diagonal matrix having as its diagonal entries the n

eigenvalues of A (with multiplicities). Positive definiteness holds if and only if all
the eigenvalues are positive, whereas positive semidefiniteness holds if and only
of all the eigenvalues are nonnegative.

Two-dimensional criterion: A matrix A ∈ IR2×2 is positive definite if and only if its
determinant and its trace (the sum of its diagonal entries) are both positive; it
is positive semidefinite if and only if both are nonnegative. (For n×n matrices
with n > 2, these conditions are still necessary, but no longer sufficient.)

The important consequences of convexity in unconstrained minimization:

Global optimality of stationary points: For a C1 function f0 on IRn that’s convex, the
condition ∇f0(x̄) = 0 implies that x̄ gives the global minimum of f0 on IRn.

Argument: Convexity implies by Theorem 4 that f0(x) ≥ f0(x̄) + ∇f0(x̄) · [x − x̄]
for all x. When ∇f0(x̄) = 0, this reduces to having f0(x) ≥ f0(x̄) for all x.

Uniqueness from strict convexity: If a strictly convex function f0 has its minimum at
x̄, then x̄ is the only point where f0 has its minimum. In fact, for this conclusion
it’s enough that f0 be a convex function that’s strictly convex locally around x̄.

Argument: If there were another point x̂ where f0 had its minimum value, say
α, the intermediate points xτ = (1 − τ)x̄ + τ x̂ for τ ∈ (0, 1) would have
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f0(xτ ) ≤ (1 − τ)f0(x̄) + τf0(x̂) = (1 − τ)α + τα = α, hence f0(xτ ) = α,
since nothing lower than α is possible. Then f0 would be constant on the line
segment joining x̄ and x̂, so it couldn’t be strictly convex any portion of it.

Convexity of quadratic functions: If f(x) = 1
2x ·Ax+ b ·x+ c for a symmetric matrix

A ∈ IRn×n, a vector b ∈ IRn, and a constant c ∈ IR, we have ∇f(x) = Ax + b and
∇2f(x) = A for all x. Therefore, such a function is convex if and only if A is positive
semidefinite. It is strictly convex if and only if A is positive definite. This second
assertion doesn’t fully follow from the second-order condition in Theorem 4, which
only gives the implication in one direction, but it can be deduced from the first-order
condition for strict convexity.

Minimizing a quadratic function: A quadratic function can’t attain its minimum any-
where if it isn’t a convex function. It attains its minimum at a unique point if
and only if it’s strictly convex—with positive definite Hessian.

Argument: If a quadratic function q attains its minimum at a point x̄, its Hessian
at x̄ must be positive semidefinite by Theorem 3. But, because it’s quadratic,
q has this same Hessian at every point. Then by Theorem 4, q is convex. If
the Hessian matrix is A, the fact that the gradient of q at x̄ is 0 means we
have the expansion q(x) = q(x̄) + 1

2 [x − x̄] ·A[x − x̄]. Under the assumption
that the minimum is attained uniquely at x̄ there can’t be a vector x− x̄ 6= 0
such that A[x − x̄] = 0. Then A is nonsingular. But from linear algebra, a
positive semidefinite matrix is nonsingular if and only if it’s positive definite.
Then q is strictly convex by Theorem 4.

Conversely, if q has Hessian A, it has the expression q(x) = 1
2x ·Ax+b ·x+c

for b = ∇q(0) and c = q(0). If A is positive definite there is a λ > 0 such
that 1

2x ·Ax ≥ λ|x|2 for all x, by reasoning given in the proof of part of
Theorem 3(b). Then |q(x)| ≥ λ|x|2 − |b||x| − |c|, so that for any ρ > 0 the
norms |x| of the vectors in the level set

{
x

∣∣ q(x) ≤ ρ
}

all lie in the interval{
t
∣∣λt2 − |b|t − [c + ρ] ≤ 0

}
, which is bounded because of λ being positive.

These level sets are therefore all bounded, so the problem of minimizing q is
well posed and by Theorem 1 has a solution.

Applications to numerical optimization: Most numerical methods for the uncon-
strained minimization of a twice continuously differentiable function rely on the facts
we’ve been developing. Here, for purposes of illustration, we’ll look at some of the
most popular approaches based on utilization of local information.

41



Descent methods: A large class of methods for minimizing a smooth function f0 on IRn

fits the following description. A sequence of points xν such that

f0(x0) > f0(x1) > · · · > f0(xν) > f0(xν+1) > · · ·

is generated from a chosen starting point x0 by selecting, through some special scheme
in each iteration, a descent vector wν and a corresponding value τν > 0, called a step
size, such that f0(xν + τνwν) < f0(xν). The improved point xν + τνwν is taken to
be the successor point xν+1.

Of course, if in a given iteration no descent vector exists at all, this means that
∇f0(xν) = 0. In that case the method terminates with x̄ = xν as a stationary point.
Usually, however, an infinite sequence {xν}∞ν=1 is generated, and the question for
analysis is whether this is an optimizing sequence, or more soberly in the nonconvex
case, at least a sequence for which every cluster point x̄ is a stationary point.

Line search: One way to choose a step size τν yielding f0(xν + τνwν) < f(xν) is to
execute some kind of line search in the direction of wν , which refers to an explo-
ration of the values of f0 along the half-line emanating from xν in the direction
of wν . In the notation ϕν(τ) := f(xν + τwν) we have (ϕν)′(0) < 0, and the task
is to select a value τν > 0 such that ϕν(τν) < ϕν(0), yet not one so small that
progress might stagnate.

Exact line search: An approach with natural appeal is to choose τν to be a value
of τ that minimizes ϕν on the interval [0,∞). Techniques are available for
carrying out the one-dimensional minimization of ϕν to whatever accuracy
is desired, at least when f0 is convex. Of course, in numerical work hardly
anything is really “exact.”

Backtracking line search: Professional opinion now favors a different approach,
which depends on a choice of parameters β and γ with 0 < β < γ < 1.
Take τν to be the first γk in the sequence γ, γ2, γ3, . . . → 0, such that[
ϕν(γk)−ϕν(0)

]
/γk < β(ϕν)′(0). (Such a γk exists, because

[
ϕν(τ)−ϕν(0)

]
/τ

tends to (ϕν)′(0) as τ decreases to 0, and (ϕν)′(0) < β(ϕν)′(0) < 0.)

Cauchy’s method, or steepest descent: A descent method can be obtained with
wν = −∇f0(xν) in every iteration (as long as that vector is nonzero), since this
choice makes ∇f0(xν) ·wν = −

∣∣∇f0(xν)|2 < 0 when ∇f0(xν) 6= 0. As observed
earlier, this vector points in the direction in which f0 has the biggest rate of decrease
at x̄. (One could equally well take wν = −∇f0(xν)/|∇f0(xν)|, and for use in line
search this can be helpful numerically with scaling.)
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Newton’s method in optimization: From the definition of twice differentiability we
know that the quadratic function

qν(x) := f0(xν) +∇f0(xν) · [x− xν ] + 1
2 [x− xν ] ·∇2f0(xν)[x− xν ]

(whose Hessian everywhere is A = ∇2f0(xν)) furnishes a second-order local approx-
imation of f0 around xν . This suggests that by investigating the minimum of qν(x)
we can learn something about where to look in trying to minimize f0. Specifically,
assume that qν(x) attains its minimum at a unique point different from xν , this point
being denoted by x̂ν ; then x̂ν 6= xν , and qν(x̂ν) < qν(xν) = f(xν). (From the above,
this is equivalent to assuming that the matrix ∇2f(xν) is positive definite, hence in
particular nonsingular, while the vector∇f(xν) isn’t 0.) The vector wν = x̂ν−xν 6= 0
is then called the Newton vector for f0 at x̄. It satisfies

wν = −∇2f0(xν)−1∇f0(xν).

It is a descent vector, and descent methods based on using it are called versions of
Newton’s method in optimization.

Argument: Because x̂ν minimizes qν , it must be a stationary point of qν :

0 = ∇qν(x̂ν) = ∇f0(xν) +∇2f0(xν)[x̂ν − xν ] = ∇f0(xν) +∇2f0(xν)wν .

In solving this equation for wν , utilizing our assumption, which implies that
the inverse matrix ∇2f0(xν)−1 exists, we get the formula claimed. To verify
that wν is then a descent vector, observe that because qν(x̂ν) < qν(xν) we have
∇f0(xν) ·wν + 1

2w
ν ·∇2f0(xν)wν < 0. We wish to conclude that ∇f0(xν) ·wν <

0. If this weren’t true, we’d have to have from the preceding inequality that
wν ·∇2f0(xν)wν < 0. But this would contradict the positive definiteness of
∇2f0(xν), which was observed to follow from our assumption about qν attaining
its minimum at a unique point.

Relation to Newton’s method for equation solving: Newton’s method in classical form
refers not to minimizing a function but solving an equation F (x) = 0 for a smooth
mapping F : IRn → IRn. In principle, a sequence {xν}ν∈IN is generated from an
initial point x0 as follows. In iteration ν, the given equation is replaced by its
first-order approximation F (xν) + ∇F (xν)(x − xν) = 0. The unique solution
to this approximate equation is x̂ν = −∇F (xν)−1F (xν), as long as the inverse
matrix ∇F (xν)−1 exists, and one takes xν+1 = x̂ν .
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Newton’s method in optimization corresponds closely to the case of this where
F (x) = ∇f0(x). It resembles applying the classical form of Newton’s method to
solving the equation ∇f0(x) = 0. But it differs in not just automatically taking
xν+1 = x̂ν = xν + wν but xν+1 = xν + τνwν for some step size τν determined
through a form of line search.

Effectiveness and validation of descent methods: Describing a numerical approach
to minimizing a function, or for that matter solving a vector equation, is a far cry from
establishing the circumstances in which it can be counted upon to work effectively,
or providing an analysis that helps in comparing it with other approaches. For such
purposes it is essential at the very least to make use of the conditions characterizing a
point at which a minimum occurs as well as, in some situations, aspects of convexity.

Convergence questions: The theory of numerical methods of optimization and why
(or whether) they work is full of ingenious ideas and pleasing geometry, as well
as rigorous, technical developments. For a small taste of what it involves, let’s
consider more closely the question of whether a descent method (with a particular
scheme for choosing decent vectors and executing line searches) for the unconstrained
minimization of a function f0 generates a sequence of points xν that in some way
“solves” the problem.

Any such method does generate a decreasing sequence of function values f0(x0) >
f0(x1) > f0(x2) . . ., and any decreasing sequence of real numbers does have a limit
α ∈ IR, but unfortunately α could fall short of furnishing the optimal value in the
problem unless f0 has certain rather special properties. Nonetheless we can search
for guidance on when a method can sensibly be implemented and what it might
accomplish even if it doesn’t determine an optimal or locally optimal solution.

Applications to well posed problems: As noted after Theorem 1, an unconstrained
problem of minimizing f0 over IRn is well posed as long as f0 is continuous and
all its level sets

{
x

∣∣ f0(x) ≤ α
}

are bounded. Certainly f0 is continuous when
it’s differentiable, as in the descent methods we’ve been investigating.

In unconstrained minimization there’s no distinction between feasible and
asymptotically feasible sequences (every sequence is such), nor any between op-
timal and asymptotically optimizing sequences. In these circumstances we know
from Theorem 2 that every optimizing sequence is bounded, with all its cluster
points being optimal solutions. However, this doesn’t necessarily make it easier
to generate an optimizing sequence.
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THEOREM 5 (convergence of descent methods; exact line search). Consider

a well posed problem of minimizing a function f0 over IRn, with f0 not just continuous

but differentiable, and let S be the set of all stationary points of f0 (the points x̄ where

∇f0(x̄) = 0). Consider a descent method that starts from a point x0 and generates

subsequent points by exact line search relative to vectors wν determined by a formula

wν = D(xν) having the property that, for each x /∈ S with f0(x) ≤ f0(x0), D(x) is a

uniquely determined descent vector for f0 at x, and D(x) depends continuously on x.

(The method terminates if xν ∈ S.)

(a) If the method generates an infinite sequence {xν}∞ν=0 (by not attaining a point of

S in finitely many iterations), this sequence must be bounded, and all of its cluster points

must belong to S.

(b) If actually there is only one point x̄ ∈ S with f0(x̄) ≤ f0(x0), the sequence is indeed

optimizing and converges to x̄, this being the unique optimal solution.

Proof. In each iteration with xν /∈ S, the vector wν is well defined according to our
hypothesis, and it is not the zero vector (because it is a descent vector). We minimize
ϕν(τ) := f0(xν + τwν) over τ ∈ [0,∞) to get τν and then set xν+1 = xν + τνwν . This
line search subproblem is itself a well posed problem of optimization because the sets{
τ ≥ 0

∣∣ϕν(τ) ≤ α
}

are all bounded by virtue of the level sets of f0 all being bounded.
Thus it does have an optimal solution τν (perhaps not unique) by Theorem 1.

From the definition of wν being a descent vector, we know moreover that f0(xν+1) <
f0(xν) always. Thus the sequence {f0(xν)}∞ν=1 is decreasing and therefore converges to
some value α. Also, the sequence {xν}∞ν=1 is contained in the set

{
x

∣∣ f0(x) ≤ f0(x0)
}
,

which by hypothesis is bounded. Consider any cluster point x̄ of this sequence; there is
a subsequence {xνκ}∞κ=1 such that xνκ → x̄ as κ → ∞. In particular we have f0(x̄) = α,
because f0 is continuous. We wish to show that x̄ ∈ S in order to establish (a).

Suppose x̄ /∈ S. Then the vector w̄ := D(x̄) is a descent vector for f0 at x̄, and the
vectors wνκ := D(xνκ) are such that wνκ → w̄ (by our assumption in (a) that the mapping
D specifying the method is well defined everywhere outside of S and continuous there).
Because w̄ is a descent vector, we know there is a value τ̄ > 0 such that

f0(x̄+ τ̄ w̄) < f0(x̄).

On the other hand, for each κ we know that f0(xνκ+1) = f0(xνκ +τνκwνκ) ≤ f0(xνκ +τ̄wνκ)
because τ̄ is one of the candidates considered in the minimization subproblem solved by
τνκ . Taking the limit in the outer expressions in this inequality, we get

α ≤ f0(x̄+ τ̄ w̄)
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because f0(xν) → α, xνκ → x̄ and wνκ → w̄ (again by the continuity of f0). This is
incompatible with the fact that f0(x̄+ τ̄ w̄) < f0(x̄) = α. The contradiction yields (a).

The extra assumption in (b) gives the existence of a unique optimal solution to the
unconstrained minimization problem, because (1) an optimal solution exists by Theorem 1,
(2) any optimal solution must in particular belong to S by Theorem 3, and of course any
optimal solution must belong to the set

{
x

∣∣ f0(x) ≤ f0(x0)
}
. From (a), this optimal

solution x̄ is the only candidate for a cluster point of {xν}∞ν=1. As noted earlier, a bounded
sequence with no more than one cluster point must be convergent. Thus, xν → x̄ and, by
the continuity of f0, also f0(xν) → f0(x̄). Since f0(x̄) is the optimal value in the problem,
we conclude in this case that the sequence is optimal.

Other convergence theorems: Theorem 5 offers just one example, drawn from wealth of
results about descent methods and their variants. In particular, convergence the-
orems are also available for backtracking line search, which, as already mentioned,
is regarded as superior for real calculations.

Specializations: Particular applications of the convergence result in Theorem 5 are ob-
tained by considering various choices of the mapping D.

Cauchy’s method with exact line search: Under the assumption that f0 is a C1 function,
so that f0(x) and ∇f0(x) depend continuously on x, let D(x) = −∇f0(x). This
is a descent vector as long as x is not a stationary point (cf. Example 1). The
assumptions of Theorem 5 are satisfied, and we can conclude that if all the level
sets

{
x

∣∣ f0(x) ≤ α
}

are bounded the method will generate a bounded sequence
{xν}∞ν=1, all of whose cluster points are stationary points of f0. If in addition f0
is convex, these stationary points give the global minimum of f0. In that case
the method has generated an optimizing sequence {xν}∞ν=1.

Newton’s method with exact line search: Under the assumption that f0 is a C2 function,
so that ∇2f0(x) too depends continuously on x, let D(x) denote the Newton
vector—under the supposition that it’s well defined for every x /∈ S having f0(x) ≤
f0(x0); we’ve seen this is tantamount to ∇2f0(x) being positive definite for all
such x. Then D(x) = −∇2f0(x)−1∇f0(x), so D(x) depends continuously on x.
(If a nonsingular matrix varies continuously, its inverse varies continuously, a fact
derivable from determinant formulas for the inverse). As long as the level sets{
x

∣∣ f0(x) ≤ α
}

of f0 are bounded, so that the problem is well posed, Theorem
5 is applicable and tells us that the method will generate a bounded sequence
{xν}∞ν=1, all of whose cluster points are stationary points of f0. Because of the
positive definiteness of the Hessians, any cluster point must be a locally optimal
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solution to the problem of minimizing f0, due to Theorem 3(b). Around any such
cluster point, f0 is strictly convex, so if f0 is convex as a whole there can only
be one cluster point, x̄, this being the only point where f0 attains its minimum.
Then the sequence {xν}∞ν=1 is optimal and converges to x̄.

Comparison: Cauchy’s method works quite generally, whereas Newton’s method needs
positive definiteness of the Hessians and therefore local strict convexity. But
Newton’s method has a much better rate of convergence than Cauchy’s method:
typically Newton’s method converges quadratically , whereas Cauchy’s method
only converges linearly . We won’t go into the theory of that here, however.

Compromise: Because Cauchy’s method and Newton’s method have complementary
strengths and weaknesses, they are often combined in a single descent method
in which, roughly speaking, the Cauchy descent vector is used early on, but
eventually a switch is made to the Newton descent vector. In some versions, this
approach would likewise fit into Theorem 5 for a certain formula for D(x).

Further ideas in numerical approaches: Beyond the “pure” versions of Cauchy’s
method and Newton’s method in optimization that we’ve been discussing, there
are variants that have been developed not only in terms of backtracking line search
but with other attractive features as well. Two of these will be described briefly.

Newton-like methods: These popular procedures, also called matrix-secant methods
try to span between the properties of Cauchy’s method and Newton’s method
of optimization in an especially interesting way. They select the direction vector
by wν = −Aν∇f0(xν), where the matrix Aν , generated in each iteration by
some further rule, is symmetric and positive semidefinite. The case of Aν = I

gives Cauchy’s method, while the case of Aν = ∇2f0(xν)−1 (when this matrix is
positive definite) gives Newton’s method.

For reasons already suggested, a simple choice like the one for Cauchy’s
method is favored as long as the current point is likely to be far from the so-
lution, in order to take advantage of the global convergence properties of that
method without making too many demands on f0. But a choice close to the
one for Newton’s method is favored near a locally optimal solution x̄ at which
∇2f0(x̄) is positive definite (cf. the sufficient second-order optimality condition
in Theorem 3(b)). A central question is how to select and update Aν by gleaning
information about second-derivative properties of f0 that may be present in the
computations carried out up to a certain stage. This is a big topic, with many
clever schemes having been developed through years of research.
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Trust region methods: Newton’s method gets the descent vector wν from the fact
that xν + wν is the point that minimizes the quadratic function qν giving the
local second-order approximation to f0 at xν , as explained earlier. Instead of
minimizing qν over all of IRn, however, one can minimize it over some bounded
neighborhood Xν of xν , which is called a trust region. In denoting a minimizing
point by x̂ν and defining wν = x̂ν−xν , one obtains a descent vector wν . The trust
region can in particular be specified by linear constraints, like upper and lower
bounds on the variables to keep their values near the component values in the
current vector xν , and the subproblem for producing wν is then one of quadratic
programming . This scheme can be hybridized with Newton-like methods.

Optimization versus equation solving: The equation ∇f0(x) = 0 is a first step toward
identifying points that minimize a smooth function f0. This leads to the notion that
solving an unconstrained optimization problem might be reduced to solving a system
of equations, which has some degree of merit, but tends to misguide beginners, to
whom equation-solving is a more familiar idea. The best approaches to equation-
solving are through optimization, rather than the other way around.

Linear equations: In numerical analysis, the solving of Ax = b when A is symmetric and
positive semidefinite (and possibly quite large) plays a big role. Such an equation
gives the condition that is both necessary and sufficient for the minimization of
the quadratic convex function f0(x) = 1

2x ·Ax− b ·x over IRn. Thus, this branch
of numerical analysis is in truth a branch of numerical optimization.

Linear least squares: The solving of a Ax = b when A isn’t necessarily symmetric
or positive semidefinite can be approached as that of minimizing the function
f(x) = 1

2 |Ax− b|2. This has the advantage of making sense even when there are
more equations than unknowns. Here f is a convex function having ∇f0(x) =
A∗[Ax − b] and ∇2f0(x) = A∗A (with A∗ the transpose of A). Thus, solving
∇f0(x) = 0 means solving A∗Ax = A∗b, where the matrix A∗A is symmetric and
positive semidefinite.

Nonlinear least squares: An approach often taken to solving F (x) = 0 in the case of
a general smooth mapping F : IRn → IRn, with F (x) =

(
f1(x), . . . , fn(x)

)
, is to

translate it to minimizing f(x) := 1
2 |F (x)|2 = 1

2f1(x)2 + · · ·+ 1
2fn(x)2.

Remark: While this device is useful, it would be off-track if the equation F (x) = 0
already corresponds to an optimization problem because F = ∇f0 for some
function f0, which could be minimized instead.
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4. CONSTRAINED MINIMIZATION

The minimization of a function f0 over a set C ⊂ IRn can be much harder than the
minimization of f0 over all of IRn, and it raises a host of issues. Some of these concern
the ways a numerical method might be able to maneuver around in C or near to it,
while others come up in characterizing optimality itself.

Feasible directions: A vector w 6= 0 is said to give a feasible direction into C at a point
x ∈ C if there’s an ε > 0 such that the line segment

{
x+ τw

∣∣ 0 ≤ τ ≤ ε
}

lies in C.

Descent methods with constraints: The general class of descent methods described for
unconstrained optimization could be adapted to the minimization of f0 over C if
the nature of C is such that feasible directions can readily be found. The rough
idea is this. Starting from a point x0 ∈ C, a sequence of points is generated by
the scheme that, when at xν ∈ C, a descent vector wν is chosen for f0 which
at the same time gives a feasible direction into C at xν . (If no such wν exists,
the method terminates.) Next, some sort of line search is executed to produce
a value τν > 0 such that both xν + τνwν ∈ C and f0(xν + τνwν) < f0(xν).
The next point is taken then to be xν+1 := xν + τνwν . In particular, one can
imagine choosing τν to be a value that minimizes ϕ(τ) = f0(xν + τwν) over the
set

{
τ ≥ 0

∣∣xν + τwν ∈ C
}
; this would be the analogue of exact line search.

Pitfalls: Many troubles can plague this scheme, unless the situation is safeguarded
by rather special features. Finding a descent vector wν that gives a feasible
direction may be no easy matter, and even if one is found, there may be
difficulties in using it effectively because of the need to keep within the confines
of C. A phenomenon called jamming is possible, where progress is stymied
by frequent collisions with the boundary of C and the method “gets stuck in
a corner” of C or makes too many little zigzagging steps.

Lack of feasible directions at all: Of course, this kind of approach doesn’t make much
sense unless one is content to regard, as a “quasi-solution” to the problem,
any point x ∈ C at which there is no descent vector for f0 giving a feasible
direction into C. That may be acceptable for some sets C such as boxes, but
not for sets C in which curvature dominates. For example, if C is a curved
surface there may be no point x ∈ C at which there’s a feasible direction
into C, because feasible directions refer only to movement along straight line
segments within in C. Then there would be no point of C from which progress
could be made by a modified descent method in minimizing f0.
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Variational geometry: Whether or not some form of descent method might be made
to work, it’s essential to have a solid grip on the geometry of the feasible set C.
Classical geometry doesn’t meet the needs, so new concepts have to be brought in.
To get rolling, we need a notion of tangency which includes the tangent spaces long
associated with “linearization” of curved structures, but at the same time covers
vectors giving feasible directions.

Tangent vectors: For a closed set C ⊂ IRn and a point x̄ ∈ C, a vector w is said to be
tangent to C at x̄ if there exists a sequence of vectors xν → x̄ in C along with a
sequence of scalars τν ↘0 such that the vectors wν = (xν − x̄)/τν (defined so that
xν = x̄+ τνwν) satisfy wν → w. (Notation: τν ↘0 means τν → 0 with τν > 0.)

Interpretation: The tangent vectors w to C at x̄, apart from w = 0 (which corresponds
in the definition to xν ≡ x̄, wν ≡ 0), are the vectors pointing in a possibly
asymptotic direction from which a sequence of points xν ∈ C can converge to x̄.
The direction of xν as seen from x̄, which is the direction of wν , is not necessarily
that of w, but gets closer and closer to it as ν →∞.

Relation to feasible directions: Every vector w 6= 0 giving a feasible direction into C
at x̄ is a tangent vector to C at x̄. Indeed, for such a vector w one can take
xν = x̄ + τνw for any sequence of values τν ↘0 sufficiently small and have for
wν = (xν − x̄)/τν that wν ≡ w, hence trivially wν → w. Note from this that
tangent vectors, in the sense defined here, can well point right into the interior
of C, if that is nonempty; they don’t have to lie along the boundary of C.

Relation to classical tangent spaces: When C is a “nice two-dimensional surface” in
IR3, the tangent vectors w to C at a point x̄ form a two-dimensional linear
subspace of IR3, which gives the usual tangent space to C at x̄. When C is a “nice
one-dimensional curve,” a one-dimensional linear subspace is obtained instead.
Generalization can be made to tangent spaces to “nice smooth manifolds” of
various dimensions m in IRn, with 0 < m < n. These comments are offered here
on a preliminary level for geometric motivation, but a rigorous version will be
developed in the next chapter in terms of sets defined by equality constraints.

Tangent cone at a point: The set of all vectors w that are tangent to C at a point
x̄ ∈ C is called the tangent cone to C at x̄ and is denoted by TC(x̄).

Basic properties: Always, the set TC(x̄) contains the vector 0. Further, for every vector
w ∈ TC(x̄) and every scalar λ > 0, the vector λw is again in TC(x̄) (because of the
arbitrary size of the scaling factors τν in the definition). But in many situations
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one can have w ∈ TC(x̄), yet −w /∈ TC(x̄). In particular, TC(x̄) can well be
something other than a linear subspace of IRn.

Cones: A subset of IRn is called a cone if it contains the zero vector and contains with
each of its vectors all positive multiples of that vector. Geometrically, this means
that a cone, unless it consists of 0 alone, is the union of a family of rays.

Limits of tangent vectors: The limit of any convergent sequence of vectors wν ∈ TC(x̄)
is another vector w ∈ TC(x̄). In other words, TC(x̄) is always a closed set. (This
can readily be gleaned from the definition of TC(x̄) and the general properties of
convergent sequences.) In particular, if the vectors wν give feasible directions to
C at x̄ and wν → w, then w ∈ TC(x̄).

Extreme examples of tangent cones: If x̄ lies in the interior of C, then TC(x̄) = IRn.
In particular, TC(x̄) = IRn for all x̄ when C = IRn. At the opposite extreme, if
C is a “singleton” (one-element) set {a} and x̄ = a, then TC(x̄) = {0}. More
generally, TC(x̄) = {0} whenever x̄ is an isolated point of C (in the sense that
there is no sequence of points xν 6= x̄ in C with xν → x̄).

Fundamental role of tangent cones in optimality: Much of the motivation for the
study of tangent vectors comes from the following observation.

Basic necessary condition for a constrained minimum: If a function f0 (of class C1, say)
has a local minimum over C at x̄, then f0 has no descent vector w ∈ TC(x̄), i.e.,

∇f0(x̄) ·w ≥ 0 for every w ∈ TC(x̄).

Argument: Consider any w ∈ TC(x̄). By definition there exist sequences xν → x̄ in C

and τν ↘0 such that (xν − x̄)/τν → w. Because x̄ is locally optimal, we must
have f0(xν) − f0(x̄) ≥ 0 once xν is within a certain neighborhood of x̄, hence
for all indices ν beyond some ν0. Our differentiability assumption implies that
f0(xν)− f0(x̄) = ∇f0(x̄) · [xν − x̄] + o(|xν − x̄|). By setting wν = (xν − x̄)/τν , so
that xν = x̄+τνwν with wν → w, we see that 0 ≤ ∇f0(x̄) ·τνwν +o(τν |wν |) when
ν ≥ ν0. Dividing by τν and taking the limit as ν →∞, we get 0 ≤ ∇f0(x̄) ·w.

Tangents to boxes: If X = I1 × · · · × In in IRn with Ij a closed interval in IR, then at
any point x̄ = (x̄1, . . . , x̄n) ∈ X (the component x̄j lying in Ij) one has

TX(x̄) = TI1(x̄1)× · · · × TIn(x̄n), where

TIj
(x̄j) =


[0,∞) if x̄j is the left endpoint (only) of Ij ,
(−∞, 0] if x̄j is the right endpoint (only) of Ij ,
(−∞,∞) if x̄j lies in the interior of Ij ,
[0, 0] if Ij is a one-point interval, consisting just of x̄j .
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In other words, the condition w ∈ TX(x̄) for w = (w1, . . . , wn) amounts to restricting
wj to lie in a one of the intervals (−∞, 0], [0,∞), (−∞,∞), or [0, 0] (the one-point
interval consisting just of 0). The particular interval for an index j depends on the
location of x̄j relative to the endpoints of Ij .

Tangents to the nonnegative orthant: The set X = IRn
+ is a box, the product of the

intervals Ij = [0,∞). In this case one has w ∈ TX(x̄) if and only if wj ≥ 0 for all
indices j with x̄j = 0. (For indices j with x̄j > 0, wj can be any real number.)

Feasible directions in a box: When X is a box, not only does every vector w 6= 0 giving
a feasible direction in X at x̄ belong to TX(x̄), but conversely, every vector w 6= 0
in TX(x̄) gives a feasible direction in X at x̄. This important property generalizes
as follows to any set specified by finitely many linear constraints.

Tangents to polyhedral sets: For a polyhedral set C, like a box, simple formulas de-
scribe all the tangent cones. As a specific case that’s ripe for many applications (and
fits with the description of “linear constraints” on page 17), suppose

x ∈ C ⇐⇒

 ai ·x ≤ bi for i ∈ [1, s],
ai ·x = bi for i ∈ [s+ 1,m],
x ∈ X with X a box (possibly X = IRn).

Let x̄ ∈ C, and call i ∈ [1, s] active if ai · x̄ = bi, but inactive if ai · x̄ < bi. Then

w ∈ TC(x̄) ⇐⇒

 ai ·w ≤ 0 for active i ∈ [1, s],
ai ·w = 0 for i ∈ [s+ 1,m],
w ∈ TX(x̄) (this cone being again a box).

Argument: Let K denote the set of vectors w described by the final conditions (on the
right). The question is whether K = TC(x̄). For a vector w and scalar τ > 0,
one has x̄ + τw ∈ C if and only if x̄ + τw ∈ X and ai ·w ≤ [bi − ai · x̄]/τ for
i ∈ [1, s], whereas ai ·w = 0 for i ∈ [s + 1,m]. Here for the indices i ∈ [1, s] we
have [bi− ai · x̄] = 0 if i is active, but [bi− ai · x̄] > 0 if i is inactive; for the latter,
[bi−ai · x̄]/τν ↗∞ whenever τν ↘0. In light of the previously derived formula for
the tangent cone TX(x̄) to the box X, it’s clear then that the vectors expressible
as w = limν w

ν with x̄+ τνwν ∈ C, τν ↘0 (i.e., the vectors w ∈ TC(x̄)) are none
other than the vectors w ∈ K, as claimed.

Special tangent cone properties in the polyhedral case: When C is polyhedral, the
tangent cone TC(x̄) at any point x̄ ∈ C is polyhedral too. Moreover it fully
describes the geometry of C around x̄ in the sense that there is a ρ > 0 for which{

x− x̄
∣∣x ∈ C, |x− x̄| ≤ ρ

}
=

{
w ∈ TC(x̄)

∣∣ |w| ≤ ρ
}
.
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Reason: In accordance with the definition of C being polyhedral, there’s no loss
of generality in taking C to have a representation of the sort just examined.
The corresponding representation for TC(x̄) then immediately supports these
conclusions. Since ai ·w ≤ |ai||w|, the claimed equation holds for any ρ > 0
small enough that ρ ≤ [bi−ai · x̄]/|ai| for every inactive i ∈ [1, s] (with ai 6= 0).

Feasible directions in a polyhedral set: When C is polyhedral, the vectors w giving
feasible directions into C at a point x̄ ∈ C are exactly the vectors w 6= 0 in the
tangent cone TC(x̄). This is clear from the observation just made about how, in
the polyhedral case, TC(x̄) captures the local geometry of C near x̄.

Characterizations of optimality: To what extent can the necessary and sufficient con-
ditions for local optimality in unconstrained minimization in Theorem 3 be extended
to minimization over a set C? This is a complex matter, because not only the “cur-
vature” of f0 as embodied in its Hessian matrices, but also that of the boundary
of C can be crucial, yet we don’t have any handle so far on analyzing the latter.
Nonetheless, a substantial extension can already be stated for the case where C lacks
curved portions because of being polyhedral.

THEOREM 6 (local optimality conditions on a polyhedral set). Consider the

problem of minimizing f0 over a polyhedral set C, with f0 of class C2. Let x̄ ∈ C.

(a) (necessary). If x̄ is a locally optimal solution, then

∇f0(x̄) ·w ≥ 0 for every w ∈ TC(x̄),

w ·∇2f0(x̄)w ≥ 0 for every w ∈ TC(x̄) satisfying ∇f0(x̄) ·w = 0.

(b) (sufficient). If x̄ has the property that

∇f0(x̄) ·w ≥ 0 for every w ∈ TC(x̄),

w ·∇2f0(x̄)w > 0 for every w ∈ TC(x̄) satisfying ∇f0(x̄) ·w = 0, w 6= 0,

then x̄ is a locally optimal solution. Moreover, in these circumstances the local optimality

of x̄ is strict, in the sense that there exists a δ > 0 such that

f0(x) > f0(x̄) for all points x ∈ C with 0 < |x− x̄| < δ.

Proof. The argument is an adaptation of the one for Theorem 3. To set the stage, we
invoke the polyhedral nature of C to get the existence of ρ > 0 such that the points x ∈ C
with 0 < |x − x̄| ≤ ρ are the points expressible as x̄ + τw for some vector w ∈ TC(x̄)
with |w| = 1 and scalar τ ∈ (0, ρ]. Then too, for any δ ∈ (0, ρ), the points x ∈ C with
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0 < |x− x̄| ≤ δ are the points expressible as x̄+ τw for some w ∈ TC(x̄) with |w| = 1 and
some τ ∈ (0, δ]. Next we use the twice differentiability of f0 to get second-order estimates
around x̄ in this notation: for any ε > 0 there is a δ > 0 such that∣∣∣f0(x̄+ τw)− f0(x̄)− τ∇f0(x̄) ·w −

τ2

2
w ·∇2f0(x̄)w

∣∣∣ ≤ ετ2

for all τ ∈ [0, δ] when |w| = 1.

In (a), the local optimality of x̄ gives in this setting the existence of δ̄ > 0 such that
f0(x̄+ τw)− f0(x̄) ≥ 0 for τ ∈ [0, δ̄] when w ∈ TC(x̄), |w| = 1. For such w and any ε > 0
we then have through second-order expansion the existence of δ > 0 such that

τ∇f0(x̄) ·w +
τ2

2

[
w ·∇2f0(x̄)w + 2ε

]
≥ 0 for all τ ∈ [0, δ].

This condition implies that ∇f0(x̄) ·w ≥ 0, and if actually ∇f0(x̄) ·w = 0 then also that
w ·∇2f0(x̄)w+ 2ε ≥ 0. Since ε can be chosen arbitrarily, it must be true in the latter case
that w ·∇2f0(x̄)w ≥ 0. Thus, the claim in (a) is valid for all w ∈ TC(x̄) with |w| = 1. It is
also valid then for positive multiples of such vectors w, and hence for all w ∈ TC(x̄).

In (b), the desired conclusion corresponds to the existence of δ > 0 such that f0(x̄+
τw) − f0(x̄) > 0 for τ ∈ (0, δ] when w ∈ TC(x̄), |w| = 1. Through the second-order
expansion it suffices to demonstrate the existence of ε > 0 and δ′ > 0 such that

τ∇f0(x̄) ·w +
τ2

2

[
w ·∇2f0(x̄)w − 2ε

]
> 0

for all τ ∈ (0, δ′] when w ∈ TC(x̄), |w| = 1.

Pursuing an argument by contradiction, let’s suppose that such ε and δ′ don’t exist. Then,
for any sequence εν ↘0 there must be sequences τν ↘0 and wν ∈ TC(x̄) with |wν | = 1 and

τν∇f0(x̄) ·wν +
τν2

2

[
wν ·∇2f0(x̄)wν − 2εν

]
≤ 0.

Because the sequence of vectors wν is bounded, it has a cluster point w; there is a subse-
quence wνκ → w as κ → ∞. Then |w| = 1 (because the norm is a continuous function),
and w ∈ TC(x̄) (because the tangent cone is a closed set). Rewriting our inequality as

wνκ ·∇2f0(x̄)wνκ − 2ενκ ≤ −2∇f0(x̄) ·wνκ/τνκ ,

where ∇f0(x̄) ·wνκ ≥ 0 under the assumption of (b), we see when κ→∞ with

∇f0(x̄) ·wνκ → ∇f0(x̄) ·w, wνκ ·∇2f0(x̄)wνκ + 2ενκ → w ·∇2f0(x̄)w,
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that w ·∇2f0(x̄)w ≤ 0, yet also ∇f0(x̄) ·w = 0 (for if ∇f0(x̄) ·w > 0 the right side of
the inequality would go to −∞). This mix of properties of w is impossible under the
assumption of (b). The contradiction finishes the proof.

Remark: In the case where C = IRn, so that TC(x̄) = IRn, the assertions in Theorem 6
turn precisely into the ones for unconstrained minimization in Theorem 3. Thus,
the version of optimality conditions just obtained subsumes the earlier one.

Minimization subject to linear constraints: When the polyhedral set C is expressed in
terms of a system of linear constraints, an expression for TC(x̄) in terms of an
associated system of linear constraints is achieved in the manner explained on
page 52. This associated system of constraints on w can be substituted then for
the condition w ∈ TC(x̄) wherever that appears in Theorem 6.

Optimality over a box: In particular Theorem 6 applies to a standard problem (P)
without constraint functions fi, but just an abstract constraint x ∈ X in which X is
a box—specifying upper and/or lower bounds (or nonnegativity conditions) on the
variables xj . Then C = X.

Example: Consider a problem in which f0(x1, x2) is minimized over the quadrant X ={
(x1, x2)

∣∣x1 ≥ 0, x2 ≥ 0
}
. What can be said about the possible attainment of

the minimum at x̄ = (0, 1)? The tangent cone TX(x̄) at this point consists of all
vectors w = (w1, w2) with w1 ≥ 0. In both (a) and (b) of Theorem 6, the first-
order condition on ∇f0(x̄) comes down to the requirement that (∂f0/∂x1)(x̄) ≥ 0
but (∂f0/∂x2)(x̄) = 0. In the case where (∂f0/∂x1)(x̄) > 0, the second-order
necessary condition in (a) is (∂2f0/∂x

2
2)(x̄) ≥ 0, while the second-order sufficient

condition in (b) is (∂2f0/∂x
2
2)(x̄) > 0. When (∂f0/∂x1)(x̄) = 0, however, the

condition in (a) is w ·∇2f0(x̄)w ≥ 0 for all w = (w1, w2) with w1 ≥ 0, while the
condition in (b) is w ·∇2f0(x̄)w > 0 for all such w 6= (0, 0).

Convexity in optimization: In constrained as well as in unconstrained minimization,
convexity is a watershed concept. The distinction between problems of “convex”
and “nonconvex” type is much more significant in optimization than that between
problems of “linear” and “nonlinear” type.

Convex sets: A set C ⊂ IRn is convex if for every choice of x0 ∈ C and x1 ∈ C with
x0 6= x1 and every τ ∈ (0, 1) the point (1− τ)x0 + τx1 belongs to C.

Interpretation: This means that C contains with every pair of points the line segment
joining them. Although “convex” in English ordinarily refers to a “bulging”
appearance, the mathematical meaning is that there are no dents, gaps or holes.
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Elementary rules for manipulating convex sets: The following facts about how con-
vexity is preserved under various operations can readily be established from the
definition of convexity.

Intersections: If Ci is a convex set in IRn for i = 1, . . . , r, then C1 ∩ · · · ∩ Cr is a
convex set in IRn. (This is true in fact not just for a finite intersection but the
intersection of an arbitrary infinite family of convex sets.)

Products: If Ci is a convex set in IRni for i = 1, . . . , r, then C1 × · · · × Cr is a convex
set in the space IRn1 × · · · × IRnr = IRn1+···+nr .

Images: If C is a convex set in IRn, A is a matrix in IRm×n and b ∈ IRm, then the set
D =

{
Ax+ b

∣∣x ∈ C}
is convex in IRm.

Inverse images: If D is a convex set in IRm, A is a matrix in IRm×n and b ∈ IRm, then
the set C =

{
x

∣∣Ax+ b ∈ D
}

is convex in IRn.

Basic examples of convex sets:

Extremes: The whole space C = IRn is convex. On the other hand, the empty set
C = ∅ is convex. (It satisfies the definition “vacuously.”) Likewise, sets C = {a}
consisting of just a single point (singleton sets) are convex sets.

Linear subspaces: Any subspace of IRn (as in linear algebra) is closed and convex.

Intervals: The convex subsets of the real line IR are the various intervals, whether
bounded, unbounded, open, closed, or a mixture.

Boxes and orthants: As a product of closed intervals, any box is a closed, convex set.
For instance the nonnegative orthant IRn

+, being a box, is closed and convex. So
too is the nonpositive orthant IRn

−, which is defined analogously.

Hyperplanes and half-spaces: All such sets are closed and convex—as an elementary
consequence of their definition.

Polyhedral sets: As the intersection of a family of hyperplanes or closed half-spaces,
any polyhedral set is closed and convex.

Euclidean balls: For any point x̄ ∈ IRn and radius value ρ ∈ (0,∞), the closed ball of
radius ρ around x̄ consists of the points x with |x−x̄| ≤ ρ. The corresponding open
ball or radius ρ around x̄ is defined in the same way, but with strict inequality.
Both kinds of balls are examples of convex sets in IRn.

Argument. For the case of C =
{
x

∣∣ |x − x̄| ≤ ρ
}
, consider x0 and x1 in C and

τ ∈ (0, 1). For x = (1− τ)x0 + τx1, we can use the fact that x̄ = (1− τ)x̄+ τ x̄
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to write |x− x̄| =
∣∣(1− τ)(x0− x̄) + τ(x1− x̄)

∣∣ ≤ (1− τ)|x0− x̄|+ τ |x1− x̄| ≤
(1− τ)ρ+ τρ = ρ, from which we conclude that x ∈ C.

Epigraphs of convex functions: A function f : IRn → IR is convex if and only if its
epigraph E =

{
(x, u) ∈ IRn × IR

∣∣u ≥ f(x)
}

is convex as a subset of IRn+1. This
fact is the source of a great many insights.

Tangents to convex sets: For a convex set C ⊂ IRn, the tangent cone TC(x̄) at any
point x̄ ∈ C consists of the zero vector and all vectors w 6= 0 expressible as limits of
sequences of vectors wν 6= 0 giving feasible directions into C at x̄.

Argument. This follows from the observation that when C is convex, the presence of
x̄ + τw in C entails that the entire line segment from x̄ to x̄ + τw lies in C.
Likewise, if x̄+ τνwν ∈ C then x̄+ τwν ∈ C for all τ ∈ [0, τν ].

Convexity of tangent cones to convex sets: When C is a convex set, TC(x̄) is always a
convex cone. This follows, for instance, from the characterization just given.

THEOREM 7 (optimality over a convex set). Consider a problem of minimizing a

function f0 of class C1 over a convex set C ⊂ IRn. Let x̄ be a point of C.

(a) (necessary). If x̄ is locally optimal, then ∇f0(x̄) ·w ≥ 0 for all w ∈ TC(x̄), and this

is equivalent in fact to the condition that

∇f0(x̄) · [x− x̄] ≥ 0 for all x ∈ C.

(b) (sufficient). If this condition holds and f0 is convex on C, then x̄ is globally optimal.

Proof. In (a), consider first any point x ∈ C different from x̄. The line segment joining
x̄ with x lies in C by convexity; the vector w = x − x̄ gives a feasible direction into C

at x̄. The function ϕ(τ) = f(x̄ + τw) then has a local minimum at τ = 0 relative to
0 ≤ τ ≤ 1. Hence 0 ≤ ϕ′(0) = ∇f0(x̄) ·w = ∇f0(x̄) · [x− x̄]. From this we see further that
∇f0(x̄) ·w ≥ 0 for all vectors w giving feasible directions into C at x̄, inasmuch as these
are positive multiples λ(x− x̄) of vectors of the form x− x̄ with x ∈ C.

As noted above, any vector w 6= 0 in TC(x̄) is a limit of vectors wν giving feasible
directions (which themselves are in TC(x̄) as well). From having ∇f0(x̄) ·wν ≥ 0 for all
ν we get in the limit as wν → w that ∇f0(x̄) ·w ≥ 0. Therefore, ∇f0(x̄) ·w ≥ 0 for all
w ∈ TC(x̄), and this is equivalent to having ∇f0(x̄) · [x− x̄] ≥ 0 for all x ∈ C.

In (b), we have f0(x)− f0(x̄) ≥ ∇f0(x̄) · [x− x̄] for all x ∈ IRn by the convexity of f0
(Theorem 4). If also ∇f0(x̄) · [x − x̄] ≥ 0 for all x ∈ C, we get f0(x) − f0(x̄) ≥ 0 for all
x ∈ C, which means x̄ is globally optimal in the minimization of f0 over C.
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Interpretation via linearization: In terms of the function l(x) = f0(x̄)+∇f0(x̄) · [x− x̄]
giving the first-order expansion of f0 at x̄, the necessary condition for optimality
in Theorem 7 is equivalent to saying that l(x) ≥ l(x̄) for all x ∈ C, or in other
words, that l attains its global minimum over C at x̄.

Variational inequalities: The condition in Theorem 7 that ∇f0(x̄) · [x − x̄] ≥ 0 for all
x ∈ C is known as the variational inequality for the mapping ∇f0 and the convex
set C, the point x̄ being a solution to it. Variational inequalities can be studied
also with ∇f0 replaced by some other vector-valued mapping F from C into IRn.
They have an interesting and significant place in optimization theory beyond
merely the characterization of points at which a minimum is attained.

Convex functions on convex sets: The convexity of a function f on IRn has already
been defined in terms of the inequality f

(
(1− τ)x0 + τx1

)
≤ (1− τ)f(x0) + τf(x1)

holding for all x0 and x1 in IRn and τ ∈ (0, 1). The concept can be generalized now
to the convexity of f on a convex set C ⊂ IRn: the same inequality is used, but
x0 and x1 are restricted to C. Similarly one speaks of f being strictly convex, or
concave, or strictly concave on C. (Note that for these concepts to make sense f
only has to be defined on C itself; values of f outside of C have no effect, because
the convexity of C ensures that the relevant points (1− τ)x0 + τx1 all belong to C.)

Derivative tests: The tests in Theorem 4 apply equally well to the convexity or strict
convexity of a differentiable function f on any open convex set O ⊂ IRn.

Epigraphical test: The definition of f being convex on C corresponds geometrically to
the convexity of the set

{
(x, α) ∈ C × IR

∣∣α ≥ f(x)
}
.

Convexity-preserving operations on functions: Derivative tests are by no means the
only route to verifying convexity or strict convexity. Often it’s easier to show that a
given function is convex because it is constructed by convexity-preserving operations
from other functions, already known to be convex (or, as a special case, affine). The
following operations are convexity-preserving on the basis of elementary arguments
using the definition of a convexity. Here C denotes a general convex set.

Sums: If f1 and f2 are convex functions on C, then so is f1 +f2. (This can be extended
to a sum of any number of convex functions.) Moreover, if one of the functions
in the sum is strictly convex, then the resulting function is strictly convex.

Multiples: If f is convex on C and λ ≥ 0, then λf is convex on C. (In combination
with the preceding, this implies that any linear combination λ1f1 + · · ·+ λrfr of
convex functions with coefficients λi ≥ 0 is convex.) Again, if one of the functions
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in the sum is strictly convex, and the associated coefficient is positive, then the
function expressed by the sum is strictly convex.

Compositions I: If f is convex on C, then any function of the form g(x) = θ
(
f(x)

)
is

convex on C, provided that the function θ on IR1 is convex and nondecreasing .

Example: If f is convex in IRn and f ≥ 0 everywhere, then the function g(x) :=
f(x)2 is convex on IRn, because g(x) = θ

(
f(x)

)
for θ defined by θ(t) = t2

when t ≥ 0, but θ(t) = 0 when t ≤ 0. This follows because θ is convex
and nondecreasing (the convexity can be verified from the fact that θ′(t) =
max{0, 2t}, which is nondecreasing). The tricky point is that unless f ≥ 0
everywhere it would not be possible to write f as composed from this θ.
Composition with θ(t) := t2 for all t wouldn’t do, because this θ, although
convex, isn’t nondecreasing as a function on all of IR1.

Compositions II: If f is convex on C, then g(x) := f(Ax + b) is convex on D :={
x

∣∣Ax+ b ∈ C
}

for any matrix A ∈ IRn×n and vector b ∈ IRn.

Pointwise max: If fi is convex on C for i = 1, . . . , r and f(x) = max
{
f1(x), . . . , fr(x)

}
,

then f is convex on C. Likewise for strict convexity.

Level sets of convex functions: If f is a convex function on IRn, then for any α ∈ IR
the sets

{
x

∣∣ f(x) ≤ α
}

and
{
x

∣∣ f(x) < α
}

are convex. (Similarly, if f is a concave
function the sets

{
x

∣∣ f(x) ≥ α
}

and
{
x

∣∣ f(x) > α
}

are convex.)

Argument: These facts can be deduced by applying the definition of convexity to
the sets in question and appealing to the convexity inequality satisfied by f .

Convex constraints: A convex constraint is a condition of the form fi(x) ≤ ci with fi

convex, or fi(x) ≥ ci with fi concave, or fi(x) = ci with fi affine. Also, a condition
of the form x ∈ X is called a convex constraint if X is convex. Thus, a system of the
form

x ∈ X and fi(x)
{
≤ 0 for i = 1, . . . , s,
= 0 for i = s+ 1, . . . ,m,

is a system of convex constraints when X is convex, fi is convex for i = 1, . . . , s, and
fi is affine for i = s+ 1, . . . ,m. Any set C defined by a system of convex constraints

is a convex set, because each separate constraint requires x to belong to a certain
convex set, and C is the intersection of these sets.

Convex programming: An optimization problem in standard format is called a convex
programming problem if the constraints are convex, as just described, and also the
objective function f0 is convex.
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Extension: This term is also used even if the objective and inequality constraint
functions aren’t convex over all of IRn, as long as they are convex on the
convex set X. The feasible set C is still convex in that case.

Linear programming: This has been defined already, but we can now interpret it as the
case of convex programming where the objective function and all the constraint
functions are actually affine, and the set X is a box.

Quadratic programming: This too is a special case of convex programming; it is just
like linear programing in the constraints and objective, except that the objective
function can include a positive semidefinite quadratic term. (But this view is
slipping, and nowadays people often speak of quadratic programming even when
a nonconvex polynomial function of degree two is minimized subject to linear
constraints.)

THEOREM 8 (special characteristics of convex optimization). In a problem of

minimizing a convex function f0 over a convex set C ⊂ IRn (and thus any problem of

convex programming) the following properties hold.

(a) (local is global) Any locally optimal solution is a globally optimal solution. More-

over, the set of all optimal solutions (if any) is convex.

(b) (uniqueness criterion) Strict convexity of the objective function f0 implies there

cannot be more than one optimal solution.

Proof. (a) Suppose the point x̄ ∈ C is locally optimal, i.e., there is an ε > 0 such that
f0(x) ≥ f0(x̄) for all x ∈ C satisfying |x − x̄| < ε. Suppose also that x̃ ∈ C, x̃ 6= x̄. Our
aim is to show that f0(x̃) ≥ f0(x̄), thereby establishing the global optimality of x̄ relative
to C. For any τ ∈ (0, 1) we know that f0

(
(1 − τ)x̄ + τ x̃

)
≤ (1 − τ)f0(x̄) + τf0(x̃). By

choosing τ small enough, we can arrange that the point xτ := (1 − τ)x̄ + τ x̃ (which still
belongs to C by the convexity of C) satisfies |xτ− x̄| < ε. (It suffices to take τ < ε/|x̃− x̄|.)
Then the left side of the convexity inequality, which is f0(xτ ), cannot be less than f0(x̄) by
the local optimality of x̄. We deduce that f0(x̄) ≤ f0(xτ ) ≤ (1− τ)f0(x̄) + τf0(x̃), which
from the outer terms, after rearrangement, tells us that f0(x̄) ≤ f0(x̃), as needed.

Having determined that x̄ is globally optimal, we can apply the same argument for
arbitrary τ ∈ (0, 1), without worrying about any ε. If x̃ is another optimal solution, of
course, we have f0(x̃) = f0(x̄), so that the right side of the double inequality f0(x̄) ≤
f0(xτ ) ≤ (1− τ)f0(x̄) + τf0(x̃) reduces to f0(x̄) and we can conclude that f0(xτ ) = f0(x̄)
for all τ ∈ (0, 1). In other words, the entire line segment joining the two optimal solutions
x̄ and x̃ must consist of optimal solutions; the optimal set is convex.
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(b) Looking at the displayed inequality in the first part of the proof of (a) in the case
where f0 is strictly convex, and x̃ is again just any point of C different from the optimal
solution x̄, we get strict inequality. This leads to the conclusion that f0(x̄) < f0(x̃). It’s
impossible, therefore, for x̃ to be optimal as well as x̄.

Convexity in estimating progress toward optimality: Another distinguishing fea-
ture of optimization problems of convex type is that in numerical methods for solv-
ing such problems it’s usually possible to devise tests of how close one is getting
to optimality—global optimality—as the method progresses. By contrast, for most
other kinds of optimization problems one has hardly any handle on this important
issue, and the question of a stopping criterion for an iterative procedure can only be
answered in an ad hoc manner.

Upper and lower bounds on the optimal value: A simple example of the kind of estimate
that can be built into a stopping criterion can be derived from the linearization
inequality for convex functions in Theorem 4. Consider a problem of minimizing
a differentiable convex function f0 over a nonempty, closed set C ⊂ IRn that’s
also bounded, and imagine that a numerical method has generated in iteration ν
a point xν ∈ C. The affine function lν(x) = f0(xν) +∇f0(xν) · [x − xν ] has the
property that lν(x) ≤ f0(x) for all x, and lν(xν) = f0(xν). It follows that

min
x∈C

lν(x) ≤ min
x∈C

f0(x) ≤ f0(xν),

where the middle expression is the optimal value ᾱ in the given problem, but the
left expression, let’s denote it by βν , is the optimal value in the possibly very
easy problem of minimizing lν instead of f0 over C. If C were a box, for instance,
βν could instantly be calculated. While βν furnishes a current lower bound to ᾱ,
the objective value αν = f0(xν) furnishes a current upper bound. The difference
αν − βν provides a measure of how far the point xν is from being optimal.

Duality: Optimization in a context of convexity is distinguished further by a pervasive
phenomenon of “duality,” in which a given problem of minimization ends up being
paired with some problem of maximization in entirely different “dual” variables.
Many important schemes of computation are based on this curious fact, or other
aspects of convexity. In particular, almost all the known methods for breaking a
large-scale problem down iteratively into small-scale problems, which perhaps could
be solved in parallel, require convexity in their justification. This topic will be taken
up later, after Lagrange multipliers for constraints have been introduced.
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Minimization of nonsmooth convex functions: Not every convex function of interest
in optimization is continuously differentiable.

Piecewise linear costs: Cost functions of a single variable often take the form of piece-
wise linear functions with increasing slope values. Such functions are convex.
Specifically, suppose that a closed interval C ⊂ IR1 is partitioned into a finite
sequence of closed subintervals C1, C2, . . . , Cr, and that the function f : C → IR

is given on these subintervals by expressions

f(x) = aix+ bi when x ∈ Ci

which agree at the points where the consecutive intervals join (so that f is con-
tinuous) and have a1 ≤ a2 ≤ · · · ≤ ar. Then f is convex on C by the criterion
for “pointwise max.” In fact it can be seen in the given circumstances that

f(x) = max
{
a1x+ b1, . . . , arx+ br

}
for all x ∈ C.

Piecewise linear approximations: A smooth convex function f on IRn can be approx-
imated from below by a nonsmooth convex function in a special way. We’ve already
noted in connection with obtaining lower bounds on the optimal value in a problem
of minimizing a convex function that the linearization (first-order Taylor expansion)
of f at any point provides an affine lower approximation which is exact at the point
in question. That degree of approximation is crude in itself, but imagine now what
might be gained by linearizing f at more than one point. Specifically, consider a
collection of finitely many points xk, k = 1, . . . , r, and at each such point the corre-
sponding affine function obtained by linearization, namely

lk(x) = f(xk) +∇f(xk) · [x− xk].

The function g(x) = max{l1(x), . . . , lr(x)} is convex on IRn (because the pointwise
max of finitely many convex functions is always convex), and it satisfies

g(x) ≤ f(x) for all x, with g(xk) = f(xk) for k = 1, . . . , r.

The convex function g is termed “piecewise linear” because its epigraph, as the
intersection of the epigraphs of the lk’s, each of which is an upper closed half-space
in IRn+1, is a polyhedral subset of IRn+1.

Cutting plane methods: An interesting class of numerical methods in convex program-
ming relies on replacing the objective function and the inequality constraint func-
tions, to the extent that they aren’t merely affine, by such piecewise linear ap-
proximations. The finite collection of points in IRn on which the approximations
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are based is generated as the iterations proceed. These methods are called cutting
plane methods because each new affine function entering one of the approxima-
tions cuts away part of the epigraph from the proceeding approximation.

Remark: Cutting plane methods tend to be quite slow in comparison with typical
descent methods, but they are useful nonetheless in a number of situations
where for some reason it’s tedious or expensive to generate function values
and derivatives, and approaches requiring line search are thereby precluded.

Minimizing a max of convex functions: In problems where a function of the form
f0(x) = max{g1(x), . . . , gr(x)} is to be minimized over a set C specified by con-
vex constraints, the case where each function gk is convex and smooth is especially
amenable to treatment. Then f0 is convex, and although it isn’t smooth itself the
usual device of passing to an epigraphical formulation retains convexity while bring-
ing the smoothness of the gk’s to the surface. When an extra variable u is added,
and the problem is viewed as one of minimizing the value of u over all choices of
(x1, . . . , xn, u) ∈ C × IR such that gk(x1, . . . , xn) − u ≤ 0 for k = 1, . . . , r, it is seen
that all constraints are convex.

Minimizing a max of affine functions over a polyhedral set: As a special case, if C is
polyhedral and the functions gk affine in the foregoing, the set C × IR will be
polyhedral and the constraints gk(x1, . . . , xn)−u ≤ 0 are linear. In expressing C
itself by a system of linear constraints, one sees that reformulated problem isn’t
just one of convex programming, but of linear programming.

Application to cutting plane methods: The subproblems generated in the cutting
plane scheme of piecewise linear approximation, as described above, can, after
epigraphical reformulation, be solved as linear programming problems if the
set over which f0 is to be minimized is specified by linear constraints. More
generally such a reduction to solving a sequence of linear programming prob-
lems is possible even if C is specified just by convex constraints over a box X,
as long as the convex functions giving inequality constraints are smooth. The
extension to this case involves generating piecewise linear approximations to
those functions fi along with the one to f0 as computations proceed.
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Norms: As another reminder that derivative tests aren’t the only route to verifying con-
vexity, consider any norm on IRn, that is, a real-valued expression ‖x‖ with the
following properties, which generalize those of the Euclidean norm |x|.

(a) ‖x‖ > 0 for all x 6= 0,

(b) ‖λx‖ = |λ|‖x‖ for all x and all λ,

(c) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x and y.

The function f(x) = ‖x‖ is convex, because for 0 < τ < 1 we have

f
(
(1− τ)x0 + τx1

)
=

∥∥(1− τ)x0 + τx1

∥∥
≤ (1− τ)‖x0‖+ τ‖x1‖ = (1− τ)f(x0) + τf(x1).

Commonly seen in problems of approximation are the lp-norms for p ∈ [1,∞]: for a
point x = (x1, . . . , xn) ∈ IRn, one defines

‖x‖1 := |x1|+ · · ·+ |xn|,

‖x‖p :=
(
|x1|p + · · ·+ |xn|p

)1/p

with 1 < p <∞ (where ‖x‖2 = |x|),

‖x‖∞ := max
{
|x1|, . . . , |xn|

}
.

We won’t try here to verify that these expressions do indeed give norms, i.e., that they
satisfy the three axioms above, although this is elementary for p = 1 and p = ∞.

Example: Consider a parameter identification problem in which we wish to minimize
an error expression of the form

E
(
r(a, b)

)
=

∥∥∥(
r1(a, b), . . . , rN (a, b)

)∥∥∥
p

with rk(a, b) := yk − (axk + b) for k = 1, . . . , N . (The unknowns here are the two
parameter values a and b.) This expression is convex as a function of a and b,
because it is obtained by composing an lp-norm with an affine mapping.

Piecewise linear norms: The functions f(x) = ‖x‖1 and f(x) = ‖x‖∞ are piecewise
linear, in that each can be expressed as the pointwise max of a finite collection
of affine (in fact linear) functions. Specifically, in terms of the vectors ej ∈
IRn having coordinate 1 in jth position but 0 in all other positions, ‖x‖1 is
the maximum of the 2n linear functions [±e1 ± e2 · · · ± en] ·x, whereas ‖x‖∞ is
the maximum of the 2n linear functions ±ej ·x. In contrast, the norm function
f(x) = ‖x‖2 = |x| can usually be treated in terms of its square, which is a simple
quadratic convex function.
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5. LAGRANGE MULTIPLIERS

Optimality with respect to minimization over a set C ⊂ IRn has been approached up
to now in terms of tangent vectors to C at a point x̄. Further progress depends now on
developing a complementary notion of normal vectors to C at x̄. Formulas for normal
vectors in terms of a constraint representation for C will yield special coefficients, called
Lagrange multipliers, which not only serve in the statement of necessary and sufficient
conditions for optimality but take on an intriguing life of their own.

Traditional perspective: In calculus it’s customary to treat tangents and normals to
surfaces and curves. At a point of a surface in IR3 there’s a tangent plane and,
perpendicular to it, a normal line. At a point on a curve in IR3, there’s instead a
tangent line and a normal plane. The higher dimensional analogs of curves and
surfaces are “smooth manifolds” in IRn defined by systems of equality constraints.
At a point of such a smooth manifold of dimension m it’s possible to speak
similarly of a tangent space of dimension m and a normal space of dimension
n−m, these being linear subspaces of IRn that are orthogonal to each other.

Broadened perspective: For purposes of optimization we need to work with inequality
as well as equality constraints as well as with abstract constraints which perhaps
could have a more general character. This forces us to adopt a much broader
approach to “normality,” leading to normal cones instead of subspaces.

Normal vectors: For a closed set C ⊂ IRn and a point x̄ ∈ C, a vector v is said to be
normal to C at x̄ in the regular sense (a “regular normal”) if

v ·w ≤ 0 for every w ∈ TC(x̄).

It is normal to C in the general sense (a “general normal,” or just a “normal”) if it
can be approximated by normals in the regular sense: namely, there exist sequences
vν → v and xν → x̄ such that vν is a regular normal to C at xν .

Interpretation of regular normals: The normal vectors v to C at x̄ in the regular sense,
apart from v = 0, are the vectors that make a right or obtuse angle with every
tangent vector w to C at x̄. It’s not hard to show that this holds if and only if

v ·(x− x̄) ≤ o
(
|x− x̄|

)
for x ∈ C.

The definition of a regular normal vector v could therefore just as well be given
in terms of this inequality property.

Regular normals as general normals: Any normal vector v in the regular sense is in
particular a normal vector in the general sense. (Consider vν ≡ v and xν ≡ x̄).
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Regularity of a set: The set C is called (Clarke) regular at x̄ (one of its points) if every
normal at x̄ in the general sense is in fact a normal at x̄ in the regular sense, i.e., if
the limit process in the definition doesn’t yield any more normals than are already
obtained by the angle condition in the definition of regular normals.

Example of irregularity: A heart-shaped set C fails to be regular at its “inward corner
point,” although it’s regular everywhere else.

Normal cone at a point: For a closed set C, the set of all vectors v that are normal to
C at a point x̄ ∈ C in the general sense is called the normal cone to C at x̄ and is
denoted by NC(x̄).

Basic properties: Always, NC(x̄) contains the vector 0. For all v ∈ NC(x̄) and λ > 0,
the vector λv is in NC(x̄). Thus, NC(x̄) is a “cone.” When C is regular at x̄,
NC(x̄) is furthermore convex and contains for each v and v′ also v + v′.

Extreme cases: If C = IRn, then NC(x̄) = {0}. Indeed, one has NC(x̄) = {0} whenever
C is a set with x̄ in its interior. On the other hand, if C is just a one-element set
{a}, and x̄ = a, then NC(x̄) = IRn.

Limits of general normals: The cone NC(x̄) always closed, and a stronger property even
holds: if vν → v with vν ∈ NC(xν) and xν → x̄, then v ∈ NC(x̄).

Argument: By its definition, the set of (x, v) ∈ IRn × IRn such that v is a general
normal to C at x is the closure of the set of (x, v) such that v is a regular
normal to C at x. Hence in particular, it’s a closed set in IRn × IRn.

Normals to convex sets: A closed, convex set C ⊂ IRn is regular at any of its points x̄,
and its normal cone NC(x̄) consists of the vectors v such that

v ·(x− x̄) ≤ 0 for all x ∈ C.

Proof. Previously we characterized TC(x̄) in the convex case as consisting of 0 and all
vectors obtainable as limits of vectors w 6= 0 that give feasible directions in C at
x̄. On that basis, v is a regular normal at x̄ if and only if v ·w ≤ 0 for all such
w. By convexity, a vector w 6= 0 gives a feasible direction in C at x̄ if and only
if x̄+ τw ∈ C for some τ > 0, or equivalently, w = λ(x− x̄) for some x ∈ C and
λ > 0. Hence v is a regular normal if and only if v ·(x− x̄) ≤ 0 for all x ∈ C.

All that remains, then, is verifying that every normal at x̄ is a regular normal.
Consider a sequence of points xν → x̄ in C and regular normals vν to C at
these points, with vν converging to a vector v. We have to show that v too is a
regular normal to C at x̄. From the preceding, we know that for each ν we have
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vν ·(x− xν) ≤ 0 for all x ∈ C. Taking the limit in this inequality as ν →∞ with
x fixed, we get v ·(x − x̄) ≤ 0. This being true for an arbitrary choice of x ∈ C,
we conclude, by the same criterion, that v is a regular normal to C at x̄.

Supporting half-space property: This characterization means that, in the case of a
closed, convex set C and a point x̄ ∈ C, the nonzero vectors in NC(x̄) are the
nonzero vectors v such that C lies in the half-space H =

{
x ∈ IRn

∣∣ v ·x ≤ v · x̄
}
.

A half-space H with this property is said to support C at x̄. Note that x̄ itself is
on the boundary hyperplane of H.

Normals to linear subspaces: For a subspace M of IRn, one has at every point x̄ ∈ M
that NM (x̄) = M⊥, the set of vectors v such that v ·w = 0 for all w ∈ M . This
is immediate from the fact that M is convex, using the characterization above.

Tangents versus normals under regularity: When a closed set C is regular at x̄, the
geometric relationship between tangents and normals is beautifully symmetric:

NC(x̄) =
{
v

∣∣ v ·w ≤ 0 for all w ∈ TC(x̄)
}
,

TC(x̄) =
{
w

∣∣ v ·w ≤ 0 for all v ∈ NC(x̄)
}
.

Proof: The first equation merely combines the definition of regular normals with the as-
sumption that all normals are regular. It yields the ‘⊂’ half of the second equation.
To show that ⊃ holds in that equation as well, we fix any vector w̄ /∈ TC(x̄) and aim
at demonstrating the existence of a vector v̄ ∈ NC(x̄) such that v̄ ·w̄ > 0.

Replacing C by its intersection with some closed ball around x̄ if necessary (which
involves no loss of generality, since the generation of normal vectors depends only
on a neighborhood of x̄), we can suppose that C is compact. Let B stand for some
closed ball around w̄ that doesn’t meet TC(x̄) (as exists because TC(x̄) is closed). The
definition of TC(x̄), in conjunction with having TC(x̄)∩B = ∅, implies the existence
of an ε > 0 such that the compact, convex set S =

{
x̄ + τw

∣∣w ∈ B, τ ∈ [0, ε]
}

meets C only at x̄. Consider any sequence εν ↘0 with εν < ε along with the compact,
convex sets Sν =

{
x̄+ τw

∣∣w ∈ B, τ ∈ [εν , ε]
}
, which are disjoint from C.

The function h(x, u) = 1
2 |x−u|2 attains its minimum over the compact set C×Sν

at some point (xν , uν). In particular, x minimizes h(x, uν) with respect to x ∈ C, so
by Theorem 9 the vector −∇xh(xν , uν) = uν − xν belongs to NC(xν). Likewise, the
vector −∇hu(xν , uν) = xν − uν belongs to NSν (uν). Necessarily xν 6= uν because
C ∩ Sν = ∅, but xν → x̄ and uν → x̄ because the sets Sν increase to S (the closure
of their union), and C ∩ S = {x̄}.
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Let vν = (uν − xν)/|uν − xν |, so |vν | = 1, vν ∈ NC(xν), −vν ∈ NSν (uν). The
sequence of vectors vν being bounded, it has a cluster point v̄, |v̄| = 1; without loss
of generality (by passing to a subsequence if necessary) we can suppose for simplicity
that vν → v̄. Along with the fact that vν ∈ NC(xν) and xν → x̄, this implies that
v̄ ∈ NC(x̄). Because −vν ∈ NSν (xν) and Sν is convex, we also have −vν · [u−uν ] ≤ 0
for all u ∈ Sν . Since Sν increases to S while uν → x̄, we obtain in the limit that
−v̄ · [u − x̄] ≤ 0 for all u ∈ S. Recalling the construction of S, we note that among
the vectors u ∈ S are all vectors of the form x̄ + εw with w ∈ B. Further, B is
the closed ball of a certain radius δ > 0 around w̄, so its elements w have the form
w̄+ δz with |z| ≤ 1. Plugging these expressions into the limiting inequality that was
obtained, we get −v̄ ·ε[w̄ + δz] ≤ 0 for all z with |z| ≤ 1. In particular we can take
z = −v̄ (since |v̄| = 1) and see that −v̄ ·w̄ + δ|v̄|2 ≤ 0. This reveals that v̄ ·w̄ ≥ δ,
hence v̄ ·w̄ > 0 as desired.

Polar cones: When two cones in IRn, say T and N , are in this symmetric relationship,
with N =

{
v

∣∣ v ·w ≤ 0 for all w ∈ T
}

and T =
{
w

∣∣ v ·w ≤ 0 for all v ∈ N
}
, they

are said to be polar to each other. Then, incidentally, they both must be convex.
Polarity of cones generalizes orthogonality of linear subspaces.

Normals to boxes: If X = I1 × · · · × In for closed intervals Ij in IR, then X is regular
at any of its points x̄ = (x̄1, . . . , x̄n) (by virtue of closedness and convexity), and

NX(x̄) = NI1(x̄1)× · · · ×NIn
(x̄n), where

NIj
(x̄j) =


(−∞, 0] if x̄j is the left endpoint (only) of Ij ,
[0,∞) if x̄j is the right endpoint (only) of Ij ,
[0, 0] if x̄j lies in the interior of Ij ,
(−∞,∞) if Ij is a one-point interval, consisting just of x̄j .

In other words, the condition z ∈ NX(x̄) for z = (z1, . . . , zn) constitutes a list of sign

restrictions on the coordinates of z. Depending on the mode in which x̄j fulfills the
constraint xj ∈ Ij , each zj is designated as nonpositive, nonnegative, zero, or free.

Normals to the nonnegative orthant: As an important example, the normal vectors
z = (z1, . . . , zn) to the box IRn

+, at x̄ = (x̄1, . . . x̄n) are given by

z ∈ NIRn
+
(x̄) ⇐⇒

{
zj ≤ 0 for all j with x̄j = 0,
zj = 0 for all j with x̄j > 0

⇐⇒ zj ≤ 0, x̄j ≥ 0, zj · x̄j = 0 for all j.
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THEOREM 9 (fundamental normal cone condition for optimality). Consider

the problem of minimizing a function f0 of class C1 over a closed set C ⊂ IRn. Let x̄ ∈ C.

(a) (necessary). If x̄ is locally optimal, then

−∇f0(x̄) ∈ NC(x̄).

(b) (sufficient). If this relation holds with C and f0 convex, then x̄ is globally optimal.

Proof. To prove (a), we need to recall the fundamental role of tangent cones in optimality,
as explained early in Chapter 4: the local optimality of x̄ implies that ∇f0(x̄) ·w ≥ 0 for
every w ∈ TC(x̄). Then, by definition, −∇f0(x̄) is actually a regular normal to C at x̄.
Hence −∇f0(x̄) ∈ NC(x̄). To prove (b) we simply note that, in view of the description
of normal cones to convex sets given above, this merely restates the sufficient condition of
Theorem 7(b).

Connection with variational inequalities: The condition −∇f0(x̄) ∈ NC(x̄) for convex
C is equivalent to the “variational inequality” condition in Theorem 7, as seen
from the above characterization of normal cones to convex sets.

Versatility of the fundamental normal cone condition: The condition in Theorem 9 has
conceptual and technical advantages over a tangent cone condition like the one in
Theorem 7. Such a tangent cone condition seemingly refers to an infinite family
of inequalities, which is cumbersome to think about in contrast to thinking about
how a cone NC(x̄) might look. The examples of normal cones already given, and
more to come, will help in applying Theorem 9 to particular situations and will
lead to rules involving Lagrange multipliers.

Fermat’s rule as a special case: At any point x̄ lying in the interior of C, one has
NC(x̄) = {0}; there’s no normal other than the zero vector. Therefore, if f0 has
a local minimum relative to C at such a point, it’s necessary that ∇f0(x̄) = 0.

Optimality relative to a box: In the case of minimizing a function f0 over a box X,
the condition −∇f0(x̄) ∈ NX(x̄) that comes out of Theorem 9 can be combined
with the description of the cones NX(x̄) that was furnished above. It thereby
translates into sign conditions on the components of ∇f0(x̄), i.e., on the partial
derivatives (∂f0/∂xj)(x̄).

Normal cone condition in maximization: Although our convention is to reduce every-
thing to minimization, it’s worth noting that when a function f0 is maximized
over C instead of minimized, the necessary condition corresponding to the one in
Theorem 7 comes out as ∇f0(x̄) ∈ NC(x̄).
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Determining normal vectors from constraint representations: To get more out of
the optimality condition in Theorem 9, we need to develop formulas for NC(x̄) in
terms of constraint representations of C.

Standard constraint structure: Our attention will be concentrated henceforth on the
case where C is the set of feasible solutions to a problem (P) in standard format:

x ∈ C ⇐⇒ x ∈ X and
{
fi(x) ≤ 0 for i ∈ [1, s],
fi(x) = 0 for i ∈ [s+ 1,m].

For short, we’ll refer to this as the case where C is a standard feasible set .

Constraint qualifications: Success in obtaining a formula for normal cones NC(x̄) by
way of a constraint representation of C typically depends on some assumption
about the nature of the constraints, such as a gradient condition or something
involving convexity or linearity. Such an assumption is called a “constraint qual-
ification.” When there are linear constraints only , it will turn out that this
complication can be avoided.

Lagrange multipliers for standard constraints: Our analysis of normal vectors to a
standard feasible set C will require us to consider certain expressions in which each of
the constraint functions fi is assigned a coefficient yi, called its Lagrange multiplier.
The “multiplier vectors” y = (y1, . . . , ym) ∈ IRm comprised of such coefficients will
have a grand role. To get the stage ready for them, we now introduce (for reasons
not yet explained but soon to come out) the standard multiplier cone

Y = IRs
+ × IRm−s =

{
y = (y1, . . . , ys, ys+1, . . . , ym)

∣∣ yi ≥ 0 for i ∈ [1, s]
}
.

We also introduce, for each point x̄ ∈ C, a special subset of this multiplier cone
which is tailored to the inactive inequality constraints at x̄ (with fi(x̄) < 0), namely

Y (x̄) =
{
y ∈ Y

∣∣ yi = 0 for i ∈ [1, s] inactive at x̄
}
,

so that, in other words,

y ∈ Y (x̄) ⇐⇒

 yi = 0 for i ∈ [1, s] with fi(x̄) < 0,
yi ≥ 0 for i ∈ [1, s] with fi(x̄) = 0,
yi free for i ∈ [s+ 1,m].

Complementary slackness: These conditions can equally well be written in another way,
which is more symmetric:

y ∈ Y (x̄) ⇐⇒
{

for i ∈ [1, s] : yi ≥ 0, fi(x̄) ≤ 0, yifi(x̄) = 0,
for i ∈ [s+ 1,m] : yi free, fi(x̄) = 0.
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The rules for i ∈ [1, s] are called complementary slackness conditions because
they insist that for each pair of inequalities, yi ≥ 0, fi(x̄) ≤ 0, if either one of
them is slack (i.e., satisfied as a strict inequality), then the other one must be
tight (i.e., satisfied as an equation).

Cone properties of the multiplier sets: Both Y and Y (x̄) are closed, convex cones,
moreover of the kind described only by “sign conditions,” such as have been
encountered in the study of tangent and normal cones to boxes. This isn’t just
a coincidence. It’s easy to see from our formulas for normal cones to boxes that
ū = (ū1, . . . , ūm) where ūi = fi(x̄), we actually have

Y (x̄) = NK(ū) for ūi = fi(x̄) and the box K defined by

K = J1 × · · · × Jm with Ji =
{

(−∞, 0] for i ∈ [1, s],
[0, 0] for i ∈ [s+ 1,m],

Also, there’s the interesting—and later very useful—observation, through the
complementary slackness formulation of the condition for having y ∈ Y (x̄), that

y ∈ Y (x̄) ⇐⇒ (f1(x̄), . . . , fm(x̄)) ∈ NY (y).

THEOREM 10 (normals and tangents to standard feasible sets). Let C be stan-

dard feasible set coming from C1 functions f1, . . . , fm and a closed set X ⊂ IRn. Let x̄ be

a point of C (and hence of X) such that X is regular at x̄ (as holds for instance when X

is convex, and in particular when it is a box). Suppose that the following assumption, to

be called the standard constraint qualification at x̄, is satisfied:

(?)

{
there is no vector y = (y1, . . . , ym) ∈ Y (x̄) satisfying

−
[
y1∇f1(x̄) + · · ·+ ym∇fm(x̄)

]
∈ NX(x̄), except y = 0.

Then C is regular at x̄, and the normal cone at x̄ has the formula

v ∈ NC(x̄) ⇐⇒

{
v = y1∇f1(x̄) + · · ·+ ym∇fm(x̄) + z for some

(y1, . . . , ym) = y ∈ Y (x̄) and z ∈ NX(x̄),

whereas the tangent cone at x̄ has the formula

w ∈ TC(x̄) ⇐⇒ w ∈ TX(x̄) with

∇fi(x̄) ·w free for i ∈ [1, s] with fi(x̄) < 0,
∇fi(x̄) ·w ≤ 0 for i ∈ [1, s] with fi(x̄) = 0,
∇fi(x̄) ·w = 0 for i ∈ [s+ 1,m].

Note: When X = IRn, or for that matter whenever x̄ lies in the interior of X, the normal
cone NX(x̄) consists of just 0, so (?) revolves around y1∇f1(x̄)+· · ·+ym∇fm(x̄) = 0,
and the z term in the formula for v ∈ NC(x̄) drops out.
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Proof. This level of result, in the framework of normal cones, tangent cones and regularity,
can’t yet be found in textbooks on optimization. The argument, although lengthy, is
elementary in that it only uses basic facts about sequences and continuity. It has big
advantages over traditional treatments of Lagrange multipliers, because it readily extends
to sets C with other, “nonstandard” constraint representations.

Let K = (−∞, 0]s × [0, 0]m−s, this being the special box in IRm that was introduced
just ahead of the theorem in the normal cone interpretation of the multiplier set Y (x̄). In
terms of this set K and F (x) = (f1(x), . . . , fm(x)), we have

C =
{
x ∈ X

∣∣F (x) ∈ K
}
, Y (x̄) = NK

(
F (x̄)

)
.

That mode of expression will help us by tying the behavior of multiplier vectors y into
that of normal vectors to K. In this setting, we will be able to utilize the fact that K is
closed and convex, hence regular at any of its points, such as F (x̄).

The F (x) notation will benefit us further by making it possible to write the gradient
sums in the theorem in the Jacobian form ∇F (x̄)∗y. To appreciate this, recall that ∇F (x̄)
is the m×n matrix having the gradients ∇fi(x̄) as its rows; the transpose matrix ∇F (x̄)∗

has them as its columns, so that

∇F (x̄)∗y = y1∇f1(x̄) + · · ·+ ym∇fm(x̄).

Note also that for any y = (y1, . . . , ym) and w = (w1, . . . , wn) we have

y ·∇F (x̄)w =
m,n∑

i=1,j=1

yi
∂fi

∂xj
(x̄)wj = [∇F (x̄)∗y] ·w.

Part 1. We’ll demonstrate first that the implication “⇒” is valid in the tangent
cone formula. A vector w ∈ TC(x̄) is by definition the limit of a sequence of vectors
wν = (xν− x̄)/τν formed with xν ∈ C, xν → x̄ and τν ↘0. Then, since x̄ ∈ X and xν ∈ X
in particular, we have w ∈ TX(x̄), as required on the right side of the claimed formula.

Since also F (x̄) ∈ K and F (xν) ∈ K, and F is C1, we furthermore have F (xν) → F (x̄)
with F (xν) = F (x̄) +∇F (x̄)(xν − x̄) + o(|xν − x̄|), hence

F (xν)− F (x̄)
τν

= ∇F (x̄)wν +
o
(
|xν − x̄|

)
|xν − x̄|

|wν | → ∇F (x̄)w.

By thinking of this in terms of ū = F (x̄) and uν = F (xν) we can interpret it as referring
to a situation where we have ū ∈ K, uν ∈ K, uν → ū, and τν ↘0 such that vectors
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hν = [uν − ū]/τν converge to h̄ = ∇F (x̄)w. That, of course, says that ∇F (x̄)w ∈ TK(ū).
Because K is the product of s copies of (−∞, 0] and m − s copies of (−∞,∞), we know
from our earlier analysis of tangent cones to boxes that

(h1, . . . , hm) ∈ TK(ū) ⇐⇒

hi free for i ∈ [1, s] with ūi < 0,
hi ≥ 0 for i ∈ [1, s] with ūi = 0,
hi = 0 for i ∈ [s+ 1,m].

Applying this to h̄ = ∇F (x̄)w, which has components h̄i = ∇fi(x̄) ·w, and recalling that ū
has components ūi = fi(x̄), we see that the sign conditions on the right side of the tangent
cone formula must hold.

Part 2. We’ll demonstrate next that the implication “⇐” is valid in the normal cone
formula, and moreover that every vector v having a representation of the indicated kind
must actually be a regular normal vector to C at x̄. This means verifying that v ·w ≤ 0
for every w ∈ TC(x̄). In the notation we’ve introduced, the indicated representation of v
can be written as v = ∇F (x̄)∗y + z for some y ∈ NK

(
F (x̄)

)
and z ∈ NX(x̄), so that, in

view of [∇F (x̄)∗y] ·w being the same as y ·∇F (x̄)w, we have

v ·w = y ·∇F (x̄)w + z ·w.

Here y is known to be a regular normal to K at ū = F (ū), while z is a regular normal to
X at x̄ by our regularity assumption on X. On the other hand, every w ∈ TC(x̄) satisfies
∇F (x̄)w ∈ TK(ū) and w ∈ TX(x̄), as seen in Part 1. Then, from the regularity of y and z,
we have y ·∇F (x̄)w ≤ 0 and z ·w ≤ 0, hence v ·w ≤ 0, as needed.

Part 3. The next task on our agenda is showing that “⇐” is valid in the normal cone
formula. Then it will also follow, from what we saw in Part 2, that every vector v ∈ NC(x̄)
is actually a regular normal, so that C is regular at x̄, as claimed. The argument will
pass, however, through an intermediate stage involving vector representations that are
only “approximately” of the form in question. In this approximation stage, we focus
temporarily on a vector v ∈ NC(x̄) which we assume to be a regular normal, and in fixing
an arbitrary ε > 0, we demonstrate the existence of

x ∈ IRn with |x− x̄| < ε

u ∈ K with
∣∣u− F (x)

∣∣ < ε

w ∈ IRn with |w| < ε

y ∈ NK(u), z ∈ NX(x)


such that v = ∇F (x)∗y + z + w.

The demonstration won’t yet use the constraint qualification (?) or the assumption about
regularity. We take any sequence τν ↘0 and define the functions ϕν on IRn × IRm by

ϕν(x, u) =
1

2τν

∣∣x− (x̄+ τνv)
∣∣2 +

1
2τν

∣∣F (x)− u
∣∣2 ≥ 0.
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These functions are continuously differentiable in x and u. Our strategy will be based on
analyzing the problem of minimizing ϕν over the closed set X ×K in IRn × IRm.

Part 3a. We have to know, in order to get started on this track, that for each ν an
optimal solution (xν , uν) to the auxiliary minimization problem does exist. We’ll confirm
it by establishing that the level set S =

{
(x, u) ∈ X×K

∣∣ϕν(x, u) ≤ α
}

is bounded for any
α ≥ 0. Then the problem of minimizing ϕν over X ×K is well posed, and the existence of
an optimal solution is assured by Theorem 1.

Clearly, any point (x, u) ∈ S has both |x−(x̄+τνv)|2 ≤ 2τνα and |u−F (x)|2 ≤ 2τνα.
Then |x| ≤ λ := |x̄|+τν |v|+

√
2τνα. Over the closed ball

{
x

∣∣ |x| ≤ λ
}

there is a maximum
to the possible values of

∣∣F (x)
∣∣ (an expression that is continuous in x); say

∣∣F (x)
∣∣ ≤ σ for

all such x. The inequality |u − F (x)|2 ≤ 2τνα then yields |u| ≤ µ := σ +
√

2τνα. Since
every element (x, u) ∈ S has |x| ≤ λ and |u| ≤ µ, the level set S is indeed bounded.

Part 3b. We now have license to denote by (xν , uν) for each ν an optimal solution
(not necessarily unique) to the problem of minimizing the function ϕν over X × K; we
denote the optimal value in this problem by αν . Obviously

0 ≤ αν = ϕν(xν , uν) ≤ ϕν
(
x̄, F (x̄)

)
=
τν

2
|v|2 → 0.

The inequalities deduced in our investigation of level sets of ϕν tell us at the same time
that neither |xν − (x̄+ τνv)|2 nor |uν −F (xν)|2 can exceed 2τναν . Since αν ≤ (τν/2)|v|2,
as just seen, we must have

∣∣xν − (x̄+ τνv)
∣∣ ≤ τν |v| and

∣∣uν − F (xν)
∣∣ ≤ τν |v|. Therefore,

xν → x̄ and
∣∣uν − F (xν)

∣∣ → 0. In addition the sequence of vectors wν = (xν − x̄)/τν

is bounded because the inequality
∣∣xν − (x̄ + τνv)

∣∣ ≤ τν |v|, when divided by τν , gives
|wν − v| ≤ |v|. This sequence therefore has a cluster point w.

Any such cluster point w belongs by definition to the tangent cone TC(x̄), so w

satisfies v ·w ≤ 0, because, in this stage, v has been assumed to be a regular normal at
x̄. But at the same time w satisfies |w − v| ≤ |v|. In squaring the latter we see that
|w|2 − 2v ·w + |v|2 ≤ |v|2, which implies |w|2 ≤ 2v ·w ≤ 0. Hence actually w = 0. Thus,
the only possible cluster point of the sequence of vectors wν is 0, and we conclude that
wν → 0. Eventually then, once ν is large enough, we’ll have

|xν − x̄| < ε, |uν − F (xν)| < ε, |wν | < ε.

Next we use the fact that (xν , uν) minimizes ϕν overX×K. In particular the minimum
of ϕν(xν , u) over u ∈ K is attained at uν , whereas the minimum of ϕν(x, uν) over x ∈ X
is attained at xν . From part (a) of Theorem 9, therefore, we have

−∇uϕ
ν(xν , uν) ∈ NK(uν), −∇xϕ

ν(xν , uν) ∈ NX(xν),
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these being regular normal vectors. Let yν = −∇uϕ
ν(xν , uν) and zν = −∇xϕ

ν(xν , uν),
so yν ∈ NK(uν) and zν ∈ NX(xν). In calculating these vectors from the formula for
ϕν by differentiating separately in u and then in x, we get yν = [F (xν) − uν ]/τν and
zν = −wν + v −∇F (xν)∗yν . Thus, v = ∇F (xν)∗yν + zν + wν . It follows that when ν is
taken sufficiently large the elements x = xν , u = uν , y = yν and w = wν furnish the kind
of approximate representation of v that was required.

Part 3c. Now we are ready for the last stage of demonstrating that “⇒” holds in
the normal cone formula. We consider a general vector v ∈ NC(x̄) and aim at proving the
existence of y ∈ NK(F (x̄)) and z ∈ NX(x̄) such that v = ∇F (x̄)∗y + z.

Fix any sequence of values εν ↘0. From the definition of normal vectors in general
sense, we know there exist sequences x̄ν → x̄ in C and vν → v with vν a regular normal
to C at x̄ν . Then, on the basis of the intermediate fact about “approximation” that has
just been established, there exist for each ν

xν ∈ IRn with |xν − x̄ν | < εν

uν ∈ K with
∣∣uν − F (x̄ν)

∣∣ < εν

wν ∈ IRn with |wν | < εν

yν ∈ NK(uν), zν ∈ NX(xν)


such that vν = ∇F (xν)∗yν + zν + wν .

There are two cases to distinguish: either (1) the sequence of vectors yν has a cluster point
y, or (2) it has no bounded subsequences at all, meaning that |yν | → ∞.

In the case (1) of a cluster point y, we have in the limit that y ∈ NK

(
F (x̄)

)
, inasmuch

as F (x̄ν) → F (x̄) and ∇F (x̄ν) → ∇F (x̄) by the continuity of F and its first partial
derivatives. The corresponding subsequence of the zν ’s is then bounded and must have a
cluster point too, say z. We have z ∈ NX(x̄) and consequently from taking limits in the
equation vν = ∇F (xν)∗yν + zν + wν that v = ∇F (x̄)∗y + z, as needed.

In the case (2) of |yν | → ∞, the vectors ȳν = yν/|yν | and z̄ν = zν/|yν |, which like
yν and zν belong to NK

(
F (xν)

)
and NX(xν), have |ȳν | = 1 and |z̄ν | ≤ |∇F (xν)ȳν |+ δν ,

where δν := |vν − wν |/|yν | → 0 and ∇F (xν) → ∇F (x̄). Therefore, the sequence of pairs
(ȳν , z̄ν) is bounded has a cluster point (ȳ, z̄) with |ȳ| = 1. Again we get ȳ ∈ NK

(
F (x̄)

)
and z̄ ∈ NX(x̄). In dividing the equation vν = ∇F (xν)∗yν + zν + wν by |yν | and taking
the limit as ν →∞, we see that ∇F (x̄)∗ȳ + z̄ = 0. But ȳ 6= 0, so this is impossible under
the constraint qualification (?). Thus, only the cluster point case (1) is viable.

Part 4. Our final task is to confirm that “⇐” holds in the tangent cone formula.
Let w have the properties on the right side of the formula. In Part 1 we saw this meant
having ∇F (x̄)w ∈ TK(F (x̄)), along with w ∈ TX(x̄). Through the regularity of C at

75



x̄ (established in Part 3), TC(x̄) consists of the vectors w satisfying v ·w ≤ 0 for every
v ∈ NC(x̄); we know those vectors have the form ∇F (x̄)∗y + z with y ∈ NK(F (x̄)) and
z ∈ NX(x̄). Then v ·w = y ·∇F (x̄)w+z ·w, as seen in Part 2. Is it true that this expression
is ≤ 0 for y ∈ NK(F (x̄)) and z ∈ NX(x̄) when ∇F (x̄)w ∈ TK(F (x̄)) and w ∈ TX(x̄)? Yes,
by the regularity of K at F (x̄) and X at x̄.

Classical example of a set defined by equations only: Suppose that

C =
{
x ∈ IRn

∣∣ fi(x) = 0 for i = 1, . . . ,m
}

for C1 functions fi. What does Theorem 10 say then at a point x̄ ∈ C? HereX = IRn,
so NX(x̄) = {0}, while Y (x̄) = Y = IRm. The standard constraint qualification (?)
in the assumptions of Theorem 10 asks in these circumstances that there be{

no coefficient vector (y1, . . . , ym) ∈ IRm has the property that

y1∇f1(x̄) + · · ·+ ym∇fm(x̄) = 0, except (y1, . . . , ym) = (0, . . . , 0).

In other words, it demands the linear independence of the gradient vectors ∇fi(x̄),
i = 1, . . . ,m, or equivalently, requires the m× n Jacobian matrix ∇F (x̄), with these
vectors as its rows, to have rank m. The normal cone formula we obtain from
Theorem 10 under this assumption, comes out as

v ∈ NC(x̄) ⇐⇒

{
v = y1∇f1(x̄) + · · ·+ ym∇fm(x̄)

for some (y1, . . . , ym) ∈ IRm,

which says that NC(x̄) is the subspace of IRn spanned by all the vectors ∇fi(x̄). The
corresponding tangent cone formula we obtain from Theorem 10 is

w ∈ TC(x̄) ⇐⇒ ∇fi(x̄) ·w = 0 for i = 1, . . . ,m,

which says that TC(x̄) is the subspace of IRn orthogonal to all the vectors ∇fi(x̄).

Smooth manifold interpretation: Sets defined by systems of one or more equations fit
a long-standing tradition in calculus and differential geometry. In IR2, a single
equation can be imagined as specifying a curve, whereas in IR3 a single equation
would give a surface and two equations would be needed to get a curve. Such sets
and their higher-dimensional analogs are called smooth manifolds, and we can
think of them as the models for what we hope to get as C, when C is a standard
feasible set coming from equation constraints only.
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Sobering realities must be remembered, however. In IR3, for instance, two
equations don’t necessarily determine a “curve,” even if each, by itself, determines
a “surface.” The surfaces might just touch in a point, and if flat portions of them
come up against each other, their intersection could be something weirder. We
can’t expect to get a smooth manifold without imposing an assumption on the
equations, and moreover focusing just on a neighborhood of a point x̄.

The classical assumption for ensuring that C is a smooth manifold around one
of its points x̄ is precisely the linear independence condition, or rank condition,
encountered here. As we’ve seen, it results in the normal cone NC(x̄) and tangent
cone TC(x̄) being linear subspaces that are orthogonal to each other and moreover
complementary in dimension (the normal subspace having dimension m and the
tangent subspace having dimension n−m).

The role of the standard constraint qualification: Even without any recourse to
condition (?), the regularity assumption in Theorem 10 guarantees that NC(x̄) in-
cludes all the vectors v expressible as a sum in the manner prescribed. This was
demonstrated the first part of the proof of Theorem 10. Condition (?) was essen-
tial however in confirming, in the much harder second part of the proof, that the
inclusion is really an equation. There, (?) entered at the very end.

Importance for handling equality constraints: The example of smooth manifolds, just
described, where (?) came down to a classical assumption, makes clear that even
when working only with equations, a constraint qualification may be needed.

Importance for handling inequality constraints: An example of a shortfall in the normal
cone formula in a case of inequality constraints will underscore the need for (?)
more generally. Let C =

{
x

∣∣ f1(x) ≤ 0, f2(x) ≤ 0
}

for x = (x1, x2) ∈ IR2 and the
functions f1(x) = (x1− 1)2 + (x2− 1)2− 2 and f2(x) = (x1 + 1)2 + (x2 + 1)2− 2.
Here C is the intersection of two disks, both of radius

√
2 but centered at (1, 1)

and (−1,−1) respectively. The disks touch only at the origin, so C consists
of just x̄ = (0, 0). Then NC(x̄) = IR2. But Y (x̄) = IR2

+, ∇f1(x̄) = (−1,−1)
and ∇f2(x̄) = (1, 1) so the vectors of the form v = y1∇f1(x̄) + y2∇f2(x̄) with
(y1, y2) ∈ Y (x̄) are collinear and don’t fill up IR2.

Exceptional status of linear constraints: For a standard feasible set C coming from
affine functions fi and a box X, the standard constraint qualification (?) isn’t
needed. The formulas we’ve developed for NC(x̄) and TC(x̄) are valid then with-
out it, as will be established in Theorem 12.
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THEOREM 11 (first-order optimality for problems in standard format). Let x̄

be a feasible solution to problem (P), with X closed, regular at x̄, and every fi of class C1.

(a) (necessary). If x̄ is locally optimal and the standard constraint qualification (?) is

fulfilled at x̄, then there must be a multiplier vector ȳ = (ȳ1, . . . , ȳm) such that

−
[
∇f0(x̄) + ȳ1∇f1(x̄) + · · ·+ ȳm∇fm(x̄)

]
∈ NX(x̄) with ȳ ∈ Y (x̄).

(b) (sufficient). If such a multiplier vector ȳ exists, and f0 and C are convex (as in the

case of convex programming), then x̄ is globally optimal.

Proof. This combines Theorem 9 with Theorem 10. Saying that −∇f0(x̄) can be repre-
sented by −∇f0(x̄) = ȳ1∇f1(x̄) + · · ·+ ȳm∇fm(x̄) + z̄ for some ȳ ∈ Y (x̄) and z̄ ∈ NX(x̄)
is the same as saying that −

[
∇f0(x̄) + ȳ1∇f1(x̄) + · · ·+ ȳm∇fm(x̄)

]
belongs to NX(x̄) for

some ȳ ∈ Y (x̄). The reason the constraint qualification (?) isn’t needed in (b) is that a rep-
resentation of this kind for −∇f0(x̄) guarantees, even without it, that −∇f0(x̄) ∈ NC(x̄).
(As explained earlier, the role of (?) was only to make sure that the vectors with such a
representation fill up all of NC(x̄); they always do lie within NC(x̄).)

Common simplification: When x̄ lies in the interior of X, so that NX(x̄) = {0}, the
gradient condition in Theorem 11 becomes ∇f0(x̄)+ ȳ1∇f1(x̄)+ · · ·+ ȳm∇fm(x̄) = 0.

Problems with an abstract constraint only: If there are no constraints in function form, so
(P) consists just of minimizing f0(x) over all x ∈ X (this set being identical then with
C), the optimality condition furnished by Theorem 11 reduces in essence to the one
in Theorem 9. At any locally optimal solution x̄ we must have −∇f0(x̄) ∈ NX(x̄),
and this is sufficient for global optimality when f0 and X are convex.

Abstract constraints without convexity: Instead of bothering with a regularity assumption
in Theorem 11, we could just have taken X to be a box, or at least a closed, convex
set, since such sets are regular at all of their points. That would have covered most
direct applications. A plus for Theorem 11 in its broader formulation, however,
is that it allows X to be specified by an additional system of possibly nonconvex
constraints which we don’t need to pin down immediately.

Kuhn-Tucker conditions: For a problem (P) in standard format with C1 functions fi,
a vector pair (x̄, ȳ) ∈ IRn× IRm is said to satisfy the Kuhn-Tucker conditions for (P)
(and be a Kuhn-Tucker pair) if x̄ is a feasible solution to (P) and ȳ is an associated
Lagrange multiplier vector as in Theorem 11, i.e.,

−
[
∇f0(x̄) + ȳ1∇f1(x̄) + · · ·+ ȳm∇fm(x̄)

]
∈ NX(x̄) with ȳ ∈ Y (x̄).
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To summarize in this language, the Kuhn-Tucker conditions are the first-order opti-
mality conditions for such problems (P). Under the standard constraint qualification
(?), the local optimality of x̄ (along with regularity of X at x̄) implies the existence of
a ȳ such that (x̄, ȳ) is a Kuhn-Tucker pair. On the other hand, the global optimality
of x̄ is assured when (x̄, ȳ) is a Kuhn-Tucker pair and (P) is a problem of convex
programming, even without (?).

Lagrangian function: An elegant expression of the Kuhn-Tucker conditions as a whole
can be achieved in terms of the Lagrangian for problem (P), which is the function

L(x, y) := f0(x) + y1f1(x) + · · ·+ ymfm(x) for x ∈ X and y ∈ Y,

where Y = IRs
+ × IRm−s. Then ∇xL(x, y) = ∇f0(x) + y1∇f1(x) + · · ·+ ym∇fm(x),

whereas ∇yL(x, y) =
(
f1(x), . . . , fm(x)

)
.

Lagrangian form of the Kuhn-Tucker conditions: A pair of vectors x̄ and ȳ satisfies
the Kuhn-Tucker conditions for (P) if and only if x̄ ∈ X, ȳ ∈ Y , and

−∇xL(x̄, ȳ) ∈ NX(x̄), ∇yL(x̄, ȳ) ∈ NY (ȳ).

This is immediate from the observations just made about L and the alternative
expression for Y (x̄) furnished just before the statement of Theorem 10.

Mathematical history: Louis Lagrange, one of the greatest mathematicians of the 18th
century, only considered minimization subject to equality constraints, i.e., in our
framework the case of X = IRn and Y = IRm. He found that a locally optimal
solution x̄ would have to satisfy, along with fi(x̄) = 0 for i = 1, . . . ,m, the
condition ∇f0(x̄) + ȳ1∇f1(x̄) + · · · + ȳm∇fm(x̄) = 0. He realized that in terms
of the function L these requirements could be written as ∇L(x̄, ȳ) = 0, a vector
equation comprised of n+m scalar equations in n+m unknowns x̄j and ȳi! These
are the Kuhn-Tucker conditions when X = IRn and Y = IRm.

Like many mathematicians of his day, Lagrange operated on a heuristic level,
and in this case he even fell into the trap of claiming the equation ∇L(x̄, ȳ) = 0
meant that L had its minimum at (x̄, ȳ). Inequality constraints didn’t get serious
attention until Kuhn and Tucker, around 1950. They got as far as covering
abstract constraints x ∈ X with X = IRr × IRn−r, thus allowing for a distinction
between variables xj required to be nonnegative for j = 1, . . . , r but free for
j = r + 1, . . . , n. The treatment of more general X had to wait however for the
theory of normal cones in the ’70’s and ’80’s.

79



Taking advantage of linear constraints: When a standard feasible set C is specified
through linear constraints, at least in part, there are important simplifications in the
analysis of normals and tangents, because an assumption as strong as the standard
constraint qualification (?) isn’t really required. The formulas in Theorem 10 remain
valid under alternative assumptions tailored to special features of linearity. Those
assumptions help also in applying the necessary condition in Theorem 11.

THEOREM 12 (constraint qualification refinements). Let C be a standard feasible

set coming from constraint functions fi of class C1 and an underlying set X that is a box.

(a) When some of the functions fi are affine, the following milder assumption, to be

called the refined constraint qualification, can be substituted in Theorems 10 and 11 for

the standard constraint qualification (?):

(??)


there is no vector y = (y1, . . . , ym) ∈ Y (x̄) satisfying

−
[
y1∇f1(x̄) + · · ·+ ym∇fm(x̄)

]
∈ NX(x̄) except

with yi = 0 for every i such that fi is not affine.

Thus, when C is specified by a linear constraint system, where every fi is affine, no

substitute for (?) is needed at all, and the constraint qualification can be dropped entirely.

(b) When C is specified by a convex constraint system, where fi is convex for i ∈ [1, s]
and affine for i ∈ [s+ 1,m], the following assumption of a different character, to be called

the refined Slater condition, can be substituted in Theorems 10 and 11 for the standard

constraint qualification (?):

(? ? ?)

{
there is a point x̃ ∈ C having fi(x̃) < 0

for every i ∈ [1, s] such that fi is not affine.

Proof. The assertion in (a) will be established in two stages, starting with the case where
every fi is affine and then going on to the case where only some of the functions fi may
be affine. Then (b) will be derived as a consequence of (a). In each instance, we are trying
to show that the indicated refinement of (?) is adequate for the normal cone formula
in Theorem 10 to be correct, since the other claims in Theorem 10 all follow from that
formula, as does the application made of it in Theorem 11.

Part 1. Suppose that every fi is affine: fi(x) = ai ·x− bi for certain vectors ai ∈ IRn

and scalars bi ∈ IR, so that ∇fi(x) = ai for all x. For the purpose at hand, only the active
inequality constraints at a point x̄ ∈ C really matter. The inactive inequality constraints
have no effect on the representation of normal vectors, since the multipliers yi for their
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gradients have to be 0. Therefore, with out loss of generality in our argument, we can just
assume that there are no inactive constraints. This is aimed at notational simplification;
it makes ai · x̄ = bi for all i. In fact we can simplify still further, however. Through the
change of variables x′ = x− x̄, we can reduce from ai ·x = bi to ai ·x′ = 0. In this way, we
can pass without loss of generality (by reverting notation from x′ back to x) to the case
where bi = 0, so that fi(x) = ai ·x for all i, and our focus is the point x̄ = 0 of

C =
{
x

∣∣ ai ·x ≤ 0 for i ∈ [1, s], ai ·x = 0 for i ∈ [s+ 1,m]
}
.

In this simplified setting, we have Y (x̄) = Y = IRs
+ × IRm−s. Our goal is to verify that

v ∈ NC(x̄) ⇐⇒ v = y1a1 + · · ·+ ymam for some y ∈ Y.

We already know, though, that “⇐” is valid without any constraint qualification (as
shown in Part 2 of the proof of Theorem 10). Thus, only “⇒” really requires our attention.
Our tactic will be to demonstrate that C can equally well be expressed in the form

C =
{
x

∣∣ ai ·x ≤ 0 for i ∈ I1, ai ·x = 0 for i ∈ I2
}

for certain index sets I1 ⊂ [1, s] and I2 ⊂ [1,m]\I1 having the property that this smaller
constraint representation (with the indices renumbered if one prefers) does satisfy the cor-
responding instance of the standard constraint qualification (?) (with X = IRn, NX(x̄) =
{0}). That will guarantee through Theorem 10 that any v ∈ NC(x̄) can be expressed as a
sum of terms yiai for i ∈ I1 ∪ I2, with yi ≥ 0 when i ∈ I1. We’ll build then on that to get
the kind of representation we need for v in order to conclude the validity of “⇒”.

Proceeding in this direction, we let Y0 =
{
y ∈ Y

∣∣ y1a1 + · · ·+ yman = 0
}

and take I0
to be the set of indices i ∈ [1, s] such that there exists y ∈ Y0 with yi > 0. There exists
then a vector ỹ ∈ Y0 having ỹi > 0 for every i ∈ I0 (which we can get by choosing for each
i ∈ I0 a yi ∈ Y0 with yi

i > 0 and taking ỹ to be the sum of these vectors yi for i ∈ I0).
The vector ṽ = ỹ1a1 + · · ·+ ỹmam belongs to NC(x̄) (because of the validity of “⇐” in the
normal cone formula), and therefore (from the characterization of normals to convex sets)
we have ṽ · [x− x̄] ≤ 0 for all x ∈ C. In other words (since x̄ = 0),

ỹ1[a1 ·x] + · · ·+ ỹm[am ·x] ≤ 0 for all x ∈ C.

But x ∈ C means that ai ·x ≤ 0 for i ∈ [1, s], while ai ·x = 0 for i ∈ [s + 1,m]. From the
special construction of the multiplier vector ỹ, we see this implies ai ·x = 0 for all x ∈ C
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when i ∈ I0. Thus, C wouldn’t be changed if the inequality constraints ai ·x ≤ 0 for i ∈ I0
were switched over to being equality constraints ai ·x = 0; we have

C =
{
x

∣∣ ai ·x ≤ 0 for i ∈ [1, s]\I0, ai ·x = 0 for i ∈ [s+ 1,m] ∪ I0
}
.

On this basis, therefore, let I1 = [1, s]\I0. Choose a maximal linearly independent subset
of

{
ai

∣∣ i ∈ [s+1,m]∪ I0
}
. Then

{
ai

∣∣ i ∈ I2} is a basis for the subspace of IRn spanned by{
ai

∣∣ i ∈ [s+1,m]∪ I0
}
, so every ai for i in [s+1,m]∪ I0 but not in I2 can be expressed as

a linear combination of the vectors in this basis. Utilizing this to substitute for such ai in
the equation ỹ1a1 + · · ·+ ỹmam = 0 we have for our ỹ ∈ Y0, we can get (for later purposes)
a vector ỹ′ ∈ Y0 such that ỹ′i = 0 for each i in [s+ 1,m] ∪ I0 that’s not in I2, so that∑

i∈I0

ỹ′iai +
∑
i∈I1

ỹ′iai +
∑
i∈I2

ỹ′iai = 0 with ỹ′i ≥ 0 for i ∈ I0 and ỹ′i > 0 for i ∈ I1.

In particular, the basis property of
{
ai

∣∣ i ∈ I2
}

implies that the set of x satisfying
ai ·x = 0 for all i ∈ [s + 1,m] ∪ I0 is the same as the set of x satisfying ai ·x = 0 for all
i ∈ I2. Thus, we have an expression of C as the feasible set with respect to the constraints
ai ·x ≤ 0 for i ∈ I1 and ai ·x = 0 for i ∈ I2, as we mentioned in our plan. We want
to confirm that this reduced constraint system satisfies the corresponding version of the
standard constraint qualification (?). That means showing that an equation of the form∑

i∈I1
yiai +

∑
i∈I2

yiai = 0 with yi ≥ 0 for i ∈ I1 can’t hold unless yi = 0 for all i ∈ I1∪I2.
Is this fulfilled?

Given such coefficients yi, we can augment them by yi = 0 for i /∈ I1 ∪ I2 to get a
vector y ∈ Y satisfying y1a1 + · · ·+ ymam = 0. Then, by passing to y′ = y + λỹ′ for some
λ > 0 sufficiently large, we can obtain y′ ∈ Y such that y′1a1 + · · ·+ y′mam = 0, but with
y′i ≥ 0 for all i ∈ I0 ∪ I1 = [1, s], not merely for i ∈ I1. Both ỹ′ and this vector y′ belong
to the set Y0 involved in the definition of I0 and I1; according to that definition, we must
have both ỹ′i and y′i = 0 for all i ∈ I1. Hence yi = 0 as well for all i ∈ I1, and in the
equation y1a1 + · · ·+ ymam = 0 the nonzero coefficients, if any, can only occur for indices
i ∈ [s + 1,m] ∪ I0. But for such indices that aren’t in I2, we have yi = 0. On the other
hand, being left now with the equation coming down to

∑
i∈I2

yiai = 0 we can conclude
that even for i ∈ I2 we have yi = 0, by the linear independence of

{
ai

∣∣ i ∈ I2}.

Having established that the reduced constraint representation for C in terms of the
index sets I1 and I2 does fit the assumptions of Theorem 10, we obtain from that theorem,
for any v ∈ NC(x̄), an expression of the form v =

∑
i∈I1

yiai +
∑

i∈I2
yiai with yi ≥ 0

when i ∈ I1. Again, we can augment these by taking yi = 0 for i /∈ I1 ∪ I2. Next, take
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y′ = y + λỹ for λ > 0 large enough that y′i ≥ 0 for all i ∈ I0 ∪ I1 = [1, s], which is possible
because ỹi > 0 for i ∈ I0 and ỹi ≥ 0 for i ∈ I1). Then, since ỹ1a1 + · · ·+ ỹmam = 0, we will
have y′ ∈ Y and v = y′1a1 + · · ·+ y′mam, which is the type of expression we had to achieve.

Part 2. Next, we tackle the general claim in (a). We can suppose the notation is
chosen so that the indices of the affine inequality constraints are i ∈ [1, q] while those of
the affine equality constraints are i ∈ [r + 1,m]. Let

X ′ =
{
x ∈ X

∣∣ fi(x) ≤ 0 for i ∈ [1, q], fi(x) = 0 for i ∈ [r + 1,m]
}
,

so that C can be interpreted equally well as consisting of all x satisfying

x ∈ X ′ and fi(x)
{
≤ 0 for i = q + 1, . . . , s,
= 0 for i = s+ 1, . . . , r.

Let x̄ be a point where the refined constraint qualification (??) holds.

Because X ′ has been specified by a linear constraint system, the normal cone formula
of Theorem 10 applies to it without any need for a constraint qualification; this is what
we’ve just established in Part 1. Thus, NX′(x̄) consists of the vectors of the form

z′ =
q∑

i=1

yi∇fi(x̄) +
m∑

i=r+1

yi∇fi(x̄) with

 yi ≥ 0 for i ∈ [1, q] active at x̄,
yi = 0 for i ∈ [1, q] inactive at x̄,
yi free for i ∈ [r + 1,m].

We wish is to apply Theorem 10 to the alternative constraint representation of C, using
this information. Note that X ′ closed as well as regular at all of its points, because X ′

is polyhedral (in particular convex). The standard constraint qualification (?) for the
alternative constraint representation of C obliges us to examine the possibilities of having

−
r∑

i=q+1

yi∇fi(x̄) ∈ NX′(x̄) with

 yi ≥ 0 for i ∈ [q + 1, s] active at x̄,
yi = 0 for i ∈ [q + 1, s] inactive at x̄,
yi free for i ∈ [s+ 1, r].

The issue is whether this necessitates yi = 0 for all i ∈ [q+1, r]. It does, through the direct
combination of the formula for vectors z′ ∈ NX′(x̄) and the refined constraint qualification
(??) being satisfied at x̄. It follows then from Theorem 10 that NC(x̄) consists of the
vectors v that can be expressed in the form

v =
r∑

i=q+1

ȳi∇fi(x̄) + z′ with


z′ ∈ NX′(x̄)
ȳi ≥ 0 for i ∈ [q + 1, s] active at x̄,
ȳi = 0 for i ∈ [q + 1, s] inactive at x̄,
ȳi free for i ∈ [s+ 1, r].
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Invoking the formula for vectors z′ ∈ NX′(x̄) once more, we end up with the additional
Lagrange multipliers needed to see that these vectors v are the the same as the ones
expressible by the normal cone formula in Theorem 10.

Part 3. Our task now is the confirmation of (b). Consider any x̄ ∈ C. We’ll show
that under (? ? ?) we have (??) fulfilled at x̄, that the conclusion we want follows from (a).
Let x̃ have the property in (? ? ?). By the convexity of each fi in (b), we have 0 > fi(x̃)− fi(x̄) ≥ ∇fi(x̄) · [x̃− x̄] for i ∈ [1, s] active nonaffine at x̄,

0 ≥ fi(x̃)− fi(x̄) = ∇fi(x̄) · [x̃− x̄] for i ∈ [1, s] active affine at x̄,
0 = fi(x̃)− fi(x̄) = ∇fi(x̄) · [x̃− x̄] for i ∈ [s+ 1,m].

Suppose that y = (y1, . . . , ym) ∈ Y (x̄) with −
[
y1∇f1(x̄) + · · · + ym∇fm(x̄)

]
∈ NX(x̄).

Since x̃ ∈ X in particular, and X is convex, we must have

0 ≥ −
[
y1∇f1(x̄) + · · ·+ ym∇fm(x̄)

]
· [x̃− x̄] = −

m∑
i=1

yi∇fi(x̄) · [x̃− x̄].

In this sum the terms for the equality constraints and the inactive inequality constraints
drop out. The remaining terms, for the active inequality constraints, all have yi ≥ 0 and
∇fi(x̄) · [x̃ − x̄] ≤ 0, moreover with the latter inequality strict when fi is not affine. The
sum would therefore come out > 0 if any of the active inequality constraints with fi not
affine had yi > 0. Hence yi = 0 for all such constraints, and (??) is indeed satisfied.

Original Slater condition: The refined Slater condition in (b) is notable for providing
a test, on the constraints only, that yields a conclusion applicable simultaneously
to every point x̄ ∈ C. The original version of it, going back to the early history
of convex programming, concerned convex constraint systems with X = IRn and
inequality constraints only, and made no distinction between affine and nonaffine
convex constraints.

Key consequences for linear and convex programming: When (P) is a problem
of convex programming with linear constraints only (as in the case of linear pro-
gramming), the Kuhn-Tucker conditions are always necessary for the optimality of
x̄. This is true since, by Theorem 12(a), no constraint qualification is required in
Theorem 11(a) if the constraint system is linear.

When (P) is a problem of convex programming with some nonlinear convex con-
straints, one can’t get away with no constraint qualification at all. However, the
refined Slater condition in Theorem 12(b) has the remarkable ability to confirm the
necessity of the Kuhn-Tucker conditions without requiring any specific knowledge
about x̄ in advance of computation.
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Second-order conditions for optimality: Until now in the study of Lagrange mul-
tipliers, we have been occupied with first-order conditions only. The full theory of
second-order necessary conditions and sufficient conditions for local optimality is sub-
tle and complicated. (It likewise can be formulated with tangent and normal cones
but can involve juggling several different Lagrange multiplier vectors at the same
point x̄.) Here we’ll be content with looking only at a particular form of sufficient
condition that’s especially favored in the development of numerical methods.

THEOREM 13 (second-order optimality for problems in standard format). In

problem (P), suppose that X is polyhedral and the functions f0, f1, . . . , fm are of class C2.

Suppose x̄ is a feasible solution at which the Kuhn-Tucker conditions hold for a Lagrange

multiplier vector ȳ such that, in addition,

w ·∇2
xxL(x̄, ȳ)w > 0 for every w ∈ T satisfying ∇f0(x̄) ·w = 0, w 6= 0,

where T is the set consisting of vectors w such that

w ∈ TX(x̄) with

∇fi(x̄) ·w free for i ∈ [1, s] with fi(x̄) < 0,
∇fi(x̄) ·w ≤ 0 for i ∈ [1, s] with fi(x̄) = 0,
∇fi(x̄) ·w = 0 for i ∈ [s+ 1,m].

Then x̄ is a locally optimal solution to problem (P). Moreover, in these circumstances the

local optimality of x̄ is strict, in the sense that there exists a δ > 0 such that

f0(x) > f0(x̄) for all points x ∈ C with 0 < |x− x̄| < δ.

Note: The set T here can be identified with the tangent cone TC(x̄) by Theorem 10 under
the standard constraint qualification (?) or one of its substitutes (??) or (? ? ?).

Proof. For a value ρ > 0 of magnitude yet to be determined, consider the problem

minimize f(x, u) := f0(x) +
m∑

i=1

ȳi

[
fi(x)− ui

]
+
ρ

2

m∑
i=1

[
fi(x)− ui

]2 over X ×K,

where K is again the box formed by product of s intervals (−∞, 0] and m − s intervals
[0, 0]. This is a problem in which a C2 function f is minimized over a polyhedral set,
and the sufficient condition in Theorem 6(b) is therefore applicable for establishing local
optimality. For ūi = fi(x̄), is this condition satisfied at (x̄, ū)? It turns out that under our
hypothesis it is, provided ρ is high enough. This will be verified shortly, but first suppose
it’s true, in order to see where it leads.
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Suppose, in other words, that f(x, u) ≥ f(x̄, ū) for all (x, u) ∈ X × K in some
neighborhood of (x̄, ū). Then for feasible x ∈ X near enough to x̄, the vector u(x) :=(
f1(x), . . . , fm(x)

)
in K will (by the continuity of the fi’s) be near to u(x̄) = z̄ with

f(x, u(x)) ≥ f(x̄, ū). But f(x, u(x)) = f0(x) when x is feasible, and in particular f(x̄, ū) =
f0(x̄). It follows that f0(x) ≥ f0(x̄) for all feasible x in some neighborhood of x̄, and we
conclude that x̄ is locally optimal in the given problem.

We proceed now with verifying that for large values of ρ the sufficient condition in
Theorem 6(b) is satisfied for the local optimality of (x̄, ū) in the problem of minimizing f
over X ×K. The condition in question involves first and second partial derivatives of f as
well as the tangent cone to the box X ×K, which from the characterization given earlier
for tangents to boxes can be expressed in the product form TX×K(x̄, ū) = TX(x̄)×TK(ū).
Specifically, the condition requires that

∇f(x̄, ū) ·(w, z) ≥ 0 for all (w, z) in TX(x̄)× TK(ū),

(w, z) ·∇2f(x̄, w̄)(w, z) > 0 for all (w, z) 6= (0, 0) in TX(x̄)× TK(ū)

with ∇f(x̄, ū) ·(w, z) = 0.

The first partial derivatives are

∂f

∂xj
(x, u) =

∂L

∂xj
(x, ȳ) + ρ

m∑
i=1

[
fi(x)− ui

] ∂fi

∂xj
(x),

∂f

∂ui
(x, u) = −ȳi − ρ

[
fi(x)− ui

]
,

while the second partial derivatives are

∂2f

∂xk∂xj
(x, u) =

∂2L

∂xk∂xj
(x, ȳ) + ρ

m∑
i=1

[
fi(x)− ui

] ∂2fi

∂xk∂xj
(x) + ρ

∂fi

∂xk
(x)

∂fi

∂xj
(x),

∂2f

∂ul∂xj
(x, u) = −ρ ∂fl

∂xj
(x),

∂2f

∂xk∂ui
(x, u) = −ρ ∂fi

∂xk
(x),

∂2f

∂ul∂ui
(x, u) =

{
ρ if l = i
0 if l 6= i.

Because fi(x̄) − ūi = 0, we have ∇f(x̄, ū) ·(w, z) = ∇xL(x̄, ȳ) ·w − ȳ ·z and on the other
hand (w, z) ·∇2f(x̄, ū)(w, z) = w ·∇2

xxL(x̄, ȳ)w + ρ
∑m

i=1

[
∇fi(x̄) ·w − zi

]2. The sufficient
condition we wish to verify (for ρ large) thus takes the form:

∇xL(x̄, ȳ) ·w ≥ 0 for all w ∈ TX(x̄), ȳ ·z ≤ 0 for all z ∈ TK(ū),

w ·∇2
xxL(x̄, ȳ)w + ρ

m∑
i=1

[
∇fi(x̄) ·w − zi

]2
> 0 for all (w, z) 6= (0, 0) with

w ∈ TX(x̄), ∇xL(x̄, ȳ) ·w = 0, z ∈ TK(ū), ȳ ·z = 0.
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Here the first-order inequalities merely restate the relations −∇xL(x̄, ȳ) ∈ NX(x̄) and
ȳ ∈ NK(ū) (equivalent to ū ∈ NY (ȳ), as seen before), which hold by assumption. In the
second-order condition we obviously do have strict inequality when w = 0 and z 6= 0, since
the quadratic expression reduces in that case to ρ|z|2. Therefore, we can limit attention
to demonstrating strict inequality in cases where w 6= 0, or more specifically (through
rescaling), where |w| = 1. From the form of K and ū we know

z ∈ TK(ū)

ȳ ·z = 0

}
⇐⇒

 zi free for inactive i ∈ [1, s],
zi ≤ 0 for active i ∈ [1, s] with ȳi = 0,
zi = 0 for active i ∈ [1, s] with ȳi > 0 and for i ∈ [s+ 1,m],

so for any w 6= 0 in TX(x̄) the minimum of the quadratic expression with respect to
z ∈ TK(ū) with ȳ ·z = 0 will be attained when zi = zi(w) with

zi(w) =

∇fi(x̄) ·w for inactive i ∈ [1, s],
min

{
0,∇fi(x̄) ·w

}
for active i ∈ [1, s] with ȳi = 0,

0 for active i ∈ [1, s] with ȳi > 0 and for i ∈ [s+ 1,m].

Thus, we can even limit attention to pairs (w, z) having both |w| = 1 and zi = zi(w). We’ll
suppose the claim for this special case is false and argue toward a contradiction.

If the claim is false, there has to be a sequence of values ρν → ∞ along with vectors
wν ∈ TX(x̄) with |wν | = 1 such that ∇xL(x̄, ȳ) ·wν = 0 and

wν ·∇2
xxL(x̄, ȳ)wν + ρν

m∑
i=1

[
∇fi(x̄) ·wν − zi(wν)

]2

≤ 0,

and hence in particular

wν ·∇2
xxL(x̄, ȳ)wν ≤ 0,[

∇fi(x̄) ·wν − zi(wν)
]2

≤ − 1
ρν
wν ·∇2

xxL(x̄, ȳ)wν for all i.

Because the sequence {wν}∞ν=1 is bounded, it has a cluster point w̄. By the continuity of
the expressions involved, and the closedness of tangent cones, we get in the limit that

w̄ ∈ TX(x̄), |w̄| = 1, ∇xL(x̄, ȳ) ·w̄ = 0, ȳ · z̄(w̄) = 0,

w̄ ·∇2
xxL(x̄, ȳ)w̄ ≤ 0,

[
∇fi(x̄) ·w̄ − zi(w̄)

]2 ≤ 0 for all i.

The final batch of inequalities says that ∇fi(x̄) ·w̄ = zi(w̄) for all i, which means

∇fi(x̄) ·w
{
≤ 0 for active i ∈ [1, s] with ȳi = 0,
= 0 for inactive i ∈ [1, s] with ȳi > 0 and for i ∈ [s+ 1,m].
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These conditions along with the fact that F (x̄) ∈ NY (ȳ) and

∇xL(x̄, ȳ) ·w̄ = ∇f0(x̄) ·w̄ + ȳ1∇f1(x̄) ·w̄ + · · ·+ ȳm∇fm(x̄) ·w̄

also imply ∇f0(x̄) ·w̄ = 0. We have arrived therefore at a vector w̄ 6= 0 for which the
second-order condition in the theorem is violated. This finishes the proof.

Critical cone: In Theorem 13, the set of all w satisfying w ∈ T and ∇fi(x̄) ·w = 0 is
called the critical cone at x̄. It’s truly a cone, and moreover it’s polyhedral, be-
cause T itself is described by a certain system of linear constraints on w (inasmuch
as TX(x̄) is polyhedral by our assumption that X is polyhedral).

Connection with earlier second-order conditions: How is the sufficient condition for
optimality in Theorem 13 related to the earlier one in Theorem 6(b)? The comparison
is facilitated by the observation, made just after the statement of Theorem 13, that
T is the same as TC(x̄) under one of the constraint qualifications (?), (??), or (??). In
Theorem 6(b), a very similar condition was stated in terms of TC(x̄). The important
difference, though, is that in Theorem 6(b) the strict inequality was invoked for the
Hessian matrix ∇2f0(x̄), whereas in Theorem 13 the matrix that appears is

∇2
xxL(x̄, ȳ) = ∇2f0(x̄) + ȳ1∇2f1(x̄) + · · ·+ ȳm∇2fm(x̄).

Another difference, however, is that C was assumed to be polyhedral in Theorem 6,
whereas now it might not even be convex.

Of course, in the more general framework we have now, if the constraint functions
f1, . . . , fm are actually affine, then C is indeed polyhedral (because the underlying
set X was assumed in Theorem 13 to be polyhedral). The Hessian matrices for those
functions vanish in that case, so that in fact ∇2

xxL(x̄, ȳ) = ∇2f0(x̄). In recalling that
no constraint qualification is needed when dealing with linear constraints, we see that
Theorem 13 reduces exactly to Theorem 6(b) in the special case where f1, . . . , fm

are affine. The formulation in Theorem 6(b) doesn’t work for sets C that aren’t
polyhedral, because such sets have “curvature” that must be taken into account.
That’s done through the extra terms in ∇2

xxL(x̄, ȳ).

Corresponding second-order necessary condition? Caution: It might be imagined
that by weakening the “>” in Theorem 13 to “≥” the second-order sufficient condition
could be transformed into a second-order necessary condition for optimality. But
that’s not true even under the assumption that the standard constraint qualification
(?) holds in (P). To establish a second-order necessary condition, one can’t really
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get by with only a single Lagrange multiplier vector ȳ. Instead, several such vectors
may be needed, and it’s the max of w ·∇2

xxL(x̄, ȳ)w over those different ȳ’s that has
to be positive for each w.

Generalized constraint systems: A powerful feature of Theorem 10, the key to the
approach we’ve taken to Lagrange multipliers, is the fact that it extends, in the right
interpretation, to all sets C that can be represented in the form

C =
{
x ∈ X

∣∣F (x) ∈ K
}
, with F (x) = (f1(x), . . . , fm),

for closed sets X ⊂ IRn, K ⊂ IRm and C1 functions fi on IRn. For a standard feasible
set, K is the special box described before the statement of Theorem 10; it makes
NK(F (x̄)) be Y (x̄). But the proof of Theorem 10 only requires K to be a closed
set that is regular at F (x̄). For such K, the normal cone formula in Theorem 10
remains valid when Y (x̄) is replaced there, and in the constraint qualification (?), by
NK(F (x̄)), whatever that might be (depending on the choice of K). For tangents,
the corresponding formula then is TC(x̄) =

{
w ∈ TX(x̄)

∣∣∇F (x̄)w ∈ TK

(
F (x̄)

)}
.

Example in variational geometry: For the theoretically minded, here’s an illustration
of the far-reaching consequences of this observation. Suppose C = C1 ∩ C2 for
closed sets C1 and C2 in IRn. What can be said about NC(x̄) and TC(x̄) in terms
of normals and tangents to C1 and C2 themselves?

We can approach this by taking X = IRn, K = C1 × C2 ⊂ IRn × IRn, and
defining F (x) = (x, x). Then C consists of all x ∈ X such that F (x) ∈ K. When
the generalization of Theorem 10 just described is invoked in this framework,
the constraint qualification turns into the condition that there be no choice of
v1 ∈ NC1(x̄) and v1 ∈ NC1(x̄) such that v1 + v2 = 0. When that holds, he
conclusion obtained is that

TC(x̄) = TC1(x̄) ∩ TC2(x̄), NC(x̄) = NC1(x̄) +NC2(x̄),

where the set sum refers to the set
{
v1 + v2

∣∣ v1 ∈ NC1(x̄), v2 ∈ NC2(x̄)
}
.
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6. GAMES AND DUALITY

In trying to understand how Lagrange multiplier vectors ȳ might be generated or
utilized in computational schemes, the case of linear programming is instructive. Inspection
of the Kuhn-Tucker conditions in that case reveals that these vectors solve a mysterious
problem of optimization inextricably tied to the given one. Pursuing the mystery further,
we are led to an interesting branch of modern mathematics: game theory. We’ll look briefly
at this theory and use it to develop the fact that for convex programming problems quite
generally the Lagrange multiplier vectors associated with optimality can be obtained in
principle by solving an auxiliary problem said to be “dual” to the given “primal” problem.

Kuhn-Tucker conditions in linear programming: Consider an optimization problem
in the so-called primal canonical format in linear programming :

(
Plin

) minimize
∑n

j=1
cjxj subject to∑n

j=1
aijxj ≥ bi for i = 1, . . . ,m,

xj ≥ 0 for j = 1, . . . , n.

This corresponds to a problem (P) standard format with objective function f0(x) =∑n
j=1 cjxj and constraints x ∈ X = IRn

+ and 0 ≥ fi(x) = bi −
∑n

j=1 aijxj for
i = 1, . . . ,m. We have s = m, so Y = IRm

+ . The Lagrangian is therefore

L(x, y) =
∑n

j=1
cjxj +

∑m

i=1
yi

(
bi −

∑n

j=1
aijxj

)
=

∑m

i=1
biyi +

∑n

j=1
xj

(
cj −

∑m

i=1
yiaij

)
on IRn

+ × IRm
+ .

The Kuhn-Tucker conditions on x̄ and ȳ, which as we know can be written in general
as −∇xL(x̄, ȳ) ∈ NX(x̄) and ∇yL(x̄, ȳ) ∈ NY (ȳ), come out for this L, X and Y as
the following conditions, coordinate by coordinate: x̄j ≥ 0,

(
cj −

∑m

i=1
ȳiaij

)
≥ 0, x̄j

(
cj −

∑m

i=1
ȳiaij

)
= 0 for j = 1, . . . , n,

ȳi ≥ 0,
( ∑n

j=1
aij x̄j − bi

)
≥ 0, ȳi

( ∑n

j=1
aij x̄j − bi

)
= 0 for i = 1, . . . ,m.

Complementary slackness: These relationships are called the complementary slackness
conditions in linear programming. They list for each index j or i a pair of
inequalities (one on x̄ and one on ȳ), requiring that at most one of the two
can be “slack,” i.e., satisfied with strict inequality. By Theorems 11 and 12, x̄ is
optimal in (Plin) if and only if these relationships hold for some ȳ.
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Dual linear programming problem: The symmetry in these conditions is tantalizing.
There turns out to be a connection with the following problem, said to be dual to
(Plin), which is in the so-called dual canonical format in linear programming :

(
Dlin

) maximize
∑m

i=1
biyi subject to∑m

i=1
yiaij ≤ cj for j = 1, . . . , n,

yi ≥ 0 for i = 1, . . . ,m.

To see the formal relationship between (Dlin) and (Plin), begin by converting (Dlin)
from dual canonical format to primal canonical format:

minimize
∑m

i=1
[−bi]yi subject to∑m

i=1
yi[−aij ] ≥ [−cj ] for j = 1, . . . , n,

yi ≥ 0 for i = 1, . . . ,m.

As an act of faith, permit the symbols x̄j to be used for the Lagrange multipliers
associated with optimality in this problem, without presupposing for now any tie to
the previous x̄. The Kuhn-Tucker conditions for this problem in their complementary
slackness formulation emerge then as

ȳi ≥ 0,
(
[−bi]−

∑n

j=1
[−aij ]x̄j

)
≥ 0, ȳi

(
[−bi]−

∑n

j=1
[−aij ]x̄j

)
= 0

for i = 1, . . . ,m,

x̄j ≥ 0,
( ∑m

i=1
ȳi[−aij ]− [−cj ]

)
≥ 0, x̄j

( ∑m

i=1
ȳi[−aij ]− [−cj ]

)
= 0

for j = 1, . . . , n.

But these are identical to the complementary slackness conditions we had before.
Problems (Plin) and (Dlin) thus turn out to share the very same optimality conditions!
Neither can be solved without somehow, explicitly or implicitly, solving the other as
well. This astounding observation, which at first seems to lack a meaningful basis,
leads to important consequences.

Symmetry: The reason for treating (Dlin) as a problem of maximization instead of
minimization is to bring out not only the symmetry in this switch of signs, but
to promote a relationship of optimal values which is given in the theorem below.

It’s interesting to note that after (Dlin) has been converted to a problem in
primal canonical form—denoted say by (P ′lin)—it will in turn have an associated
dual problem—say (D′lin). But this can be seen to be none other than the problem
obtained by converting (Plin) from primal canonical form to dual canonical form.
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Canonical formats: As noted, any linear programming problem in primal canonical
format can be transformed into dual canonical format and vice versa. In fact,
any linear programming problem at all can be recast in either framework; either
can serve as a means for standardization in formulating problems. This is true
because equation constraints can be replaced by pairs of inequality constraints,
while any free variable can be modeled as a difference of nonnegative variables.

THEOREM 14 (duality in linear programming). For a linear programming problem

(Plin) in primal canonical format and the associated linear programming problem (Dlin) in

dual canonical format, the following properties of a pair of vectors x̄ and ȳ are equivalent

to each other (so that if any one of them holds, they all hold):

(a) x̄ is an optimal solution to (Plin), and ȳ is an associated Lagrange multiplier vector

in the Kuhn-Tucker conditions for (Plin) at x̄;

(b) ȳ is an optimal solution to (Dlin), and x̄ is an associated Lagrange multiplier

vector in the Kuhn-Tucker conditions for (Dlin) at ȳ;

(c) x̄ and ȳ are optimal solutions to (Plin) and (Dlin), respectively;

(d) x̄ is a feasible solution to (Plin), ȳ is a feasible solution to (Dlin), and the objective

function values at these points are equal:
∑n

j=1 cj x̄j =
∑m

i=1 biȳi;

(e) x̄ and ȳ satisfy the complementary slackness conditions x̄j ≥ 0,
(
cj −

∑m

i=1
ȳiaij

)
≥ 0, x̄j

(
cj −

∑m

i=1
ȳiaij

)
= 0 for j = 1, . . . , n,

ȳi ≥ 0,
( ∑n

j=1
aij x̄j − bi

)
≥ 0, ȳi

( ∑n

j=1
aij x̄j − bi

)
= 0 for i = 1, . . . ,m.

Furthermore, if either (Plin) or (Dlin) has an optimal solution, then optimal solutions x̄

and ȳ must exist for both problems, thereby triggering through (c) all the other properties,

including through (d) the conclusion that the min in the primal problem equals the max

in the dual problem, i.e.,

[
optimal value in

(
Plin

) ]
=

[
optimal value in

(
Dlin

) ]
.

Proof. The equivalence of (a) and (b) with (e) has been ascertained in the preceding
discussion. We also know through Theorems 11 and 12 that the optimality of x̄ in (Plin)
is equivalent to the existence of a vector ȳ satisfying these conditions, and likewise that
the optimality of ȳ in (Dlin) is equivalent to the existence of a vector x̄ satisfying these
conditions. Hence if either problem has an optimal solution, the other must have one as
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well. Observe next that the complementary slackness conditions in (e) entail
n∑

j=1

cj x̄j −
m∑

i=1

ȳibi =
n∑

j=1

[
cj −

m∑
i=1

ȳiaij

]
x̄j +

m∑
i=1

ȳi

[ n∑
j=1

aij x̄j − bi

]
= 0.

It follows that when optimal solutions exist the optimal values in the two problems coincide.
This leads to the further equivalence of (a)–(b)–(e) with (c) and with (d).

Correctly drawing conclusions about linear programming duality: It must be
emphasized that the initial part of Theorem 14 doesn’t say directly whether (Plin)
and (Dlin) actually enjoy the properties in (a), (b), (c), (d), and (e), or that the
optimal values in these problems are equal. It merely asserts an equivalence; to get
in the door, you have to have x̄ and ȳ being known to satisfy at least one of the five
conditions. The final part of Theorem 14, however, provides an easy test. To obtain
the existence of an x̄ and ȳ pair satifying all these conditions, and to conclude that
the optimal value equation holds, it’s enough to verify that one of the two problems
has an optimal solution.

Showing that either (Plin) and (Dlin) has an optimal solution could be accom-
plished through well-posedness and an application of Theorem 1, but remember that
for the special case of linear programming problems a much easier criterion is avail-
able. A linear programming problem is sure to have an optimal solution if its feasible

set is nonempty and its optimal value isn’t infinite. The optimal value in (Plin) can’t
be −∞ if a finite lower bound exists to its objective function over its feasible set.
Sometimes such a bound is very easy to produce (as, for instance, when the objective
function is nonnegative over that set). Likewise, the optimal value in (Dlin) can’t be
∞ if a finite upper bound exists to its objective function over its feasible set.

Existence through double feasibility: It follows from the special existence criterion for
optimal solutions in linear programming that, for a primal-dual pair of problems
(Plin) and (Dlin), if feasible solutions exist to both problems then optimal solutions
exist to both problems.

Argument: In a slight extension of the proof of Theorem 14, we observe that for
any feasible solutions to the two problems we have

n∑
j=1

cjxj −
m∑

i=1

yibi =
n∑

j=1

[
cj −

m∑
i=1

yiaij

]
xj +

m∑
i=1

yi

[ n∑
j=1

aijxj − bi

]
≥ 0.

Then the value
∑m

i=1 yibi is a lower bound to the optimal value in (Plin)
(implying it must be finite), while at the same time

∑n
j=1 cjxj is an upper

bound to the optimal value in (Dlin) (implying that it too must be finite).
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Knowing a priori that the optimal value is finite: The double feasibility test gives
another way for ascertaining, without first solving a linear programming problem
(Plin), that its optimal value must be finite: it’s enough to verify that (Plin) and
the associated (Dlin) both possess feasible solutions.

Dantzig’s simplex method in linear programming: The complementary slackness
conditions are the algebraic foundation for an important numerical technique for solv-
ing linear programming problems, the very first, which actually was the breakthrough
that got optimization rolling around 1950 as a modern subject with impressive prac-
tical applications. In theory, the task of finding an optimal solution x̄ to (Plin) is
equivalent to that of finding a pair of vectors x̄ and ȳ for which these conditions
hold. Trying directly to come up with solutions to systems of linear inequalities is a
daunting challenge, but solving linear equations is more attractive, and this can be
made the focus through the fact that the complementary slackness conditions require
at least one of the inequalities for each index j or i to hold as an equation.

Let’s approach this in terms of selecting of two index sets I ⊂ {i = 1, . . . ,m} and
J ⊂ {j = 1, . . . , n}, and associating with the following system of n+m equations in
the n+m unknowns x̄j and ȳi:

(I, J)

∑m

j=1
aij x̄j − bi = 0 for i ∈ I, ȳi = 0 for i /∈ I,

cj −
∑m

i=1
ȳiaij = 0 for j ∈ J, x̄j = 0 for j /∈ J.

To say that x̄ and ȳ satisfy the complementary slackness conditions is to say that
for some choice of I and J , this (I, J)-system of linear equations will have a solution
(x̄, ȳ) for which the inequalities∑m

j=1
aij x̄j − bi ≥ 0 for i /∈ I, ȳi ≥ 0 for i ∈ I,

cj −
∑m

i=1
ȳiaij ≥ 0 for j /∈ J, x̄j ≥ 0 for j ∈ J

happen to be satisfied as well. The crucial observation is that there is only a finite
collection of (I, J)-systems, because there are only finitely many ways of choosing
the index sets I and J .

Moreover, it can be shown that one can limit attention to (I, J)-systems that are
nondegenerate, i.e., have nonsingular matrix so that there’s a unique corresponding
pair (x̄, ȳ). The prospect is thereby raised of searching by computer through a finite
list of possible candidate pairs (x̄, ȳ), each obtained by solving a certain system of
linear equations, checking each time whether the desired inequalities are satisfied too,
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until a pair is found that meets the test of the complementary slackness conditions
and thereby provides an optimal solution to the linear programming problem (Plin).

Of course, even with this idea one is far from a practical method of computation,
because the number of (I, J)-systems that would have to be inspected is likely to
be awesomely astronomical, far beyond the capability of thousands of the fastest
computers laboring for thousands of years! But fortunately it’s not necessary to look
at all such systems. There are ways of starting with one such (I, J)-system and then
modifying the choice of I and J in tiny steps in such a manner that “improvements”
are continually made.

We won’t go into this scheme further here, but it’s the contribution of Dantzig that
so changed the world of optimization at the beginning of the computer age. Nowadays
there are other ways of solving linear programming problems, but Dantzig’s so-called
“simplex method” is still competitive in some situations and continues to be used.

Duality more generally, via game theory: The facts about the tight relationship
between the linear programming problems (Plin) and (Dlin) raise more questions than
they answer. What is the “explanation” for this phenomenon, and what significance,
not just technical, can be ascribed to the Lagrange multiplier values that appear?

How, for instance, might they be interpreted in a particular application? These
issues go far beyond linear programming. To lay the groundwork for their analysis, we
need to spend some time with elementary game theory. That branch of mathematics
is interesting anyway in its own right, because of connections with economics and
sociology.

Lagrangian framework as the key: Duality in linear programming, in its manifestation
so far, has grown out of complementary slackness form of the Kuhn-Tucker con-
ditions that characterize optimality. As we move from linear programming to
greater generality, we’ll be focusing more on the Lagrangian form of the Kuhn-
Tucker conditions and on the Lagrangian L itself as a special function on a certain
product set X × Y .

Cases where a pair (x̄, ȳ) constitutes a “Lagrangian saddle point” will be
especially important. For the time being, though, we’ll profit from allowing the
L, X, Y , notation to be used in a broader context, where they need not signify
anything about a Lagrangian.
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Two-person zero-sum games: Consider any function L : X×Y → IR for any nonempty
sets X and Y , not necessarily even in IRn and IRm. There’s an associated game,
played by two agents, called Player 1 and Player 2. Player 1 selects some x ∈ X,
while Player 2 selects some y ∈ Y . The choices are revealed simultaneously. Then
Player 1 must pay $L(x, y) to Player 2—that’s all there is to it.

Direction of payment: Because no restriction has been placed on the sign of L(x, y),
the game is not necessarily loaded against Player 1 in favor of Player 2. The
payment of a negative amount $L(x, y) from Player 1 to Player 2 is code for
money actually flowing in the opposite direction.

Terminology: In general, X and Y are called the “strategy sets” for Players 1 and 2,
while L is the “payoff function.”

Generality of the game concept: This abstract model of a game may appear too
special to be worthy of the name, although it does clearly furnish a model of conflict
of interest between two “agents.” Yet appearances can be deceiving: games such as
chess and even poker can in principle be covered. We won’t be concerned with those
games here, but it’s worth sketching them into the picture anyway along with an
example where, on the other hand, the game concept is useful artificially as a way of
representing uncertainty in decision making.

Chess as a two-person, zero-sum game. In chess, each element x of the set X at the
disposal of Player 1, with the white pieces, is a particular policy which specifies
encyclopedically what Player 1 should do within all possible circumstances that
might arise. For instance, just one tiny part of such a policy x would be a
prescription like “if after 17 moves the arrangement of the pieces on the board
is such-and-such, and the history of play that brought it about is such-and-such,
then such-and-such move should be made.” The elements y ∈ Y have similar
meaning as policies for Player 2, with the black pieces.

Clearly, in choosing such policies independently the two players are merely
deciding in advance how they will respond to whatever may unfold as the chess
game is played. From (x, y) the outcome is unambiguously determined: check-
mate for Player 1, checkmate for Player 2, or a draw. Define L(x, y) to be −1, 1
or 0 according to these three cases. The chess game is represented then by X, Y ,
and L. It’s not claimed that this is a practical representation, because the sets
X and Y are impossibly large, but conceptually it’s correct.
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Poker as a two-person zero-sum game. The game of poker can be handled in similar
fashion. It’s payoffs are probabilistic “expectations,” since they depend to a cer-
tain extent on random events beyond the players’ control. Nonetheless, features
of poker like bluffing can be captured in the model and evaluated for their effects.
Poker for more than two players can be treated as an N -person game.

Games against nature: A useful approach to decision-making under uncertainty in
many situations is to put yourself in the place of Player 1 in a game in which you
choose an x but Player 2 is “nature,” out to get you by choosing, as y, an un-
favorable environment of circumstances (weather, interest rates, . . . , over which
you have no control but will effect the “cost” you will have to pay).

Saddle points: The term “saddle point” has various usages in mathematics, but in game
theory and optimization it always refers to the following concept, which in the par-
ticular context of a two-person zero-sum game expresses a kind of solution to the
conflict between the two players. A saddle point of a function L over a product set
X × Y is a pair (x̄, ȳ) ∈ X × Y such that

L(x, ȳ) ≥ L(x̄, ȳ) ≥ L(x̄, y) for all x ∈ X and y ∈ Y.

This means that the minimum of L(x, ȳ) with respect to x ∈ X is attained at x̄,
whereas the maximum of L(x̄, y) with respect to y ∈ Y is attained at ȳ.

Equilibrium interpretation: In the setting of a game with strategy sets X and Y and
payoff function L, a saddle point (x̄, ȳ) of L over X × Y captures a situation in
which neither player has any incentive for deviating from the strategies x̄ and ȳ.
In selecting x̄, Player 1 can guarantee that the amount paid to Player 2 won’t
exceed $L(x̄, ȳ), even if Player 2 were aware in advance that x̄ would be chosen.
This results from the fact that L(x̄, ȳ) ≥ L(x̄, y) for all y ∈ Y (as half of the
defining property of a “saddle point”). At the same time, in selecting ȳ, Player 2
can guarantee that the amount received from Player 1 won’t fall short of $L(x̄, ȳ),
regardless of whether Player 1 acts with knowledge of this choice or not. This is
because L(x̄, ȳ) ≤ L(x, ȳ) for all x ∈ X.

Existence of saddle points: Without crucial assumptions being satisfied by L, X and
Y , there might not be a saddle point. (Typically such assumptions include
the convexity of X and Y and convexity/concavity properties of L, among
other things. The existence of saddle points is studied in minimax theory , but
we’ll be looking at some special cases in the context of optimization theory.
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Chess and poker: No one knows whether a saddle point exists for chess in the
game formulation we’ve given. What’s known is that if “randomized” policies
involving probabilistic play are introduced in a certain way, then a saddle
point does exist. Correspondingly, the payoffs are modified to reflect chances
of winning.) Whether the equilibrium value L(x̄, ȳ) in such a model is 0,
testifying that chess is a fair game when randomized policies are admitted, is
unknown. The theory of poker is in a similar state.

Gradient condition associated with a saddle point: In the important case of a game in
which X and Y happen to be closed subsets of IRn and IRm while L is a function
of class C1, our work on constrained optimization gives some insights into a saddle
point. In that case a first-order necessary condition for (x̄, ȳ) to be a saddle point
of L over X × Y is that

−∇xL(x̄, ȳ) ∈ NX(x̄), ∇yL(x̄, ȳ) ∈ NY (ȳ).

This follows from applying Theorem 9(a) first to the minimization of L(x, ȳ) in
x ∈ X and then to the maximization of L(x̄, y) in y ∈ Y . By Theorem 9(b)
we see that, conversely, this gradient condition is sufficient for a saddle point in
situations where X and Y are convex sets, L(x, y) is convex in x for each y ∈ Y ,
and L(x, y) is concave in y for each x ∈ X.

Preview about Lagrangians: This gradient condition turns into the Lagrangian form
of the Kuhn-Tucker conditions when L is the Lagrangian associated with an
optimization problem (P) in standard format. This is the channel down which
we are eventually headed.

Broader game models: In an N -person game, each Player k for k = 1, . . . , N selects an
element xk ∈ Xk, and the choices are revealed simultaneously. Then each Player k
must pay the (positive, zero, or negative) amount Lk(x1, . . . , xN )—to the “great
accountant in the sky,” or whatever. The game is zero-sum if∑N

k=1
Lk(x1, . . . , xN ) = 0,

or in other words the total of positive payments exactly balances the total of negative
payments (in which case one can think of the positive payments as going into a pot
and then being restributed as the negative payments). In the two-person, zero-sum
case one has L1(x1, x2) = −L2(x1, x2) = L(x, y).

For games that aren’t zero-sum, no actual exchange of anything needs to be
envisioned, and there is no reason to focus on a medium of exchange, such as money.
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The units in which the values of Lk are measured can be personal to Player k and
different from those for the other players. This makes it possible to use game theory
in the modeling of social and economic situations that don’t necessarily reduce to
competition alone. For instance, cooperative games can be studied, where everyone
can win if the actions are properly coordinated. Theory must then address the
mechanisms of achieving coordination among players.

The central feature of any N -person game is that the consequences for Player k
of choosing xk depend not only on xk itself, over which Player k has control, but also
on the decisions made by the other players.

Equilibrium idea: A basic concept of “solution” in the theory of N -person games is
that of Nash equilibrium. This refers to having (x̄1, . . . , x̄N ) ∈ X1 × · · · × XN

such that Player 1 faces

L1(x1, x̄2, . . . , x̄N ) ≥ L1(x̄1, x̄2, . . . , x̄N ) for all x1 ∈ X1,

while Player 2 faces

L2(x̄1, x2, . . . , x̄N ) ≥ L2(x̄1, x̄2, . . . , x̄N ) for all x2 ∈ X2,

and similarly for Player 3 to Player N (when present). As with a saddle point,
the interpretation is that no single player would have incentive for unilaterally
making a different decision. For a two-person zero-sum game, Nash equilibrium
reduces to a saddle point. Other interesting concepts of equilibrium have also been
explored theoretically, for instance ones involving the formation of “coalitions”
among the players, reinforced perhaps by side payments to keep members in line,
with these side payments coming out of the total proceeds of the coalition.

Game theory applications: The greatest interest in developing game theory has come
from economists, who have used it to study markets and competition. In fact,
the subject was invented expressly for that purpose by John von Neumann, one
of the most remarkable mathematicians of the 20th century.
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Optimization problems derived from a game: Associated with any two-person, zero-
sum game specified by a general choice of X, Y and L, there are two complementary
problems of optimization. The study of these problems provides further insight
into the role of saddle points and, eventually, the ways that Lagrange multiplier
vectors can be determined, interpreted and utilized. The problems in question result
from adopting a very conservative approach to playing the game, amounting to little
more than a worst-case analysis. Whether or not one would really be content with
playing the game in this manner in practice, the approach does lead to impressive
mathematical results.

Strategy optimizing problem for Player 1: To determine x̄, Player 1 should solve

(P1) minimize f(x) over all x ∈ X, where f(x) := sup
y∈Y

L(x, y).

In other words, for each x ∈ X, Player 1 should look at the value f(x), which
indicates the worst that could possibly happen if x were the element selected
(the measure being in terms of how high a payment might have to be made to
Player 2, in the absence of any way to predict what Player 2 will actually do).
The choice of x̄ should be made to ameliorate this as far as possible.

Strategy optimizing problem for Player 2: To determine ȳ, Player 2 should solve

(P2) maximize g(y) over all y ∈ Y, where g(y) := inf
x∈X

L(x, y).

In other words, for each y ∈ Y , Player 2 should look at the value g(y), which
indicates the worst that could possibly happen if y were the element selected
(the measure being in terms of how low a payment might be forthcoming from
Player 1, in the absence of any way to predict what Player 1 will actually do).
The choice of ȳ should be made to ameliorate this as far as possible.

Fundamental relation in optimal values: Let v1 denote the optimal value in Player 1’s
min problem and v2 the optimal value in Player 2’s max problem. Then

v1 ≥ v2.

This is evident on intuitive grounds, even without assurance that optimal solu-
tions exist to the two problems. Namely, for any α > v1, Player 1 can choose
x ∈ X with f(x) ≤ α and thereby be certain of not having to pay more than the
amount α. On the other hand, for any β < v2, Player 2 can choose y ∈ Y with
g(y) ≥ β and be certain of getting at least the amount β from Player 1.
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Seen more fully, the definition of f gives f(x) ≥ L(x, y) for any y ∈ Y , while
the definition of g gives g(y) ≤ L(x, y) for any x ∈ X, so that

f(x) ≥ L(x, y) ≥ g(y) for all x ∈ X, y ∈ Y.

Each value g(y) for y ∈ Y thus provides a lower bound to the values of the
function f on X, so v2 likewise provides a lower bound, the best that can be
deduced from the various values g(y). This can’t be more than the greatest lower
bound for f on X, which by definition is v1.

The value of a game: It’s possible that v1 > v2, but if these optimal values in the
strategy problems for the two players are equal, then the common amount v =
v1 = v2 is said to be the game’s value. It quantifies the degree in which the game
is biased (toward Player 2 if positive, and toward Player 1 if negative) and can
be interpreted as how much Player 2 should be willing to pay, and how much
Player 1 should ask to be paid, for participating in the game.

Fairness: A game is called fair if its value v exists by this definition and equals 0.

Minimax issues: The question of whether v1 = v2 can be viewed in terms of the extent
to which the order of operations of minimization and maximization (in separate
arguments) can be interchanged: by definition we have

v1 = inf
x∈X

sup
y∈Y

L(x, y), v2 = sup
y∈Y

inf
x∈X

L(x, y).

Because “inf” and “sup” can often be replaced by “min” and “max,” results
giving conditions under which v1 = v2 are generally called minimax theorems.
Although special assumptions are needed to guarantee the validity of such an
exchange, some cases of which will emerge as we proceed, the fact that v1 ≥ v2,
noted above, reveals that one always does at least have “inf sup ≥ sup inf.”

THEOREM 15 (basic characterization of saddle points). In any two-person, zero-

sum game, the following conditions on a pair (x̄, ȳ) are equivalent to each other and ensure

that L(x̄, ȳ) is the optimal value in both players’ problems.

(a) (x̄, ȳ) is a saddle point of L(x, y) on X × Y .

(b) x̄ is an optimal solution to problem (P1), ȳ is an optimal solution to problem (P2),
and the optimal values in these two problems agree.

(c) x̄ ∈ X, ȳ ∈ Y , and the objective values f(x̄) in (P1) and g(ȳ) in (P2) agree.

Proof. The equivalence is obvious from the general inequality f(x) ≥ L(x, y) ≥ g(y) just
noted above and the fact that the saddle point condition can, by its definition and that of
f and g, be written as f(x̄) = L(x̄, ȳ) = g(ȳ).
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Saddle point sets as product sets: This theorem reveals that the components x̄ and ȳ of
a saddle point (x̄, ȳ) have a sort of independent character. They can be obtained
by solving one optimization to get x̄ and another to get ȳ. The set of saddle
points is therefore always a product set within X × Y . If (x, y) and (x′, y′) are
saddle points, then so too are (x′, y) and (x, y′).

Application of game theory to Lagrangians: Returning to the case of an optimization
problem (P) in standard format and its associated Lagrangian L on X × Y , we ask
a question that at first could seem frivolous. If we think of these elements L, X,
and Y as specifying a certain two-person, zero-sum game, what would we get? As a
matter of fact, in this game the strategy problem (P1) for Player 1 turns out to be
(P)! Indeed, the formula for the function that is to be minimized in (P1),

f(x) := sup
y∈Y

L(x, y) = sup
y∈Y

{
f0(x) +

∑m

i=1
yifi(x)

}
,

gives none other than the essential objective function in (P): in terms of the feasible
set C =

{
x ∈ X

∣∣ fi(x) ≤ 0 for i ∈ [1, s], fi(x) = 0 for i ∈ [s+ 1,m]
}
, we have

C =
{
x ∈ X

∣∣ f(x) <∞
}
, f(x) =

{
f0(x) if x ∈ C,
∞ if x /∈ C.

Thus, in tackling problem (P) as our own, we are tacitly taking on the role of Player 1
in a certain game. Little did we suspect that our innocent project would necessarily
involve us with an opponent, a certain Player 2!

This will take time to digest, but a place to begin is with our knowledge, through
game theory, that the strategy problem (P2) that Player 2 is supposed to want to
solve is the one in which the function g(y) := infx∈X L(x, y) is maximized over y ∈ Y .
We define this to be the problem “dual” to (P) in the Lagrangian framework.

Lagrangian dual problem: The dual problem of optimization associated with (P) (the
latter being called the primal problem for contrast) is

(D)
maximize g(y) over all y ∈ Y, where

g(y) := inf
x∈X

L(x, y) = inf
x∈X

{
f0(x) +

∑m

i=1
yifi(x)

}
.

Here g has the general status that f did in (P) as the essential objective function
in (D), because g(y) might be −∞ for some choices of y ∈ Y . The feasible set in
problem (D) therefore isn’t actually the set Y , but the set D that we define by

D =
{
y ∈ Y

∣∣ g(y) > −∞
}
.
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In other words, a vector y ∈ Y isn’t regarded as a feasible solution to (D) unless g(y)
is finite for this y. Of course, a closer description of D and g can’t emerge until more
information about X and the functions fi has been supplied in a given case, so that
the calculation of g(y) can be carried out further.

Example: Lagrangian derivation of linear programming duality: For a linear program-
ming problem (Plin) as considered earlier, the Lagrangian is

L(x, y) =
∑n

j=1
cjxj +

∑m

i=1
yi

(
bi −

∑n

j=1
aijxj

)
=

∑m

i=1
biyi +

∑n

j=1
xj

(
cj −

∑m

i=1
yiaij

)
on X × Y = IRn

+ × IRm
+ .

Using the second version of the formula to calculate the essential objective in (D),
we get for arbitrary y ∈ IRm

+ that

g(y) = inf
x∈IRn

+

L(x, y) = inf
xj≥0

j=1,...,n

{∑m

i=1
biyi +

∑n

j=1
xj

(
cj −

∑m

i=1
yiaij

)}

=
{ ∑m

i=1 biyi when cj −
∑m

i=1 yiaij ≥ 0 for j = 1, . . . , n,
−∞ otherwise.

The Lagrangian dual problem (D), where g(y) is maximized over y ∈ Y , comes
out therefore as the previously identified dual problem (Dlin).

Convexity properties of the dual problem: Regardless of whether any more detailed
expression is available for the feasible set D and objective function g in problem (D),
it’s always true that D is a convex set with respect to which g is concave. This
problem, therefore, falls within the realm of optimization problems of convex type.

Argument: Consider any points y0 and y1 in D along with any τ ∈ (0, 1). Let yτ =
(1 − τ)y0 + τy1. From the definition of D and g we have for each x ∈ X that
−∞ < g(y0) ≤ L(x, y0) and −∞ < g(y1) ≤ L(x, y1), hence

−∞ < (1− τ)g(y0) + τg(y1) ≤ (1− τ)L(x, y0) + τL(x, y1) = L(x, yτ ),

where the equation is valid because L(x, y) is affine with respect to y. Since this
holds for arbitrary x ∈ X, while g(yτ ) = infx∈X L(x, yτ ), we obtain the concavity
inequality (1− τ)g(y0) + τg(y1) ≤ g(yτ ) along with the guarantee that yτ ∈ D.

Basic relationship between the primal and dual problems: A number of facts
about (P) and (D) follow at once from game theory, without any need for additional
assumptions. It’s always true that[

optimal value in (P)
]
≥

[
optimal value in (D)

]
.
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When these two optimal values coincide, as they must by Theorem 15 if a saddle
point exists for the Lagrangian L on X × Y , the saddle points are the pairs (x̄, ȳ)
such that x̄ solves (P) while ȳ solves (D). The sticking point, however, is whether a
saddle point does exist. For that we need to draw once more on convexity.

THEOREM 16 (duality in convex programming). Consider an optimization prob-

lem (P) in standard format along with its Lagrangian dual (D) in the case where the set

X is closed and convex, the functions fi are C1 and convex for i = 0, 1, . . . , s, and affine

for i = s+ 1, . . . ,m. Then the Lagrangian L(x, y) is convex in x for each y ∈ Y as well as

affine in y for each x ∈ X, and the following properties are equivalent:

(a) x̄ is an optimal solution to (P), and ȳ is a Lagrange multiplier vector associated

with x̄ by the Kuhn-Tucker conditions for (P);

(b) (x̄, ȳ) is a saddle point of the Lagrangian L(x, y) over X × Y ;

(c) x̄ and ȳ are optimal solutions to (P) and (D), respectively, and

[
optimal value in

(
P

) ]
=

[
optimal value in

(
D

) ]
.

In particular, therefore, this equation must hold if (P) has an optimal solution for which

the Kuhn-Tucker conditions are fulfilled.

Note: In connection with the final assertion, remember that the Kuhn-Tucker conditions
are sure to be fulfilled at an optimal solution x̄ to (P) if the standard constraint
qualification (?) in Theorem 10, or one of its substitutes (??) or (? ? ?) in Theorem
12, is satisfied. Moreover, (? ? ?) doesn’t require specific knowledge about x̄.

Proof. Since L(x, y) = f0(x) + y1f1(x) + · · ·+ ymfm(x), we always have L(x, y) affine in
y for fixed x. Because Y = IRs

+ × IRm−s, the vectors y ∈ Y have components yi that are
nonnegative for i ∈ [1, s], and the convex programming assumptions on (P) therefore ensure
that L(x, y) is convex in x when y ∈ Y . Saddle points (x̄, ȳ) of L over the convex product
set X × Y are characterized therefore by the gradient relations −∇xL(x̄, ȳ) ∈ NX(x̄) and
∇yL(x̄, ȳ) ∈ NY (ȳ) as noted in our discussion of saddle points. But these relations give the
Lagrangian form of the Kuhn-Tucker conditions for (P). We conclude from this that (a)
and (b) are equivalent. The equivalence of (b) and (c) is based on the general principles of
Theorem 15, which is applicable because (P) and (D) have been identified as the strategy
problems for the two players in the game specified by the Lagrangian triplet L, X, Y .
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Comparison with duality in linear programming: Convex programming covers linear pro-
gramming as a special case, but the results in Theorem 16 are generally not as sharp
or symmetric as those in Theorem 14. Nonetheless they do offer something new
even for (Plin) and (Dlin). We now know that the pairs (x̄, ȳ) constituting optimal
solutions to those linear programming problems are precisely the saddle points over
X × Y = IRn

+ × IRm
+ of the function

L(x, y) =
∑n

j=1
cjxj +

∑m

i=1
biyi −

∑m,n

i,j=1
yiaijxj .

Understanding the meaning of duality through perturbations: Optimal solutions
to the dual problem (D) are explained by Theorem 16, in the case of a convex
programming problem (P) that has an optimal solution x̄ at which the Kuhn-Tucker
conditions hold, as the Lagrange multiplier vectors ȳ that appear in such conditions.
In the background there must somehow also be an interpretation of such vectors ȳ in
the context of a “game,” since after all that’s how the primal/dual setup was derived.
We’ll come to such interpretations soon, but first it will be helpful, on a deeper level,
to develop a connection between dual optimal solutions ȳ and the effects of certain
kinds of “perturbations” of problem (P).

For this purpose we don’t need to assume that (P) is a convex programming
problem and can instead proceed very generally, looking for exactly the stage where
convexity might have to be brought in. Taking (P) to be any optimization problem
in standard format, with constraint functions f1, . . . , fm as usual, let’s consider for
each vector u = (u1, . . . , um) the problem

(P(u))
minimize f0(x) over all x ∈ X

satisfying fi(x) + ui

{
≤ 0 for i = 1, . . . , s,
= 0 for i = s+ 1, . . . ,m.

The given problem corresponds to u = 0, i.e., ui = 0 for all i; we have (P(0)) = (P).
Our attention will be focused on the behavior, around u = 0, of the special function

p(u) :=
[

optimal value in (P (u))
]
.

The aim is achieve some kind of quantitative understanding of how p(u) shifts from
p(0), the optimal value in the given problem, as u is “perturbed” away from 0.

Connection with constants in the constraints: When fi(x) = bi − gi(x), so that the
constraints have the form gi(x) ≥ bi for i ∈ [1, s] but gi(x) = bi for i ∈ [s+ 1,m],
the replacement of fi by fi + ui in (P(u)) corresponds to the perturbation of bi
to bi + ui. If instead fi(x) = hi(x)− ci, we are perturbing ci to ci − ui.
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THEOREM 17 (role of dual optimal solutions in perturbations). A vector ȳ furnishes

for the optimal value function p the inequality

p(u) ≥ p(0) + ȳ ·u for all u ∈ IRm, with p(0) finite,

if and only if ȳ is an optimal solution to (D) and the optimal value in (D) agrees with the

optimal value in (P), these values being finite. In particular, therefore, in situations where

it can be guaranteed that the two optimal values are equal (such as in Theorem 16), this

inequality completely characterizes the optimal solution set in (D).

Proof. The targeted inequality can be identified with the condition that the minimum of
p(u) − ȳ ·u over all u ∈ IRm is attained when u = 0. To get a handle on this, let C(u)
denote the feasible set in problem (P(u)) and let

h(x, u) =
{
f0(x)− ȳ ·u if x ∈ C(u),
∞ if x 6∈ C(u).

Define the function ψ on IRm by ψ(u) = infx h(x, u) and the function ϕ on IRn by ϕ(x) =
infu h(x, u). Then ψ(u) = p(u)− ū ·y by the definition of p(u), whereas on general grounds
we have

inf
u
ψ(u) = inf

x,u
h(x, u) = inf

x
ϕ(x).

Our task reduces therefore to demonstrating that infx ϕ(x) = p(0) with p(0) finite if and
only if ȳ is an optimal solution to (D) and the optimal value in (D) is finite and agrees with
the optimal value in (P). From the definition of C(u) and the fact that Y = IRs

+ × IRm−s

it’s easy to see that

ϕ(x) =

{
L(x, ȳ) if x ∈ X and ȳ ∈ Y ,
−∞ if x ∈ X and ȳ /∈ Y ,
∞ if x /∈ X

and consequently, through the definition of the dual objective function g in (D), that

inf
x
ϕ(x) =

{
g(ȳ) if ȳ is feasible in (D),
−∞ if ȳ is not feasible in (D).

Thus infx ϕ(x) = p(0) with p(0) finite if and only if ȳ is a feasible solution to (D) such
that g(ȳ) = p(0). Because the optimal value in (D) can never be greater than the optimal
value in (P), which is p(0), this yields the desired characterization of ȳ.

The role of convexity: The inequality in Theorem 17 says that the affine function l(u) =
p(0) + ȳ ·u satisfies the conditions l ≤ p, l(0) = p(0) (finite). These conditions
means geometrically that the half-space in IRm+1 that’s the epigraph of l “supports”
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the epigraph of p at the point (0, p(0)) (not just in a local sense but in a global
sense, because the inequality is supposed to hold for all u, not just for u in some
neighborhood of 0). The equivalence in Theorem 17 tells us therefore that to say
that (D) has an optimal solution, and the optimal values in (D) and (P) are equal,
is to assert the existence of such a “support.”

When does such a “support” exist? Well, this is closely tied to the epigraph
of p being a convex set—i.e,. p being a convex function—plus perhaps some other
condition being satisfied. (We know that a convex set has a supporting half-space
at any of its boundary points—and (0, p(0)) is certainly a boundary point of the
epigraph of p—but to know that a supporting half-space is the epigraph of an affine
function l requires knowing that it’s not “vertical.” Constraint qualifications, in
particular the original Slater condition, can be seen as assumptions that make it
possible to obviate such “verticality.”)

But with that insight, what can we assume in order to make sure that the optimal
value function p is convex? The answer is basically this: when (P) is a convex
programming problem as in Theorem 16, p is convex, but there’s no other good test
of convexity in terms of the data elements X, f0, f1, . . . , fm that go into (P).

Lack of duality in nonconvex programming: That’s the sad verdict, that aside from the
case of convex programming we really can’t expect to have Lagrange multipliers
correspond to saddle points or even to have the optimal values in (P) and (D)
equal, except by lucky accident.

Lagrange multipliers as rates of change: If the function p happens somehow to be
differentiable at u = 0, the inequality in Theorem 17 implies that the gradient ∇p(0)
is ȳ; we have

ȳi =
∂p

∂ui
(0) for i = 1, . . . ,m.

Then ȳi gives the rate of change of the optimal value in (P) with respect to pertur-
bations in the parameter ui away from ui=0.

More broadly, in convex programming, where p turns out always to be a convex
function, the inequality in Theorem 17 is said to mean, by definition, that ȳ is a
subgradient of p at u = 0. It’s known in that context that the differentiability of p at
u = 0 corresponds to there being a unique subgradient (which is then the gradient).
Hence for convex programming problems (with linear programming problems as a
special case), p is differentiable at u = 0 if and only if the optimal values in (P) and
(D) are finite and equal, and (D) has a unique optimal solution ȳ. Such uniqueness
is then the key to interpreting Lagrange multipliers ȳi as partial derivatives.
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Game-theoretic interpretation of duality: A puzzle remains. If the consideration
of a problem (P) leads inevitably to involvement in a game in which an opponent
is trying to solve another problem (D), just what is the game, and what does it
signify? In principle, the game is of course as follows. Player 1, with whom we
identify ourselves, chooses a vector x ∈ X (ignoring all other constraints!) while the
sinister Player 2 chooses a multiplier vector y = (y1, . . . , ym) ∈ Y . Then Player 1
must pay the amount L(x, y) = f0(x) + y1f1(x) + . . .+ ymfm(x) to Player 2. What
can this mean? An important clue can usually be found in analyzing the units in
which this payment is made and trying through that to interpret the quantity L(x, y).
We’ll take this approach now in the context of an example in which the variables can
be given an insightful interpretation.

An example with Lagrange multipliers as prices: Consider the following case of (P)
in which there are no equality constraints (i.e., s = m):

(P0)
minimize f0(x) over all x ∈ X satisfying

fi(x) = gi(x)− ci ≤ 0 for i = 1, . . . ,m,

where the elements x ∈ X represent decisions about the operation of, say, a man-
ufacturing plant (e.g., how much to make of various products, how to employ the
work force in various tasks, . . . ), and f0(x) is the overall cost in dollars that would
result from decision x (with profit terms incorporated as negative costs). Interpret
gi(x) as the amount of resource i that would be consumed by x, and ci as the total
amount of resource i that is at hand, with these amounts being measured in units
appropriate for resource i (tons, hours, . . . ). The constraints fi(x) ≤ 0 mean that
the only decisions x ∈ X deemed feasible are those that operate without exceeding
the available resource amounts. The Lagrangian comes out as

L(x, y) = f0(x) + y1[g1(x)− c1] + y2[g2(x)− c2] + · · ·+ ym[gm(x)− cm]

with y = (y1, . . . , ym) ∈ Y = IRm
+ . What does this stand for?

For the units of measurement to come out consistently, L(x, y) must be in dollars,
like f0(x), and the same for each of the terms yi[gi(x)− ci]. Therefore, the units for
yi must be dollars per unit of resource i (thus $/ton, $/hour, . . . ). In other words,
the coefficients yi convert resource amounts into money. They serve somehow as
prices. In the game framework, whereas Player 1 makes a decision x ∈ X without

worrying about whether the resource constraints gi(x) ≤ ci are satisfied, it seems
now that Player 2 selects a vector y = (y1, . . . , ym) ≥ 0 of prices for the resources.
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These choices lead to Player 1 paying Player 2 the amount of dollars specified by
expression L(x, y). For this there ought to be a market interpretation.

Let’s imagine a market in which the resources i = 1, . . . ,m can be bought or sold
in arbitrary quantities at the prices yi. If the choice x results in consuming more
of a particular resource i than was at hand, so that 0 < gi(x) − ci, the excess has
to be purchased from the market, and the cost of that purchase with respect to the
price yi, namely yi[gi(x)− ci], is added to the basic cost f0(x) incurred by x. If, on
the other hand, x results in consuming less of resource i than was at hand, so that
there’s an amount ci − gi(x) left over, that surplus is sold off in the market and the
proceeds from the sale, namely yi[ci−gi(x)], are subtracted from the basic cost f0(x)
(or equivalently, the negative dollar amount yi[gi(x)− ci] is added).

We see then that L(x, y) stands for the net cost to Player 1 after paying f0(x)
and accounting for the purchases and sales of resources that result from choosing x,
when the market prices are given by y.

The market as the opponent: Player 2 is seen now as the market itself, acting to keep
Player 1 from making undue profit out of prices that don’t reflect the true values
of the resources. The market acts to set the prices so to get the highest net
amount out of Player 1 that is consistent with the situation. Indeed, in the dual
problem (D0) of maximizing g(y) over y ∈ Y = IRm

+ , the objective value

g(y) := inf
x∈X

{
f0(x) + y1[g1(x)− c1] + · · ·+ ym[gm(x)− cm]

}
gives the dollar amount that the market is sure to receive when the price vector
is y, regardless of Player 1’s eventual decision.

Equilibrium prices: Under certain assumptions, including convexity and a bit more,
our theory tells us there will be a saddle point (x̄, ȳ). Then x̄ and ȳ will be
optimal solutions to (P0) and (D0), and moreover the price vector ȳ will have the
property that

the minimum of L(x, ȳ) over x ∈ X is achieved at x̄.

In other words, the prices ȳi will induce Player 1, in the market framework that
has been described, to respect the resource constraints gi(x) ≤ ci even though
these constraints have been supplanted in that framework by the introduction of
buying and selling of resources! To have such a powerful effect they must provide
an evaluation of resources that’s just right for balancing out any incentive for
buying or selling. That information could be valuable in many ways.
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Decentralization of decision making: Although the market interpretation of the
Lagrangian in the preceding example may seem rather artificial, the revelation that
Lagrange multipliers can be viewed as prices associated with constraints has far-
reaching consequences in subjects ranging from economics to computation. As a
bridge toward the computational end, let’s look now at an extended version of the
example in which ȳ will emerge as a vehicle for reducing a single difficult problem to
a collection of easy problems.

Consider a situation where a number of separate agents, indexed by k = 1, . . . , r,
would solve problems of optimization independent of each other if it weren’t for the
necessity of sharing certain resources. Agent k would prefer just to minimize f0k(xk)
over all xk in a set Xk ⊂ IRnk , but there are mutual constraints

fi1(x1) + · · ·+ fir(xr) ≤ ci for i = 1, . . . ,m

requiring some coordination. Furthermore, there’s community interest in having the
coordination take place in such a way that the overall sum f01(x1) + · · ·+ f0r(xr) is
kept low. In other words, the problem as seen from the community is to

minimize f0(x) := f01(x1) + · · ·+ f0r(xr) subject to

fi(x) := fi1(x1) + · · ·+ fir(xr)− ci ≤ 0 for i = 1, . . . ,m,

x := (x1, . . . , xr) ∈ X := X1 × · · · ×Xr.

This obviously fits as a special case of problem (P0) above in which we have additional
structure relative to vector components xk of x and take

gi(x) = fi1(x1) + · · ·+ fir(xr) for i = 1, . . . ,m.

In these circumstances a central authority could solve the overall community problem
and tell the different agents what they should do. But is there a way instead to take
advantage of the energies and interests of these agents?

Decentralization through resource allocation: In one approach, a “coordinator” would
allocate the available resource amounts ci to the agents k in quantities cik adding
up to ci and leave the individual agents solve separate problems of the form

minimize f0k(xk) over all xk ∈ Xk satisfying

fik(xk)− cik ≤ 0 for i = 1, . . . ,m

for k = 1, . . . , r. Of course, that would raise the issue of how to determine
a resource allocation under which the resulting decisions x̄k of the individual
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agents, when put together as x̄ = (x̄1, . . . , x̄r), would really furnish an optimal
solution to the community problem.

Decentralization through pricing: In another approach, Lagrange multipliers are fea-
tured. For it to work most effectively, let’s put ourselves back in the picture of
convex programming—where the sets Xk are convex and the functions fik are
convex. Take the objective terms f0k(xk) even to be strictly convex; then the
Lagrangian L(x, y) is strictly convex in x for each y ∈ Y = IRm

+ . Assume further
that we have a case where a saddle point (x̄, ȳ) of L on X ×Y is sure to exist (as
provided by Theorem 16 etc.). Then the subproblem

minimize L(x, ȳ) over all x ∈ X

has a unique optimal solution, which must equal x̄ and thus solve the community
problem. This follows from the strict convexity. Observe next that

L(x, y) : =
∑r

k=1
f0k(xk) +

∑m

i=1
yi

( ∑r

k=1
fik(xk)− ci

)
=

∑r

k=1
Lk(xk, y)− y ·c, where

Lk(xk, y) := f0k(xk) +
∑m

i=1
yifik(xk), c = (c1, . . . , cm).

Minimizing L(x, ȳ) over x ∈ X is the same as minimizing L1(x1, ȳ)+· · ·+Lr(xr, ȳ)
over all (x1, . . . , xr) ∈ X1×· · ·×Xr. But from this way of posing the subproblem
it’s clear that there is no interaction between the different components xk: the
minimum is achieved by minimizing each term Lk(xk, ȳ) separately with respect
to xk ∈ Xk. Thus, by letting the agents k solve the separate problems

minimize f0k(xk) +
∑m

i=1
ȳifik(xk) over all xk ∈ Xk

for k = 1, . . . , r to get vectors x̄k, and then putting these together as x̄, the
community is able to arrive at an optimal solution to its problem without having
to dictate actions or resort to an allocation of the resources!

There’s still the question of how to come up with a vector ȳ that will do
the job, but this time we immediately know the answer, at least in principle.
Determining ȳ is solving the associated dual problem. That is what now becomes
the task of a coordinator, which could then report the prices ȳi to the agents k
and let them carry on. This time, however, the coordinator might be envisioned
as a market mechanism rather than a community “authority.”
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Economic interpretation: In the price model, each agent k solves a problem in which
there are no constraints on shared resources, only the condition that xk ∈ Xk

(where Xk incorporates merely the “local” circumstances faced by agent k). The
interpretation again is that resources can be purchased at the specified prices.
Agent k, in choosing xk and thereby consuming resource amounts fik(xk) for
i = 1, . . . ,m, must pay the basic cost f0k(xk) plus the purchase costs ȳkfik(xk).
The prices ȳk are able to do all the coordinating. The individual agents optimize
in their own self-interest, according to the costs they perceive, and yet, as if by a
miracle, their separate actions result in a vector x̄ = (x̄1, . . . , x̄r) that solves the
community problem.

This is the kernel of a famous principle in economics that goes back centuries to
Adam Smith and underlies most discussions of “free markets.” More complicated
versions have been developed in terms of N -person games, where the players are
producers, consumers and other economic agents.

Abuses of the notion of price decentralization: Free-market enthusiasts have captured
the world’s attention with the idea that economic behavior that’s optimal from
society’s interest can be induced simply by letting markets set the proper prices.
For instance, if every form of pollution has its price, and the price is right, compa-
nies will keep pollution within society’s desired bounds just by acting out of their
own self interest. But the underpinnings of such claims rest on mathematical
models in which convexity properties are essential. Roughly speaking, such mod-
els can be valid in the setting of an economy built on a huge mass of infinitesimal
agents (family farmers was the classical example), but not a modern economy
with only a few big agents in each industry.

Lagrangian relaxation: These economic examples bring out the importance of studying,
in connection with an optimization problem (P) in standard format, subproblems of
the form

(Py) minimize f0(x) + y1f1(x) + · · ·+ ymfm(x) = L(x, y) over x ∈ X

for various choices of y ∈ Y . Such a subproblem (Py) is called a Lagrangian relaxation
of (P), because it “relaxes” the constraints fi(x) ≤ 0 or fi(x) = 0 by incorporating
them into the objective function in a manner that we have come to understand as
a kind of “pricing.” After such modification of the objective the minimization is
carried out subject only to the requirement that x ∈ X.

In the examples, we have been concentrating on the consequences of the existence
of a saddle point (x̄, ȳ). The multiplier vector ȳ then gives us a relaxed problem (P ȳ)
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that has among its optimal solutions (if it has more than one) the optimal solution
x̄ to (P). (In general it is known that the optimal solutions to (P) are the optimal
solutions to (P ȳ) that are feasible solutions to (P); this follows from additional
analysis of the saddle point condition.) But there are other interesting aspects of
Lagrangian relaxation besides this.

Lower bounds on the optimal value in the primal problem: Recall that the optimal
value in (P) can never be less than the optimal value in (D), where g(y) is
maximized over y ∈ Y . Furthermore, g(y) is by its definition the optimal value in
the problem of minimizing L(x, y) over x ∈ X, which is (Py). We can summarize
this as follows:

[ optimal value in (P) ] ≥ [ optimal value in (Py) ] for any y ∈ Y,

sup
y∈Y

[ optimal value in (Py) ] = [ optimal value in (D) ].

Thus, by choosing a y ∈ Y and solving the relaxed problem (Py) we always get
a lower bound to the optimal value in (P) and the greatest lower bound that can
be derived this way is the optimal value in (D). These assertions don’t depend
on convexity, but unless (P) is a convex programming problem there is little
likelihood that the greatest lower bound will actually equal the optimal value in
(P)—there could be a discrepancy, called a duality gap. Anyway, regardless of
the presence of a duality gap, such lower bounds can be useful in methodology for
solving (P), for instance in indicating when computations can be halted because
not very much more can be gained by continuing with them.

Solving the dual problem: Lagrangian relaxation is typically built into procedures in-
volving a whole sequence of multiplier vectors yν ∈ Y with the aim of getting
this sequence {yν} to be an optimizing sequence for the dual problem (D). In
each iteration ν, the relaxed problem (Pyν

) is solved to obtain a vector xν . The
information generated out of that process, along with the information generated
in previous iterations perhaps, is used to “update” yν to a new multiplier vector
yν+1, and the step then is repeated. In some situations where (P) is a convex
programming problem, the auxiliary sequence {xν}, or one readily constructed
from it, can turn out to be asymptotically optimizing in (P). The details of this
subject are too much to go into here, however.

Decomposition of large-scale problems: When problems of optimization are very
large in dimension—with thousands of variables and possibly a great many con-
straints to go with them—there’s strong interest in devising methods of computation
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able to take advantage of special structure that might be present. An attractive idea
is that of breaking a problem (P) down into much smaller subproblems, to be solved
independently, maybe by processing them in parallel.

Of course, there’s no way of achieving such a decomposition once and for all,
because that would presuppose knowing unrealistically much about the problem be-
fore it’s even been tackled. Rather, one has to envision schemes in which an initial
decomposition of (P) into subproblems yields information leading to a better decom-
position into modified subproblems, and so forth iteratively in a manner that can
be justified as eventually generating an asymptotically optimal sequence {xν}ν∈IN .
As long as (P) is well posed, an asymptotically optimal sequence can be deemed to
solve it in the sense of Theorem 2.

Dantzig-Wolfe decomposition: A prime case where decomposition can be effective has
already been encountered in our example of decentralization through pricing.
When (P) has separable structure, which is the name for the breakdown of X
and the functions fi in that example into separate terms for components xk of
x, then each step in a Lagrangian relaxation procedure involving a sequence of
multiplier vectors yν comes down to solving a collection of relaxed subproblems

minimize f0k(xk) +
∑m

i=1
yν

i fik(xk) over xk ∈ Xk

to get xν
k and putting these elements together to get xν . George Dantzig and

Philip Wolfe hit on this idea originally in a context of linear programming and
expressed it in terms of the “simplex method” for solving linear programming
problems, but it has since come to be understood far more generally.

Frank-Wolfe decomposition: For problems of minimizing a nonlinear, differentiable con-
vex function f0 over a set C specified by linear constraints, a possible way to
generate a sequence of feasible solutions xν from an initial point x0 ∈ C is as
follows. Having arrived at xν , form the linearized function

lν(x) := f0(xν) +∇f0(xν) · [x− xν ]

and minimize lν over C to get a point x̂ν . The information provided by this
subproblem can be used in various ways. For instance, dν = x̂ν − xν turns out
to be a descent vector for f0, moreover one giving a feasible direction into C

at xν (unless xν itself already minimizes lν over C, in which case xν already
has to be optimal). We won’t go into this here. The main thing is that the
subproblem of minimizing lν over C is one of linear programming, in contrast to
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that of minimizing f0 over C. In special situations, such as when C is a box or a
even just a product of polyhedral sets of low dimension, it breaks down into still
smaller subproblems solvable in closed form or in parallel.

Benders decomposition: This term was originally attached to a scheme in linear pro-
gramming, but the concept can be explained much more broadly. Imagine in (P)
that the vector x is split into two vector components, x = (x′, x′′) with x′ ∈ IRn′

and x′′ ∈ IRn′′ , representing the “hard” and “easy” parts of (P) in the following
sense. For any fixed choice of x′, the residual problem of minimizing f0(x′, x′′)
over all x′′ such that (x′, x′′) ∈ C is “easy” because of its special structure. Let
ϕ(x′) denote the optimal value in this subproblem, with x′ as parameter, and let
B denote the set of all x′ for which at least one x′′ exists with (x′, x′′) ∈ C. In
principle then, (P) can be solved by minimizing ϕ(x′) over all x′ ∈ B to get x̄′,
and then solving the “easy” subproblem associated with this x̄′ to get x̄′′; the
pair x̄ = (x̄′, x̄′′) will be optimal in (P). Once more, this is just the skeleton
of an approach which has to be elaborated into an iterative procedure to make
it practical. Typically, duality enters in representing ϕ approximately in such a
manner that it can minimized effectively.

Decomposition through block coordinate minimization: Sometimes (P) has many easy
parts, if they could be treated separately. Suppose x = (x1, . . . , xr) with vector
components xk ∈ IRnk ; each xk designates a block of coordinates of x in general.
For any x̂ ∈ C, denote by (Pk(x̂)) for k = 1, . . . , r the subproblem

minimize f0(x̂1, . . . , x̂k−1, xk, x̂k+1, . . . , x̂r) over all xk such that

(x̂1, . . . , x̂k−1, xk, x̂k+1, . . . , x̂r) ∈ C.

The basic idea is to generate a sequence {xν}∞ν=0 in C from an initial x0 as
follows. Having reached xν , choose an index kν in {1, . . . , r} and solve subproblem
(Pkν (xν)), obtaining a vector x̄kν . Replace the kν-component of xν by this vector,
leaving all the other components as they were, to obtain the next point xν+1.
Obviously, if this is to work well, care must be exercised that the same index in
{1, . . . , r} isn’t always chosen; some scheme in which every index repeatedly gets
its turn is essential. But what’s not realized by many people is that, although
the method may lead to lower values of f0, never higher, it can get hung up and
fail to produce an optimal sequence xν unless strong assumptions are fulfilled.
Typically f0 must not only be differentiable, it must be strictly convex, and the
feasible set C should be convex and have the product form C1 × · · · × Cr.
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ASSIGNMENT 1

Formulate the following as optimization problems with linear constraints and a linear
function to be minimized or maximized. In your exposition, clearly distinguish between
“decision variables” and “data parameters.” Indicate the meaning of all symbols you
introduce. (For additional pointers, see the next page.)

1. A new kind of hog feed is to be blended together from n different kinds of grain.
Each kilogram of grain of type j (for j = 1, . . . , n) costs dj dollars and contains aij mil-
ligrams of “ingredient” i, where “ingredients” can be vitamins, fats, proteins, or anything
else of interest in a hog’s diet, whether desirable or undesirable. Each kilogram of the feed
must contain at least bi milligrams of ingredient i, but no more than ci, for i = 1, . . . ,m.
To get the cheapest blend that is compatible with these requirements, what fraction of
each kilogram of the hog feed should be grain of type j?

2. A manufacturing company has a permit to operate for T seasons, after which (in
season T + 1) it is only allowed to sell any leftover products. It is able to manufacture
m different products, each requiring n different types of processing. Product i (for i =
1, . . . ,m) costs ci dollars/liter to make and requires hij hours/liter of processing of type
j (for j = 1, . . . , n). Due to equipment limitations, the total time available for type j
processing of all products during season t is Hjt hours (for t = 1, . . . , T ). (Potential
complications about the order of processing are being ignored here.)

All the processing of an amount of product i must be completed in one season (it’s
not possible to start with some of the types of processing in one season and then finish
with the others in the next), and that liter can then be sold from the next season onward.
To sell a liter of product i in season t requires eit hours of marketing effort (labor). This
labor can be hired in season t at the cost of dt dollars/hour at the ordinary rate, up to a
total of at hours. For additional labor beyond that, a higher rate of Dt dollars/hour must
be paid. (There is no limit on the amount of hours at this higher rate or on the amounts
of sales, which are regarded as a sure consequence of the marketing effort.)

The selling price for product i in season t is pit dollars/liter. If a quantity of product
i is available for sale during a season, but is not sold then, the manufacturer has to pay
qi dollars/liter to store it and keep it in shape for possible sale in the next season. An
alternative to marketing or storing is to donate quantities to charity. For this there is no
monetary cost or reward. All products must be disposed of by the end of period T + 1.

What should the manufacturer do to maximize net profit over the entire period?



3. A hydrological model is sought to give a simple rule for predicting the water runoff
in a given month on the basis of knowing the recent amounts of precipitation. It is believed
that a linear equation of the form r = b0p0 +b1p1 +b2p2 should work adequately as a rough
tool of prediction, where r is the runoff, p0, p1, p2, are the observed precipitation amounts
in the current month and the two preceding months, and b0, b1, and b2 are coefficients to
be determined. These coefficients are nonnegative weights (adding up to 1) which must
satisfy b0 ≥ b1 ≥ b2.

According to historical data for the locality in question, month t (for t = 1, . . . , 12)
typically has the precipitation amount qt and the runoff amount rt. What choice of the
coefficients bi will best fit these figures in the sense of minimizing the error expression

E(b0, b1, b2) := max
t=1,...,12

∣∣rt − b0qt − b1qt−1 − b2qt−2

∣∣ ?

(Here the month preceding t = 1 is to be interpreted as t = 12, and so forth.)

Caution in these exercises: Don’t overlook the stipulation that the problems are to
be set up with linear constraints and a linear objective function (not merely “piecewise
linear”). At first this linearity may appear to be lacking, for instance in the broken costs in
Exercise 2, where higher rates come in beyond a certain level, or in the error expression in
Exercise 3 because of the absolute values and the “max” operation (which corresponds to
a worst-case approach to errors). In all cases, however, linearity can be achieved through
such tricks as introducing additional variables.

For Exercise 2, it is wise to familiarize yourself thoroughly with Example 3 in the
lecture notes. For Exercise 3 you especially need to understand Example 4 of the lecture
notes, but aspects of Examples 2 and 3 enter as well. Recall that an inequality of the form
y ≥ |z| is equivalent to the pair of inequalities y ≥ z and y ≥ −z.

Try to avoid writing constraints as equations when in reality inequalities would do just
as well (and provide additional flexibility, or in some cases even a way of getting linearity).
Be sure that no constraints have been missed, such as nonnegativity conditions on certain
decision variables. Constraints can be grouped together; it will greatly help the grading
and your own sense of the problem if you provide a “name” for each group.

In the end, each constraint other than a range constraint on a decision variable should
involve only one equality or inequality sign, and it should be written with the decision
variables on the left and only a constant on the right. For instance, a condition that you
might be tempted to write as 1 ≤ x1 + x2 ≤ x3 ought finally to be presented instead as
the pair of conditions x1 + x2 ≥ 1 and x1 + x2 − x3 ≤ 0.



ASSIGNMENT 2

1. An elementary but helpful introduction to questions of optimality will be gained by
investigating a small problem in standard format:

minimize f0(x1, x2) := 3x2
1 + 3x1x2 +

1
2
x2

2

over all x ∈ X :=
{
(x1, x2)

∣∣ − 1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1
}

satisfying f1(x1, x2) := 2x1 + x2 − 1 ≤ 0.

(a) Draw a picture in IR2 of the feasible set C.

(b) Verify that this problem is “well posed”—in the precise sense defined in class.

(c) Show that at the point (0, 0), which lies in the interior of C, the partial derivatives
of f0 with respect to both x1 and x2 vanish, and yet f0 has neither a local minimum nor
a local maximum at (0, 0). (Consider the behavior of f0 along various lines through (0, 0),
not only the two axes. If you need help in recalling how to do this, see the notes after (d).)

(d) Determine the optimal value and the optimal solution(s). Also identify the points,
if any, that are just locally optimal. (In this two-dimensional situation you can arrive at
the answers by applying what you know about one-dimensional minimization. The idea is
to study what happens to f0 along families of parallel lines as they intersect C, these lines
being chosen for instance to line up with one of the edges of C.)

Reduction to one-dimensional minimization: The line through a point (u1, u2) in the
direction of a vector (w1, w2) 6= (0, 0) consists of all (x1, x2) = (u1 + tw1, u2 + tw2) for
t ∈ IR. The segment of it that lies in C will, in the present case, be obtained by restricting
t to a certain closed, bounded interval I (determined from the constraints that specify C).
You can study the behavior of f0 over this segment by looking at what happens to the
function ϕ(t) = f0(u1 + tw1, u2 + tw2) as t ranges over I. By varying (u1, u2) while keeping
(w1, w2) fixed, you get a family of parallel line segments.

Remember that in minimizing a differentiable function ϕ(t) over a closed, bounded
interval I = [a, b], there is sure to be at least one point at which the global minimum
is attained. You can identify such points by first identifying the points that satisfy the
necessary conditions for a local minimum of ϕ on I and then checking the values of ϕ
at those points. Having a local minimum at a point t with a < t < b requires having
ϕ′(t) = 0, whereas having a local minimum at a merely requires having ϕ′(a) ≥ 0, and
having a local minimum at t = b merely requires having ϕ′(b) ≤ 0.



2. The two small problems that follow in (a) and (b) will get you acquainted with solving
linear and quadratic programming problems on the computer using MATLAB. They are
chosen to be extremely simple, so that you can anticipate the answer and check that you
get it. (Harder problems will come later.) Your task is to input the data, apply the
appropriate MATLAB tool, and get a printed output. You should turn in this output,
clearly noting on it in each case both the optimal value and optimal solution you obtain,
and sketching a picture of the feasible set and result.

For both problems, the set of feasible solutions is the polyhedral set C ⊂ IR3 consisting
of the points x = (x1, x2, x3) such that xi ≥ 0 for i = 1, 2, 3, and x1 + x2 + x3 ≥ 1.

(a) Minimize 6x1 + 2x2 + 9x3 over C.

(b) Find the point of C that is nearest to a = (0, 0,−.5) and its distance.

3. The issues behind the basic theorems on well-posedness will be explored through the
properties of the following problem in standard format:

minimize f0(x1, x2) := x1 + x2
2 over all (x1, x2) = x ∈ X := IR2 satisfying

f1(x1, x2) := − 2x1

1 + x2
1

+ x2 ≤ 0

f2(x1, x2) := − 2x1

1 + x2
1

− x2 ≤ 0.

(a) Draw a picture of the feasible solution set C. Determine what the ε-feasible set
Cε :=

{
x ∈ IR2

∣∣ f1(x) ≤ ε, f2(x) ≤ ε
}

will look like for small ε > 0. Caution: there is a
“phantom” portion of Cε which has no counterpart in C. (Hint: write the f1 constraint in
the form x2 ≤ g(x1); use calculus to graph g and understand its asymptotic properties.)

(b) Verify that the optimal value in this problem is 0 and the unique optimal solution
is x̄ = (0, 0). Establish moreover that every optimizing sequence {xν} must converge to
x̄. (Be careful to keep to the precise definitions of optimal value, optimal solution, and
optimizing sequence.)

(c) Show that this problem isn’t well posed. Produce in fact an asymptotically feasible
sequence of points xν with the property that f0(xν) → −∞; this will then be an asymp-
totically optimal sequence that doesn’t converge to the unique optimal solution x̄ to the
problem. (Verify that your sequence does fit these terms as technically defined.)

(d) Show that the addition of the constraint f3(x1, x2) := −x1 − 1 ≤ 0 would cause
the problem to be well posed after all. What could be said then about the convergence of
asymptotically optimizing sequences?



ASSIGNMENT 3

1. This exercise concerns various properties of partial derivatives and convexity in un-
constrained optimization.

(a) For the function f(x) = f(x1, x2) := x3
1 + x3

2 − (x1 + x2)2 on IR2, obtain formulas
for ∇f(x) and ∇2f(x) and say what you can about where f might have a local or global
minimum or maximum (unconstrained).

(b) Figure out what you can about the convexity or strict convexity of the function
g(x) = g(x1, x2) := 3 + x2 + 1

2 (x1 − x2)2 + 1
4x

4
1 on IR2. Does this function attain a local

or global minimum on IR2?

(c) Show that if h(x) = max{h1(x), h2(x)} for convex functions hi on IRn, then h is
convex as well. Moreover, if both h1 and h2 are strictly convex, then h is strictly convex.
(Argue right from the definitions.)

2. The purpose of this exercise is to get you started in thinking about the systematic ex-
pression of optimality conditions by focusing on the problem of minimizing a differentiable
function f0 over the set C = IRn

+, which is the “orthant” consisting of all x = (x1, . . . , xn)
such that xj ≥ 0 for j = 1, . . . , n.

(a) Show that if x̄ = (x̄1, . . . , x̄n) is a locally optimal solution to this problem, then
the following must be satisfied at x̄ (and thus is a necessary condition for local optimality):

(∂f0/∂xj)(x̄) = 0 for each index j with x̄j > 0, whereas

(∂f0/∂xj)(x̄) ≥ 0 for each index j with x̄j = 0.
(1)

(Get this by reduction to elementary calculus; fix all but one of the xj ’s and let the re-
maining one vary. It might help if you first think about the cases of the given minimization
problem in which n = 1, or n = 2.) Verify that (1) can be expressed by

x̄j ≥ 0, (∂f0/∂xj)(x̄) ≥ 0, x̄j ·(∂f0/∂xj)(x̄) = 0 for j = 1, . . . , n. (1′)

(b) In terms of the gradient vector ∇f0(x) =
(
(∂f0/∂x1)(x), . . . , (∂f0/∂xn)(x)

)
and

the notation y ·z = y1z1 + · · ·+ ynzn for the scalar product of two vectors y = (y1, . . . , yn)
and z = (z1, . . . , zn), show that condition (1) is equivalent to having, for C = IRn

+,

∇f0(x̄) · [x− x̄] ≥ 0 for all x ∈ C. (2)

(Don’t forget that “equivalence” refers to two implications, one in each direction.)



(c) Show that when f0 is an convex function, condition (2) is in fact also sufficient for
the global optimality of a point x̄ ∈ C: it guarantees that f0(x) ≥ f0(x̄) for all x ∈ C.

3. Formulate the following problem in terms of a linear objective function and linear
constraints, and moreover express your answer in the standard format explained in class,
using the set X to express any upper or lower bounds on the decision variables and in-
troducing constraint functions for all other constraints. It will help your effort and the
grading if in the final statement you give a name for each group of variables and group
of constraints. (Remark: This is a problem relative to a single time period—one year.
The model is entirely deterministic. A more realistic model would attempt to cope with
uncertainties in prices and yields.)

A farmer can lease land up to 1000 acres. She has to pay $6 per acre (per year) if she
leases up to 600 acres. For any land beyond 600 acres, she can lease at $8 per acre.

She grows corn on the land. She can grow corn at normal level or at an intense level
(more fertilizer, frequent irrigation, etc.) Normal level yields 70 bushels/acre. Intense level
yields 100 bushels/acre. The normal and intense levels require, respectively, 7 and 9 hours
of labor per acre, and $20 and $30 in materials (such as seed, fertilizer, water, etc.) per
acre. (On each acre, some amount can be at the normal level and some at the intense
level.) Harvesting requires 0.1 hours of labor per bushel harvested. Harvested corn can be
sold up to any amount at the rate of $2.50 per bushel.

The farmer can raise poultry at the same time. Poultry is measured in poultry units.
To raise one poultry unit requires 24 bushels of corn, 20 hours of labor, and 25 ft3 of shed
space. She can either use the corn she herself has grown or buy corn from the retail market.
She gets corn at the rate of $3.20/bushel from the retail market. She can sell at the price
of $180 per poultry unit in the wholesale market up to 200 units. Any amount of poultry
over 200 units sells for just $165 per unit. She has only one shed for raising poultry, and
it has 15,000 ft3 of space.

She and her commune can contribute 4000 hours of labor per year at no cost. If she
needs more labor, she can hire it at $4/hour up to 3000 hours. For any amount of labor
over 3000 hours, she has to pay $6 per hour.

The issue is what plan to execute in order to maximize net profit.

Note: At this stage you are only being asked to formulate this problem, but eventually
you will be asked to solve it using MATLAB. By achieving a clear and accurate statement
now, you’ll facilitate your work later.



ASSIGNMENT 4

1. Consider the problem of minimizing over x = (x1, x2) ∈ IR2 the function f0(x1, x2) :=
(x1 − x2)2 + 1

4 (x1 + x2)2. The unique optimal solution is obviously (0, 0). The level sets
f0 = const. are ellipses having major axis along the line x2 = x1 and minor axis along the
line x2 = −x1, the major axis being twice as long as the minor axis.

(a) Illustrate and explain (justify through basic calculus) the following fact relevant
to any descent method for solving this problem: If at a point xν a descent vector wν for
f0 is chosen, and an exact line search relative to this vector is carried out, then xν+1 will
be the point obtained by moving away from xν in the direction indicated by wν until an
ellipse in the nest of level sets of f0 is reached that is tangent to the line being traced.
(Consider angles made by the gradient vector as you move along the line.)

(b) Apply Cauchy’s method of steepest descent to this problem using exact line search,
starting from x0 = (3, 1). Carry out four iterations by following (roughly) the graphical
rule in part (a) instead of actual numerical calculation; connect the points of the sequence
you generate by the line segments used, so as to make the pattern of progress clearer.

(c) What happens if instead Newton’s method (optimization version) is applied with
exact line search to the same problem? (And, why is this outcome “totally expected”?)

(d) As a different approach, show graphically what happens from the same starting
point under coordinate-wise minimization, where you first minimize in x1 with x2 fixed,
then in x2 with x1 fixed, and keep alternating that way between the two variables.

2. Returning to the hydrological model in Exercise 3 of Assignment 1, but with 4 seasons
instead of 12 months (for simplicity), suppose the data elements are

(q1, q2, q3, q4) = (0.7, 3.3, 5.2, 1.9) (precipitation in acre-inches),

(r1, r2, r3, r4) = (1.5, 2.5, 4.1, 3.1) (runoff in acre-inches).

Season indices cycle as earlier: when t = 1, interpret t − 1 as 4, and so forth. Determine
by MATLAB the coefficients b0, b1 and b2 that minimize (subject to the conditions in the
original problem) the error expression in each of the following two cases:

(a) E2(b0, b1, b2) :=
∑4

t=1

(
rt − b0qt − b1qt−1 − b2qt−2

)2 (least squares error).

(b) E∞(b0, b1, b2) := maxt=1,...,4

∣∣rt − b0qt − b1qt−1 − b2qt−2

∣∣ (Chebyshev error).

(Note: Some “personal arithmetic” in (a) can be avoided by introducing variables ut

constrained to equal the expressions rt − b0qt − b1qt−1 − b2qt−2. Then you can reduce to
quadratic programming without having to process the given data tediously.)



3. This exercise concerns an approach, called the cutting plane method, to minimizing
a convex function over a box. It will give you a taste of the thinking that goes into a
numerical method and justifying it. The given problem is:

(P) minimize f0(x) over all x ∈ X,

where f0 is of class C1 and convex , while X is a nonempty box that is bounded . The
method proceeds by iterations indexed with ν = 1, 2, . . . , starting from any initial point
x0 ∈ X and generating each time a new point xν ∈ X. It makes use of the “linearizations”
of f0 at these points, which are the affine functions lν(x) := f0(xν) +∇f0(xν) · [x− xν ].

In the first iteration, the function f1
0 (x) = l0(x) is minimized over X; α1 denotes

the optimal value in this subproblem and x1 the optimal solution found for it. In general
for iteration ν, points x0, x1, . . . , xν−1 are available and the subproblem (Pν) is solved in
which the function

fν
0 (x) := max

{
l0(x), l1(x), . . . , lν−1(x)

}
is minimized over X. The optimal solution found for (Pν) is taken then as xν , and the
optimal value in (Pν) is denoted by αν . The following questions concern the sequences
{xν}∞ν=1 and {αν}∞ν=1 and the extent to which they serve to solve the given problem (P).

(a) Draw a picture (or pictures) of how the method works in the one-dimensional case
(n = 1), where X is merely a closed, bounded interval. (Indicate for several iterations the
successive points xν and functions fν

0 .)

(b) Verify (henceforth in the general n-dimensional case) that the functions fν
0 are

convex and that they satisfy fν
0 (x) ≤ f0(x) for all x. Establish moreover that the epigraph

of fν
0 (the set of points lying on or above the graph) is expressible by a system of finitely

many linear constraints in IRn+1, and explain how the problem of minimizing fν
0 over X

can therefore be formulated as a linear programming problem in IRn+1 for the purpose of
applying software to calculate xν and αν .

(c) Show that α1 ≤ · · · ≤ αν ≤ αν+1 ≤ · · · ≤ ᾱ, where ᾱ denotes the optimal value
in (P) itself. Show further that in every iteration κ after a given iteration ν one will have
lν(x) ≤ fκ

0 (x) for all x, and in particular therefore (through the case of x = xκ) that

f0(xν) +∇f0(xν) · [xκ − xν ] ≤ ᾱ.

(d) Show that if the sequence {xν}∞ν=1 happens to converges to some x̄, then x̄ must
be an optimal solution to (P). Show that the same holds even if x̄ is just a cluster point
of this sequence. Does it follow that {xν}∞ν=1 is always an optimizing sequence for (P)?
(Hint: Consider taking limits twice in (c), first letting κ → ∞ and then letting ν → ∞.
Utilize the closedness of X and the continuity of f0(x) and ∇f0(x) with respect to x.)



ASSIGNMENT 5

1. This returns to the optimization example in Exercise 1 of Assignment 2 for a closer
look, now analyzing optimality systematically on the basis of Theorem 6.

(a) Determine all points x̄ that satisfy the first-order necessary condition for optimality
in terms of ∇f0(x̄) and TC(x̄). In a diagram of the feasible set C, indicate at each of
these points x̄ both the tangent cone TC(x̄) and the reverse gradient −∇f0(x̄). (Consider
separately, one by one, the nine possible situations corresponding to the interior, the four
sides and the four corners of this polyhedral set C.)

(b) Check whether the first-order points x̄ identified in (a) satisfy, in addition, the
second-order necessary or sufficient condition involving also ∇2f0(x̄).

(c) Apply MATLAB to this problem. Discuss the extent to which the solution output
matches, or falls short of, what you have determined about optimality. As an experiment,
see if you get anything different if you call up MATLAB more than once on the same data,
or on the other hand, if you insist on some particular choice of MATLAB’s starting point,
for instance (0, 0).

(d) Add the constraint f2(x1, x2) := −3x1 + 3x2 − 4 ≤ 0 to the problem and redo
(a) and (b), concentrating your update on the places where the new constraint makes a
difference. What now is locally or globally optimal? Once again apply MATLAB and
compare the solution output with what you know.

2. The following tasks provide some ways to get acquainted with basic facts about convex
sets and their tangent cones, including connections with feasible directions.

(a) Show that for a convex set C and a point x̄ ∈ C, the vectors giving feasible
directions into C at x̄ are the vectors w that can be expressed in the form w = λ(x − x̄)
for some x ∈ C other than x̄ and some λ > 0. (Note that this is a two-way assertion.)

(b) Verify that the set C =
{
(x1, x2, x3)

∣∣x2 ≥ 0, |x3| ≤ 1 − x2
1 − x2

2

}
is convex in

IR3. (Simplify your task by making use of various rules for deriving convex sets from other
convex sets or convex functions.) What does this set C look like? (A picture isn’t required,
but one could help you in understanding parts (c) and (d) that follow.)

(c) For the set C in (b) and the point x̄ = (1, 0, 0), show that if a vector (w1, w2, w3) 6=
(0, 0, 0) gives a feasible direction into C at x̄, then it satisfies w2 ≥ 0 and |w3| ≤ −2w1.
On the other hand, show that if a vector (w1, w2, w3) 6= (0, 0, 0) satisfies w2 ≥ 0 and
|w3| < −2w1, then it gives a feasible direction into C at x̄. (In each case rely on the
definition of “feasible directions” and the constraints specifying C in (b).)

Note: The first argument develops a necessary condition for a feasible direction in



this special setting, whereas the second argument develops a sufficient condition.)

(d) Derive from the necessary and sufficient conditions on feasible directions in (c) the
fact that, for the set C and point x̄ in question, the tangent cone is given by

TC(x̄) =
{
(w1, w2, w3)

∣∣w2 ≥ 0, |w3| ≤ −2w1

}
and is a convex set, moreover polyhedral.

3. Projections onto sets play a big role in many applications. You may already have run
into the idea of projecting onto a subspace of IRn, but here we look more generally at
projecting onto a convex set. This often arises as a kind of approximation. It also comes
up in technical ways, for instance when C is the set of feasible solutions of some system of
equations and inequalities and, in trying to minimize something over C, it’s hard to stay
within C, so there’s a constant need for corrections to get back into C.

(a) Let C be a nonempty, closed, convex subset of IRn, and let a be any point of IRn

that’s not in C. Consider the problem of finding a point of C that’s nearest to a with
respect to the Euclidean distance (where the distance between points x and y in IRn is
given by the Euclidean norm |x − y|). Setting this up as a certain optimization problem
in standard format (some approaches are more convenient than others!), establish that a
solution always exists and is unique.

Note: This solution point is called the projection of a on C and denoted by PC(a).

(b) By applying Theorem 7 to this situation (assumptions satisfied?), show that a
point b ∈ C is the projection PC(a) if and only if the vector c = a − b has the property
that the linear function l(x) = c · x achieves its maximum over C at b. Draw a figure
illustrating this fact; indicate in it the gradient of l and the level set

{
x

∣∣ l(x) = l(b)
}
.

(Hint: Before getting too involved with the linear function in question, work out the
details of the optimality condition supplied by Theorem 7, trying to write it in terms of
the vector c.)

(c) Let C = C1×· · ·×Cr for closed convex sets Ck ∈ IRnk with n1 + · · ·+nr = n, and
let a be expressed accordingly as a = (a1, . . . , ar) with components ak ∈ IRnk . Show in this
setting that the projection of a on C is b = (b1, . . . , br), where bk is the projection of ak on
Ck for k = 1, . . . , r. (Write the problem in terms of the corresponding vector components
of x = (x1, . . . , xr), and demonstrate that the minimum is achieved when xk is taken to
equal bk for every k.) Next, illustrate this principle by applying it to the case where C is
actually a box in IRn, showing it leads to a simple rule with respect to coordinates that
yields the projection b of any a. In particular, what’s the rule when C = IRn

+?



ASSIGNMENT 6

1. Solve the farmer’s problem from Assignment 3 by means of MATLAB. Indicate the
solution on the printout, but also translate the results back into the original language of
the problem. In other words, write out an explanation of just what the farmer should do
to maximize profit, and say how much the profit will be.

Furthermore, discuss the answer, noting in particular which of the inequality con-
straints are “active” at the solution (i.e., satisfied as equations) in contrast to which are
“inactive.” How sensitive is the solution to the amount of land or shed space available, or
to the price of poultry going up or down? And so forth.

2. This concerns the separation of two sets C1 and C2 by a hyperplane, an issue of interest
not only theoretically but in various applications such as data classification and image
identification. The exercise furnishes a chance to work with the normal vector condition
for optimality in Theorem 9, which will be utilized in constructing such a hyperplane.

Here C1 and C2 are nonempty, closed, convex subsets of IRn with C1 ∩ C2 = ∅, and
C1 is bounded (but C2 could be unbounded). These sets might be specified by systems of
constraints, but that doesn’t play a direct role for now, even though it could eventually be
essential in passing to a numerical application of the ideas that follow.

Recall that a hyperplane in IRn generalizes a line in IR2 and a plane in IR3; by definition
it is a set H expressible in the form

{
x ∈ IRn

∣∣ a · x = α
}

for some nonzero vector a ∈ IRn

and scalar α ∈ IR. Any such hyperplane H is associated with two closed half-spaces,
namely

{
x ∈ IRn

∣∣ a · x ≥ α
}

and
{
x ∈ IRn

∣∣ a · x ≤ α
}
. It is said to separate C1 and

C2 if C1 lies in one of these closed half-spaces while C2 lies in the other. (For your own
understanding, draw yourself some pictures, making sure you see how the vector a would
be oriented relative to H and the half-spaces, which are level sets of the linear function
l(x) = a · x having ∇l(x) ≡ a.)

The focus henceforth is on the problem of minimizing f0(x1, x2) = 1
2 |x1−x2|2 subject

to x1 ∈ C1 and x2 ∈ C2. (Note that x1 and x2 denote vectors: x1 = (x11, . . . , x1n) and
x2 = (x21, . . . , x2n). The problem is 2n-dimensional, even though it’s pictured in IRn!)

(a) Interpreting the problem as one of form (P) in which f0 is minimized over X =
C1 × C2, this being a nonempty, closed, convex subset of IR2n, show that it is well posed ,
so that (by Theorem 1) it has at least one optimal solution. Illustrate by a counterexample
that the optimal solution need not be unique. (A picture will suffice.)



(b) In preparation for applying Theorem 9 to this problem, verify, from what’s known
in general about normal vectors to convex sets, that NX(x̄) = NC1(x̄1) × NC2(x̄2) when
X = C1 × C2 and x̄ = (x̄1, x̄2).

(c) Investigate the gradient condition furnished by Theorem 9 at an optimal solution
x̄, showing that it yields a vector a 6= 0 in IRn along with scalars α1 < α2 such that
a ·x1 ≤ α1 for all x1 ∈ C1 and a ·x2 ≥ α2 for all x2 ∈ C2. Establish from this the existence
of a hyperplane H in IRn that separates C1 and C2 in the sense defined, which moreover
can be chosen to have no points in common with either C1 or C2. (Provide a specific
formula for such a hyperplane.)

(Conclusion: a separating hyperplane is thus obtainable “constructively” by solving
the minimization problem that has been posed, once the descriptions of C1 and C2 have
adequately been fleshed out.)

3. This exercise explores the role of Lagrange multipliers in optimality. It concerns
the set C ⊂ IR2 consisting of all x = (x1, x2) ∈ X = IR2

+ that satisfy 0 ≥ f1(x1, x2) = x1 + x2 − 5,
0 ≥ f2(x1, x2) = x1 − x2 − 1,
0 ≥ f3(x1, x2) = 2x1 − x2 − 4.

(a) Draw a picture of C, indicating the tangent and normal cones to C at representative
points x̄ and giving an algebraic expression in terms of Lagrange multipliers for the vectors
v = (v1, v2) that belong to the normal cone NC(x̄) in each case. (Hint: Use Theorem 10.
There’s no need to be concerned about the standard constraint qualification (?) there,
because this is a system of linear constraints only; cf. Theorem 12(a).) The description of
NC(x̄) yields equations for v1 and v2 in terms of y1, y2, y3, z1, and z2 as parameters (these
being the coordinates of the vectors y and z there). Having written down these equations
in general, specialize them at each x̄ by suppressing any parameters that have to equal 0
and indicating the sign restrictions, if any, on the remaining parameters.

(b) For the problem of minimizing f0(x1, x2) = (x1−1)2−x2 over C, add to your pic-
ture in (a) some indication of representative level sets f0(x1, x2) = α. Determine all locally
and globally optimal solutions x̄ “by hand” through Theorem 9. (Note: this amounts to
checking where the Kuhn-Tucker conditions are satisfied; justifiable shortcuts based on the
problem’s structure are encouraged.) For each such x̄ give the specific parameter values
y1, y2, y3, z1, and z2 in part (a) for the normal vector representation of −∇f0(x̄).

(c) Solve the minimization problem in (b) using the routine in MATLAB for solving
quadratic programs. Implement that routine so that Lagrange multipliers are also returned.
Do the latter correspond to the parameter values you calculated in (b)?



ASSIGNMENT 7

1. Consider an optimization problem (P) in standard format in which the functions fi

are all of class C1 and X = IRn. Let x̄ denote any feasible solution.

(a) Show that the standard constraint qualification (?) is satisfied at x̄ if the following
conditions, comprising the Mangasarian-Fromovitz constraint qualification, hold:

(1) the vectors ∇fi(x̄) for i ∈ [s+ 1,m] are linearly independent, and

(2) there exists a vector w such that ∇fi(x̄) · w
{
< 0 for i ∈ [1, s] active at x̄,
= 0 for i ∈ [s+ 1,m].

(Remark: The converse is true as well; these two constraint qualifications are equivalent—
for problems with X = IRn. But you’re not being asked to prove it.)

(b) Let s = m, so that the constraints in (P) are fi(x) ≤ 0 for i = 1, . . . ,m. Sup-
pose the following condition, called the Slater constraint qualification, is satisfied: all the
constraint functions fi are convex and there is a point x̃ with fi(x̃) < 0 for i = 1, . . . ,m.
Show that then the Mangasarian-Fromovitz constraint qualification (in which now only
the inequality part counts) is satisfied at x̄ (no matter how x̄ is located relative to x̃).

(c) Go back to the set C and point x̄ in Assignment 5, Exercise 2(b)(c)(d), viewing
this set as given in the manner above by three constraints fi(x) ≤ 0. (The condition
involving |x3| converts into two of these). Determine the normal cone NC(x̄), taking care
to check somehow that the assumptions behind the formula you are using are fulfilled.

2. Here is an elementary example of linear programming duality which provides hands-on
experience with that concept.

(a) Consider as problem (P lin) (in primal canonical format):{
minimize 3x1 + 5x2 over all x = (x1, x2) ∈ IR2

+

such that 2x1 + x2 ≥ 4, x1 + x2 ≥ 3.

Sketch the feasible set in (P lin) and use this to locate an optimal solution x̄ graphically.
Passing through an interpretation of (P lin) as a problem in standard format, determine
specific values ȳ1 and ȳ2 for the multipliers y1 and y2 associated with two inequality
constraints in (P lin) such that the Kuhn-Tucker conditions at x̄ are fulfilled.

(b) Write down the corresponding dual problem (D lin) (in dual canonical format).
Then carry out the same procedure for that, but with a shift in notation: this time, with
y1 and y2 as the decision variables, denote the multipliers by x1 and x2. You should end
up with the same vectors x̄ = (x̄1, x̄2) and ȳ = (ȳ1, ȳ2) as in (a), and also the same optimal
value in the two problems, thereby confirming the assertions of Theorem 14.



3. The following is a simplified mathematical model for the economical management of
electrical power dispatch. There are n power generating plants indexed by j = 1, . . . , n.
Plant j is capable of producing any power amount xj in a fixed interval lj ≤ xj ≤ uj ,
where 0 ≤ lj < uj < ∞, the cost being ϕj(xj) = cjxj + 1

2bjx
2
j with known coefficients

cj > 0 and bj > 0. The plants are all connected to the same transmission network, so that
when each produces an amount xj the sum of these amounts enters the network; but due
to transmission losses, which involve electrical interactions, the amount of power actually
made available to customers is not this sum but

h(x) = h(x1, . . . , xn) :=
∑n

j=1
xj − 1

2

∑n, n

j=1, k=1
ajkxjxk

for a certain symmetric, positive definite matrix A ∈ IRn×n with entries ajk ≥ 0.

It is assumed in the model that the entries ajk are small enough that the partial
derivatives (∂h/∂xj)(x) are positive at all vectors x = (x1, . . . , xn) having lj ≤ xj ≤ uj .
This ensures that h is an increasing function with respect to each variable over these
ranges; in other words, an increase in power at one of the plants always results in an
increase in power available from the network. Note that the highest value h can achieve is
h(u) = h(u1, . . . , un), whereas the lowest is h(l) = h(l1, . . . , ln).

The exercise revolves around the following problem in these circumstances: for a given
load demand d (power to be withdrawn from the network), with h(l) < d < h(u), determine
a scheduling vector x = (x1, . . . , xn) that meets this demand as cheaply as possible.

(a) Express this as a problem (P) in standard format with one constraint function f1.
Is this quadratic programming? convex programming? Is the corresponding Lagrangian
L(x, y) convex in x ∈ X for each y ∈ Y as well as affine in y ∈ Y for each x ∈ X?

(b) Does (P) have at least one optimal solution? At most one optimal solution?

(c) Show that, by virtue of the assumptions in the model, the standard constraint
qualification is satisfied at every feasible solution x̄.

(d) If the Kuhn-Tucker conditions for (P) hold at x̄, can you legitimately conclude
that x̄ is optimal? On the other hand, if they don’t hold at x̄, might x̄ be optimal anyway?

(e) Show that the Kuhn-Tucker conditions come down to relations between the single
Lagrange multiplier ȳ = ȳ1 and the ratio of ϕ′j(x̄j) to (∂h/∂xj)(x̄1, . . . , x̄n) for j = 1, . . . , n,
and moreover that they imply ȳ has to be positive.

(f) What must be the units in which L(x, y) and y are measured, considering that the
costs ϕj(xj) are in dollars, whereas h(x) and the xj ’s are in “power units”? In such terms,
try to interpret the ratio relations required by the Kuhn-Tucker conditions. What do they
tell you about schedule levels x̄j that are optimal with respect to the given demand d?



ASSIGNMENT 8

Here first is some additional background on a basic class of two-person zero-sum games
called matrix games. A major part of this assignment will be concerned with such games.

In a matrix game in its underlying “pure” form, Player 1 has only finitely many “pure
strategies” available, indexed by j = 1, . . . , n, whereas Player 2 has “pure strategies”
indexed by i = 1, . . . ,m. When Player 1 selects strategy j and Player 2 selects strategy
i, the payoff from Player 1 to Player 2 is dij ; these amounts give the entries of the payoff
matrix D associated with the game. (Any matrix D corresponds to a game in this manner.
One can think of Player 1 as choosing a column of D and Player 2 as choosing a row.)

Instead of keeping merely with the pure form of a matrix game, however, one enlarges
the spaces of actions available to the two players to include “mixed strategies,” which have
a randomized nature. This means that the strategy set X for Player 1 is really taken
to consist of all x = (x1, . . . , xn) ∈ IRn such that xj ≥ 0 and

∑n
j=1 xj = 1, with the

interpretation that xj is the probability that Player 1 will select the pure strategy j.

The idea is that, in choosing x, Player 1 arranges to make a last-minute decision on
which pure strategy j to use by means of a lottery device with the xj ’s as its probabilities.
(The device might for instance be a wheel marked into sectors j = 1, . . . , n having angular
sizes proportional to the desired probabilities x1, . . . , xn; the mixed strategy x would cor-
respond to a spin of this wheel to get a particular j.) In this framework the original pure
strategy for j = 1 is identified with the probability vector x = (1, 0, . . . , 0), and so forth.

Similarly, the strategy set Y for Player 2 is taken to consist of all y = (y1, . . . , ym) ∈
IRm such that yi ≥ 0 and

∑m
i=1 yi = 1, with yi interpreted as the probability assigned to

i. The payoff is L(x, y) =
∑m,n

i=1, j=1 dijyixj = y ·Dx, this being the expected amount that
will paid by Player 1 to Player 2 when the probability vectors are x and y (inasmuch as
the probability of the combination (i, j) coming up, with payment dij , is then yixj).

1. A particular example to be explored is the game called Penny-Nickel-Dime. Each
player has a penny, a nickel and a dime, and a pure strategy consists of selecting one of
these coins and displaying it. If the sum of the cents (on the two displayed coins) is odd,
Player 1 wins Player 2’s coin, but if the sum is even, Player 2 wins Player 1’s coin.

(a) Construct the 3×3 payoff matrix D for Penny-Nickel-Dime. Verify that the vectors
x̄ = (1/2, 0, 1/2) and ȳ = (10/11, 0, 1/11) are optimal strategies for the two players, with
the equilibrium value L(x̄, ȳ) being 0 (so the game is fair despite its asymmetry!). Do this
via Theorem 15 by checking that (x̄, ȳ) is a saddle point of L(x, y) with respect to X × Y .



(b) Derive for a matrix game with general pay-off matrix D the fact that the strategy
optimizing problem (P1) for Player 1 comes out as having the form

(P1) minimize f(x) over x ∈ X, with f(x) = max
i=1,...,m

{
di1x1 + · · ·+ dinxn

}
,

whereas the strategy optimizing problem (P2) for Player 2 comes out as having the form

(P2) maximize g(y) over y ∈ Y, with g(y) = min
j=1,...,n

{
y1d1j + · · ·+ ymdmj

}
.

(Get these expressions for f(x) and g(y) by using the definitions of the two problems in
the general theory of two-person zero-sum games.)

(c) In Penny-Nickel-Dime there is actually never an advantage to either player in
displaying the nickel—the consequences of displaying the penny are always at least as good,
and in some cases better. Making use of that observation in specializing (P1) to Penny-
Nickel-Dime, one can reduce from minimizing over x ∈ X to minimizing over t ∈ [0, 1]
under the parameterization x = (1 − t, 0, t). Graph the objective function in this one-
dimensional subproblem and find an optimal t̄, confirming in this way that the mixed
strategy x̄ for Player 1 that was seen in (a) is indeed an optimal solution to (P1). Then
proceed the same way with (P2).

2. The duality relationships between linear programming problems (Plin) and (Dlin) in
canonical format can be extended to include equality constraints as well as variables that
aren’t restricted to be nonnegative. Let’s say that a linear programming problem is in
extended primal canonical format if it is written as

(
P̄ lin

)
minimize c1x1 + · · ·+ cnxn subject to

ai1x1 + · · ·+ ainxn

{
≥ bi for i = 1, . . . , s,
= bi for i = s+ 1, . . . ,m,

xj

{
≥ 0 for j = 1, . . . , r,
free for j = r + 1, . . . , n.

(a) Working with the Lagrangian for this problem, when rewritten in standard format
as (P) for a certain choice of X and functions fi, derive from the general theory of duality
the associated Lagrangian dual problem (D), showing that it can be identified with the
following linear programming problem in extended dual canonical format:

(
D̄ lin

)
maximize b1y1 + · · ·+ bmym subject to

y1a1j + · · ·+ ymamj

{
≤ cj for j = 1, . . . , r,
= cj for j = r + 1, . . . , n,

yi

{
≥ 0 for i = 1, . . . , s,
free for i = s+ 1, . . . ,m.



(b) Show that these problems, like the earlier (P lin) and (D lin), share the same op-
timality conditions—a certain modification of those in part (e) of Theorem 14. (Develop
the Kuhn-Tucker conditions for standard format version of (P̄ lin), and then do the same
for (D̄ lin), likewise by passing through a re-expression in standard format.)

Note: With this modified statement of (e) Theorem 14 remains valid in its entirety
for these extended problems. The previous arguments for proving Theorem 14 readily go
through again in this setting. You’re not being asked to provide the details of that, but
you are free anyway to use this extended Theorem 14 in the exercise that follows.

3. The facts developed in Exercise 2 will be applied now to general matrix games.

(a) Show how the strategy optimizing problem (P1) in 1(b) for a general matrix game
with pay-off matrix D can be reformulated as a linear programming problem (P̄lin) in the
extended primal canonical format. Passing through the scheme in Exercise 2, determine
the corresponding problem (D̄lin). Show that this (D̄lin) can moreover be identified with
what one gets by reformulating the general strategy optimizing problem (P2) in (1b) as a
linear programming problem in the extended dual canonical format.

(b) On the basis of 1(b) and the identifications 3(a), prove the following famous fact
(a theorem of Von Neumann): In any matrix game, optimal strategies (in the mixed sense)
exist for both of the players, and there is a number V (the value of the game) such that
Player 1 can guarantee not having to pay more than V (as a probabilistic “expectation”),
while Player 2 can guarantee receiving at least V (as an “expectation”).

(c) Utilize the reformulation technique in (a) to determine by MATLAB the value V
of the matrix game with the following pay-off matrix D, along with optimal strategies x̄
and ȳ for the two players:

D =

 1 0 3 2
4 2 0 2
2 1 5 0

 .
(If you’ve fully understood things, you’ll see that you only need to apply a MATLAB tool
once, not twice for two problems. Don’t be thrown off by a MATLAB glitch which may
or not have gotten fixed: Lagrange multipliers for equation constraints could be reported
with the sign wrong.)

Note: This pay-off matrix was selected arbitrarily. You are now in the position of
being able to “solve” any matrix game! You might be interested, for instance, to try the
extensions of Penny-Nickel-Dime to Penny-Nickel-Dime-Quarter and Penny-Nickel-Dime-
Quarter-Dollar, seeing whether these games likewise are fair.


