Proof. Actually we will give two examples. For the first example, let

$$\log(\varphi') = \varepsilon \sum z^{2^n}.$$

If ε is small, then φ maps \mathbb{D} to a quasidisc; and by the remark following Theorem 1.3, φ has an angular derivative at no $\zeta \in \partial \mathbb{D}$.

The second example is the von Koch snowflake, Example VI.4.3. The conformal map from $\mathbb D$ to the interior domain Ω has a non-zero angular derivative at no point of $\partial\Omega$. Indeed if there is an inner tangent at ζ , then ζ belongs to Γ_n for some n, as shown in Example VI.4.3. If ζ is a vertex of Γ_n , then Ω either contains a truncated cone with opening $4\pi/3$ or contains no truncated cone with opening greater than $\pi/3$ at ζ . If ζ is not a vertex then Ω contains the union of a half disc and an equilateral triangle where the disc, centered at ζ , can be arbitrarily small and the size of the equilateral triangle is comparable to the diameter of the disc. See Figure VII.5. By the easy half of Ostrowski's Theorem V.5.5, Ω does not have a nonzero angular derivative at ζ . In fact the conformal map of the unit disc onto Ω is not conformal at any point of $\partial\mathbb D$.

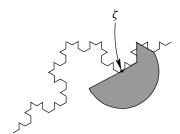


Figure VII.5 Union of a half disc and triangle.

Duren, Shapiro, and Shields [1966] introduced (2.11) in order to construct a Jordan domain that is not a Smirnov domain. If Ω is a Jordan domain with rectifiable boundary Γ the conformal map $\varphi : \mathbb{D} \to \Omega$ satisfies $\varphi' \in H^1$ and

$$\log |\varphi'(z)| = \int_{\mathbb{A}^{\mathbb{D}}} P_z(e^{i\theta}) \log |\varphi'(e^{i\theta})| d\theta - \int_{\mathbb{A}^{\mathbb{D}}} P_z(e^{i\theta}) d\mu_s(\theta),$$

where the singular measure μ_s is the weak-star limit

$$\mu_s = \lim_{r \to 1} \left(\log |\varphi'(e^{i\theta})| d\theta - \log |\varphi'(re^{i\theta})| d\theta \right).$$

Because $\varphi' \in H^1$,

$$\log |\varphi'(z)| \le \int P_z(e^{i\theta}) \log |\varphi'(e^{i\theta})| d\theta$$