CORRECTIONS TO Introduction to Smooth Manifolds (Second Edition)

BY JOHN M. LEE MAY 15, 2025

- (8/8/16) Page 6, just below the last displayed equation: Change $\varphi([x])$ to $\varphi_{n+1}[x]$, and in the next line, change x^i to x^{n+1} . After "(Fig. 1.4)," insert "with similar interpretations for the other charts."
- (8/8/16) **Page 7, Fig. 1.4:** Both occurrences of x^i should be x^{n+1} .
- (12/19/18) **Page 9, proof of Theorem 1.15:** In the second line of the proof, replace "For each j" with "For each $j \ge 0$." Then in the fourth-to-last line, replace "positive integers" by "nonnegative integers."
- (1/15/21) Page 13, line 1: Delete the words "and injective."
- (5/15/25) **Page 20, Example 1.31:** There are multiple errors in this example. Replace everything after the first two sentences by the following: For each $i=1,\ldots,n+1$, let $(U_i^{\pm}\cap\mathbb{S}^n,\varphi_i^{\pm})$ denote the graph coordinate charts we constructed in Example 1.4. For any distinct indices i and j and any choices of \pm signs, the transition maps $\varphi_i^{\pm}\circ(\varphi_j^{\pm})^{-1}$ and $\varphi_i^{\pm}\circ(\varphi_j^{\mp})^{-1}$ are easily computed. For example, in the case i< j, we get the following formula for all u in the domain of $\varphi_i^{+}\circ(\varphi_j^{+})^{-1}$:

$$\varphi_i^+ \circ \left(\varphi_j^+ \right)^{-1} \left(u^1, \dots, u^n \right) = \left(u^1, \dots, \widehat{u^i}, \dots, \sqrt{1 - |u|^2}, \dots, u^n \right)$$

(with u^i omitted and the square root inserted after u^{j-1}), and similar formulas hold in the other cases. When i=j, the domains of φ_i^+ and φ_i^- are disjoint, so there is nothing to check. Thus, the collection of charts $\{(U_i^{\pm} \cap \mathbb{S}^n, \varphi_i^{\pm})\}$ is a smooth atlas, and so defines a smooth structure on \mathbb{S}^n . We call this its **standard smooth structure**.

- (6/23/13) Page 23, two lines below the first displayed equation: Change "any subspace $S \subseteq V$ " to "any k-dimensional subspace $S \subseteq V$."
- (9/15/19) Page 24, first full paragraph, fourth line: Change "any subspace S" to "any k-dimensional subspace S."
- (12/19/18) **Page 26, first line:** Change $U \cap \varphi^{-1}(\operatorname{Int} \mathbb{H}^n)$ to $\varphi^{-1}(\operatorname{Int} \mathbb{H}^n)$.
- (12/19/18) Page 27, last paragraph, sixth line: Change $\tilde{U} \cap \mathbb{H}^n$ to $\tilde{U} \cap U$.
- (2/22/15) Page 29, proof of Theorem 1.46, second paragraph, line 4: Change $\varphi(U \cap V)$ to $\psi(U \cap V)$.
- (10/8/15) **Page 30, Problem 1-6:** Interpret the formula for F_s to mean $F_s(0) = 0$ when $s \le 1$.
- (1/27/18) Page 31, Fig. 1.13: Change $\{x^n = 0\}$ to $\{x^{n+1} = 0\}$.
- (3/12/18) Page 31, Problem 1-11, next-to-last line: Change \mathbb{S}^n to $\mathbb{S}^n \setminus \{N\}$.
- (4/25/17) **Page 45, second paragraph:** Replace the last sentence of that paragraph with the following: "If N has empty boundary, we say that a map $F: A \to N$ is **smooth on** A if it has a smooth extension in a neighborhood of each point: that is, if for every $p \in A$ there exist an open subset $W \subseteq M$ containing p and a smooth map $\widetilde{F}: W \to N$ whose restriction to $W \cap A$ agrees with F. When $\partial N \neq \emptyset$, we say $F: A \to N$ is smooth on A if for every $p \in A$ there exist an open subset $W \subseteq M$ containing p and a smooth chart (V, ψ) for N whose domain contains F(p), such that $F(W \cap A) \subseteq V$ and $\psi \circ F|_{W \cap A}$ is smooth as a map into \mathbb{R}^n in the sense defined above (i.e., it has a smooth extension in a neighborhood of each point)."
- (7/23/14) Page 45, last displayed equation: The first = sign should be \subseteq .
- (9/15/19) **Page 46, line 9:** Change "on an open subset" to "on a nonempty open subset."

- (6/20/18) **Page 47, proof of Theorem 2.29, second paragraph:** Replace the first sentence of the paragraph by "Let $h: \mathbb{R}^n \to \mathbb{R}$ be a smooth bump function that is positive in $B_1(0)$ and zero elsewhere."
- (2/13/22) Page 49, Problem 2-10(c): Change "an isomorphism" to "a bijection."
- (1/20/22) **Page 54, just after the first sentence:** Insert "(The integral is a smooth function of *x* by iterative application of Theorem C.14.)"
- (11/17/12) **Page 56, first displayed equation:** Change $d\iota(v)_p$ to $d\iota_p(v)$.
- (1/21/21) **Page 56, just below the last displayed equation:** Replace "the last two equalities follow" by "the last equality follows."
- (6/9/19) Page 58, proof of Lemma 3.11, next-to-last line: Change \mathbb{H}^n to Int \mathbb{H}^n .
- (1/26/15) **Page 68, proof of Proposition 3.21:** Insert the following sentence at the beginning of the proof: "Let $n = \dim M$ and $m = \dim N$." Then in the second sentence, change (3.9) to (3.10). Finally, in the displayed equation, change F^n to F^m (twice).
- (11/17/12) Page 70, two lines above Corollary 3.25: Change "Proposition 3.23" to "Proposition 3.24."
 - (3/5/15) **Page 76, Problem 3-8:** Add the following remark: "(For $p \in \partial M$, we need to allow curves with domain $[0, \varepsilon)$ or $(-\varepsilon, 0]$ and to interpret the derivatives as one-sided derivatives.)"
- (10/23/18) Page 78, proof of Prop. 4.1, third and fourth lines: Change $m \times n$ to $n \times m$ (twice).
- (11/9/16) Page 79, proof of Theorem 4.5, fourth line: Change $\hat{F}(p)$ to $\hat{F}(0)$.
- (12/12/21) **Page 82, line 4 from the bottom:** Change "This is a diffeomorphism onto its image" to "This is an open map and a diffeomorphism onto its image."
- (12/12/21) Page 83, proof of Theorem 4.14, line 8: Change "no open subset" to "no nonempty open subset."
 - (5/4/13) **Page 96, Problem 4-3:** This problem probably needs a better hint. First, to get a good result, you'll have to add the assumption that $\ker dF_p \not\subseteq T_p \partial M$. After choosing smooth coordinates, you can assume $M \subseteq \mathbb{H}^m$ and $N \subseteq \mathbb{R}^n$, and extend F to a smooth function \widetilde{F} on an open subset of \mathbb{R}^m . If rank F = r, show that there is a coordinate projection $\pi : \mathbb{R}^n \to \mathbb{R}^r$ such that $\pi \circ \widetilde{F}$ is a submersion, and apply the rank theorem to $\pi \circ \widetilde{F}$ to find new coordinates in which \widetilde{F} has a coordinate representation of the form $\widehat{F}(x,y) = (x,R(x,y))$. Then use the rank condition to show that $R|_M$ is independent of y.
- (12/22/21) **Page 100, first sentence:** At the end of the sentence, change "smooth embeddings" to "smooth embeddings of smooth manifolds."
 - (9/8/15) **Page 100, proof of Proposition 5.4, next-to-last line:** Change "It a homeomorphism" to "It is a homeomorphism."
 - (7/8/19) **Page 104, line below the proof of Theorem 5.11:** Change "See Theorem 5.31" to "See Problem 5-24." [Problem 5-24 is a new problem, described later in this list. Theorem 5.31 is not appropriate in this situation because it applies only to manifolds without boundary.]
 - (6/9/19) **Page 105, line 4 from the bottom:** Change F to Φ .
- (11/9/16) **Page 112, Fig. 5.10:** Interchange the labels M and N on the figure, to be consistent with the notation in Theorem 5.29.

- (5/5/22) **Page 113, line 6:** Change the definition of $\widetilde{\psi}$ to $\widetilde{\psi} = \pi \circ \psi|_{V_0}$. After the end of that sentence, insert the following: "To see that $\widetilde{\psi}$ is a smooth coordinate map, let $i: V \hookrightarrow M$ be the inclusion map. Note first that for each $q \in V_0, x^{k+1}, \ldots, x^n$ are all constant on the image of i, so the image of di_q is contained in the span of $\partial/\partial x^1, \ldots, \partial/\partial x^k$. Since di_q is injective and its image has trivial intersection with $\operatorname{Ker} d\widetilde{\psi}_q$, it follows that $d\widetilde{\psi}_q \circ di_q$ is injective, so for dimensional reasons it is an isomorphism. Thus $\widetilde{\psi} \circ i$ is a local diffeomorphism by the inverse function theorem. Since it is bijective from V_0 to its image, it is a diffeomorphism and hence a smooth coordinate map for V."
- (9/15/19) **Page 118, Fig. 5.13:** Change N to v.
- (9/20/22) **Page 119, third line:** Starting in the middle of that line, replace the rest of the proof with the following: "For each α such that $p \in U_{\alpha}$, we have $f_{\alpha}(p) = 0$ and $v(f_{\alpha}) = v^n > 0$ by Proposition 5.41. Thus

$$v(f) = \sum_{\alpha} (f_{\alpha}(p)v(\psi_{\alpha}) + \psi_{\alpha}(p)v(f_{\alpha})).$$

For each α , the first term in parentheses is zero and the second is nonnegative, and there is at least one α for which the second term is positive. Thus v(f) > 0, which implies that $df_p(v) = (vf)d/dt\big|_{f(p)} \neq 0$, where t is the standard coordinate on \mathbb{R} .

- (7/15/15) **Page 120, proof of Proposition 5.46:** At the beginning of the proof, insert this sentence: "Let $F: D \hookrightarrow M$ denote the inclusion map."
- (7/21/18) **Page 121, line 5:** Change x^m to x^n .
- (9/15/19) **Page 123, Problem 5-6:** Add the assumption that m > 0.
- (7/8/19) **Page 124:** At the end of the page, add a new problem: 5-24. Suppose M is a smooth manifold with boundary, N is a smooth manifold, and $F: N \to M$ is a smooth map whose image is contained in ∂M . Show that F is smooth as a map into ∂M , and use this to prove that ∂M has a unique smooth structure making it an embedded submanifold of M.
- (12/19/18) **Page 129, proof of Sard's theorem, second paragraph:** Just before the last sentence of the paragraph, insert the following: "In the \mathbb{H}^n case, extend F to a smooth map on an open subset of \mathbb{R}^m , and replace U by that open subset; if we can show that the set of critical values of the extended map has measure zero, then the same is true of the set of critical values of F."
- (3/16/19) **Page 129, displayed equation near the bottom of the page:** Change "*i*th partial derivatives" to "*i*th-order partial derivatives."
- (12/26/18) **Page 130, just below equation (6.2):** Right after the displayed equation, insert "(where the component functions F^2, \ldots, F^n might be different from the ones in the original coordinate chart)."
- (3/28/20) Page 131, two lines below the first displayed equation: Change $A'(R/K)^{k+1}$ to $A'(R\sqrt{m}/K)^{k+1}$.
- (1/8/18) Page 131, three lines below the first displayed equation: Insert "at most" before " K^m balls."
- (3/28/20) **Page 131, second displayed equation:** Change the left-hand side to $K^m(A')^n(R\sqrt{m}/K)^{n(k+1)}$, and in the next line, change the definition of A'' to $A'' = (A')^n(R\sqrt{m})^{n(k+1)}$.
- (4/17/13) Page 132, proof of Lemma 6.13, second paragraph: This argument does not apply when $\partial M \neq \emptyset$, because in that case $M \times M$ is not a smooth manifold with boundary. Instead, we can consider the restrictions of κ to $(M \times \operatorname{Int} M) \setminus \Delta_M$ and to $(M \times \partial M) \setminus \Delta_M$ (both of which are smooth manifolds with boundary), and note that there is a point $[v] \in \mathbb{RP}^{N-1}$ that is not in the image of τ or either of these restrictions of κ . [Thanks to David Iglesias Ponte for suggesting this correction.]

- (10/25/21) Page 134, proof of Theorem 6.15, just after the fourth paragraph of the proof: Insert the following: "In case M is an arbitrary compact subset of a larger manifold \widetilde{M} with or without boundary, we can adapt this argument to obtain an embedding of a neighborhood of M into \mathbb{R}^{nm+m} . After covering M with finitely many regular coordinate balls or half-balls for \widetilde{M} , the argument above produces an injective immersion $F: \bigcup_i \overline{B}_i \to \mathbb{R}^{nm+m}$, which is an embedding because its domain is compact; the restriction of this map to the union of the sets B_i is the desired embedding." [This is needed in the ensuing argument for the noncompact case, because the sets E_i might not be regular domains when $\partial M \neq \emptyset$.]
 - (7/3/15) Page 134, displayed equations two-thirds of the way down the page: In the definition of E_i , there's an "i-i" that should be "i-1." It should read $E_i = f^{-1}([b_{i-1}, a_{i+1}])$.
- (10/24/21) **Page 134, just below the displayed equations two-thirds of the way down the page:** Delete the sentence "By Proposition 5.47, each E_i is a compact regular domain." Two lines below that, replace "smooth embedding of E_i " with "smooth embedding of a neighborhood of E_i ."
 - (7/2/18) Page 137, first paragraph under the subheading "Tubular Neighborhoods," fifth line: Change R^n to \mathbb{R}^n .
- (7/27/18) **Page 138, proof of Theorem 6.23, end of the first paragraph:** Change "standard coordinate frame" to "standard coordinate basis."
- (11/25/12) Page 145, statement of Corollary 6.33: After "immersed submanifold," insert "with dim $S = \dim M$."
- (12/5/16) **Page 145, paragraph above Prop. 6.34:** In the definition of *smooth family of maps*, replace " $F: M \times S \to N$ " by " $F: N \times S \to M$."
- (9/28/19) **Page 146, equation (6.9):** Should read $dF(T_{(p,s)}W) \subseteq T_qX$. [Change the equal sign to subset.]
- (9/28/19) Page 146, line below the last displayed equation: Change "= $T_q X$ " to " $\subseteq T_q X$."
- (11/25/12) **Page 148, Problem 6-13:** Delete part (c). [This statement is simply wrong. It is true with the added hypothesis that F' is an embedding, but then it's essentially just a restatement of part (b).]
- (2/10/18) Page 150, last line: Change "Theorem 20.16" to "Theorem 20.22."
- (12/30/17) **Page 160, first line:** Change $R_{hh_1^{-1}}$ to $R_{h_1^{-1}h}$.
- (2/16/18) **Page 164, just above the subheading:** Replace the last line of the proof of Prop. 7.23 by "The action is smooth because each φ can be written locally as a composition of π followed by a smooth local section."
- (8/26/14) **Page 169, first line:** Change \tilde{G} to G.
- (6/21/20) **Page 169, statement of Theorem 7.35:** Replace the phrase "closed Lie subgroups such that *N* is normal" by "Lie subgroups such that *N* is normal and closed." [In fact, using the result of Theorem 19.25 later in the book, the hypothesis that *N* is closed can also be omitted.]
- (3/18/19) **Page 171, third line from the end of the proof:** Change E_i to E_j , so the formula reads $\rho_j^i(g) = \pi^i(g \cdot E_j)$.
- (9/17/14) **Page 173, Problem 7-21:** Replace the first sentence by "Prove that the groups in Problem 7-20 are isomorphic to direct products of the indicated groups in cases (a) and (c) if and only if n is odd, and in cases (b) and (d) if and only if n = 1."
- (1/18/21) **Page 178, Example 8.10(d):** Change "Example 8.4" to "Example 8.5."
- (9/15/23) Page 179, statement of Lemma 8.13: Change "local frame for $T\mathbb{R}^n$ " to "local frame for \mathbb{R}^n ."
- (6/9/19) **Page 184, Example 8.20, next-to-last line:** Change p = (u, v) to q = (u, v).

- (3/19/21) **Page 184, proof of Proposition 8.22:** After "Proposition 5.37," insert "in the case $\partial S = \emptyset$. When S has nonempty boundary, the proof of Proposition 5.37 still goes through using boundary slice coordinates for S."
- (11/17/12) Page 196, proof of Proposition 8.45, next-to-last line: Should read " $F_* \circ (F^{-1})_* = (F \circ F^{-1})_* = \operatorname{Id}_{\operatorname{Lie}(H)}$ and $(F^{-1})_* \circ F_* = \operatorname{Id}_{\operatorname{Lie}(G)}$."
 - (4/6/24) Page 197, first paragraph: Change "proposition" to "theorem."
 - (4/6/24) **Page 197, paragraph following the proof of Theorem 8.46:** Change "proposition" to "theorem" (twice).
 - (5/1/24) Page 201, Problem 8-15, last sentence: Before that sentence, insert "If S is positive-dimensional."
- (5/27/17) Page 208, first line: Change to "This is just the existence and smoothness statements of Theorem D.1"
- (4/6/24) Page 213, line 6 of the proof: Change "to same ODE" to "to the same ODE."
- (3/10/16) Page 213, first sentence of the last paragraph: The definition of t_0 should be $t_0 = \sup\{t \in \mathbb{R} : (t, p_0) \in W\}$.
- (5/24/19) **Page 214, Fig. 9.6:** The shaded area should be labeled W, not \mathcal{D} .
- (12/2/15) **Page 217, Fig. 9.7:** Both occurrences of φ should be Φ .
- (12/2/15) **Page 219, second displayed equation:** Change " $V^{j}(0, p) = 0$ " to " $\Phi^{j}(0, p) = 0$."
- (12/2/15) **Page 219, two lines below (9.12):** Here and in the rest of the paragraph, change p_0 to p_1 (seven times) to avoid confusion with the prior unrelated use of p_0 in this proof.
- (5/29/16) **Page 222, just below the section heading:** Insert the following sentence: "On a manifold with boundary, the definitions of *flow domain*, *flow*, and *infinitesimal generator of a flow* are exactly the same as on a manifold without boundary."
- (2/15/19) **Page 223, line 2:** Change $\delta: M \to \mathbb{R}^+$ to $\delta: \partial M \to \mathbb{R}^+$.
- (8/19/14) **Page 223, proof of Theorem 9.26:** There's a gap in this proof, because it is not necessarily the case that M(a) is a regular domain in Int M. To correct the problem, we have to choose our collar neighborhood more carefully. Replace the first sentence of the proof by the following paragraph:

"Theorem 9.25 shows that ∂M has a collar neighborhood C_0 in M, which is the image of a smooth embedding $E_0\colon [0,1)\times\partial M\to M$ satisfying $E_0(0,x)=x$ for all $x\in\partial M$. Let $f\colon M\to\mathbb{R}^+$ be a smooth positive exhaustion function. Note that $W=\{(t,x):f(E_0(t,x))>f(x)-1\}$ is an open subset of $[0,1)\times\partial M$ containing $\{0\}\times\partial M$. Using a partition of unity as in the proof of Theorem 9.20, we may construct a smooth positive function $\delta\colon\partial M\to\mathbb{R}$ such that $(t,x)\in W$ whenever $0\le t<\delta(x)$. Define $E\colon [0,1)\times\partial M\to M$ by $E(t,x)=E_0(t\delta(x),x)$. Then E is a diffeomorphism onto a collar neighborhood C of ∂M , and by construction f(E(t,x))>f(x)-1 for all $(t,x)\in [0,1)\times\partial M$. We will show that for each $a\in (0,1)$, the set $E([0,a]\times\partial M)$ is closed in M. Suppose p is a boundary point of $E([0,a]\times\partial M)$ in M; then there is a sequence $\{(t_i,x_i)\}$ in $[0,a]\times\partial M$ such that $E(t_i,x_i)\to p\in M$. Then $f(E(t_i,x_i))$ remains bounded, and thus $f(x_i)< f(E(t_i,x_i))+1$ also remains bounded. Since ∂M is closed in M, $f|_{\partial M}$ is also an exhaustion function, and therefore the sequence $\{x_i\}$ lies in some compact subset of ∂M . Passing to a subsequence, we may assume $(t_i,x_i)\to (t_0,x_0)$, and therefore $p=E(t_0,x_0)\in E([0,a]\times\partial M)$."

Then at the end of the first paragraph of the proof, add the following sentences:

"To see that M(a) is a regular domain, note first that it is closed in M because it is the complement of the open set C(a). Let $p \in M(a)$ be arbitrary. If $p \notin E([0,a] \times \partial M)$, then p has a neighborhood in Int M contained in M(a) by the argument above. If $p \in E([0,a] \times \partial M)$, then p = E(a,x) for some $x \in \partial M$, and C is a neighborhood of p in which $M(a) \cap C$ is the diffeomorphic image of $[a,1) \times \partial M$."

(1/30/14) Page 223, proof of Theorem 9.26, last line of the first paragraph: Change $0 \le t < a$ to $0 \le s < a$.

- (1/30/14) Page 225, Example 9.31: At the end of the example, insert the sentence "If $n \ge 2$, then $M_1 \# M_2$ is connected."
- (7/25/16) **Page 226, Example 9.32, fifth line:** Replace the sentence beginning "It is a smooth manifold without boundary ..." by "It is a topological manifold without boundary, and can be given a smooth structure such that each of the natural maps $M \to D(M)$ (induced by inclusion into the left and right summands of the disjoint union) is a smooth embedding."
- (3/2/21) **Page 230, line 1 and first displayed equation:** Change $\theta_t(x)$ to $\theta_t(u)$ (twice).
- (4/23/13) Page 230, second paragraph: "from Case" should be "from Case 1."
- (2/26/18) Page 230, fourth paragraph, last line: Change [X, Y] to [V, W].
- (9/8/18) **Page 234, proof of Theorem 9.46, second paragraph:** Replace the two parenthesized sentences by the following: "(To see this, just choose $\varepsilon_1 > 0$ and $U_1 \subseteq U$ such that θ_1 maps $(-\varepsilon_1, \varepsilon_1) \times U_1$ into U, and then inductively choose ε_i and U_i such that θ_i maps $(-\varepsilon_i, \varepsilon_i) \times U_i$ into U_{i-1} . Taking $\varepsilon = \min\{\varepsilon_i\}$ and $Y = U_k$ does the trick.)"
- (5/29/16) **Page 241, Example 9.52:** At the end of the example, add the sentence "Note that u is smooth on the open set $\mathbb{R}^2 \setminus \{0\}$, which is a neighborhood of S."
- (6/4/14) **Page 246, Problem 9-11:** Delete the second sentence of the hint. [Because N is inward-pointing along ∂M , no integral curve that starts on ∂M can hit the boundary again, because the vector field would have to be tangent to ∂M or outward-pointing at the first such point.]
- (11/17/21) Page 248, first displayed equation: Should read

$$V(t,p) = \left. \frac{\partial}{\partial s} \right|_{s=t} H_s \big(H_t^{-1}(p) \big).$$

(11/12/16) Page 248, Problem 9-22(c): Replace the problem statement by

(c)
$$\frac{\partial u}{\partial x} + u \frac{\partial u}{\partial y} = -y, \qquad u(0, y) = 0.$$

[Without this sign change, the third claim in Problem 9-23 is not true.]

- (11/16/20) Page 254, paragraph beginning "With respect to," third line: Replace $V_p \times \mathbb{R}^k$ with $U_\alpha \times \mathbb{R}^k$.
- (11/4/21) **Page 255, Example 10.8, line 5:** Replace the phrase "a bijective map $\Phi|_U: (\pi|_S)^{-1}(U \cap S) \to (U \cap S) \times \mathbb{R}^k$ " with "a bijective map from $(\pi|_S)^{-1}(U \cap S)$ to $(U \cap S) \times \mathbb{R}^k$." [The notation $\Phi|_U$ is inappropriate here.]
- (6/17/19) **Page 255, Example 10.8, lines 6–8:** Replace the sentence beginning with "If E is a smooth vector bundle" by the following: "If E is a smooth vector bundle and $S \subseteq M$ is an embedded submanifold, it follows easily from the chart lemma that $E|_S$ is a smooth vector bundle. If S is merely immersed, we give $E|_S$ a topology and smooth structure making it into a smooth rank-k vector bundle over S as follows: For each $p \in S$, choose a neighborhood U of p in M over which there is a local trivialization Φ of E, and a neighborhood V of E in E that is embedded in E and contained in E. Then the restriction of E to E to E is a bijection from E to E is a smooth vector bundle and E is a smooth vector b
- (3/30/21) **Page 255, Example 10.8, last line:** Change "over M" to "over S."
- (11/27/20) **Page 260, two lines above Proposition 10.22:** Change $\tau^n(p)$ to $\tau^k(p)$.
- (10/22/18) Page 261, statement of Proposition 10.25, first line: Change $\pi': E \to M'$ to $\pi': E' \to M'$.
 - (4/2/21) **Page 263, first full paragraph:** In the first two lines of the paragraph, change σ_1, σ_2 to τ_1, τ_2 (twice).
 - (7/2/14) Page 264, paragraph above the subheading, first sentence: "homomorphism" should be "homomorphisms."

- (6/21/23) Page 265, proof of Lemma 10.32, fifth line: Change "basis for D_p at each point $p \in U$ " to "basis for D_q at each point $q \in U$."
- (4/6/24) Page 267, paragraph before Lemma 10.35: Change "proposition" to "lemma."
- (8/7/23) **Page 267, proof of Lemma 10.35, lines 3 & 4:** Change "single slice in some coordinate ball or half-ball" to "single slice or half-slice in some coordinate ball."
- (4/2/21) **Page 271, Problem 10-18:** Change "a properly embedded" to "an embedded."
- (2/6/21) **Page 271, Problem 10-19(d):** Add the following: [Hint: For the "only if" direction, to show that F is compact, use a finite number of local trivializations to construct a closed set over which E is trivial.]
- (2/6/22) Page 276, proof of Proposition 11.9, first line: Change "Theorem 10.4" to "Proposition 10.4."
- (6/29/15) Page 278, Example 11.13, third line: Change "every coordinate frame" to "every coordinate coframe."
- (6/11/19) Page 296, line 6 from the bottom: Change "closed forms" to "closed covector fields" (twice).
- (4/18/20) Page 301, Problem 11-10(c): Change S^2 to S^2 .
- (4/20/20) **Page 301, Problem 11-13:** Add the assumption that n > 0.
- (5/19/18) **Page 303, just below the commutative diagram:** Insert this sentence: "A natural transformation is called a *natural isomorphism* if each map λ_X is an isomorphism in D."
- (5/19/18) **Page 303, Problem 11-18(b) and (c):** Change "natural transformation" to "natural isomorphism" in both parts.
- (6/14/24) **Page 303, Problem 11-18(d):** Change $Vec_{\mathbb{R}}$ to Set (twice). [Because the Lie bracket is bilinear instead of linear, it does not define a morphism in the category $Vec_{\mathbb{R}}$. But it does define a morphism in the category of sets, which is sufficient for the purposes of this problem.]
- (4/7/21) **Page 317, paragraph beginning "Any one":** At the end of the paragraph, add this sentence: "If A and B are tensor fields, then $A \otimes B$ denotes the tensor field defined by $(A \otimes B)_p = A_p \otimes B_p$."
- (5/24/18) **Page 317, displayed equation just below the middle of the page:** Change $A^{i_1...i_k}_{j_1...i_l}$ to $A^{i_1...i_k}_{j_1...j_l}$ on the third line of the display, and again on the line below the display. [The last lower index should be j_l , not i_l .]
- (4/18/17) **Page 320, statement of Proposition 12.25:** Change the domain and codomain of G: It should read $G: P \to M$.
- (4/18/17) **Page 320, Proposition 12.25(e):** Should read $(F \circ G)^*B = G^*(F^*B)$.
- (4/17/15) **Page 333, first line:** Change $U \subseteq M$ to $V \subseteq M$.
- (7/1/14) **Page 345, Problem 13-10:** In the last line of the problem statement, change $L_{\overline{g}}(\widetilde{\gamma}) > L_{\overline{g}}(\gamma)$ to $L_{\overline{g}}(\widetilde{\gamma}) \geq L_{\overline{g}}(\gamma)$, and delete the phrase "unless $\widetilde{\gamma}$ is a reparametrization of γ ." [Because the definition of reparametrization that I'm using requires a diffeomorphism of the parameter domain, the original problem statement was not true.]
- (12/18/12) **Page 355, proof of Lemma 14.10:** At the beginning of the proof, insert "Let $(E_1, ..., E_n)$ be the basis for V dual to (ε^i) ."
- (12/18/12) Page 356, Case 4, second line: Should read "brings us back to Case 3."
- (1/23/24) Page 357, first line after the proof of Proposition 14.11: Change "this lemma" to "this proposition."
- (7/3/15) **Page 368, second paragraph:** At the end of the first sentence of the paragraph, insert "(see pp. 341–343)."
- (7/18/17) Page 368, paragraph below equation (14.25): Change TM to $T\mathbb{R}^3$ (twice).

- (9/17/14) Page 371, three lines above (14.31): Change that sentence to "The only terms in this sum that can possibly be nonzero are those for which J has no repeated indices and m is equal to one of the indices in J, say $m = j_p$."
- (8/18/24) **Page 374, Problem 14-2:** Add "[Hint: One way to approach this is to prove first that a nonzero k-covector ω is decomposable if and only if the map from \mathbb{R}^n to $\Lambda^{k-1}(\mathbb{R}^{n*})$ given by $v \mapsto v \sqcup \omega$ has (n-k)-dimensional kernel.]"
- (12/2/20) **Page 377, line 4:** Change "is a simply" to "is simply."
- (5/9/24) **Page 379, proof of Proposition 15.3, second paragraph:** Change "B is the transition matrix" to "the matrix representation of B with respect to (E_i) is the transition matrix."
- (2/18/25) **Page 382, proof of Proposition 15.6, second paragraph:** In the second sentence of the paragraph, after "smooth chart," insert "with connected domain."
- (3/9/16) Page 386, just above Proposition 15.24: After "determines an orientation on ∂M ," insert "if M is oriented."
- (4/24/22) Page 388, last paragraph: Change "Proposition 13.6" to "Corollary 13.8."
- (7/20/17) **Page 389, Exercise 15.30:** Change "a local isometry" to "an orientation-preserving local isometry."
- (1/25/24) Page 393, Example 15.38, next-to-last line in the first paragraph: Change $\operatorname{Aut}_{\pi}(E)$ to $\operatorname{Aut}_{\sigma}(E)$.
- (5/9/20) **Page 397, Problem 15-1:** At the end of the last sentence, add "when n > 1."
- (5/14/20) **Page 397, Problem 15-3:** Change $\overline{\mathbb{B}}^n$ to $\overline{\mathbb{B}}^{n+1}$ (twice).
- (5/28/22) **Page 397, Problem 15-4:** Change the first sentence to "Let θ be the flow of a smooth vector field on an oriented smooth manifold." [The stated result is true also for manifolds with boundary and for nonmaximal flows, but to prove it, one must first do a little work to generalize some of the results of Theorem 9.12 to more general flows.]
- (4/26/14) Page 402, lines 2–3: There should not be a paragraph break before "and."
- (3/14/16) **Page 403, just after the last displayed equation:** Add "(In the \mathbb{H}^n case, apply Theorem C.26 to the interiors of D and E considered as subsets of \mathbb{R}^n .)"
- (5/28/18) **Page 409, line 2:** Change φ_i to φ .
- (6/24/18) **Page 415, paragraph above Example 16.19:** Change "interior charts and charts with corners" to "interior charts, boundary charts, and charts with corners."
- (6/2/16) **Page 416, line 3 from the bottom:** Change " $\gamma(0) = p$ " to " $\gamma(0) = \psi(p)$."
- (9/25/19) Page 418, statement of Proposition 16.21: Delete "compact," and change "n-manifold" to "(n + 1)-manifold."
- (6/24/18) **Page 419, proof of Theorem 16.25, first paragraph:** Replace the second and third sentences of the paragraph by the following: "By means of smooth charts and a partition of unity, we may reduce the theorem to the cases in which $M = \mathbb{R}^n$, $M = \mathbb{H}^n$, or $M = \overline{\mathbb{R}}^n_+$. The \mathbb{R}^n and \mathbb{H}^n cases are treated just as before."
- (9/3/23) **Page 423, just above equation (16.11):** Change " β : $\mathfrak{X}(M) \to \Omega^{n-1}(M)$ " to " β : $TM \to \Lambda^{n-1}T^*M$."
- (7/22/15) **Page 424, second displayed equation:** Change $\iota_S^*\beta(X)$ to $\iota_{AM}^*\beta(X)$.
- (2/18/13) Page 426, three lines below the section heading: "cam" should be "can."
- (2/18/25) **Page 430, Proposition 16.38(a):** Change $f \in C^{\infty}(N)$ to $f \in C(N)$.
- (9/30/24) **Page 430, Proposition 16.38(c):** This statement is wrong. Change it to " $F^*\mu$ is continuous; and if μ is smooth and F is a local diffeomorphism, then $F^*\mu$ is smooth."

- (5/31/22) Page 435, Problem 16-4: Change "manifold with boundary" to "manifold with nonempty boundary."
- (7/27/16) Page 439, Problem 16-23: The formula for g should be

$$g = \frac{dx^2 + dy^2}{(1 - x^2 - y^2)^2}.$$

- (2/19/13) **Page 444, two lines below equation (17.4):** Change $T_{(q,s)}M$ to $T_{(q,s)}(M \times \mathbb{R})$.
- (4/7/24) **Page 446, last line:** Change c_q to C_q .
- (4/7/24) Page 447, line 2: After "inclusion map," insert "and $c_q: M \to \{q\}$ denotes the constant map."
- (6/6/18) **Page 447, Corollary 17.15:** Change "every closed form is exact" to "every closed p-form is exact for $p \ge 1$."
- (5/15/15) **Page 450, proof of Theorem 17.21, line 5:** Change $H^1_{dR}(\mathbb{S}^n)$ to $H^1_{dR}(\mathbb{S}^1)$.
- (8/14/17) **Page 451, proof of Corollary 17.25, next-to-last line:** Change $\mathrm{Id}_{H^{n-1}_{\mathrm{dR}}}(S)$ to $\mathrm{Id}_{H^{n-1}_{\mathrm{dR}}(S)}$.
- (11/24/17) **Pages 455–456, Proof of Theorem 17.32:** The proof given in the book is incorrect, because the V_i 's might not be connected, so Theorem 17.30 does not apply to them. Here's a corrected proof.

Lemma. If M is a noncompact connected manifold, there is a countable, locally finite open cover $\{V_j\}_{j=1}^{\infty}$ of M such that each V_i is connected and precompact, and for each j, there exists k > j such that $V_j \cap V_k \neq \emptyset$.

Proof. Let $\{W_j\}_{j=1}^{\infty}$ be a countably infinite, locally finite cover of M by precompact, connected open sets (such a cover exists by Prop. 1.19 and Thm. 1.15). By successively deleting unneeded sets and renumbering, we can ensure that no W_j is contained in the union of the other W_i 's.

Let $Y_1 = \bigcup_{i=2}^{\infty} W_i$. Because M is connected, each component of Y_1 meets W_1 , and by local finiteness of $\{W_j\}$, there are only finitely many such components. Such a component is precompact in M if and only if it is a union of finitely many W_i 's. Let V_1 be the union of W_1 together with all of the precompact components of Y_1 , and let X_1 be the union of all W_i 's not contained in V_1 . Then V_1 is connected and precompact, and X_1 has no precompact components. Proceeding by induction, suppose we have defined connected, precompact open sets V_1, \ldots, V_m whose union contains $W_1 \cup \cdots \cup W_m$, and such that the union X_m of all the W_i 's not contained in $V_1 \cup \cdots \cup V_m$ has no precompact components. Let j_m be the smallest index such that W_{j_m} is not contained in $V_1 \cup \cdots \cup V_m$, and let Y_{m+1} be the union of all W_i 's other than W_{j_m} not contained in $V_1 \cup \cdots \cup V_m$. Any precompact component of Y_{m+1} must meet W_{j_m} , because otherwise, it would be a precompact component of X_m . Let V_{m+1} be the union of W_{j_m} with all of the precompact components of Y_{m+1} . As before, V_{m+1} is precompact and connected, and the union X_{m+1} of the W_i 's not contained in $V_1 \cup \cdots \cup V_{m+1}$ has no precompact components. Then by construction, for each j, the set $X_j = \bigcup_{i>j} V_i$ has no precompact components. If some V_j does not meet V_k for any k > j, then V_j itself is a precompact component of X_{j-1} , which is a contradiction. Thus for each j, there is some k > j such that $V_j \cap V_k \neq \emptyset$.

Proof of Theorem 17.32. Choose an orientation on M. Let $\{V_j\}_{j=1}^{\infty}$ be an open cover of M satisfying the conclusions of the preceding lemma. For each j, let K(j) denote the least integer k > j such that $V_j \cap V_k \neq \emptyset$, and let θ_j be an n-form compactly supported in $V_j \cap V_{K(j)}$ whose integral is 1. Let $\{\psi_j\}_{j=1}^{\infty}$ be a smooth partition of unity subordinate to $\{V_j\}_{j=1}^{\infty}$.

Now suppose ω is any n-form on M, and let $\omega_j = \psi_j \omega$ for each j. Let $c_1 = \int_{V_1} \omega_1$, so that $\omega_1 - c_1 \theta_1$ is compactly supported in V_1 and has zero integral. It follows from Theorem 17.30 that there exists $\eta_1 \in \Omega_c^{n-1}(V_1)$ such that $d\eta_1 = \omega_1 - c_1 \theta_1$. Suppose by induction that we have found η_1, \ldots, η_m and constants c_1, \ldots, c_m such that for each $j = 1, \ldots, m$, $\eta_j \in \Omega_c^{n-1}(V_j)$ and

$$d\eta_j = \left(\omega_j + \sum_{i:K(i)=j} c_i \theta_i\right) - c_j \theta_j. \tag{*}$$

Let

$$c_{j+1} = \int_{V_{j+1}} \left(\omega_{j+1} + \sum_{i:K(i)=j+1} c_i \theta_i \right).$$

Then by Theorem 17.30, there exists $\eta_{j+1} \in \Omega_c^{n-1}(V_{j+1})$ satisfying the analog of (*) with j replaced by j+1. Set $\eta = \sum_{j=1}^{\infty} \eta_j$, with each η_j extended to be zero on $M \setminus V_j$. By local finiteness, this is a smooth (n-1)-form on M. It satisfies

$$d\eta = \omega + \sum_{j=1}^{\infty} \left(\sum_{i:K(i)=j} c_i \theta_i \right) - \sum_{j=1}^{\infty} c_j \theta_j.$$

Each term $c_i \theta_i$ appears exactly once in the first sum above, so the two sums cancel each other.

- (7/27/16) Page 457, line below the second displayed equation: Change "Theorem 17.31" to "Theorem 17.30."
- (7/12/16) Page 463, line above equation (17.15): Insert missing space before "Similarly."
- (7/13/16) **Page 464, end of proof of Corollary 17.42:** Insert "Note that this construction produces a form σ whose support is contained in $U \cap V$." [This might be useful for solving Problem 18-6.]
- (7/12/16) **Page 471, last paragraph:** Replace the sentence starting "The hardest part ..." with "The hardest part is showing that the singular chain complex of M can be replaced by a chain complex built out of simplices whose images lie in either U or V, without changing the homology."
- (9/12/17) Page 487, Problem 18-1, first line: Change "an oriented smooth manifold" to "a smooth manifold."
- (8/8/18) **Page 489, Problem 18-7(b):** Add to the hint: "In order to use Lemma 17.27, you'll need to prove the following fact: *Every bounded convex open subset of* \mathbb{R}^n *is diffeomorphic to* \mathbb{R}^n . To prove this, let U be such a subset, and without loss of generality assume $0 \in U$. First show that there exists a smooth nonnegative function $f \in C^{\infty}(U)$ such that f(0) = 0 and $f(x) \ge 1/d(x)$ away from a small neighborhood of 0, where d(x) is the distance from x to ∂U . Next, show that $g(x) = 1 + \int_0^1 t^{-1} f(tx) dt$ is a smooth positive exhaustion function on U that is nondecreasing along each ray starting at 0. Finally, show that the map $F: U \to \mathbb{R}^n$ given by F(x) = g(x)x is a bijective local diffeomorphism. Also, you may use the fact that the conclusion of the five lemma is still true even if the appropriate diagram commutes only up to sign."
- (1/15/13) Page 491, Example 19.1(c): Delete the word "unit."
- (5/22/15) Page 492, line above Proposition 19.2: Change "lie" to "Lie."
- (12/17/15) **Page 492, proof of Proposition 19.2, fourth line:** Change "Given $p \in M$ " to "Given $p \in U$."
- (2/17/25) **Page 504, last paragraph, second line:** Change $(S \cap N, \psi)$ to $(S \cap N, \psi|_{S \cap N})$.
- (9/12/16) Page 506, Lemma 19.24, last line: Before "left-invariant," insert "smooth."
- (6/1/20) **Page 512, Problem 19-4:** In the first line of the problem, change "all three coordinates are positive" to "z is positive." Then replace the last sentence by "Find an explicit global chart on U in which D is spanned by the first two coordinate vector fields." [Technically it might not be a flat chart because its image need not be a cube in \mathbb{R}^3 .]
- (7/27/22) **Page 513, Problem 19-10:** Add the following to the end of the problem statement: "(Transversality to an immersed submanifold is defined exactly as in the embedded case.)"
- (10/4/17) **Page 518, sentence before Prop. 20.3:** Change "one-parameter subgroups of $GL(n,\mathbb{R})$ " to "one-parameter subgroups of subgroups of $GL(n,\mathbb{R})$."
- (5/23/16) Page 521, first displayed equation: Change $d\Phi_0$ to $d\Phi_e$ (twice).

- (7/10/23) **Page 524, first paragraph, last line:** Change " $U_i \subseteq U_0$ and $\widetilde{U}_i \subseteq \widetilde{U}_0$ " to " $U_i \subseteq U_0$, $V_i \subseteq \Phi(\widetilde{U}_0)$, and $\widetilde{U}_i \cap \mathfrak{h} \subseteq U_0$."
- (6/9/19) **Page 528, line 9:** Change two instances of (g, p) in subscripts to (g, q).
- (2/11/25) **Page 528, line 7 from the bottom:** Before the sentence beginning "This completes," insert the following: "To show that Π_p is surjective, let $g \in G$ be arbitrary. It follows from Proposition 7.14 that the image of the exponential map generates G, so we can write $g = (\exp X_1) \cdots (\exp X_m)$ for some elements $X_1, \ldots, X_m \in \mathfrak{g}$. Let $h_0 = e$ and $h_k = (\exp X_1) \cdots (\exp X_k) \in G$ for $k = 1, \ldots, m$, and inductively define $q_0 = p$, $q_k = \eta_{(\widehat{X}_k)}(1, q_{k-1})$, where $\eta_{(\widehat{X}_k)}$ is defined as above. The curve $\gamma_k : [0,1] \to G \times M$ given by

$$\gamma_k(t) = \left(h_{k-1} \exp t X_k, \eta_{(\widehat{X}_k)}(t, q_{k-1})\right)$$

goes from (h_{k-1}, q_{k-1}) to (h_k, q_k) and has velocity lying in D at each point. Thus by induction, (h_k, q_k) lies in S_p for each k, which shows $g = \Pi_p(g_m, q_m)$."

- (5/19/18) Page 528, just below the displayed equation in the middle of the page: The smoothness of the map σ_q is not quite immediate from the definition. Replace the three sentences beginning "It follows" with this: "Because S_p is a weakly embedded submanifold by Theorem 19.17, to show that σ_q is a smooth local section of S_p , it suffices to show that it is smooth into $G \times M$ and takes its values in S_p . The first component function is smooth as a map into G by smoothness of group multiplication. To show that the second component is smooth into G as a function of \widehat{X} (and therefore of $\operatorname{exp} X$), you need to use the argument sketched out just below equation (20.10): as in the proof of Prop. 20.8, apply the fundamental theorem on flows to the vector field $\Xi_{(p,X)} = (\widehat{X}_g, 0)$ on $M \times \mathfrak{g}$. A straightforward computation shows that $\gamma(t) = (g \operatorname{exp} tX, \eta_{(\widehat{X})}(t,q))$ is an integral curve of \widetilde{X} starting at (g,q), from which it follows easily that $\sigma_q(g \operatorname{exp} X) = \gamma(1) \in S_p$."
- (1/10/17) **Page 537, Problem 20-6(a):** Change $B \in \mathfrak{gl}(n,\mathbb{R})$ to $B \in \mathfrak{sl}(n,\mathbb{R})$.
- (5/31/16) **Page 538, Problem 20-11(b):** Here's a better hint, which doesn't require proving part (a) first: "[Hint: Consider the graph of F as a subgroup of $G \times H$.]"
- (10/18/17) **Page 542, middle of the paragraph before Example 21.3:** Change "the action of \mathbb{R}^k on \mathbb{R}^n " to "the action of \mathbb{R}^k on $\mathbb{R}^k \times \mathbb{R}^n$."
- (12/28/23) Page 543, 6th line from the bottom: Change "subsequence of G_K " to "sequence in G_K ."
- (2/25/18) Page 548, last two lines: Allen Hatcher's name is misspelled. (Sorry, Allen.)
- (5/23/16) **Page 549, proof of Proposition 21.12, last sentence:** Change the first phrase of that sentence to "Second, if $p, p' \in E$ are in different orbits and $\pi(p) \neq \pi(p'), \ldots$." Then add the following sentences at the end of the proof: "If p and p' are in different orbits and $\pi(p) = \pi(p')$, let W be an evenly covered neighborhood of $\pi(p)$, and let V, V' be the components of $\pi^{-1}(W)$ containing p and p', respectively. For any $g \in \operatorname{Aut}_{\pi}(E)$, a simple connectedness argument shows that $g \cdot V$ is a component of $\pi^{-1}(W)$; if it had nontrivial intersection with V it would have to be equal to V, which would imply $g \cdot p = p'$, a contradiction."
- (3/13/25) Page 558, statement of Proposition 21.33: Change "continuously, freely, and properly" to "continuously."
- (3/19/25) Page 562, Problem 21-22: Change "extension of G_0 by H" to "extension of H by G_0 ."
- (7/26/16) Page 567, two lines above Proposition 22.8: Insert "a" before "2-covector."
- (10/9/15) **Page 568, Example 22.9(a), first line:** The coordinates should be $(x^1, ..., x^n, y^1, ..., y^n)$. (The last coordinate is y^n , not x^n .)
- (11/17/21) **Page 571, line below equation (22.5):** Delete the spurious word "theorem" at the end of the line.

- (3/27/19) **Page 572, middle of the page:** Replace the sentence starting "On the other hand" by this: "On the other hand, the left-hand side is just the ordinary *t*-derivative of a time-dependent tensor on a fixed vector space, and expanding in terms of a basis shows that it satisfies a similar product rule:"
- (10/5/17) **Page 573, statement of Proposition 22.15, second line:** Change " $V: J \times M$ " to " $V: J \times M \to TM$ "; and change ψ to θ .
- (11/18/17) **Page 583, line 4:** Change $\mathbb{R}^{2n+1} \setminus \{0\}$ to $\mathbb{R}^{2n+2} \setminus \{0\}$.
- (7/26/16) Page 583, third displayed equation: Should read

$$T \, \rfloor \, d\Theta = -2 \sum_{i=1}^{n+1} \left(x^i \, dx^i + y^i \, dy^i \right) = -d \left(|x|^2 + |y|^2 \right).$$

- (7/26/16) Page 583, two lines below the third displayed equation: The formula for $d\Theta(N,T)$ should be $d\Theta(N,T) = 2(|x|^2 + |y|^2)$.
- (11/28/12) Page 584, Exercise 22.29: Part (b) should read

(b)
$$T = \frac{\partial}{\partial z}$$
;

- (8/14/14) **Page 584, paragraph above Theorem 22.33:** Change all occurrences of θ in this paragraph to ψ , to avoid confusion with the use of θ for a contact form elsewhere in this section.
- (11/24/17) Page 585, statement of Theorem 22.34, last line: Change H to F.
- (11/17/12) **Page 587, equation (22.27):** Change both occurrences of $\sigma(s)$ to $\sigma(x)$.
 - (6/7/22) **Page 591, Problem 22-5:** Add the hypothesis n > 0.
- (11/18/17) Page 592, Problem 22-15: Add the hypothesis that M is connected.
- (9/22/15) **Page 608, Proposition A.41(a):** Insert the following phrase at the beginning of this statement: With the exception of the word "closed" in part (d).
- (7/22/13) Page 616, Proposition A.77(b), last line: Change $\tilde{f}(0)$ to $\tilde{f}_e(0)$.
- (12/19/18) **Page 619, proof of Lemma B.2, fourth line:** Replace "By Exercise B.1(b)" with "If w_1 is equal to one of the v_i 's, then the ordered (n + 1)-tuple (w_1, v_1, \ldots, v_n) is linearly dependent; if not, then by Exercise B.1(b),"
 - (9/1/16) Page 632, Exercise B.29: Change "by a matrix" to "by a certain matrix" (twice).
- (12/19/18) **Page 637, Exercise B.42:** Delete the words "is a homeomorphism that." [Checking that it's a homeomorphism requires the norm topology, which is not defined until later on that page.]
 - (9/6/16) Page 637, Exercise B.44: Change "basis map" to "basis isomorphism."
- (12/19/18) Page 653, proof of Proposition C.21, second paragraph, second line: Change f to f_D .
- (2/25/18) **Page 658, two lines above (C.15):** Change $B_{\delta}(0)$ to $\overline{B}_{\delta}(0)$.
- (2/25/18) Page 660, display (C.20): Change $F^{-1}(x)$ to $F^{-1}(y)$.
- (1/18/21) **Page 664, statement of Theorem D.1(b):** After the phrase "Any two differentiable solutions to (D.3)–(D.4)," insert "defined on intervals containing t_0 ."

- (12/2/15) **Page 666, just below the fifth display:** After the sentence ending "by our choice of δ and ε ," insert "(If $t < t_0$, interchange t and t_0 in the second line above.)"
- (1/18/21) **Page 667, statement of Theorem D.4:** After the phrase "any two differentiable solutions to (D.3)–(D.4)," insert "defined on intervals containing t_0 ."
- (2/13/24) **Page 667, last paragraph:** Change U to U_0 (twice).
- (2/13/24) **Page 668, line 2:** Change W to \overline{W} .
- (2/13/24) **Page 668, paragraph below equation (D.10):** In the fourth line of the paragraph, change \overline{W} to W; and in the fifth line, change W to \overline{W} .
- (1/18/21) Page 670, displayed inequality between (D.17) and (D.18): Change n to n^2 .
- (1/18/21) **Page 670, last line:** Change n to n^2 in the definition of B.
- (1/18/21) **Page 671, inequality (D.19):** Change n to n^2 (twice).
- (12/15/20) **Page 671, just below (D.19):** Replace the sentence "Since the expression on the right can be made as small as desired by choosing h and \tilde{h} sufficiently small, this shows ..." by the following: "Thus the expression on the left can be made as small as desired by choosing h and \tilde{h} sufficiently small. This shows ..."
- (6/11/19) Page 692: Under the entry for "Form," delete the references to page 294 for "closed" and page 292 for "exact."
- (2/25/18) Page 693: The index entry for "Hatcher, Allen" is misspelled.