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Figure I.1 The harmonic function 6(z).

Figure 1.2 The cone I',(¢).

Figure 1.3 The function P;.
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Figure 1.4 Approximating P} by a step function.
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Figure I.5 The crosscuts s, and ¢(7s, ).
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Figure 1.7 Whitney squares in D and €.
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Figure 1.8 The domains €0 are shaded.

Figure I.10 Harmonic measure of an arc.
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Figure I.11 A Carleson box.
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Figure 1.12 Tents.

Figure II.1 The proof of Theorem 1.1.

Figure I1.2 The proof of Lemma 2.2.

Figure I1.3 Straightening an analytic arc in 9.
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Figure II.5

Figure II1.1 Circular projection.

Figure I11.2 The Cantor set.
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Figure I11.3 Proof of Proposition 5.2.

Figure II1.4 Annuli and the Cantor set.

Figure II1.5 Circular Projection in D.



Figure I11.6 The proof of Corollary 9.3.
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Figure II1.7 Lower bound via reflection.

E
\
Pl Y

[T

E*  E* E*

Figure II1.8 Hall’s lemma.

Figure IV.1 Connecting and separating curves.
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Figure IV.2 Extremal distance in a quadrilateral.
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Figure IV.3 Extension rule.
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Figure IV.4 Serial rule.
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Figure IV.5 Parallel rule.



Figure IV.6 Symmetry rule.
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Figure IV.7 Slit rectangle.

Figure IV.8 Extremal distance and slit rectangles.
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Figure IV.9 Extremal distance and slit annuli.



Figure IV.10 Distance from a point to an arc.
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Figure IV.11 Proof of Theorem 5.2.

Figure IV.12 A strip domain.
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Figure IV.13 Crosscut estimate of harmonic measure.
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Figure IV.14

Figure V.1 Teichmiiller’s Modulsatz.

Figure V.2 Q, o and their reflection about |z| = R.



Figure V.3 Truncated cone at (.
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Figure V.4 Transforming the half-plane version to the strip version.
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Figure V.5 A comb region.
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Figure V.6 Distortion near the ends of vertical crosscuts.
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Figure V.7 Positive angular derivative at a tine.
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Figure V.8 Image of a vertical crosscut.
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Figure V.9 M-Lipschitz subregion.

Figure V.10 Proof of Sastry’s lemma.
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Figure V.11 Proof of Lemma 6.3.

Figure V.12 Proof of Lemma 6.4.

Figure V1.2 Cone domains U;.
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Figure V1.3 n-Lipschitz subregion.

Figure V1.4 Nested regions in McMillan’s theorem.
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Figure VI.5 The von Koch snowflake.
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Figure VI.6 Proof of Lemma 5.3.



Figure VI.7 I(z) consists of the base points of all cones I'y containing z.

Figure VI.8 Extremal distance estimate of harmonic measure.
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Figure V1.9 First generation towers.
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Figure VI.10 Second generation towers.



Figure VII.2
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Figure VII.4 The two possibilities in Condition (c).



Figure VII.5 Exterior angle at a vertex.

Figure VII.6 The quasiconformal image of a small circle.
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Figure VIIL.7 Chord-arc curve.

Figure VII.8 Chord-arc subdomain.
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Figure VII.9
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Figure VII.10 Both sides John.

Figure VIIL.2 Proof Lemma 3.3.
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Figure VIII.3 Known bounds for B(t).
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Figure VIIL.5 Polygonal tree.

Figure VIII.6
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Figure VIII.8 Dandelion construction.
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Figure VIIL.9 The map f; near aj.
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Figure IX.2 The proof of Lemma 1.3.



Figure IX.3

Figure IX.4

Figure IX.5



Figure IX.6

Figure IX.7
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Figure X.1 The special cone domain U = Fg(().
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Figure X.2 T',(¢(,U) and T'a (¢, U).

Figure X.3 T'=T,(¢,U) is shaded.

Figure X.4 The angle 7 in (1.11).



Figure X.5

Figure X.6 Cones satisfying (1.13).

Figure X.7



Figure X.11



Figure X.12

Figure X.13

Figure X.14
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Figure X.15

plret) plre”)
20 : o0
N
G‘

Figure X.16 On the left n ~ §; on the right n = 1 while 3 is small.

Figure X.17 The region V5.



Figure X.18

Figure X.19

Figure X.20 @1 € £; (QQ2,Q3,€ M.



Figure X.21

Figure X.22

Figure X.23 The proof of (11.6).



Figure X.24 The proof of Theorem 11.1.
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Figure B.1. The doubled Riemann surface 2.

Figure C.1



Figure D.1

Figure F.1

Figure H.1 p(Q;) = R;.
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Figure H.2

Figure H4
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Figure 1.2
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Figure M.1

Figure M.2



