
The Jacobson radical

April 1, 2015

At this point we have a good understanding of semisimple rings, in that we know they are
all products of matrix rings over division algebras. Of course, the details of this decomposi-
tion for any particular such ring may be another matter entirely, but at least we have a good
theoretical framework to work in. The next step is to allow rings that aren’t semisimple,
such as FpG for a finite group whose order is divisible by p. The Jacobson radical is a useful
tool for understanding the structure of such rings. For example, it is used to measure the
failure of semisimplicity. Another application is to the striking theorem: Every left artinian
ring is left noetherian.

1 Definitions

Without further ado, here is the definition:

Definition: The Jacobson radical J(R) of a ring R is

J(R) = ∩
W simpleannW.

In other words, J(R) is the intersection of the annihilators of all simple R-modules.
Note that annW is a 2-sided ideal, since it is the kernel of the natural homomorphism
R−→EndZW , and hence J(R) is a 2-sided ideal. It is a proper ideal since 1 /∈ J(R). Before
giving examples we note the following equivalent formulation:

Proposition 1.1
J(R) = ∩mm,

where m ranges over all maximal left ideals.

Proof: Suppose x ∈ J(R) and m is a maximal left ideal. Then R/m is a simple module, so
x(R/m) = 0 and hence x ∈ m. Conversely suppose x lies in every maximal left ideal, and W
is a simple R-module. Then for every nonzero w ∈ W , Rw = W and annw is a maximal
left ideal. Hence xw = 0. So xW = 0, showing x ∈ J(R).

A ring R is local if it has a unique maximal left ideal m.

Corollary 1.2 If R is local with maximal left ideal m, then J(R) = m. In particular, m is a
2-sided ideal.
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Example. We’ve seen a few examples of commutative local rings (and we’ll see many more
in the spring). For example J(Z(p)) = (p), and if F is a field then J(F [[x]]) = (x).

Example. Suppose F is a field of characteristic p and G is a finite p-group. Then FG is a
local ring with maximal ideal the augmentation ideal IG, so J(FG) = IG. (Exercise.)

Note that if R is local with maximal ideal m, then R/m is a division ring (because it
has no proper nonzero left ideals). For us, it is almost invariably a field (even when R is
noncommutative).

2 Semisimplicity and the Jacobson radical

We can see right away that J(R) is related to semisimplicity:

Theorem 2.1 If R is semisimple, then J(R) = 0. The converse holds if R is left artinian.

Proof: We have seen that if R is semisimple, then as a left module it is a direct sum (indeed
a finite direct sum) of simple modules. So x ∈ J(R) ⇒ xR = 0 ⇒ x = 0.

Now suppose R is left artinian and J(R) = 0. We will show that the left regular module
R is a direct sum of simple modules, so R is semisimple. The first ingredient doesn’t use the
artinian condition:

Lemma 2.2 Let R be any ring with J(R) = 0. Then every minimal left ideal is a direct
summand (of the left regular module).

Proof: Let I be a minimal left ideal. Since J(R) = 0, there is a maximal left ideal m that
doesn’t contain I. Since I is a simple R-module, we then have I∩m = 0. Since m is maximal,
I + m = R. So I ⊕ m = R, proving the lemma.

We will also use the following trivial fact: Suppose M is an R-module, and L ⊂ N ⊂M
are submodules such that L is a direct summand of M . Then L is a direct summand of N .

Now since R is left artinian, it has a minimal left ideal I1. By the lemma I is a direct
summand, say R = I ⊕ K1. Again by the artinian condition, K1 contains a minimal left
ideal I2. By the lemma and the trivial fact, I2 is a direct summand of K1, say K1 = I2⊕K2.
Continuing in this way we obtain a descending chain of left ideals K1 ⊃ K2 ⊃ ... that must
stabilize since R is left artinian. But if Kn = Kn+1, we must have Kn = 0 (otherwise Kn

would contain a minimal left ideal and the process would continue). So R = I1 ⊕ ... ⊕ In.
This completes the proof of the theorem.

The converse is false without the artinian hypothesis. For example, J(Z) = 0 but Z is
not semisimple. The condition J(R) = 0 is sometimes called “Jacobson semisimple”.

Now consider the quotient homomorphism π : R−→R/J(R). Since J(R) annihilates
simple modules by definition, every simple R-module is pulled back from a simple R/J(R)-
module, and in fact π∗ defines a bijection between isomorphism classes of simple R/J(R)-
modules and isomorphism classes of simple R-modules. In particular, we have at once:
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Proposition 2.3 J(R/J(R)) = 0.

Thus R/J(R) can be viewed as the maximal Jacobson semisimple quotient of R. This is
most interesting, however, when R is left artinian. Then:

Corollary 2.4 If R is left artinian, R/J(R) is the maximal semisimple quotient of R.

Combining the correspondence between simple R-modules and simple R/J(R)-modules
with the Artin-Wedderburn theory, we have:

Theorem 2.5 Suppose R is left artinian. Let W1, ...,Wm denote the distinct simple R-
modules. Then

R/J(R) ∼=
m∏
i=1

Mni
Di,

where ni is the multiplicity of Wi in R/J(R) and Dop
i
∼= EndRWi.

See the exercises for examples.

3 Nakayama’s lemma

Although Nakayama’s lemma is rather obscure at first encounter, it is extraordinarily useful
and easy to prove. Rest assured that the point of it will become clearer as we proceed.

Proposition 3.1 If M is a finitely-generated R-module and J(R)M = M , then M = 0.

Proof: Let J = J(R), and suppose M 6= 0. Since M is finitely-generated it has a non-trivial
cyclic quotient, hence a non-trivial simple quotient W . Let π : M−→W denote the quotient
homomorphism. Then JW = 0 so JM ⊂ Ker π. Hence JM 6= M .

Note the special case when R is local with maximal left ideal m: If M is finitely-generated
and mM = M then M = 0. Note also that the finitely-generated hypothesis is essential. For
example if R is the local ring Z(p) and M = Q, then (p)M = M but M 6= 0.

One common use of Nakayama’s lemma in the local case is as follows.

Proposition 3.2 Let R be a local ring with maximal left ideal m, and let M be a finitely-
generated R-module. Then a finite set of elements x1, ..., xn ∈M generates M if and only if
their images x1, ...xn in M/mM generate M/mM .

Proof: The “only if” is trivial. Now suppose the xi’s generateM/mM . LetN ⊂M denote the
submodule generated by the xi’s. Since the restriction to N of the quotient homomorphism
M−→M/aM is surjective by assumption, we have M = mM+N . It follows that m(M/N) =
M/N , and hence M/N = 0 by Nakayama’s lemma, i.e. N = M as desired.

Corollary 3.3 Let D = R/m, and recall D is a division algebra. Then the xi’s form a
minimal generating set for M if and only if the xi’s form a D-basis for M/mM .
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Here we begin to see the utility of Nakayama’s lemma, which indeed is one of the prop-
erties of local rings that makes them easier than arbitrary rings. For example, if we have
a finitely-generated free Z(p)-module M , then any Fp-basis for M/p lifts to a Z(p)-basis of
M . On the other hand if N is a free abelian group and we choose a prime p, the analogous
statement for N/p is false even in the rank 1 case.

4 Units and the Jacobson radical

There are a number of characterizations of J(R) involving units, some of which are rather
obscure. The most basic, and easiest to understand and use, is the following:

Proposition 4.1 The following are equivalent:
a) x ∈ J(R).
b) For all r ∈ R, 1+rx has a left inverse (i.e. there is an s ∈ R such that s(1+rx) = 1).
c) For all r ∈ R, 1 + rx is a unit.

Proof: (a) ⇒ (b): Since J(R) is a left ideal, it suffices to show x ∈ J(R) ⇒ 1 + x has a left
inverse. If not, then R(1 + x) is a proper left ideal and hence there is a maximal left ideal m
with 1 + x ∈ m. But x ∈ m, so 1 ∈ m, a contradiction.

(b) ⇒ (c): By assumption 1 + rx has left inverse, say s(1 + rx) = 1. Hence s = 1− srx
also has a left inverse, again by assumption; say ts = 1. But if an element in a ring has both
a left and right inverse, the two are equal. Here we conclude t = 1 + rx. Hence s is a 2-sided
inverse of 1 + rx, i.e. 1 + rx is a unit.

(c) ⇒ (a): Suppose 1 + rx is a unit for all r, and let m be a maximal left ideal. If x /∈ m

then Rx+ m = R, so there is an r ∈ R and y ∈ m such that rx+ y = 1. Then y = 1− rx is
a unit by assumption, so 1 ∈ Ry and Ry = R, contradicting y ∈ m.

There is a more symmetric variant of the proposition, whose proof is left to the interested
reader:

Proposition 4.2 x ∈ J(R) if and only if for all r, s ∈ R, 1 + rxs is a unit.

Using this we can settle another symmetry issue which may have been bothering you:

Proposition 4.3 J(R) is the intersection of all maximal right ideals of R.

Proof sketch. We defined J(R) in terms of annihilators of simple left R-modules. Similarly
we can define a 2-sided ideal K(R) using simple right modules, and show that it is the
intersection of all maximal right ideals of R. Then (not surprisingly in view of the symmetry),
we can show that the previous proposition holds with K in place of J , and hence K(R) =
J(R).
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5 Nilpotence and the Jacobson radical

If R is a commutative ring, then the set of nilpotent elements in R is an ideal (an easy
exercise). This ideal is called the nilradical or just “the radical”, and is denoted N (R) or
NR. It plays an important role in commutative algebra. In the non-commutative case,
however, the nilpotent elements need not be closed under addition, nor under multiplication
by elements of R (for counterexamples, look in a 2× 2 matrix ring over a field).

In noncommutative rings, the more relevant concept is often that of a nilpotent ideal:
that is, a left ideal I such that In = 0 for some n. By definition, In consists of all sums of
n-fold products of elements of I. In particular, every element x ∈ I is nilpotent and in fact
xn = 0 for all x if In = 0.

Now if x is nilpotent, the nilpotence order of x is the minimal n such that xn = 0. By
definition, then, the elements of a nilpotent ideal have nilpotence order ≤ n for some fixed
n. This makes it clear that even in a commutative ring, an ideal consisting of nilpotent
elements need not be a nilpotent ideal. (For example, take a polynomial ring F [x1, x2, ...] on
infinitely many variable xn and mod out the ideal generated by (xnn).)

Recall that if x is nilpotent, then 1 + x is a unit.

Proposition 5.1 If I is a left ideal consisting of nilpotent elements (note this is weaker
than I a nilpotent ideal), then I ⊂ J(R).

Proof: If x ∈ I then rx is nilpotent for all r ∈ R, so 1 + rx is a unit for all r ∈ R. Hence
x ∈ J(R) by Proposition 4.1.

Corollary 5.2 If R is commutative, then N (R) ⊂ J(R).

Equality need not hold in the corollary. For example if R = Z(p) then N (R) = 0 and
J(R) = (p).

Proposition 5.3 If R is left artinian, then J(R) is nilpotent.

Proof: The descending chain of ideals J ⊃ J2 ⊃ J3 ⊃ ... must stabilize; say Jn = Jn+1

for n ≥ m. (If J was finitely-generated as a left ideal we could apply Nakayama’s lemma
immediately to get Jm = 0, but we don’t have this.) Let I = Jm. Then I2 = I, and claim
that I = 0. If not then the set of left ideals K such that IK 6= 0 is nonempty, and since R
is left artinian there is a minimal such K. By minimality K is a principal left ideal, and in
fact there is a y ∈ K with K = Iy (since Iy is a left ideal). Moroever IK = I2y = Iy = K,
so JK = K. Since K is generated by y and in particular is finitely-generated, Nakayama’s
lemma applies and we conclude K = 0, a contradiction.

There is a companion result for the nilradical in commutative rings:

Proposition 5.4 Let R be a commutative ring. If R is noetherian, then N (R) is a nilpotent
ideal.
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Proof: Since R is noetherian, every ideal in I is finitely-generated. In particular N (R)
is finitely-generated, say by x1, ..., xn. Let di denote the nilpotence order of xi, and let
d = d1...dn. Then I claim Id = 0. For Id is spanned by length d products y1...yd in which
each yj is one of the xi’s. By the definition of d, this means at least one xi occurs at least di
times, so y1...yd = 0.

We emphasize that this last result is for the nilradical, not the Jacobson radical. As
we’ve seen, the Jacobson radical of a commutative noetherian ring need not be nilpotent
(e.g. Z(p)).

6 On artinian versus noetherian rings

For modules over a ring R, the artinian and noetherian conditions are more or less on equal
footing. A module M is artinian (resp. noetherian) if it satisfies the descending (resp.
ascending) chain condition on submodules, and neither condition implies the other. But if
the module in question is the left regular module R, a surprising asymmetry turns up.

Theorem 6.1 If R is left artinian, then it is left noetherian.

The converse is false (take R = Z for instance). Before proving the theorem, we recall
two convenient facts (the proofs are straightforward).

Proposition 6.2 Let M be a module over a ring R.
a) M has finite length if and only if M is both artinian and noetherian.
b) If M is completely reducible, then the three properties artinian, noetherian, and finite

length are equivalent.

Proof of theorem. We will show that the left regular module R has finite length (cf. fact
(a)). Let J = J(R). Since R is left artinian, J is nilpotent, say Jn = 0. Hence R has a finite
decreasing filtration

R = J0 ⊃ J ⊃ J2 ⊃ ... ⊃ Jn = 0.

So it will suffice to show that each quotient Ni := J i/J i+1 of this filtration has finite length.
Any subquotient of an artinian module is artinian, so Ni is an artinian R-module. But
clearly Ni is pulled back from an R/J-module, and so is artinian as an R/J-module. Since
R/J is semisimple (Corollary 2.4), Ni is completely reducible and hence has finite length by
fact (b).

7 Exercises

1. Let G = S3 (isomorphic to GL2F2) and consider the group algebra R = FpG for a prime
p. Determine the simple R-modules, the Jacobson radical, and the maximal semisimple
quotient. (The answer will depend on p, of course.)
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While you’re at it, prove the following: Suppose F is a field of characteristic p and G is
a finite group with a normal p-Sylow subgroup, and consider the group algebra R = FG for
a prime p. Determine the Jacobson radical and the maximal semisimple quotient. (The case
p = 3 of the S3 problem is a special case.)

2. Same question as (1) for bnF , the algebra of upper triangular matrices over a field F .
(Determine the simple modules, Jacobson radical, maximal semisimple quotient.)

3. Let G be a finite p-group and let F be a field of characteristic p. Show that J(FG) =
IG, where IG is the augmentation ideal.

4. A commutative ring is semilocal if it has only finitely many maximal ideals. Show that
the Jacobson radical of a principal ideal domain R is nonzero if and only if R is semilocal
and not a field.

Remark. One can easily construct examples of semilocal rings e.g. by imitating the
construction of Z(p). Let p1, ..., pn be a finite set of primes, and let R ⊂ Q denote the subring
of fractions a/b in lowest terms such that none of the pi’s divides b. Then R is a semilocal
principal ideal domain with n maximal ideals, namely the ideals piR. Convince yourself that
this is correct but don’t write it up, as we’ll have a much more systematic approach to such
matters later (localization of commutative rings).
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