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Preface

Why study geometry? Those who have progressed far enough in their mathematical edu-
cation to read this book can probably come up with lots of answers to that question:

� Geometry is useful. It’s hard to find a branch of mathematics that has more practi-
cal applications than geometry. A precise understanding of geometric relationships
is prerequisite for making progress in architecture, astronomy, computer graphics,
engineering, mapmaking, medical imaging, physics, robotics, sewing, or surveying,
among many other fields.

� Geometry is beautiful. Because geometry is primarily about spatial relationships, the
subject comes with plenty of illustrations, many of which have an austere beauty in
their own right. On a deeper level, the study of geometry uncovers surprising and
unexpected relationships among shapes, the contemplation of which can inspire an
exquisitely satisfying sense of beauty. And, of course, to some degree, geometric
relationships underlie almost all visual arts.

� Geometry comes naturally. Along with counting and arithmetic, geometry is one of
the earliest areas of intellectual inquiry to have been systematically pursued by human
societies. Similarly, children start to learn about geometry (naming shapes) as early as
two years old, about the same time they start learning about numbers. Almost every
culture has developed some detailed understanding of geometrical relationships.

� Geometry is logical. As will be explored in some detail in this book, very early in
Western history geometry became the paradigm for logical thought and analysis, and
students have learned the rudiments of logic and proof in geometry courses for more
than two millennia.

All of these are excellent reasons to devote serious study to geometry. But there is a
more profound consideration that animates this book: the story of geometry is the story of
mathematics itself. There is no better way to understand what modern mathematics is, how
it is done, and why it is the way it is than by undertaking a thorough study of the roots of
geometry.

xi
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xii Preface

Mathematics occupies a unique position among the fields of human intellectual in-
quiry. It shares many of the characteristics of science: like scientists, mathematicians strive
for precision, make assertions that are testable and refutable, and seek to discover universal
laws. But there is at least one way in which mathematics is markedly different from most
sciences, and indeed from virtually every other subject: in mathematics, it is possible to
have a degree of certainty about the truth of an assertion that is usually impossible to attain
in any other field. When mathematicians assert that the area of a unit circle is exactly � ,
we know this is true as surely as we know the facts of our direct experience, such as the
fact that I am currently sitting at a desk looking at a computer screen. Moreover, we know
that we could calculate � to far greater precision than anyone will ever be able to measure
actual physical areas.

Of course, this is not to claim that mathematical knowledge is absolute. No human
knowledge is ever 100% certain—we all make mistakes, or we might be hallucinating or
dreaming. But mathematical knowledge is as certain as anything in the human experience.
By contrast, the assertions of science are always approximate and provisional: Newton’s
law of universal gravitation was true enough to pass the experimental tests of his time, but
it was eventually superseded by Einstein’s general theory of relativity. Einstein’s theory,
in turn, has withstood most of the tests it has been subjected to, but physicists are always
ready to admit that there might be a more accurate theory.

How did we get here? What is it about mathematics that gives it such certainty and thus
sets it apart from the natural sciences, social sciences, humanities, and arts? The answer
is, above all, the concept of proof. Ever since ancient times, mathematicians have realized
that it is often possible to demonstrate the truth of a mathematical statement by giving a
logical argument that is so convincing and so universal that it leaves essentially no doubt.
At first, these arguments, when they were found, were mostly ad hoc and depended on the
reader’s willingness to accept other seemingly simpler truths: if we grant that such-and-
such is true, then the Pythagorean theorem logically follows. As time progressed, more
proofs were found and the arguments became more sophisticated. But the development of
mathematical knowledge since ancient times has been much more than just amassing ever
more convincing arguments for an ever larger list of mathematical facts.

There have been two decisive turning points in the history of mathematics, which to-
gether are primarily responsible for leading mathematics to the special position it occupies
today. The first was the appearance, around 300 BCE, of Euclid’s Elements. In this mon-
umental work, Euclid organized essentially all of the mathematical knowledge that had
been developed in the Western world up to that time (mainly geometry and number theory)
into a systematic logical structure. Only a few simple, seemingly self-evident facts (known
as postulates or axioms) were stated without proof, and all other mathematical statements
(known as propositions or theorems) were proved in a strict logical sequence, with the
proofs of the simplest theorems based only on the postulates and with proofs of more com-
plicated theorems based on theorems that had already been proved. This structure, known
today as the axiomatic method, was so effective and so convincing that it became the model
for justifying all further mathematical inquiry.

But Euclid’s Eden was not without its snake. Beginning soon after Euclid’s time,
mathematicians raised objections to one of Euclid’s geometric postulates (the famous fifth
postulate, which we describe in Chapter 1) on the ground that it was too complicated to
be considered truly self-evident in the way that his other postulates were. A consensus

Downloaded from bookstore.ams.org



Preface xiii

developed among mathematicians who made a serious study of geometry that the fifth
postulate was really a theorem masquerading as a postulate and that Euclid had simply
failed to find the proper proof of it. So for about two thousand years, the study of geometry
was largely dominated by attempts to find a proof of Euclid’s fifth postulate based only on
the other four postulates. Many proofs were offered, but all were eventually found to be
fatally flawed, usually because they implicitly assumed some other fact that was also not
justified by the first four postulates and thus required a proof of its own.

The second decisive turning point in mathematics history occurred in the first half
of the nineteenth century, when an insight occurred simultaneously and independently to
three different mathematicians (Nikolai Lobachevsky, János Bolyai, and Carl Friedrich
Gauss). There was a good reason nobody had succeeded in proving that the fifth postulate
followed from the other four: such a proof is logically impossible! The insight that struck
these three mathematicians was that it is possible to construct an entirely self-consistent
kind of geometry, now called non-Euclidean geometry, in which the first four postulates
are true but the fifth is false. This geometry did not seem to describe the physical world
we live in, but the fact that it is logically just as consistent as Euclidean geometry forced
mathematicians to undertake a radical reevaluation of the very nature of mathematical truth
and the meaning of the axiomatic method.

Once that insight had been achieved, things progressed rapidly. A new paradigm of the
axiomatic method arose, in which the axioms were no longer thought of as statements of
self-evident truths from which reliable conclusions could be drawn, but rather as arbitrary
statements that were to be accepted as truths in a given mathematical context, so that the
theorems following from them must be true if the axioms are true.

Paradoxically, this act of unmooring the axiomatic method from any preconceived no-
tions of absolute truth eventually allowed mathematics to achieve previously undreamed of
levels of certainty. The reason for this paradox is not hard to discern: once mathematicians
realized that axioms are more or less arbitrary assumptions rather than self-evident truths,
it became clear that proofs based on the axioms can use only those facts that have been
explicitly stated in the axioms or previously proved, and the steps of such proofs must be
based on clear and incontrovertible principles of logic. Thus it is no longer permissible to
base arguments on geometric or numerical intuition about how things behave in the “real
world.” If it happens that the axioms are deemed to be a useful and accurate description of
something, such as a scientific phenomenon or a class of mathematical objects, then every
conclusion proved within that axiomatic system is exactly as certain and as accurate as the
axioms themselves. For example, we can all agree that Euclid’s geometric postulates are
extremely accurate descriptions of the geometry of a building on the scale at which humans
experience it, so the conclusions of Euclidean geometry can be relied upon to describe that
geometry as accurately as we might wish. On the other hand, it might turn out to be the
case that the axioms of non-Euclidean geometry are much more accurate descriptions of
the geometry of the universe as a whole (on a scale at which galaxies can be treated as uni-
formly scattered dust), which would mean that the theorems of non-Euclidean geometry
could be treated as highly accurate descriptions of the cosmos.

If mathematics occupies a unique position among fields of human inquiry, then ge-
ometry can be said to occupy a similarly unique position among subfields of mathematics.
Geometry was the first subject to which Euclid applied his logical analysis, and it has been
taught to students for more than two millennia as a model of logical thought. It was the
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xiv Preface

subject that engendered the breakthrough in the nineteenth century that led to our modern
conception of the axiomatic method (and thus of the very nature of mathematics). Un-
til very recently, virtually every high-school student in the United States took a geometry
course based on some version of the axiomatic method, and that was the only time in the
lives of most people when they learned about rigorous logical deduction.

The primary purpose of this book is to tell this story: not exactly the historical story,
because it is not a book about the history of mathematics, but rather the intellectual story of
how one might begin with Euclid’s understanding of the axiomatic method in geometry and
progress to our modern understanding of it. Since the axiomatic method underlies the way
modern mathematics is universally done, understanding it is crucial to understanding what
mathematics is, how we read and evaluate mathematical arguments, and why mathematics
has achieved the level of certainty it has.

It should be emphasized, though, that while the axiomatic method is our only tool for
ensuring that our mathematical knowledge is sound and for communicating that soundness
to others, it is not the only tool, and probably not even the most important one, for dis-
covering or understanding mathematics. For those purposes we rely at least as much on
examples, diagrams, scientific applications, intuition, and experience as we do on proofs.
But in the end, especially as our mathematics becomes increasingly abstract, we cannot
justifiably claim to be sure of the truth of any mathematical statement unless we have
found a proof of it.

This book has been developed as a textbook for a course called Geometry for Teachers,
and it is aimed primarily at undergraduate students who plan to teach geometry in a North
American high-school setting. However, it is emphatically not a book about how to teach
geometry; that is something that aspiring teachers will have to learn from education courses
and from hands-on practice. What it offers, instead, is an opportunity to understand on
a deep level how mathematics works and how it came to be the way it is, while at the
same time developing most of the concrete geometric relationships that secondary teachers
will need to know in the classroom. It is not only for future teachers, though: it should
also provide something of interest to anyone who wishes to understand Euclidean and
non-Euclidean geometry better and to develop skills for doing proofs within an axiomatic
system.

In recent years, sadly, the traditional proof-oriented geometry course has sometimes
been replaced by different kinds of courses that minimize the importance of the axiomatic
method in geometry. But regardless of what kinds of curriculum and pedagogical methods
teachers plan to use, it is of central importance that they attain a deep understanding of the
underlying mathematical ideas of the subject and a mathematical way of thinking about
them—a version of what the mathematics education specialist Liping Ma [Ma99] calls
“profound understanding of fundamental mathematics.” It is my hope that this book will
be a vehicle that can help to take them there.

Many books that treat axiomatic geometry rigorously (such as [Gre08], [Moi90],
[Ven05]) pass rather quickly through Euclidean geometry, with a major goal of devel-
oping non-Euclidean geometry and its relationship to Euclidean geometry. In this book, by
contrast, the primary focus is on Euclidean geometry, because that is the subject that future
secondary geometry teachers will need to understand most deeply. I do make a serious
excursion into hyperbolic geometry at the end of the book, but it is meant to round out the
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Preface xv

study of Euclidean geometry and place it in its proper perspective, not to be the main focus
of the book.

Organization

The book is organized into twenty chapters. The first chapter introduces Euclid. It
seeks to familiarize the reader with what Euclid did and did not accomplish and to explain
why the axiomatic method underwent such a radical revision in the nineteenth century.
The first book of Euclid’s Elements should be read in parallel with this chapter. It is a good
idea for an aspiring geometry teacher to have a complete copy of the Elements in his or her
library, and I strongly recommend the edition [Euc02], which is a carefully edited edition
containing all thirteen volumes of the Elements in a single book. But for those who are
not ready to pay for a hard copy of the book, it is easy to find translations of the Elements
on the Internet. An excellent source is Dominic Joyce’s online edition [Euc98], which
includes interactive diagrams.

The second chapter of this book constitutes a general introduction to the modern ax-
iomatic method, using a “toy” axiomatic system as a laboratory for experimenting with the
concepts and methods of proof. This system, called incidence geometry, contains only a
few axioms that describe the intersections of points and lines. It is a complete axiomatic
system, but it describes only a very small part of geometry so as to make it easier to con-
centrate on the logical features of the system. It is not my invention; it is adapted from the
axiomatic system for Euclidean geometry introduced by David Hilbert at the turn of the last
century (see Appendix A), and many other authors (e.g., [Gre08], [Moi90], [Ven05]) have
also used a similar device to introduce the principles of the axiomatic method. The axioms
I use are close to those of Hilbert but are modified slightly so that each axiom focuses on
only one simple fact, so as to make it easier to analyze how different interpretations do
or do not satisfy all of the axioms. At the end of the chapter, I walk students through the
process of constructing proofs in the context of incidence geometry.

The heart of the book is a modern axiomatic treatment of Euclidean geometry, which
occupies Chapters 3 through 16. I have chosen a set of axioms for Euclidean geometry
that is based roughly on the SMSG axiom system developed for high-school courses in
the 1960s (see Appendix C), which in turn was based on the system proposed by George
Birkhoff [Bir32] in 1932 (see Appendix B). In choosing the axioms for this book, I’ve
endeavored to keep the postulates closely parallel to those that are typically used in high-
school courses, while maintaining a much higher standard of rigor than is typical in such
courses. In particular, my postulates differ from the SMSG ones in several important ways:

� I restrict my postulates to plane geometry only.

� I omit the redundant ruler placement and supplement postulates. (The first is a theo-
rem in Chapter 3, and the second is a theorem in Chapter 4.)

� I rephrase the plane separation postulate to refer only to the elementary concept of
intersections between line segments and lines, instead of building convexity into the
postulate. (Convexity of half-planes is proved in Chapter 3.)

� I replace the three SMSG postulates about angle measures with a single “protrac-
tor postulate,” much closer in spirit to Birkhoff’s original angle measure postulate,
more closely parallel to the ruler postulate, and, I think, more intuitive. (Theorems
equivalent to the three SMSG angle measure postulates are proved in Chapter 4.)
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� I replace the SMSG postulate about the area of a triangle with a postulate about the
area of a unit square, which is much more fundamental.

After the treatment of Euclidean geometry comes a transitional chapter (Chapter 17),
which summarizes the most important postulates that have been found to be equivalent to
the Euclidean parallel postulate. In so doing, it sets the stage for the study of hyperbolic
geometry by introducing such important concepts as the angle defect of a polygon. Then
Chapters 18 and 19 treat hyperbolic geometry, culminating in the classification of parallel
lines into asymptotically parallel and ultraparallel lines.

Chapter 20 is a look forward at some of the directions in which the study of geometry
can be continued. I hope it will whet the reader’s appetite for further advanced study in
geometry.

After Chapter 20 come a number of appendices meant to supplement the main text.
The first four appendices (A through D) are reference lists of axioms for the axiomatic sys-
tems of Hilbert, Birkhoff, SMSG, and this book. The next two appendices (E and F) give
brief descriptions of the conventions of mathematical language and proofs; they can serve
either as introductions to these subjects for students who have not been introduced to rig-
orous proofs before or as review for those who have. Appendices G and H give a very brief
summary of background material on sets, functions, and the real number system, which is
presupposed by the axiom system used in this book. Finally, Appendix I outlines an al-
ternative approach to the axioms based on the ideas of transformations and rigid motions;
it ends with a collection of challenging exercises that might be used as starting points for
independent projects.

There is ample material here for a full-year course at a reasonable pace. For shorter
courses, there are various things that can be omitted, depending on the tastes of the in-
structor and the needs of the students. Of course, if your interest is solely in Euclidean
geometry, you can always stop after Chapter 16 or 17. On the other hand, if you want to
move more quickly through the Euclidean material and spend more time on non-Euclidean
geometry, there are various Euclidean topics that are not used in an essential way later in
the book and can safely be skipped, such as the material on nonconvex polygons at the end
of Chapter 8 and some or all of Chapters 14, 15, or 16. Don’t worry if the course seems
to move slowly at first—it has been my experience that it takes a rather long time to get
through the first six chapters, but things tend to move more quickly after that.

I adhere to some typographical conventions that I hope will make the book easier to
use. Mathematical terms are typeset in bold italics when they are officially introduced, to
reflect the fact that definitions are just as important as theorems and proofs but fit better
into the flow of paragraphs rather than being called out with special headings. The symbol
� is used to mark the ends of proofs, and it is also used at the end of the statement of a
corollary that follows so easily that it is not necessary to write down a proof. The symbol
// marks the ends of numbered examples.

The exercises at the ends of the chapters are essential for mastering the type of thinking
that leads to a deep understanding of mathematical concepts. Most of them are proofs.
Almost all of them can be done by using techniques very similar to ones used in the proofs
in the book, although a few of the exercises in the later chapters might require a bit more
ingenuity.
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Prerequisites

Because this book is written as a textbook for an advanced undergraduate course, I
expect readers to be conversant with most of the subjects that are typically treated at the
beginning and intermediate undergraduate levels. In particular, readers should be comfort-
able at least with one-variable calculus, vector algebra in the plane, mathematical induc-
tion, and elementary set theory. It would also be good to have already seen the least upper
bound principle and the notions of injective and surjective functions.

Students who have had a course that required them to construct rigorous mathematical
proofs will have a distinct advantage in reading the book and doing the exercises. But for
students whose experience with proofs is limited, a careful study of Appendices E and F
should provide sufficient opportunities to deepen their understanding of what proofs are
and how to read and write them.

Acknowledgments

I am deeply indebted to my colleague John Palmieri, who has taught from two different
draft versions of this book and contributed immeasurably to improving it. I owe just as
much thanks to my students, many of whom—especially Natalie Hobson, Dan Riness, and
Gina Bremer—have generously and patiently provided detailed suggestions for helping
the book to serve students better. Of course, I owe enormous gratitude to a long list of
authors who have written rigorous texts about Euclidean and non-Euclidean geometry that
have educated and inspired me, especially Marvin Greenberg [Gre08], Robin Hartshorne
[Har00], George Martin [Mar96], Richard Millman and George Parker [MP91], Edwin
Moise [Moi90], and Gerard Venema [Ven05].

Additional Resources

I plan to post some supplementary materials, as well as a list of corrections, on the
website www.ams.org/bookpages/amstext-21. For the sake of future readers, I encourage
all readers to make notes of any mistakes you find and any passages you think could use
improvement, whether major or trivial, and send them to me at the email address posted on
the website above. Happy reading!
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