Corrections to Section IX.3 of Harmonic Measure.

Page 336, line 3b. $\omega_{i,j}$ should be $\omega_{p,q}$.

Page 338, line 10. $\{B^k : k \in S\} \cup \{B_j : j \in T\}$, where the $B_j, j \in T$ come from the disc construction and the $B^k, k \in S$ come from the annulus construction.

Page 338, line 16. $\omega^*(Q_j)$ should be $\omega^*(B_j)$ The inequality holds with B_j by (3.2) for the original replacement $Q_j \to B_j$. Then since $B_j \cap \tilde{Q} = \emptyset$ whenever the annulus construction is performed on \tilde{Q} , $\omega(B_j)$ is increased in each later step.

Page 338, line 18. $\omega^*(Q^k)$ should be $\omega^*(B^k)$

Page 338, lines 18 and 20. Replace (3.7) by (3.7a) and label as (3.7b) the inequality $\omega^*(\{|z-z_0| < r\}) \le CMr$ on line 20.

To prove (3.7b) for a Q_j note that no dyadic square containing Q_j is ever treated to the constructions, so that (3.7b) holds for every $r = 2^m \ell(Q_j)$ for every revised ω , including finally ω^* .

The proof for Q^j is the same as its proof for Q_j because there are only finitely many squares to consider and the construction shows no square is treated twice as an Q^j . Letting $Q = Q^j$ at the final stage are replacing r by a nearby $2^m \ell(Q)$ we see that (3.7b) holds because otherwise the construction would be repeated on a square containing Q.

Page 339, line 10b. $\alpha = \alpha(B) = \text{Max} \dots$

To prove (3.9) when $\alpha > 2r(B)$, note that the estimates on $|\nabla v|$ and $-\partial u/\partial n$ yield

$$-\partial g/\partial n \ge CM^2 |\log \ell(Q)|$$

when $\alpha \geq |z-z_0| \geq 3/4\alpha$. The level set $\{g=\inf_{\sigma}g(z)\}$ is inside σ , $\sup_{\sigma}|\nabla g| \leq CM^2|\log \ell(Q)|$, and $\sup_{\sigma}g-\inf_{\sigma}g\leq c\omega^*(B)$. Hence each radius from σ to z_0 meets the level set, and (3.9) follows.

If $\alpha = 2r(B)$ a comparison $g \leq \log(|z - z_0|/r)$ on $r < |z - z_0| < R(\varepsilon)\ell(Q)$ so that by reflection g is bounded and harmonic on a large annulus with core curve ∂B . Hence $\sup_{\partial B} |\nabla g| \leq C \inf_{\partial B} |\nabla g|$, from which (3.9) follows easily.