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Abstract

Twelve-tone composition requires the non-repeating use of every note of the
twelve-tone octave. The rules governing twelve-tone composition provide ground-
work for the application of group theory and other mathematics. This paper
provides several examples illustrating the use of group theory to describe musi-
cal patterns in twelve-tone composition. It is based on the paper Mathematics
and the Twelve-Tone System: Past, Present, and Future by Robert Morris [2].

Contents

1 Introduction 2

2 A Klein Four-Group 3

3 Identities 5

4 Theorems Involving T- and I-Matrices 6

5 Discussion and Conclusion 8

6 Works Cited 9

1



1 Introduction

Mathematics and the Twelve-Tone System: Past, Present, and Future by Robert
Morris [2] takes a survey of the applications of group theory to twelve-tone com-
position. It begins chronologically and continues by building on previous results.
It starts by explaining the most commonly known real-world example of a Klein
Four-Group, and then goes on to discuss identities involving the elements of that
group. It then discusses some theorems that can be generalized to non-twelve-
tone composition, and then discusses matrices that represent the systems. Then,
it summarizes the current research and proposes future directions for the field.

In modern music theory, there are twelve notes in one octave. Twelve-tone
composition is a special way of arranging these twelve notes. Arnold Schoen-
berg invented twelve-tone composition in 1908 to break free of what “the ear
had gradually become acquainted with” [1]. Twelve-tone composition requires
the use of each of the twelve notes without repetition until each note has been
played once. After each note has been played once, the next twelve notes must
follow the same rules. This continues until the end of the piece.

The application of mathematics to twelve-tone composition depends on the def-
inition of a row, which is a specific permutation of the twelve tones. It can be
represented by an array of twelve notes. Each note is represented by a number
between 0 and 11. For example, the chromatic scale is represented by:

[0 1 2 3 4 5 6 7 8 9 10 11]

The row can also be represented with written music1:

Figure 1: Chromatic Scale

As seen in the array and the scale, 0 in the array represents a C, a 1 represents
a D flat, etc. 11, the last note of the octave, represents a B.2

A unique row is a unique permutation of the twelve notes. We begin with
transformations on a row.

1All written music in this paper was generated using software found at noteflight.com.
2This paper assumes that the reader understands the basic written repre-

sentation of musical notes. If the reader is unfamiliar with written music,
http://readsheetmusic.info/readingmusic.shtml is recommended.
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2 A Klein Four-Group

The most basic (and earliest) example of the application of mathematics to the
twelve-tone method of composition involves the following basic transformations
that can be performed on a unique twelve-tone row. In the illustrations, the top
staff is an original row, and the bottom staff is the row after the transformation
has been performed.

The retrograde transformation reverses the order of the sequence of notes in the
row.

Figure 2: Retrograde (R)

In the example above, the original row is:

[0 1 6 2 7 9 3 4 10 11 5 8]

The transformed row is:

[8 5 11 10 4 3 9 7 2 6 1 0]

The inversion transformation turns each note ”upside down.” It takes the inter-
val between each note and the base note (C or 0), and flips the interval in the
opposite direction. In the array, this is done by subtracting each element from
12 (and using modulus 12, so the base note remains in the same octave). The
resulting sequence maintains the same intervals between consecutive notes, in
the opposite direction.

Figure 3: Inversion (I)

In the example above, the original row is the same as the one in the previous
example. The transformed row is:

[0 11 6 10 5 3 9 8 2 1 7 4]
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The retrograde-inversion transformation is a combination of the retrograde and
inversion transformations. Note: This can be done by performing the R opera-
tion followed by the I operation, or by performing the I operation followed by
the R operation.

Figure 4: Retrograde-Inversion (RI)

In this example, the original row is again the same as the one in the previous
examples. The transformed row is:

[4 7 1 2 8 9 3 5 10 6 11 0]

The identity transformation maintains the original row.

Figure 5: Identity (P)

Following is the Cayley table for a Klein Four-Group comprised by the four
transformations.

P R I RI
P P R I RI
R R P RI I
I I RI P R

RI RI I R P

This is a commonly used real-world example of a Klein Four-Group (a Klein
Four-Group is a cyclic group of order 2). Note that these operations are com-
mutative.

While the representation of these four operations as a Klein Four-Group shows
what Schoenberg saw as “the absolute and unitary perception of musical space”
[1], there are many other possible operations to take into account, such as trans-
position.
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3 Identities

Not only do rows of twelve-tone composition fit in Klein Four-Groups, but they
have some other interesting properties that can be represented as mathematical
identities. Morris mentions some identities involving the already defined oper-
ations as well as some more (defined below). We will briefly discuss some of
them. Here are some necessary definitions:

• An array P represents a row of twelve notes.

• Pk is the kth element (note) of this row.

• i(Pa,Pb) = Pb − Pa is the interval between Pa and Pb. In music the-
ory, the interval between two notes is the “distance” between those two
notes. In the notation used here, it is the difference between the numerical
representations of the two notes.

• TnPk is a transposition of Pk by n notes. In music theory, transposition
is increasing a note by a certain interval. In the notation used here, we
add the number n (representing the size of the interval to transpose by)
to the note Pk.

• The array INT(P) represents the intervals of P; INT(P)= [i(P0,P1), i(P1,P2), ..., i(P10,P11)]

Following are some identities involving these definitions. The identities to which
the reader wishes to pay attention is up to the reader’s discretion; only few need
to be understood for the following sections.

• i(Pa,Pb) = −i(Pb,Pa)
This can be seen from the given definition of an interval. The interval
between a note and the next is the opposite of the interval between the
next note and the first.

• i(TnPa,TnPb) = i(Pa,Pb)
Translation of two notes by the same interval does not affect the interval
between those two notes.

• i(I Pa, I Pb) = i(Pb,Pa)
This can be seen from the definition of Inversion (subtracting the note
from 12) and the first identity in this list.

• INT(TnP) = INT(P)
Translation does not affect the intervals between consecutive notes. This
can be seen by applying the second identity eleven times to the row.

• INT(TnIP) = I(INT(P))
We see from the previous identity that the Tn can be ignored. Then, we
see that the succession of intervals in the inverse is the same as the inverse
of the succession of intervals.
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• INT(RTnP) = R(INT(IP))
Again, the Tn can be ignored. The succession of intervals after the Ret-
rograde operation is the same as the reverse of the succession of intervals
after the Inverse operation.

• INT(RITnP) = R(INT(P))
The succession of intervals after the RI operation has been performed is
the same as the reverse of the succession of intervals after the Inversion
has been performed.

• i(Pa,TnPa) = n
The interval between a note and its transposition is equal to the distance
the note was transposed by. This can be seen from the given definition of
transposition.

• Pa + TnIPa = n
This can be seen from the given definitions: a + [n + (12 − a)] = n + 12.
Since we are doing arithmetic modulus twelve, this equals n.

To illustrate the use of these transformations in real music, one can see that
Schoenberg’s Violin Concerto (Op. 36) uses the twelve-tone technique. The
basic row used is P:

[0 1 6 2 7 9 3 4 10 11 5 8]

Throughout the piece, Schoenberg uses several of the operations mentioned to
aesthetically complement this basic row. For example:

RT5IP:

[9 0 6 7 1 2 8 10 3 11 4 5]

T11P:

[11 0 5 1 6 8 2 3 9 10 4 7]

It is impressive that all of the previously mentioned material was studied before
mathematics was officially introduced into twelve-tone composition. Mathe-
matics was first introduced through pitch-classes and transpositional levels (in-
volving the physics of sound waves), then with group theory (involving sets,
permutations, etc.), and then with the modern mathematical reasoning found
in music theory (for example, the proof of the Complement Theorem (mentioned
in section 4)). We continue with the group theory portion.

4 Theorems Involving T- and I-Matrices

Note:

• #X is the cardinality of (number of items in) the set X.
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• mul(A, B, n) is the multiplicity (number of times it appears in the set) of
{i(a, b) = n} for all a ∈ A and b ∈ B.

• sum(A, B, n) is the number of sums a + b = n, where a ∈ A and b ∈ B.

• A’ is the complement of A.

Following are three theorems developed in the late 20th century.

Transpositional Common Tone Theorem: #(A ∩ TnB) = mul(A, B, n)

Inversional Common Tone Theorem: #(A ∩ TnIB) = sum(A, B, n)

Complement Theorem: mul(A’, B’, n) = 12 - (#A + #B) + mul(A, B, n)

In 1974, Bo Alphonce (Yale) invented invariance matrices. A T-matrix E is
defined by: Ei,j = Xi + IYj. An I-matrix F is defined by: Fi,j = Xi + Yj. Fol-
lowing are the T- and I- matrices for a trichord (three notes following a special
set of rules) and a hexachord (six notes). We are using X = [0 1 2 4 7 8], Y =
[3 4 8] for the example.

Table 1: T-matrix
0 1 2 4 7 8

9 9 10 11 1 4 5
8 8 8 10 0 3 4
4 4 5 6 8 10 0

Table 2: I-matrix
0 1 2 4 7 8

3 3 4 5 7 10 11
4 4 5 6 8 11 0
8 8 9 10 0 3 4

The T- and I- matrices can also be made for a twelve-tone row P (let X = Y = P).

Let us define the function ifuncn(X, Y) as the number of instances of n in the
T-matrix. Then, ifuncn(X, IY) is the number of instances of n in the I-matrix.
Here are some resulting identities:

• ifuncn(X, Y) = mul(X, Y, n)
The number of times that the interval between two notes (one from each
set of notes) is n is equal to the number of times n appears in the T-matrix.
The intervals between notes from each set are used to choose which notes
are played at the same time for aesthetic purposes.

• ifuncn(X, IY) = sum(X, Y, n)
The number of times two notes (one from each set) add up to n is equal
to the number of times n appears in the I-matrix.
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Following are the theorems that come from the definitions above:

Corollary of Transpositional Common Tone Theorem: #(X ∩ TnY) = ifuncn(X,
Y)

Corollary of Inversional Common Tone Theorem: #(X ∩ TnIY) = ifuncn(X, IY)

Let G be the T-matrix: Gi,j = Xi + IXj. Let us use X = [0 10 7 9 2 8],
which is the first hexachord of Stravinsky’s ”A Sermon, a Narrative, and a
Prayer.”

0 10 7 9 2 8
2 0 9 11 4 10
5 3 0 2 7 1
3 1 10 0 5 11
10 8 5 7 0 6
4 2 11 1 6 0

Rotate G so that the diagonals (top-left to bottom-right) become columns. Con-
tinue with the diagonal six rows down to have six elements per column in the
rotated matrix.

0 10 7 9 2 8
0 9 11 4 10 2
0 2 7 1 5 3
0 5 11 3 1 10
0 6 11 8 5 7
0 4 2 11 1 6

Columns 0 and 3, like twelve-tone rows, are I-invariant, meaning that they follow
the previously mentioned identities for twelve-tone rows involving the operation
I (section 4). Columns 1 and 5 are Inversions of each other, and columns 2 and
4 are Inversions of each other.

5 Discussion and Conclusion

Current research on the application of group theory to twelve-tone composition
involves combinatorial arrays (studying the given arrays through the lens of
combinatorics), transformations other than those mentioned, and pitch classes.
A pitch class is a set of notes that are all octaves apart. Since the physics of
sound waves is applicable to the study of pitch classes, current research is com-
bining the two.

At this point, the original paper states that all of the applications of group the-
ory to twelve-tone composition have already been studied, and proposes other
(related) directions for future research. For example, modern music theory is
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based on the definition of twelve notes per octave; what if we define a different
number? Yes, many of the given identities and theorems still apply, but pitch-
classes and tonality will be affected; we still need the distance between notes to
divide the length of an octave.

Perhaps another direction of research could be to study the effect of the de-
fined transformations on the actual sound. Modern music theory and physics
have provided reasons for why what “the ear had gradually become acquainted
with” [1] sounds pleasant, and modern composers have found ways to make
even twelve-tone compositions fit both sets of rules (pleasant yet twelve-tone)
by adding multiple simultaneous parts to a song, each following its own series of
twelve-tone rows. Maybe in order to take twelve-tone composition into account,
we need to re-study the aesthetics of sound.
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