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The Koebe uniformization theorem is a generalization of the Riemann mapping The-

orem. It says that a simply connected Riemann surface is conformally equivalent to either

the unit disk D, the plane C, or the sphere C∗. We will give a proof that illustrates

the power of the Perron method. As is standard, the hyperbolic case (D) is proved by

constructing Green’s function. The novel part here is that the non-hyperbolic cases are

treated in a very similar manner by constructing the Dipole Green’s function.

A Riemann surface is a connected Hausdorff space W , together with a collection of

open subsets Uα ⊂W and functions zα : Uα → C such that

(i) W = ∪Uα

(ii) zα is a homeomorphism of Uα onto the unit disk D, and

(iii) if Uα ∩ Uβ 6= ∅ then zβ ◦ z−1
α is analytic on zα(Uα ∩ Uβ).

The functions zα are called coordinate functions, and the sets Uα are called coordinate

disks. We can extend our collection of coordinate functions and disks to form a base for

the topology on W by setting Uα,r = z−1
α (rD) and zα,r = 1

r
zα|Uα,r

, for r < 1. We can

also compose each zα with a Möbius transformation of the disk onto itself so that we can

assume that for each coordinate disk Uα and each p0 ∈ Uα there is a coordinate function

zα with zα(p0) = 0. For the purposes of the discussion below, we will assume that our

collection {zα, Uα} includes all such maps, except that we will further assume that each

Uα has compact closure in W , by restricting our collection.

A Riemann surface W is called simply connected if every closed curve in W is homo-

topic to a point. A function f : W → C is called analytic if for every coordinate function

zα, the function f ◦ z−1
α is analytic on D. Harmonic, subharmonic, and meromorphic

functions on W are defined in a similar way. Note that by (ii) and (iii) the functions

zβ ◦ z
−1
α are one-to-one analytic maps. This means that any theorem about plane domains

whose proof depends solely on the local behavior of functions is also a valid theorem about

Riemann surfaces. For example, the monodromy theorem (see e.g. Ahlfors[A1]) holds for

Riemann surfaces, and so does its corollary that every harmonic function on a simply con-
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nected Riemann surface has the form u = Ref for some analytic function f defined on W .

The Perron process also works on a Riemann surface. A Riemann surface W is pathwise

connected since the set of points than can be connected to p0 is open for each p0 ∈W .

Suppose W is a Riemann surface. Fix p0 ∈ W and let z : U → D be a coordinate

function such that z(p0) = 0. Let Fp0
be the collection of subharmonic functions onW \p0

satisfying

(a) v = 0 on W \K, for some compact K ⊂W with K 6= W, and

(b) lim sup
p→p0

(

v(p) + log |z(p)|
)

<∞
.

Set

gW (p, p0) = sup{v(p) : v ∈ Fp0
}. (1)

Condition (b) does not depend on the choice of the coordinate function zα, provided

zα(p0) = 0. The collection Fp0
is a Perron family, so one of the following two cases

holds by Harnack’s Theorem:

Case 1: gW (p, p0) is harmonic in W \ {p0}, or

Case 2: gW (p, p0) = +∞ for all p ∈W \ {p0}.

In the first case, gW (p, p0) is called Green’s function with pole (or logarithmic singularity)

at p0. In the second case we say that Green’s function does not exist.

In this note we give an essentially self contained proof of the following result.

The Uniformization Theorem (Koebe[1907]). Suppose W is a simply connected

Riemann surface. If Green’s function exists for W , then there is a one-to-one analytic map

of W onto D. If W is compact, then there is a one-to-one analytic map of W onto C∗. If

W is not compact and if Green’s function does not exist for W , then there is a one-to-one

analytic map of W onto C.

First we will prove some facts about Green’s function on Riemann surfaces, then we

will prove the Uniformization Theorem in Case 1, when Green’s function exists. Then we

give a similar proof of the Uniformization Theorem in Case 2, using the “Dipole” Green’s

function, assuming it exists. Finally we show that the Dipole Green’s function exists on

every Riemann surface.
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Lemma 1. Suppose p0 ∈ W and suppose z : U → D is a coordinate function such that

z(p0) = 0. If gW (p, p0) exists then,

gW (p, p0) > 0 for p ∈W \ {p0}, and (2)

gW (p, p0) + log |z(p)| extends to be harmonic in U. (3)

Proof. The function

v0(p) =







− log |z(p)| for p ∈ U

0 for p ∈W \ U

is in Fp0
. Hence gW (p, p0) ≥ 0 and gW (p, p0) > 0 if p ∈ U . By the maximum principle in

W \ {p0} (2) holds.

If v ∈ Fp0
and ε > 0, then v + (1 + ε) log |z| extends to be subharmonic in U , and

equal to −∞ at p0. Thus

sup
U

(

v + (1 + ε) log |z|
)

= sup
∂U

v ≤ sup
∂U

gW <∞.

Taking the supremum over v ∈ Fp0
and sending ε→ 0, we obtain

gW + log |z| ≤ sup
∂U

gW <∞

in U \ {p0}. We also have that

gW + log |z| ≥ v0 + log |z| ≥ 0 (4)

for p ∈ U \ {p0}. Thus p0 is a removable singularity for the harmonic function gW +log |z|

and (3) holds. �

The Green’s function for the unit disk D is given by

gD(z, a) = log

∣

∣

∣

∣

1− az

z − a

∣

∣

∣

∣

.

Indeed by the maximum principle, each candidate subharmonic function v in the Perron

family Fa is bounded by (1 + ε)gD(z, a), for ε > 0. Moreover max(gD(z, a) − ε, 0) ∈ Fa,

when ε > 0.
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The next lemma gives a large collection of Riemann surfaces for which Green’s function

exists.

Lemma 2. Suppose W0 is a Riemann surface and suppose U0 is a coordinate disk whose

closure is compact in W0. Set W = W0 \ U0. Then gW (p, p0) exists for all p, p0 ∈W with

p 6= p0.

Proof. Fix p0 ∈ W and let U ⊂⊂ W be a coordinate disk with coordinate function

z : U → D and z(p0) = 0. To prove that gW exists, we show that the family Fp0
is

bounded above. Fix r, with 0 < r < 1, and set rU = {p ∈W : |z(p)| < r}. If v ∈ Fp0
and

ε > 0 then by the maximum principle

v(p) + (1 + ε) log |z(p)| ≤ max
q∈∂U

(

v(q) + (1 + ε) log |z(q)|
)

= max
q∈∂U

v(q),

for all p ∈ U . As before, letting ε→ 0, we obtain

max
p∈∂rU

v(p) + log r ≤ max
p∈∂U

v(p). (5)

Let ω(p) = ω(p, ∂rU,W \rU) be the Perron solution to the Dirichlet problem onW \rU =

W0\{U0∪rU} for the boundary data which equals 1 on ∂rU and equals 0 on ∂U0. In other

words, we let F denote the collection of functions u which are subharmonic on W \ rU

with u = 0 on W \K for some compact set K, depending on u, and such that

lim sup
p→ζ

u(p) ≤ 1

for ζ ∈ ∂rU . Then

ω(p) = sup{u(p) : u ∈ F}.

By the Perron process, ω is harmonic in W \ U . Regularity for the Dirichlet problem is a

local question. Indeed we can define a local barrier at each point of the boundary of rU

and at each point of the boundary of U0. Thus the harmonic function ω extends to be

continuous at each point of ∂U0 and each point of ∂rU so that ω(p) = 0 for p ∈ ∂U0 and
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ω(p) = 1 for p ∈ ∂rU . This implies ω is not constant and 0 < ω(p) < 1 for p ∈ W \ rU .

Returning to our function v ∈ Fp0
, by the maximum principle we have that

v(p) ≤

(

max
∂rU

v

)

ω(p)

for p ∈W \ rU since v = 0 off a compact subset of W . So

max
∂U

v ≤

(

max
∂rU

v

)

max
p∈∂U

ω(p) ≤

(

max
∂rU

v

)

(1− δ) (6)

for some δ > 0. Adding inequalities (5) and (6) yields

δmax
∂rU

v ≤ log
1

r

for all v ∈ F , with δ is independent of v. This implies that Case 2 does not hold and hence

Green’s function exists. �

The next Lemma relates Green’s function on a Riemann surface to Green’s function

on its universal cover.

Lemma 3. Suppose W is a Riemann surface for which gW exists. Let W ∗ be a simply

connected universal covering surface of W and let π : W ∗ → W be the universal covering

map. Then gW ∗ exists and satisfies

gW (π(p∗), π(p∗0)) =
∑

q∗:π(q∗)=π(p∗

0
)

gW ∗(p∗, q∗). (7)

We interpret the infinite sum on the right side of (7) to be the supremum of all sums

over finitely many q∗.

Proof. Suppose q∗1 , . . . , q
∗
n are distinct points in W ∗ with π(q∗j ) = p0 = π(p∗0). Suppose

vj ∈ Fq∗

j
, the Perron family for the construction of gW ∗(·, q∗j ). So vj = 0 off K∗

j , a compact

subset of W ∗ and

lim sup
p∗→q∗

j

(

v(p∗) + log |z ◦ π(p∗)| <∞,
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where z is a coordinate chart on W with z(p0) = 0. Recall that gW (p, p0) + log |z(p)|

extends to be finite and continuous at p0, and hence

lim
p∗→q∗

j

gW (π(p∗), p0) + log |z(π(p∗))|

exists and is finite where π(q∗j ) = p0. Thus for ε > 0,

( n
∑

j=1

vj(p
∗)

)

−(1 + ε)gW (π(p∗), p0)

extends to be subharmonic and equal to −∞ at q∗j , for j = 1, . . . , n, and less than or equal

to 0 off ∪jK
∗
j . By the maximum principle, it is bounded above by 0 and letting ε→ 0 and

taking the supremum over all such v we conclude that gW ∗(p∗, q∗j ) exists and

n
∑

j=1

gW ∗(p∗, q∗j ) ≤ gW (π(p∗), p0).

Taking the supremum over all such finite sums we have

S(p∗) ≡
∑

q∗;π(q∗)=p0

gW ∗(p∗, q∗) ≤ gW (π(p∗), p0).

Moreover, as a supremum of finite sums of positive harmonic functions,

S(p∗) + log |z(π(p∗))|

is harmonic in a neighborhood of each q∗j by Harnack’s Theorem.

Now take v ∈ Fp0
, the Perron family used to construct gW (p, p0). Let U∗ be a

coordinate disk containing p∗0 such that z ◦ π is a coordinate function mapping U∗ onto D.

Then by the maximum principle

v(π(p∗))− (1 + ε)S(p∗) ≤ 0

for p∗ ∈ U∗ and ε > 0. Taking the supremum over all such v and letting ε→ 0, we obtain

gW (π(p∗), p0) ≤ S(p∗)
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and thus (7) holds. �

What we have proved so far works for any Riemann surface. We will now consider

simply connected Riemann surfaces and prove the Uniformization Theorem in Case 1.

Theorem 4. If W is a simply connected Riemann surface then the following are equiva-

lent:

gW (p, p0) exists for some p0 ∈W (8)

gW (p, p0) exists for all p0 ∈W, (9)

There is a one-to-one analytic map ϕ from W onto D. (10)

Moreover if gW exists, then

gW (p1, p0) = gW (p0, p1), (11)

and gW (p, p0) = − log |ϕ(p)|, where ϕ(p0) = 0.

Proof. Suppose there is a one-to-one analytic map ϕ of W onto D and let p0 ∈ W . By

composing ϕ with a Möbius transformation, we can assume that ϕ(p0) = 0. If v ∈ Fp0

and if ε > 0, then by (b)

v + (1 + ε) log |ϕ|

is subharmonic in W and equal to −∞ at p0. By the maximum principle, since v = 0 off

a compact subset K ⊂ W ,

v + (1 + ε) log |ϕ| ≤ 0

on W . Taking the supremum over all such v and letting ε→ 0, shows that gW (p, p0) <∞

and therefore (9) holds. Clearly (9) implies (8).

Now suppose (8) holds. By (3) there is an analytic function f defined on a coordinate

disk U containing p0 so that

Ref(p) = gW (p, p0) + log |z(p)|
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for p ∈ U . Hence the function

ϕ(p) = ze−f(p)

is analytic in U and satisfies |ϕ(p)| = e−gW (p,p0) and ϕ(p0) = 0. On any coordinate disk Uα

with p0 /∈ Uα, gW (p, p0) is the real part of an analytic function. Thus by the monodromy

theorem, there is a function ϕ, analytic on W , such that

|ϕ(p)| = e−gW (p,p0) < 1.

We claim that ϕ is one-to-one. If ϕ(p) = ϕ(p0) = 0, then clearly p = p0. Let p1 ∈W , with

p1 6= p0. Then by (2), |ϕ(p1)| < 1 and

ϕ1 ≡
ϕ− ϕ(p1)

1− ϕ(p1)ϕ

is analytic on W and |ϕ1| < 1. If v ∈ Fp1
, then by the maximum principle

v + (1 + ε) log |ϕ1| ≤ 0.

Taking the supremum over all such v and sending ε→ 0, we see that gW (p, p1) exists and

that

gW (p, p1) + log |ϕ1| ≤ 0. (12)

Setting p = p0 in (12) gives

gW (p0, p1) ≤ − log |ϕ1(p0)| = − log |ϕ(p1)| = gW (p1, p0).

Switching the roles of p0 and p1 gives (11). Moreover equality holds in (12) at p = p0 so

that gW (p, p1) = − log |ϕ1(p)| for all p ∈ W \ {p1}. Now if ϕ(p2) = ϕ(p1), then by the

definition ϕ1(p2) = 0 and thus gW (p2, p1) = ∞ and p2 = p1. Therefore ϕ is one-o-one.

The image ϕ(W ) ⊂ D is simply connected, so if ϕ(W ) 6= D then by the Riemann Mapping

Theorem we can find a one-to-one analytic map ψ of ϕ(W ) onto D with ψ(0) = 0. The

map ψ ◦ ϕ is then a one-to-one analytic map of W onto D, with ψ ◦ ϕ(p0) = 0, proving

(10). �

We now consider Riemann surfaces which do not have a Green’s function. As seen

above, Green’s function for the disk with pole at 0 is given by G = − log |z|. There is
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no Green’s function on the sphere or the plane, but this same function G plays a similar

role. Instead of one pole, or logarithmic singularity, G has two poles on the sphere, with

opposite signs. We will call it a Dipole Green’s function. The next lemma says that a

Dipole Green’s function exists for every Riemann surface. For a simply connected Riemann

surface without Green’s function, the Dipole Green’s function will be used to construct a

conformal map to the sphere or the plane in much the same way as Green’s function was

used in Case 1.

Lemma 5. Suppose W is a Riemann surface and for j = 1, 2, suppose that zj : Uj → D

are coordinate functions with coordinate disks Uj satisfying U1 ∩ U2 = ∅, and zj(pj) = 0.

Then there is a function G(p) ≡ G(p, p1, p2), harmonic in p ∈W \ {p1, p2} such that

G+ log |z1| extends to be harmonic in U1, (13)

G− log |z2| extends to be harmonic in U2, (14)

and

sup
p∈W\{U1∪U2}

|G(p)| <∞. (15)

Before proving Lemma 5, we will use it to prove the Uniformization Theorem in Case

2, since the proof is similar to the proof in Case 1.

Proof of the Uniformization Theorem in Case 2. By Theorem 4, we may suppose

that gW (p, p1) does not exist for all p, p1 ∈ W . By the monodromy theorem, as in the

proof of Theorem 4, there is a meromorphic function ϕ defined on W such that

|ϕ(p)| = e−G(p,p1,p2).

Note that ϕ has a simple zero at p1, a simple pole at p2 and no other zeros or poles.

Let us prove ϕ is one-to-one. Take p0 ∈ W \ {p1, p2}, let ϕ1 be the meromorphic

function on W such that

|ϕ1(p)| = e−G(p,p0,p2)
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and consider the function

H(p) =
ϕ(p)− ϕ(p0)

ϕ1(p)
.

Then H is analytic on W because its poles at p2 cancel and because ϕ1 has a simple zero

at p0. By (15) and the analyticity of H, |H| is bounded on W . But if v ∈ Fp1
, the Perron

family used to construct gW (p, p1), and if ε > 0, then by the maximum principle

v(p) + (1 + ε) log

∣

∣

∣

∣

H(p)−H(p1)

2 supW |H|

∣

∣

∣

∣

≤ 0.

Since gW (p, p1) does not exist, sup{v(p) : v ∈ Fp1
} ≡ +∞, and therefore

H(p) ≡ H(p1) = −ϕ(p0)/ϕ1(p1) 6= 0,∞.

From the definition of H, if ϕ1(p) is finite and not zero, then ϕ(p) 6= ϕ(p0) since H is

a non-zero constant. If ϕ1(p) = 0 then p = p0 from the definition of ϕ1. Finally ϕ1 has a

pole only at p2. But ϕ also has a pole at p2, and only at p2, and thus ϕ(p2) 6= ϕ(p0). We

have proved that ϕ(p) = ϕ(p0) only if p = p0. Since p0 is arbitrary, this proves that ϕ is

one-to-one.

We have shown that ϕ is a one-to-one analytic map from W to a simply connected

region ϕ(W ) ⊂ C
∗. If C∗ \ ϕ(W ) contains more than one point, then by the Riemann

mapping Theorem, there is a one-to-one analytic map of ϕ(W ), and hence of W , onto D.

Since we assumed that gW does not exist, this contradicts Theorem 4. Thus C∗ \ ϕ(W )

contains at most one point, and the last two statements of Theorem 6 are now obvious. �

One consequence of the proof of the Uniformization Theorem in Case 1 is the symmetry

property of Green’s function in Corollary 6. This property will be used in the proof of

Lemma 5.

Corollary 6. SupposeW is a Riemann surface for which Green’s function gW (p, q) exists,

for some p, q ∈W , with p 6= q. Then gW (p, q) exists for all p, q ∈W with p 6= q and

gW (p, q) = gW (q, p). (16)
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Proof. By Lemma 3 and Theorem 4, we may suppose that D is a universal cover of W .

In this case gD(a, b) = − log |(a− b)/(1− ba)|. Note that if τ is a Möbius transformation of

the disk onto the disk, then gD(a, τ(b)) = gD(τ
−1(a), b) for all a, b ∈ D with a 6= b. Let G

denote the group of deck transformations, a group of Möbius transformations τ satisfying

π ◦ τ = π and if π(q∗) = π(p∗) then there is a τ ∈ G such that τ(p∗) = q∗. Suppose g(p, p0)

exists for some p0 ∈ W and all p 6= p0. Choose p∗0 ∈ D so that π(p∗0) = p0. By Lemma 3

for p∗ 6= p∗0

gW (π(p∗), π(p∗0)) =
∑

τ∈G

− log

∣

∣

∣

∣

p∗ − τ(p∗0)

1− τ(p∗0)p
∗

∣

∣

∣

∣

=
∑

τ∈G

− log

∣

∣

∣

∣

τ−1(p∗)− p∗0

1− τ−1(p∗)p∗0

∣

∣

∣

∣

. (17)

Fix p∗ ∈ D. Each term in the sum

S(q∗) =
∑

τ∈G

− log

∣

∣

∣

∣

τ−1(p∗)− q∗

1− τ−1(p∗)q∗

∣

∣

∣

∣

is a positive harmonic function of q∗ ∈ D \ τ−1(p∗). Since the sum of positive harmonic

functions converges at q∗ = p∗0, the function S is harmonic in D \ {τ−1(p∗) : τ ∈ G}, by

Harnack’s Theorem. If v ∈ Fp, the Perron family for gW (q, p) where p = π(p∗), then by

the maximum principle v ≤ (1 + ε)S ◦ π−1 for all ε > 0, and letting ε→ 0 and taking the

supremum over all v ∈ Fp we conclude that gW (q, p) exists for all q 6= p. Equation (16)

then follows from Lemma 3 and (17). �

We now complete the proof of the Uniformization Theorem by proving Lemma 5.

Proof of Lemma 5. Suppose z0 is a coordinate function with coordinate chart U0

such that U0 ∩ Uj = ∅ for j = 1, 2. Let p0 be the point in W such that z0(p0) = 0. Set

tU0 = {p ∈W : |z0(p)| < t} and setWt =W \tU0. By Lemma 2 and Theorem 4, gWt
(p, p1)

exists for all p, p1 ∈ Wt with p 6= p1. Fix r, 0 < r < 1, and set rU1 = {p ∈W : |z1(p)| < r}.

By the maximum principle

gWt
(p, p1) ≤M1(t) ≡ max

q∈∂rU1

gWt
(q, p1), (18)
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for all p ∈Wt \ rU1, because the same bound holds for all candidates in the Perron family

defining gWt
. By (5)

M1(t) ≤ max
p∈∂U1

gWt
(p, p1) + log

1

r
. (19)

By (18), ut(p) ≡ M1(t) − gWt
(p, p1) is a positive harmonic function in Wt \ rU1 and by

(19) there exists q ∈ ∂U1 with ut(q) ≤ log 1
r
. Riemann surfaces are pathwise connected

so that if K is a compact subset of W1 \ rU1 containing {p2} ∪ ∂rU1, then by Harnack’s

inequality there is a constant C < ∞ depending on K and r but not on t, so that for all

p ∈ K

0 ≤ ut(p) ≤ C,

and

|gWt
(p, p1)− gWt

(p2, p1)| = |ut(p2)− ut(p)| ≤ 2C.

Likewise, if K ′ is a compact subset of W1 \ {|z2| < r} containing {p1} ∪ ∂rU2, there is a

constant C <∞ so that

|gWt
(p, p2)− gWt

(p1, p2)| ≤ C,

for all p ∈ K ′.

By Corollary 6, gWt
(p1, p2) = gWt

(p2, p1) and so the function

Gt(p, p1, p2) ≡ gWt
(p, p1)− gWt

(p, p2)

= (gWt
(p, p1)− gWt

(p2, p1))− (gWt
(p, p2)− gWt

(p1, p2)

is harmonic in Wt \ {p1, p2} and satisfies

|Gt(p, p1, p2)| ≤ C,

for all p ∈ K ∩K ′ and some finite C independent of t. We may suppose, for instance, that

K ∩K ′ contains ∂U1 ∪ ∂U2. If v ∈ Fp1
, the Perron family for gWt

(p, p1), then since v = 0

off a compact subset of Wt and since gWt
> 0, by the maximum principle

sup
Wt\U1

v(p)− gWt
(p, p2) ≤ max(0, sup

∂U1

v(p)− gWt
(p, p2))

≤ max(0, sup
∂U1

gWt
(p, p1)− gWt

(p, p2)) ≤ C,
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and taking the supremum over all such v yields

sup
p∈Wt\U1

G(p, p1, p2) ≤ C.

Similarly

inf
p∈Wt\U2

Gt(p, p1, p2) = − sup
p∈Wt\U2

−Gt(p, p1, p2) ≥ −C,

and

|Gt(p, p1, p2)| ≤ C

for all p ∈Wt \ {U1 ∪U2}. The function Gt + log |z1| extends to be harmonic in U1, so by

the maximum principle, we have that

sup
U1

|Gt + log |z1|| = sup
∂U1

|Gt + log |z1|| = sup
∂U1

|Gt| ≤ C.

Similarly

sup
U2

|Gt − log |z2|| = sup
∂U2

|Gt − log |z2|| = sup
∂U2

|Gt| ≤ C.

By normal families, there exists a sequence tn → 0 so that Gtn converges uniformly on

compact subsets of W \ {p0, p1, p2} to a function G(p, p1, p2) satisifying (13), (14), and

(15). The function G(p, p1, p2) extends to be harmonic at p0 because it is bounded in a

punctured neighborhood of p0. �

Since each of the spaces D,C, and C
∗ is second countable, we have the following

consequence.

Corollary 7. Every simply connected Riemann surface satisfies the second axiom of

countability.
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Comments:

1. It is possible to avoid the use of the Riemann Mapping Theorem (RMT) and then

RMT is a consequence of Theorem 6. In doing so, we use ideas from other proofs of that

theorem.

There are two places RMT is used. The first is at the end of the proof in Case I,

where we obtain a conformal map ϕ of W onto a possibly proper subset of D. Here is how

to prove that ϕ is onto:

If there exists a ∈ D \ϕ(W ), then (z − a)/(1− az) is a non-vanishing function on the

simply connected region ϕ(W ) and hence we can define an analytic square root

τ(z) =

√

z − a

1− az

for z ∈ ϕ(W ). Set

σ(z) =
τ(z) − τ(0)

1− τ(0)τ(z)
.

Then σ ◦ ϕ is an analytic function mapping W into D. Moreover σ−1 is an analytic

function defined on all of D, mapping D into D with σ−1(0) = 0 and it is not a rotation.

By Schwarz’s lemma |σ−1(z)| < |z| and so

|σ ◦ ϕ(z)| > |ϕ(z)|. (20)

By the argument used to establish (9) and (11), gW + log |σ ◦ ϕ| ≤ 0. But gW (p, p0) =

− log |ϕ(p)|, so that log |σ ◦ ϕ| ≤ log |ϕ|, contradicting (20). �

The idea to apply Schwarz’s lemma in the context of the proof of the Riemann Mapping

Theorem, I learned from a student, Will Johnson.

The second place where RMT is used is at the conclusion of the proof in Case 2, where

there is no Green’s function. We proved that there is a conformal map ϕ of W onto a

subset of C∗. If ϕ(W ) omitted at least two points in C∗, then we used the RMT to prove

there is a conformal map onto the disk and thus contradict Theorem 4. To avoid RMT,

we can simply use a part of its proof. If there are at least two points a, b ∈ C∗ \ϕ(W ) then

ψ(z) =
z − a

z − b
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is a nonvanishing analytic function on the simply connected region ϕ(W ), and hence we can

define an analytic square root σ(z) =
√

ψ(z). It is not hard to check that ψ is one-to-one,

and if ψ(ϕ(W )) covers a neighborhood of z1, z1 6= 0, then ψ(ϕ(W )) omits a neighborhood

of −z1. We can then apply a linear fractional transformation σ so that σ(ψ(ϕ(W ))) ⊂ D.

If gD is Green’s function on D then the Perron family Fp0
for constructing Green’s function

on W is bounded by gD(f(p), f(p0)) where f = σ ◦ ψ ◦ ϕ. Thus Green’s function exists,

contradicting our assumption.

2. It would be nice to avoid the use of universal covering surfaces. One need only prove

that Green’s function is symmetric for W \ U where W is simply connected and U is a

coordinate disk. One can do the construction of the covering space in this special case

for example. If it is desired to prove the more general Uniformation Theorem for all

Riemann surfaces, then maybe constructing the universal cover in this special case would

be good motivation for later doing it in general. This is the approach I generally use for

my class. An alternative that I’ve used is to just do all the topology of covering spaces and

deck transformations before beginning the uniformization theorem. This will highlight the

importance of simply connected surfaces before proving the theorem.

3. In the proof, it is enough to consider only subharmonic functions that are continuous.

At several places in the proof we have allowed −∞ as an isolated value for a subharmonic

function. In each such place, the maximim principle can be applied instead to the region

with a puncture at such a point.

4. By the last part of the proof of Lemma 3, a converse to Lemma 3 holds: If gW ∗ exists and

if the sum in (7) is finite, then gW exists. However, there are Riemann surfaces for which

W ∗ = D, so that gW ∗ exists, yet the sum in (7) is infinite. The Fuchsian group is then said

to be of Divergence type. In this case gW does not exist. For example, W = C \ {0, 1}.

5. The symmetry of Green’s function g(a, b) = g(b, a) can also be proved via Green’s

Theorem on Riemann surfaces. Then Lemma 3 and Corollary 6 can be eliminated. But

that approach seems to involve more work to include all the details.

6. [A1] Ahlfors, Complex Analysis, has a proof of the Monodromy Theorem that easily

extends to Riemann surfaces. There is also a very general version (more general than is

needed here) for Riemann surfaces in Ahlfors, Conformal Invariants.
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