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Abstract. Motivated by questions in modular representation theory, Carl-

son, Friedlander, and the first author introduced the varieties E(r, g) of r-
dimensional abelian p-nilpotent subalgebras of a p-restricted Lie algebra g in

[CFP16]. In this paper, we identify the varieties E(r, g) for a reductive re-

stricted Lie algebra g and r the maximal dimension of an abelian p-nilpotent
subalgebra of g.
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1. Introduction

Let g be a restricted Lie algebra defined over a field of positive characteristic
p. A Lie subalgebra E ⊂ g is elementary if it is abelian with trivial p-restriction.
The study of the projective variety E(r, g) of elementary subalgebras of g of a fixed
dimension r was initiated by Carlson, Friedlander and the first author in [CFP15].
The interest in the geometry of E(r, g) can be traced back to Quillen’s foundational
work on mod-p group cohomology which revealed the significance of elementary
abelian subgroups of a finite group G to both the representations and cohomology
of G. The theory of global nilpotent operators, which associates geometric and
sheaf-theoretic invariants living on the space E(r, g) to representations of g, was
introduced by Friedlander and the first author in [FP11] and further developed in
[CFP12, CFP16]. This theory serves as one of the motivations for our interest in
E(r, g). The variety E(r, g) is also directly related to the much studied variety of r-
tuples of nilpotent commuting elements in g and, consequently, to the cohomology
of Frobenius kernels of algebraic groups (see Suslin, Fridenalder, Bendel [SFB97]).
Further geometric properties of E(r, g) were recently investigated in [War15].

In this paper we give a description of the variety E(g) = E(rmax, g) for g = LieG
the Lie algebra of a reductive algebraic group and rmax the maximal dimension of
an elementary subalgebra of g. The maximal dimension of an abelian nilpotent
subalgebra of a complex simple Lie algebra g is known thanks to the work of
Malcev [Mal51] while the general linear case was considered by Schur at the turn
of the previous century [Sch05]. Malcev has also classified such subalgebras up to
automorphisms of the Lie algebra. It turns out that under a mild restriction on p
the maximal dimension of an elementary subalgebra in the modular case agrees with
Malcev’s results. To compute the variety E(rmax, g) we need to consider elementary
subalgebras of g up to conjugation by G so our calculations and the end result
differ from Malcev’s, who classified abelian subalgebras up to automorphisms of g.
Nonetheless, we find his linear algebraic approach very useful for our purposes.

An analogous classification of elementary abelian p-subgroups in a Chevalley
group has been considered by several authors, for example Barry [Bar79] and Mil-
gram and Priddy [MP87], with the most complete account given by Gorenstein,
Lyons and Solomon in [GLS98, §3.3]. Using a particularly nice Springer isomor-
phism from the nullcone of the Lie algebra g = LieG to the unipotent variety of
G (constructed by P. Sobaje [Sob15]) we can quickly recover the known results on
maximal dimensions of elementary abelian p-subgroups in (untwisted) Chevalley
groups. We also obtain information on the conjugacy classes of elementary abelian
p-subgroups of G(Fpr ). Thanks to the celebrated Quillen stratification theorem this
has an immediate application to mod-p group cohomology: The number of conju-
gacy classes of the elementary abelian p-subgroups gives the number of irreducible
components of maximal dimension in SpecH∗(G(Fp`),Fp).

The computation of E(g) = E(rmax, g) proceeds in several steps. We first reduce
to the case of a simple algebraic group G with root system Φ. For such G, we com-
pute E(g) under the assumption that p is separably good for G (see definition 2.2).
We rely on the result of Levy, McNinch and Testerman [LMT09] to show that any
elementary subalgebra of g can be conjugated into u ⊂ g, the Lie algebra of the
unipotent radical U of the Borel subgroup B ≤ G. Consequently, as the next step
towards calculating the variety E(g), we explicitly determine E(u) for u ⊂ g as a
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set. We define a map Lie : Max(Φ) → E(u) which sends a maximal set of com-
muting positive roots to an elementary subalgebra of maximal dimension in u and
show that there is an inverse map LT: E(u)→ Max(Φ) which splits Lie. The map
Lie is not necessarily surjective but we show that for all irreducible root systems Φ
except for G2 and A2 it is surjective up to conjugation by U . Hence, we effectively
prove that the maximal elementary subalgebras in u up to conjugation are given
by the combinatorics of the root system of G. This calculation largely relies on the
linear algebraic approach of Malcev and is split into several cases dictated by the
existence of certain orderings on the corresponding root systems:

(1) A2n+1, B2, B3, Cn, E7 (in these cases, there is a unique maximal elementary
subalgebra in u given by a maximal set of commuting positive roots),

(2) A2n (two maximal elementary abelian subalgebras, given by maximal sets
of commuting roots),

(3) Dn (three maximal elementary subalgebras for n = 4 and two for n ≥ 5,
all given by maximal sets of commuting positive roots),

(4) Bn (three families of maximal elementary subalgebras for n = 4, two fami-
lies for n ≥ 5, only given by maximal sets of commuting positive roots up
to conjugation by U),

(5) G2, A2 (exceptional cases).

The cases of E6, E8 and F4 are handled by a computer calculation for which we
provide the code.

If we allow conjugation by G, then a stronger results holds: with the exception
of G2 and A2, every elementary subalgebra in E(u) is G-conjugate to a subalgebra
stabilized by the action of the Borel. This observation greatly simplifies the calcu-
lation of stabilizers of the conjugacy classes which is the next step in determination
of E(g). The stabilizers of such subalgebras are parabolic subgroups which implies
that the G-orbits in E(g) are partial flag varieties. To finish the calculation in all
types, except for G2 and A2, we prove in theorem 4.9 that for E with parabolic

stabilizer the orbit map G // G · E ⊂ E(g) is separable.

When p is not separably good (as defined in 2.2), such as p = 2 for G = PGL2,
the answer for E(g) can be somewhat surprising. In example 4.6 we utilize a con-
struction from [LMT09] to illustrate that. We are grateful to Jared Warner for
pointing out this example to us. We also illustrate in example 4.10 that in general
the orbit map G→ G · ε ⊂ E(g) can fail to be separable.

The ultimate outcome is that the projective variety E(g) is a product of E(gi)
where gi = Lie(Gi) and the Gi range over the simple algebraic subgroups of the
derived group of G. When G is simple E(g) is a finite disjoint union of partial flag
varieties unless G is of type G2 or A2. This is proved in Theorem 4.11:

Theorem. Let G be a simple algebraic group with root system Φ which is not of
type A2 or G2, and let g = LieG. Assume that p is separably good for G. Then

E(g) =
∐

R∈Max(Φ)
R an ideal

G/PR,

where PR is the parabolic stabilizer of the elementary Lie algebra associated with
the root subset R.

Reinterpreted explicitly for each type, theorem 4.11 implies that E(g) is a disjoint
union of at most three copies of generalized Grassmannians in types An (n 6= 2),
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C,D,E, whereas in types B and F the “two step” partial flag varieties appear
(see Table 4). For types A2, G2 we show that E(g) is an irreducible variety and
compute its dimension and G-orbits. We find that this non-homogeneous answer
partially justifies the fact that we have to resort to case-by-case considerations in
our calculations.

We note that calculation of E(g) for g = LieG with G a special linear or sym-
plectic group was done in [CFP15]. The arguments in that paper are based on
induction on the dimension and are qualitatively different from the arguments in-
spired by Malcev’s approach used in this paper.

The paper is organized as follows. In section 2 we recall various conditions on
p such as good, very good, and torsion and define what it means to be separably
good. We also state the combinatorial classification of maximal sets of commuting
roots for irreducible root systems in Table 2. We refer to Malcev [Mal51] for this
classification but also give a detailed explanation in the Appendix motivated largely
by the fact that Malcev’s paper is very sketchy on details.

The classification of the maximal elementary subalgebras of the unipotent radical
u ⊂ g up to conjugation by G is settled in section 3. Section 4, where we calculate
the variety E(g), contains the main result of the paper. In section 5 we apply our
results to obtain information on conjugacy classes of maximal elementary abelian
p-subgroups in Chevalley groups.

Throughout the paper, k will be an algebraically closed field of positive char-
acteristic p. We follow the convention in Jantzen [Jan03] and assume that our
reductive algebraic k-groups are defined and split over Z. By Chevalley group we
mean a group of the form G(Fp`) where G is a reductive k-group, defined and split
over Z.

Acknowledgments. The first author is indebted to Eric Friedlander for generously
sharing his ideas and intuition about the variety E(r, g). We are also grateful to
George McNinch, Paul Sobaje, and Jared Warner for sharing their expertise and
patiently answering our structural questions about reductive groups in positive
characteristic and to Jim Humphreys for his helpful comments. We thank the
referee for a very careful reading of the paper and many helpful suggestions. We
wish to acknowledge the support provided by the NSF grants DMS-0953011 and
DMS-0500946.

We would like to take this opportunity to express both our profound gratitude
to our friend and colleague Steve Mitchell and our deep sadness about his passing
away while this manuscript was under review. Steve had generously shared his
insights and participated in stimulating discussions at the onset of this project,
pointing out, in particular, Souter’s paper to us [Sut04]. He was a caring mentor,
a fantastic teacher, and an inspiring and prolific writer of both mathematical and
non mathematical prose. He will be dearly, painfully missed by many including the
authors.

2. Preliminaries

2.1. Notations and conventions. LetGZ be a split connected reductive algebraic
Z-group. Set GR = (GZ)R for any ring R and G = Gk. Let TZ ⊆ GZ be a split
maximal torus and define TR and T as we did with G. Fix a Borel subgroup B
containing T and let U be the unipotent radical of B. Let X(T ) = Hom(T,Gm)
be the character group and let Φ ⊆ X(T ) be the root system associated to G with
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respect to T . Let Λr(Φ) = ZΦ and Λ(Φ) be the root and integral weight lattices
of Φ respectively. The quotient Λ(Φ)/Λr(Φ) is called the fundamental group of the
root system Φ. If Φ is irreducible then its fundamental group is cyclic, except for
type Dn when n is even, in which case one gets the Klein 4-group.

If G is semisimple then the quotient Λ(Φ)/X(T ) is called the fundamental group
of G. We say that G is simply connected if its fundamental group is trivial. For
reductive G we denote by Gsc the simply connected semisimple group of the same
type as G. For any subgroup A of the fundamental group of Φ there is a semisimple
group G with root system Φ, fundamental group A, and a central isogeny Gsc → G
(see [KMRT98, 25] for more details). The following lemma clarifies the significance
of the fundamental group of G for our calculations.

Lemma 2.1 ([Ste75, 2.4]). Let G be a semisimple algebraic group with root system
Φ. If p does not divide the order of the fundamental group of G then the isogeny
Gsc → G is separable.

Proof. Let H be the scheme-theoretic kernel of the isogeny Gsc → G. Then H is a
diagonalizable group scheme associated to the finite abelian group Λ(Φ)/X(T ) (see,
for example, Jantzen [Jan03, II.1.6]). In particular, the dimension of the coordinate
ring k[H] is equal to the order of Λ(Φ)/X(T ). The assumption on p implies that
(p,dim k[H]) = 1, hence, H is an étale group scheme, k[H] is a separable algebra,
and the map Gsc → G is separable. �

If β =
∑
imiαi is the highest root written as a linear combination of simple

roots then p is bad for Φ if p = mi for some i. Similarly we may write the dual
of this root as a linear combination of dual simple roots β∨ =

∑
im
′
iα
∨
i and p is

torsion for Φ if p = m′i for some i. A prime is good (respectively non-torsion) if it
is not bad (respectively torsion). We say p is very good for Φ if p is good for Φ and
p does not divide the order of the fundamental group of Φ. Some authors include
this condition in the definition of non-torsion but we will not. We instead say that
a prime is very non-torsion if it is non-torsion and p does not divide the order of
the fundamental group of Φ. As one sees from Table 1 the only very non-torsion
prime which is not very good is p = 3 for G2.

Definition 2.2. If G is a semisimple algebraic group we say that p is separably
good for G if

(1) p is good for G,
(2) the isogeny Gsc → G is separable.

If G is a connected reductive group we say that p is separably good for G if it is
separably good for its derived group [G,G].

Note that very good implies separably good by lemma 2.1 but in type A the
separably good condition is less restrictive. The simple groups of type An−1 are
SLn /µd for d | n and by lemma 2.1 if p - d then p is separably good. In particular,
p is always separably good if d = 1 so the Special Linear group SLn is covered by
our results for all p.

Let g and u be the Lie algebras of G and U respectively. For any ring R let
gR = LieGR so that g = gk. If S is an R-algebra with the structure map R → S,
then one has gS = gR ⊗R S.

Definition 2.3. Let k be an R-algebra. An element x ∈ g is defined over R if
there exists an x′ ∈ gR such that x = x′⊗1. A Lie subalgebra h ⊆ g is defined over
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R if there exists a Lie subalgebra h′ ⊆ gR such that h = h′ ⊗R k. We will call x′

and h′ R-forms of x and h respectively.

For a simply connected semisimple group G the Lie algebra g has a Chevalley
basis {xα, hi | α ∈ Φ, 1 ≤ i ≤ rank Φ} defined over Z. In particular, this means
[xα, xβ ] = Nα,βxα+β , where Nαβ = 0 if α + β /∈ Φ and when α + β ∈ Φ we have
Nα,β = ±(r + 1) where −rα + β, . . . , sα + β is the α-string through β. The sign
can be inductively determined depending on a choice of ordering for the roots and
our choice that Nα,β = +(r+ 1) when (α, β) is an extraspecial pair defined by this
ordering (see Carter [Car72, 4.2] for details).

For a general reductive group there exists a central isogeny Gsc ×D → G where
D is some torus. The preimage of the Borel B ⊆ G is a Borel in the reductive
group Gsc ×D and the isogeny restricts to an isomorphism between the unipotent
parts of these Borels. We may therefore define xα ∈ g and hi = [xαi , x−αi ] as the
image under the isogeny of the corresponding elements of LieGsc. Even though hi
do not necessarily span Lie(T ), we have that {xα | α ∈ Φ+} is still a basis for u
and satisfies the same relations as in the simply connected case. We say that the
set {xα | α ∈ Φ} is induced from a Chevalley basis.

Definition 2.4. A subalgebra E ⊆ g is called Chevalley if it is spanned by some
subset of the {xα | α ∈ Φ} induced from a Chevalley basis.

Note that the non-uniqueness of a Chevalley basis is up to scaling of the basis
vectors, so the property of being a Chevalley subalgebra does not depend on the
choice of Chevalley basis from which the xα are induced. This also follows from
an equivalent description of a Chevalley subalgebra as a T -stable subalgebra which
intersects Lie(T ) trivially.

Finally, we note that good primes are greater than or equal to the length of
the longest root string in the root system Φ. In particular, this implies that the
structure constants Nα,β ∈ Z for the Chevalley basis are not divisible by p. Thus
in g one has [xα, xβ ] 6= 0 if and only if α+ β ∈ Φ.

Table 1. Bad and torsion primes, fundamental groups, and max-
imal root string lengths. [GM06, 2.13] [MT11, 9.2]

Type An
Bn

(n ≥ 2)
Cn

(n ≥ 3)
Dn

(n ≥ 4)
E6 E7 E8 F4 G2

Bad none 2 2 2 2, 3 2, 3 2, 3, 5 2, 3 2, 3
Torsion none 2 none 2 2, 3 2, 3 2, 3, 5 2, 3 2
|Λ/Λr| n+ 1 2 2 4 3 2 1 1 1

Longest root
string length

2 3 3 2 2 2 2 3 4

2.2. Maximal sets of commuting positive roots. Let Φ be an irreducible root
system with positive roots Φ+, corresponding base ∆ = {α1, . . . , αn}, and the Weyl
group W . Throughout the paper, we follow the labeling in Bourbaki [Bou02, 6, §4].
Let S ⊆ ∆ be a set of simple roots and ∆ \ S be its complement. Then we define

Φrad
S = Φ+ \ N(∆ \ S)
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to be the positive roots that cannot be written as a linear combination of the simple
roots not in S. Note that S 7→ Φrad

S commutes with unions and intersections. If
S = {αi} then we will write Φrad

i instead of Φrad
{αi}. These are simply all positive

roots whose expression in terms of simple roots includes αi.
For any I ⊂ ∆ define the parabolic subgroup WI and its corresponding root

system ΦI as in Humphreys [Hum90, 1.10]. For I = ∆\S, we have Φrad
S = Φ+\Φ+

I .
If PI = LI nUI is the standard parabolic determined by the subset I = ∆ \S with
the Levi factor LI and the unipotent radical UI , then the root subgroups Uα with
α ∈ Φrad

S are precisely the ones generating UI .

Lemma 2.5. Let S ⊆ ∆. Then StabW (Φrad
S ) = W∆\S.

Proof. Let I = ∆ \ S. As WI stabilizes Φ and ΦI , it also stabilizes Φ \ ΦI =
Φrad
S ∪ −Φrad

S . Now for any element w ∈ WI its length as an element of W equals
its length as an element of WI . Length is characterized by the number of positive
roots that are sent to negative roots so such roots are in ΦI . In particular, wΦrad

S ⊆
Φrad
S ∪ −Φrad

S are positive so wΦrad
S ⊆ Φrad

S . This proves that WI stabilizes Φrad
S .

Conversely assume w ∈ W \WI is of minimal length stabilizing Φrad
S . Then w

stabilizes ΦI and for any α ∈ I we have `(wsα) = `(w)+1 so w(α) is positive. This
means w stabilizes Φ+

I , so it stabilizes all of Φ+, but the identity is the only such
element in W . �

Lemma 2.6. The set Φrad
S is not conjugate to any other set of positive roots.

Proof. If w does not stabilize Φrad
S then it has a reduced expression of the form

w = usαiv where v ∈W∆\S and sαi /∈W∆\S , i.e., αi ∈ S. By Humphreys [Hum90,

1.7] we have usαi(αi) < 0 so w sends v−1(αi) ∈ Φrad
S to a negative root. �

Two positive roots commute if their sum is not a root. A set of commuting
positive roots is a set of positive roots which pairwise commute and R ⊆ Φ+ is a
maximal set of commuting positive roots if it is maximal with respect to order, i.e.,
if R′ is any other set of commuting positive roots then |R′| ≤ |R|.

Notation 2.7. Let Max(Φ) be the set of all maximal sets of commuting positive
roots in Φ. Let m(Φ) be the order of a maximal set of commuting roots in Φ+. If
Φ is irreducible of type T then we may write Max(T ) and m(T ) instead.

To formulate the theorem on the maximal sets of commuting positive roots, we
need to introduce additional notation for type Bn. We first recall notation from
Bourbaki [Bou02, 6, §4.5]:

Notation 2.8. Type Bn.

εi = αi + αi+1 + · · ·+ αn, 1 ≤ i ≤ n
εi + εj = (αi + αi+1 + · · ·+ αn) + (αj + αj+1 + · · ·+ αn), 1 ≤ i < j ≤ n
εi − εj = αi + αi+1 + · · ·+ αj−1, 1 ≤ i < j ≤ n

Define the following subsets of positive roots, as in Malcev [Mal51].

St = {εt, εi + εj | 1 ≤ i < j ≤ n}, t = 1, 2, . . . , n

S∗t = {εt, εi + εj , εi′ − εn | 1 ≤ i < j < n, 1 ≤ i′ < n}, t = 1, 2, . . . , n− 1

We present what is known about the maximal sets of commuting positive roots
in Table 2. The proofs can be found in Malcev [Mal51], see also Appendix A.
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Table 2. Maximal sets of commuting positive roots.

Type T
Restrictions

on rank
Max(T ) #Max(T ) m(T )

A2n n ≥ 1 Φrad
n+1, Φrad

n 2 n(n+ 1)

A2n+1 n ≥ 0 Φrad
n+1 1 (n+ 1)2

Bn

n = 2, 3 Φrad
1 1 2n− 1

n = 4

Φrad
1 ,

S1, S2, S3, S4,

S∗1 , S
∗
2 , S

∗
3

8 7

n ≥ 5
St, 1 ≤ t ≤ n

S∗t , 1 ≤ t < n
2n− 1

(
n
2

)
+ 1

Cn n ≥ 3 Φrad
n 1

(
n+1

2

)
Dn

n = 4 Φrad
1 ,Φrad

3 ,Φrad
4 3 6

n ≥ 5 Φrad
n−1,Φ

rad
n 2

(
n
2

)
E6 Φrad

1 ,Φrad
6 2 16

E7 Φrad
7 1 27

E8
none of the
form Φrad

i

134 36

F4
none of the
form Φrad

i

28 9

G2
none of the
form Φrad

i

5 3

Remark 2.9 (On cominuscule roots). Recall that a simple root αi is called comi-
nuscule if it occurs with coefficient 1 in the highest positive root (see Billey and
Lakshmibai [BL00] or Richardson, Rohle, and Steinberg [RRS92] for more on comi-
nuscule roots and cominuscule parabolics). Note that in types A, C, D, E6, E7,
the maximal sets of commuting positive roots are given by Φrad

i with αi a simple
cominuscule root. One of the equivalent definitions of a simple cominuscule root
αi is that the unipotent radical of the corresponding parabolic is abelian [RRS92,
Lem 2.2] so the set Φrad

i is a natural candidate to be in Max(T ). As one sees from
the table, the sets Φrad

i defined by a simple cominuscule root do have maximal
dimension in almost all cases when they exist except for the most mysterious case
of Bn.

Definition 2.10. We say that R ⊆ Φ+ is an ideal if α+ β ∈ R whenever α ∈ Φ+,
β ∈ R, and α+ β ∈ Φ+.

Note, for example, that the sets Φrad
i are always ideals. The computations be-

low require knowing which maximal sets of commuting positive roots are ideals
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and for such sets R what is the stabilizer StabW (R) = {w ∈W | wR = R}. This
information can be found in Table 3 (see Appendix A for the calculation).

Note that Max(Φ) contains non-ideals only in types Bn(n ≥ 4), E8, F4, and G2.
One can check in types Bn, E8, and F4 that every set in Max(Φ) is W -conjugatate
to an ideal in Max(Φ). In any type there is at most one ideal that is not of the
form Φrad

i for some i, therefore in all types except G2 lemma 2.6 gives that each set
in Max(Φ) is conjugate to a unique ideal in Max(Φ). The exceptional case is G2,
where one finds that there are two orbits under the partial action of W on Max(Φ)
and only one contains an ideal.

Table 3. Maximal commuting ideals and their stabilizers

Type T Ideal R StabW (R)

Any Φrad
i W∆\{αi}

Bn, n ≥ 4 S1 W∆\{α1,αn}

E8 R is unique W∆\{α2}

F4 R is unique W{α1,α3}

G2 R is unique W{α2}

2.3. Varieties E(r, g).

Definition 2.11 ( [CFP15]). An elementary subalgebra E ⊂ g of dimension r is a p-
restricted Lie subalgebra of dimension r which is commutative and has p-restriction
equal to 0. We define

E(r, g) = {E ⊂ g | E elementary subalgebra of dimension r}

So defined, E(r, g) is a closed subset of the Grassmannian of r-planes in the
vector space g and hence has a natural structure of a projective algebraic variety.
In this paper, we are concerned with the varieties of elementary subalgebras of
maximal dimension. We set

rmax = Max {r | E(r, g) is nonempty} ,
E(g) = E(rmax, g).

Theorem 2.12. Let g and h be restricted Lie algebras whose maximal elementary
subalgebras have dimensions r and s respectively. Then r+ s is the dimension of a
maximal elementary subalgebra in g⊕ h and E(g⊕ h) ' E(g)× E(h).

Proof. If E ⊆ g ⊕ h is maximal and E1 ⊆ g and E2 ⊆ h are its images under the
projections to g and h respectively then E1⊕E2 ⊆ g⊕h is an elementary subalgebra
and contains E , hence equals E . This proves that every maximal elementary subal-
gebra is a sum of necessarily maximal elementary subalgebras from g and h. Thus
r + s is the maximal dimension of an elementary subalgebra in g ⊕ h and there is
a bijection E(g) × E(h) → E(g ⊕ h). One then checks on the standard affine open
sets of the Grassmannian that this is an isomorphism. �
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3. Unipotent case

In this section we assume that G is a simple algebraic group and compute E(u) as
a set. We do this by defining the leading terms associated to a particular subalgebra
as a subset of the root system and showing that such a subset must be a maximal
set of commuting positive roots. We then perform a case by case analysis based on
the information in Table 2 which shows that in most cases E(u) = Lie(Max(Φ)),
with Lie(Max(Φ)) defined in Equation 3.1.1. The exceptions are type A2 where
E(u) ' P1, type Bn for n ≥ 4 where E(u) includes the lie subalgebras B(a1, . . . , an)
and exp(ad(anxαn))(C(a1, . . . , an−1)) defined below, and the exceptional types of
which only G2 is calculated explicitly. For types F and E we verify later that under
the adjoint action one has E(u) ⊆ G · Lie(Max(Φ)). We note that the condition
E(u) ⊆ G · Lie(Max(Φ)) holds in all types except G2.

Though we are interested in the case when p is separably good, the results in this
section are valid so long as p is greater than or equal to the length of the longest
root string in Φ.

3.1. Correspondence with sets of commuting roots. We must first choose
a total ordering � on Φ+ which respects addition of positive roots, that is, if
β, γ, λ, β + λ, γ + λ ∈ Φ+ and β � γ then β + λ � γ + λ. In examples the choice of
ordering will depend on the root system but we note here that such a total ordering
always exists: The standard ordering ≤ on Φ respects addition, as does a reverse
lexicographical ordering with respect to any ordering of the simple roots. This
ordering will define the extraspecial pairs in our root system and consequently the
signs in the structure constants of the Chevalley basis which induces the xα. We
will often construct such orderings through refinement.

Definition 3.1. Let �1,�2, . . . ,�n be relations on a set X which define �i and
=i in the obvious way. The relation

� = (�1,�2, . . . ,�n)

is defined as follows: x � y if either

(1) For some 1 ≤ i ≤ n we have x �i y and x =j y for all j < i, or
(2) x =i y for all 1 ≤ i ≤ n.

We say that � is given by refining �1, first by �2, then by �3, and so on.

In simple terms we compare by first trying �1 and inductively trying �i+1 if �i
gives equality. We will always choose the �i to be preorders which respect addition
of positive roots and we will choose �n to be, moreover, a total order. Then � is
a total order which respects addition.

Now for each set R ⊆ Φ+ of commuting positive roots there is an abelian Cheval-
ley subalgebra Lie(R) = spank {xα | α ∈ R} associated to R with dim Lie(R) = |R|.
As the elements xα induced from a Chevalley basis are always p-nilpotent this is in
fact an elementary subalgebra. We wish to show that this induces a map

(3.1.1) Lie : Max(Φ) // E(u),

that is, that the Lie subalgebra associated to a maximal commuting set of positive
roots has maximal dimension among all elemenatry subalgebras. We do this using
an argument of Malcev [Mal51] which shows that there exists a surjection

(3.1.2) LT : E(u) // Max(Φ)
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that splits Lie.
Let E ⊆ u be an elementary subalgebra. The ordering � on Φ+ gives an ordering

on the basis elements xβ of u. Choose the unique basis of E which is in reduced
echelon form with respect to this ordering and let LT(E) be the set of roots β such
that the corresponding xβ are the leading terms in this reduced basis. Observe
that if β and γ are the leading terms of b1 = xβ + 〈lower terms〉 and b2 = xγ +
〈lower terms〉 respectively, and if β + γ ∈ Φ+ then [xβ , xγ ] = Nβ,γxβ+γ is the
leading term of [b1, b2]. Thus if [b1, b2] = 0 then β and γ commute. This proves
that LT(E) is a commuting set of roots. Clearly LT(Lie(R)) = R so LT splits Lie
and both maps preserve maximality.

3.2. Types A2n+1, B2, B3, Cn, and E7. In these types there is a unique maximal
set of commuting roots of the form Φrad

i for some i. Let � be the reverse lexico-
graphic ordering given by αi < α1 < α2 < · · · , so β � γ if when written as a linear
combination of simple roots the coefficient of αi in γ is larger than the coefficient of
αi in β, or if those coefficients are equal then coefficient of α1 in γ is larger, and so
on. With this ordering the roots in Φrad

i , which all have nonzero αi coefficient, are
strictly smaller than the roots in Φ+ \Φrad

i , which have 0 as the αi coefficient. The
following lemma then gives that Lie(Φrad

i ) is the only possible maximal elementary
subalgebra.

Lemma 3.2. If Φ+ \ LT(E) � LT(E) then E = Lie(LT(E)).

Proof. Choose β ∈ LT(E) and let b be the element in the reduced echelon form basis
of E with leading term xβ . The terms in b − xβ are of the form cxγ with β � γ,
equivalently, γ ∈ LT(E). So c = 0 because xγ is the leading term of some other
basis element. Thus we have b = xβ and our reduced basis is {xβ | β ∈ LT(E)}. �

3.3. Type A2. Along with type G2 this case will be exceptional in that it is not true
that every elementary subalgebra is conjugate to a subalgebra in Lie(Max(Φ)) and it
is not true that every Weyl group orbit in Max(Φ) contains an ideal. Consequently
we will find below that the variety E(g) for a simple algebraic group of type A2 is
not a disjoint union of flag varieties.

The highest root α1 +α2 commutes with all positive roots so xα1+α2
is contained

in any maximal elementary E . As the dimension of such E is 2 this means E may
be generated by xα1+α2 and an element of the form axα1 + bxα2 where a, b ∈ k are
not both 0. One can check that no other conditions on a and b are needed to get
an elementary subalgebra therefore we have a bijection

P1 ' E(u)

[a : b] 7→ 〈axα1
+ bxα2

, xα1+α2
〉.

We note that each of these subalgebras is fixed under conjugation by U < G,
conjugation by the torus allows us to scale the constants a and b, and no two of
these subalgebras are conjugate via a representative of a Weyl group element. Thus
up to conjugation there are three subalgebras:

〈xα1
, xα1+α2

〉,
〈xα2 , xα1+α2〉,
〈xα1

+ xα2
, xα1+α2

〉.
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3.4. Type A2n, n ≥ 2. Consider positive roots β and γ written as a linear com-
bination of the simple roots αi. Define β �1 γ if the sum of the coefficients of αn
and αn+1 in the expression for γ is greater or equal the sum for β. Define �2 to be
the reverse lexicographic ordering given by αn+1 ≺ αn ≺ α1 ≺ α2 ≺ · · · . Finally
let � be the refinement of �1 by �2. One can now check that

Φ+ \ (Φrad
n ∪ Φrad

n+1) � Φrad
n \ Φrad

n+1 � Φrad
n+1 \ Φrad

n � Φrad
n ∩ Φrad

n+1.

Let E ⊆ u be an elementary subalgebra. As seen in Table 2, we have either
LT(E) = Φrad

n+1 or LT(E) = Φrad
n . If LT(E) = Φrad

n+1 then lemma 3.2 gives E =

Lie(Φrad
n+1). Assume LT(E) = Φrad

n . Then there is a basis whose leading terms are

contained in either Φrad
n \Φrad

n+1 or Φrad
n+1 ∩Φrad

n . For the latter the argument in the
proof of lemma 3.2 applies and we get that those basis elements are just the xβ for
β ∈ Φrad

n+1 ∩ Φrad
n . We must show that the same is true for basis elements whose

leading term is in Φrad
n \ Φrad

n+1.
We have

Φrad
n \ Φrad

n+1 = {εi − εn+1 | 1 ≤ i < n+ 1}

Φrad
n+1 \ Φrad

n = {εn+1 − εj | n+ 1 < j ≤ 2n+ 1}
(where the notation follows Bourbaki [Bou02, 4.7]) so the remaining basis elements
are of the form

bi = xεi−εn+1
+

∑
n+1<j≤2n+1

aijxεn+1−εj

for 1 ≤ i < n+ 1. Now we compute

[bi, bi′ ] =
∑

n+1<j≤2n+1

ai′jNεi−εn+1,εn+1−εjxεi−εj + aijNεn+1−εj ,εi′−εn+1xεi′−εj .

As n ≥ 2 we may choose i 6= i′. That this expression must equal 0 consequently
gives aij = 0 for all i and j. Thus bi = xεi−εn+1 and E = Lie(Φrad

n ) as desired.

3.5. Type Bn, n ≥ 5. Recall that we define

εi = αi + αi+1 + · · ·+ αn

where the αi are the simple roots numbered as in Bourbaki [Bou02, 6, §4]. Let �
be the reverse lexicographical ordering given by

α1 � · · · � αn−1 � αn.
Specifically, we have

εr − εs � εt � εi + εj

for all i, j, t, r, s with r < s. If we also have that i < j then

εr � εi if i < r,

εr + εs � εi + εj if j < s or if j = s and i < r,

εr − εs � εi − εj if s < j or if j = s and i < r.

One can also compute that if i < j < n then Nεi+εn,εj−εn = −Nεj+εn,εi−εn = 1
Now if we define

R1 = {εi + εj | 1 ≤ i < j < n}
R2 = {εi + εn | 1 ≤ i < n}
R3 = {εi − εn | 1 ≤ i < n}
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then the set of positive roots, Φ+, of Bn is the union of the sets

{εi − εj | 1 ≤ i < j < n} � R3 � {εi | 1 ≤ i ≤ n} � R2 � R1.

and

St = R1 ∪R2 ∪ {εt}
S∗t = R1 ∪R3 ∪ {εt}

(see notation 2.8 for the definition of St, S
∗
t ).

One can check that the following subalgebras are elementary and are maximal
if not all ai are zero.

B(a1, . . . , an) = spank

{
xβ ,

n∑
i=1

aixεi

∣∣∣∣∣ β ∈ R1 ∪R2

}

C(a1, . . . , an−1) = spank

{
xβ ,

n−1∑
i=1

aixεi

∣∣∣∣∣ β ∈ R1 ∪R3

}
.

Theorem 3.3. If n ≥ 4 and E ∈ Max(Bn) satisfies LT(E) = St or S∗t then
there exist a1, . . . , an such that E = B(a1, . . . , an) or C(a1, . . . , an−1)exp(ad(anxαn ))

respectively.

Proof. If LT(E) = St for some t then the argument of lemma 3.2 immediately gives
E = B(0, . . . , 0, 1, at+1, . . . , an) for some at+1, . . . , an. Now assume that LT(E) = S∗t
for some 1 ≤ t < n. The reduced echelon form basis of E then consists of the
elements xεi+εj where 1 ≤ i < j < n and for 1 ≤ i < n the elements

x = xεt +

t−1∑
s=1

asxεs +

n−1∑
s=1

bsxεs+εn and yi = xεi−εn +

n∑
s=1

cisxεs +

n−1∑
s=1

disxεs+εn

for some as, bs, csk, and dsk. That it’s reduced means cit = 0 for all i. Notice that
exp(ad(λxαn)) is upper triangular with respect to � so LT(exp(ad(λxαn))(E)) =
LT(E) and the element in the reduced basis of exp(ad(λxαn))(E) with leading term
xεt is exp(ad(λxαn))(x). When λ = −btN−1

εn,εt we have

exp(ad(λxαn))(x) = xεt+

t−1∑
s=1

asxεs+

t−1∑
s=1

(bs−asbtN−1
εn,εtNεn,εs)xεs+εn+

n−1∑
s=t+1

bsxεs+εn .

As xεt+εn is not a term in this basis element it suffices to show that E is the
subalgebra C(0, . . . , 0, 1, at+1, . . . , an−1) when bt = 0. We do this by showing that
the bs, cij , and dij must all be zero.

One can check that the coefficient of xεi in [yi, yj ] is Nεi−εn,εncjn so cjn = 0 for
all j. Also if j 6= t then the coefficient of xεj+εt in [x, yi] is Nεt,εjcij so cij = 0 for
all i, j. For i 6= t the coefficient of xεi+εt in [x, yt] is Nεi+εn,εt−εnbi so bi = 0 for all
i.

If i, j, t < n are distinct then the coefficients of xεj+εt and xεi+εj in [yi, yt] are
Nεj+εn,εt−εndij and Nεi−εn,εj+εndtj respectively. As n is at least 4 this gives dij = 0
for all i 6= j 6= t.

To show that dit = 0, we note that the coefficient of xεj+εt in [yi, yj ] isNεt+εn,εj−εndit.
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Finally, if i, j < n are distinct then Nεi−εn,εj+εndjj + Nεi+εn,εj−εndii is the
coefficient of xεi+εj in [yi, yj ]. For i < j < t < n we thus get a system of equations

Nεi−εn,εj+εndjj +Nεi+εn,εj−εndii = djj + dii = 0

Nεi−εn,εt+εndtt +Nεi+εn,εt−εndii = dtt + dii = 0

Nεj−εn,εt+εndtt +Nεj+εn,εt−εndjj = dtt + djj = 0

whose unique solution is dii = djj = dtt = 0. This gives dii = 0 for all i and
completes the proof of the theorem. �

We note that E(u) = Lie(Max(Φ)) does not hold in type Bn, n ≥ 5. In the next
proposition we show that any elementary subalgebra in E(u) is G-conjugate to a
subalgebra in Lie(Max(Φ)).

Proposition 3.4. Let F/Fp be a field extension. Any F -point of E(u) is G(F )-
conjugate to an elementary subalgebra in Lie(Max(Φ)).

Proof. We show that any elementary subalgebra in E(u) defined over F is G(F )-
conjugate to Lie(S1) where S1 is as defined in notation 2.8.

The simple reflection sn acts by negating εn and fixing the remaining εi therefore
any representative ṡn ∈ NG(T ) conjugates C(a1, . . . , an−1) to B(a1, . . . , an−1, 0).
Similarly si, where i < n, swaps εi with εi+1 and fixes the remaining εj so by conju-
gation we may assume our elementary subalgebra is of the form B(a1, . . . , an−1, 1).
Finally conjugation by exp(ad(aiN

−1
εi−εn,εnxεi−εn)) lets us assume ai = 0 and does

not alter the remaining aj , thus we have conjugated our subalgebra to B(0, . . . , 0, 1).
Using simple reflections we conjugate to B(1, 0, . . . , 0) = Lie(S1) and are done. Note
that if the variables (a1, . . . , an−1, an) belong to the field F then all conjugations we
have to perform to reduce C(a1, . . . , an−1) or B(a1, . . . , an−1, an) to B(1, 0, . . . , 0)
are by elements in G(F ). �

3.6. Type B4. We keep the ordering and choice of basis from the last section. As
theorem 3.3 applies here as well, all that is left is to prove the following.

Theorem 3.5. If LT(E) = Φrad
1 then E = Lie(Φrad

1 ).

Proof. The reduced echelon form basis of E is of the form

xi = xε1+εi +
∑

2≤s<r<i

cisrxεs+εr , and

y1 = xε1 +
∑

2≤s<r≤4

d1srxεs+εr

yi = xε1−εi +
∑
i≤r≤4
2≤s<r

eisrxεs−εr +
∑

s=2,3,4

fisxεs +
∑

2≤s<r≤4

gisrxεs+εr

for i = 2, 3, 4. These 7 basis elements can be formed into 21 possible commutators
which must equal zero. Setting their coefficients equal to zero gives a system of
equations which can be solved by hand and whose unique solution is cisr = d1sr =
eisr = fis = gisr = 0 as desired. �

As above we do not get E(u) = Lie(Max(Φ)). Instead we get E(u) ⊆ G ·Lie(S1)∪{
Lie(Φrad

1 )
}

.



VARIETIES OF ELEMENTARY SUBALGEBRAS 15

3.7. Type Dn, n ≥ 5. Define

εi =


αi + αi+1 + · · ·+ αn−2 + 1

2 (αn−1 + αn) if i ≤ n− 2
1
2 (αn−1 + αn) if i = n− 1
1
2 (αn − αn−1) if i = n.

where the αi are the simple roots ordered as in Bourbaki [Bou02, 6, §4] and let �
be the reverse lexicographical ordering given by

αn−2 � · · · � α2 � α1 � αn−1 � αn.

One can check that for i < j < n this gives Nεi−εn,εj+εn = −Nεj−εn,εi+εn = 1.
If we define

R = {εi + εj | 1 ≤ i < j ≤ n− 1}

then

Φrad
n = R ∪ {εi + εn | 1 ≤ i ≤ n− 1}

Φrad
n−1 = R ∪ {εi − εn | 1 ≤ i ≤ n− 1}

and Φ+ is the union of the sets

Φ+ \ Φrad
{α1,αn−1,αn} � Φrad

1 \ Φrad
{αn−1,αn} � Φrad

n−1 \R � Φrad
n \R � R.

Theorem 3.6. If n ≥ 4 and E ∈ Max(Dn) satisfies LT(E) = Φrad
n or Φrad

n−1 then

E = Lie(Φrad
n ) or Lie(Φrad

n−1) respectively.

Proof. If LT(E) = Φrad
n then lemma 3.2 immediately gives E = Lie(Φrad

n ), so assume
LT(E) = Φrad

n−1. The reduced basis of E then consists of the xα corresponding to
α ∈ R and the elements

yi = xεi−εn +

n−1∑
s=1

aisxεs+εn

for 1 ≤ i ≤ n− 1 and we want to show that aij = 0 for all i, j.
If i, j, t < n are distinct then the coefficient of xεi+εt in [yi, yj ] is Nεi−εn,εt+εnajt.

As n ≥ 4 this gives ajt = 0 for all j 6= t. Now for i 6= j the coefficient of xεi+εj in
[yi, yj ] is Nεi−εn,εj+εnajj +Nεi+εn,εj−εnaii. Thus if i < j < t < n we get a system
of equations

Nεi−εn,εj+εnajj +Nεi+εn,εj−εnaii = ajj + aii = 0

Nεi−εn,εt+εnatt +Nεi+εn,εt−εnaii = att + aii = 0

Nεj−εn,εt+εnatt +Nεj+εn,εt−εnajj = att + ajj = 0

whose unique solution is aii = ajj = att = 0. This gives aii = 0 for all i and
completes the proof of the theorem. �

3.8. Type D4. We keep the ordering from the last section. As theorem 3.6 applies
here as well, all that is left is to prove that if LT(E) = Φrad

1 then E = Lie(Φrad
1 ).
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The reduced basis of E is of the form

xε1−ε2 + a11xε2−ε3 + a12xε3−ε4 + a13xε2−ε4 + a14xε3+ε4 + a15xε2+ε4 + a16xε2+ε3

xε1−ε3 + a21xε3−ε4 + a22xε2−ε4 + a23xε3+ε4 + a24xε2+ε4 + a25xε2+ε3

xε1−ε4 + a31xε3+ε4 + a32xε2+ε4 + a33xε2+ε3

xε1+ε4 + a41xε2+ε3

xε1+ε3

xε1+ε2

and we wish to show that the aij are zero. As in the B4 case, setting commutators
equal to zero yields a system of equations for the aij which can be solved by hand
and whose unique solution is aij = 0 for all i, j.

3.9. Type G2. As with type A2 this case is exceptional in that it is not true that
every elementary subalgebra is conjugate to a subalgebra in Lie(Max(Φ)) and it is
not true that every Weyl group orbit in Max(Φ) contains an ideal.

Recall that we assume the characteristic p is good for Φ, so explicitly we assume
p 6= 2, 3. Let α1 be the short root and α2 the long root in the basis, with s1, s2 ∈W
the corresponding simple reflections. We choose the reverse graded lexicographic
ordering on Φ with α1 � α2 so that the positive roots are ordered as follows:

α1 � α2 � α1 + α2 � 2α2 + α2 � 3α1 + α2 � 3α1 + 2α2.

The si act via

si(αi) = −αi,
s1(α2) = 3α1 + α2,

s2(α1) = α1 + α2,

and W is the dihedral group of order 12 generated by the reflection s1 and rotation
s1s2. It is simple to check that the maximal sets of commuting positive roots fall
into two orbits:

C1 = {α1, 3α1 + α2, 3α1 + 2α2} ,
C2 = {α1 + α2, 3α1 + α2, 3α1 + 2α2} ,
C3 = {α2, 2α1 + α2, 3α1 + 2α2} ,

and

C4 = {α2, α1 + α2, 3α1 + 2α2} ,
C5 = {2α1 + α2, 3α1 + α2, 3α1 + 2α2} .

Only C5 is an ideal.

Theorem 3.7. Every E ∈ E(u) is G-conjugate to one of Lie(C3), Lie(C5), or
L = 〈xα2 + x3α1+α2 , x2α1+α2 , x3α1+2α2〉. Moreover, these subalgebras are pairwise
non-conjugate.

Proof. As C3 and C5 are representatives of the two orbits we must show that every
E ∈ E(g) is conjugate to either L or Lie(Ci) for any i. We handle each of the five
possible leading terms separately.
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An abelian subalgebra with leading terms C1 is generated by elements of the
form

xα1 + a1xα1+α2 + a2x2α1+α2 ,

x3α1+α2 ,

x3α1+2α2 .

for some a1, a2 ∈ k. Conjugating by exp(ad( 1
2a2xα1+α2

)) exp(ad(a1xα2
)) gives

Lie(C1).
An abelian subalgebra with leading terms C2 is generated by elements of the

form

xα1+α2 + a1x2α1+α2 ,

x3α1+α2 ,

x3α1+2α2 ,

for some a1 ∈ k. Conjugating by exp(ad(− 1
2a1xα1

)) gives Lie(C2).
An abelian subalgebra with leading terms C3 is generated by elements of the

form

xα2 + a1xα1+α2 + a2x3α1+α2 ,

x2α1+α2 + 3a1x3α1+α2 ,

x3α1+2α2 .

for some a1, a2 ∈ k. Conjugation by exp(ad(−a1xα1
)) allows us to assume a1 = 0,

giving

xα2 + a2x3α1+α2 ,

x2α1+α2 ,

x3α1+2α2 .

If a2 = 0 this is Lie(C3). If a2 6= 0 then conjugation by α∨2 ( 3
√
a2) sends the

subalgebra above to L.
The only subalgebra with leading terms C5 is Lie(C5) so all that is left is C4.

An abelian subalgebra with leading terms C4 is generated by elements of the form

xα2
+ a1x2α1+α2

+ a2x3α1+α2
,

xα1+α2
+ a3x2α1+α2

− 3a1x3α1+α2
,

x3α1+2α2
.

for some a1, a2, a3 ∈ k. Conjugation by exp(ad(− 1
2a3xα1

)) allows us to assume
a3 = 0. If a1 = 0 then conjugation by ṡ1 yeilds a subalgebra generated by elements
of the form

axα2
+ x3α1+α2

,

x2α1+α2
,

x3α1+2α2
,
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and the leading terms are either C3 or C5, so assume a1 6= 0. Then conjugation by
α∨2 ( 3
√
a1) allows us to assume a1 = 1. Our generators are now of the form

xα2
+ x2α1+α2

+ ax3α1+α2
,

xα1+α2
− 3x3α1+α2

,

x3α1+2α2
.

For any choice of u, v ∈ k we may conjugate by exp(ad(uxα1
))ṡ1 exp(ad(vxα1

)) to
get a subalgebra generated by terms of the form

λ1xα2 + ((u3 + 3u+ a)v + u2 + 1)xα1+α2 + lower terms . . . ,

λ2xα2
+ (3(u2 − 1)v + 2u)xα1+α2

+ lower terms . . . ,

x3α1+2α2
.

From the constant term one sees that for any a the polynomial u4 − 6u2 − 2ua− 3
must always have a root distinct from ±1 and necessarily nonzero. Choose u to be
such a root. Then

4u+ a

u2 − 1
=
u2 + 3

2u
holds and, moreover, implies that the equations

3(u2 − 1)v + 2u = 0,

3(4u+ a)v + u2 + 3 = 0

determine a unique v. Finally

u[3(u2 − 1)v + 2u] + [3(4u+ a)v + u2 + 3] = 3[(u3 + 3u+ a)v + u2 + 1]

so (u3 + 3u + a)v + u2 + 1 = 0. Thus with this choice of u, v we have conjugated
the subgroup to one for whom α1 +α2 is not a leading term. This means we are no
longer in the case of leading terms C4 and our previous arguments apply. Hence we
have shown that every E ∈ E(u) is G-conjugate to one of Lie(C3), Lie(C5), or L.

All that is left is to show that these three subalgebras are not conjugate. For
this we simply observe that their normalizers

Ng(Lie(C3)) = 〈h1, h2, xβ | β ∈ Φ+ \ {α1}〉,
Ng(Lie(C5)) = 〈h1, h2, xβ | β ∈ Φ+ ∪ {−α2}〉,

Ng(L) = 〈h1 + 2h2, xβ | β ∈ Φ+ \ {α1}〉,
have dimensions 7, 9, and 6 respectively. Conjugate subalgebras have conjugate,
hence equidimensional, normalizers therefore the subalgebras Lie(C3), Lie(C5), and
L are non-conjugate. �

3.10. Types E6, E8, and F4. For these types there are too many cases for us
to reasonably tackle them by hand. Instead we have written Magma code that
attempts to confirm that E(u) ⊆ U · Lie(Max(Φ)) holds for Lie algebras of a given
type. This code is available online [Sta14b], is successful for types E6, E8, and F4,
and moreover confirms that if E ∈ E(u) is defined over a subfield F ⊆ k then the
conjugating element may be taken from the F -points of U . We warn that while the
computations for E6 and F4 are very quick the computation for E8 takes several
hours and it is helpful to import the list of maximal sets of commuting roots from
code written in Sage [Sta14a], where that aspect of the computation is much faster.

Summarizing the above discussion, we now have the following result.
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Theorem 3.8. Let G be simple algebraic group with root system Φ, not of type A2

or G2. Then

E(u) =
⋃

I∈Max(Φ)

U · Lie(I).

Moreover, for any subfield F ⊆ k the F -points of E(u) are contained in U(F )·Lie(I)
for some I ∈ Max(Φ).

If ẇ ∈ NG(T ) is a representative of the Weyl group element w ∈ W then ẇ · xα
is proportional to xw·α. Thus if both I and wI are contained in Max(Φ) then
ẇ · Lie(I) = Lie(wI). As Φ is not of type G2 we know that every set in Max(Φ) is
W -conjugate to an ideal. This gives the following corollary.

Corollary 3.9. Let G be simple algebraic group with root system Φ, not of type A2

or G2. Then

E(u) ⊆
⋃

I∈Max(Φ)
I an ideal

G · Lie(I).

Moreover, for any subfield F ⊆ k the F -points of E(u) are contained in G(F )·Lie(I)
for some ideal I ∈ Max(Φ).

3.11. Type G2 when p = 3. We now break with the assumption, made at the
start of the current section, that p is equal or greater than the length of the longest
root string in Φ. In type G2 there are root strings of length 4 and we now consider
the case p = 3.

The results of this section are based on the property that if α 6= β are positive
roots then [xα, xβ ] = 0 if and only if α and β commute. The techniques that follow
from that assumption are still valid in the current case if we replace “commuting”
with a different combinatorial property that holds if and only if the corresponding
xα and xβ commute.

Definition 3.10. Let α 6= β be positive roots and p a prime. We say that α and β
p-commute if they commute or if the α-string through β begins at (−p+ 1)α+ β.

The above notion is a direct translation of the condition that the structure
constant Nα,β is either 0 or p (it cannot be a larger multiple of p) therefore the
product [xα, xβ ] = 0 if and only if α and β p-commute. There are 3 sets of maximal
p-commuting roots in Φ+, they are

R1 = {α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2} ,
R2 = {α1, 2α1 + α2, 3α1 + α2, 3α1 + 2α2} ,
R3 = {α2, α1 + α2, 2α1 + α2, 3α1 + 2α2} .

Geometrically each set consists of 4 rotationally consecutive roots. As long and
short roots alternate and the Weyl group is the Dihedral group on the long roots
we see that these three sets are conjugate.

The three cases of elementary abelian Lie subalgebras that come from these
roots are as follows. If LT(E) = R1 then E = Lie(R1) because R1 is minimal in the
ordering. If LT(E) = R2 then

E = 〈xα1
+ cxα1+α2

, x2α1+α2
, x3α1+α2

, x3α1+2α2
〉.
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Conjugating by exp(ad(−cxα2
)) yields Lie(R2). Lastly if LT(E) = R3 then

E = 〈xα2 + cx3α1+α2 , xα1+α2 , x2α1+α2 , x3α1+2α2〉.
Conjugating by exp(ad( 3

√
cxα2

)) yields Lie(R3). Thus we have E(u) ⊆ G · Lie(R1).

4. Calculation of E(g) for g = LieG

We now calculate, when p is separably good, the variety E(g) when g is the
Lie algebra of a reductive group G. We start by reducing to the case of a simple
algebraic group.

Theorem 4.1. Let G1, . . . , Gn be the simple algebraic subgroups of the derived
group [G,G] and let gi = Lie(Gi). Then

E(g) =

n∏
i=1

E(gi).

Proof. Follows from theorem 2.12. �

Henceforth we assume that G is a simple algebraic group. In all but the A2

and G2 cases we find that E(g) is a disjoint union of flag varieties corresponding to
ideals of maximal commuting roots. In the A2 and G2 cases we find that the E(g)
are irreducible varieties of dimensions 5 and 8 respectively, each given as the union
of three G-orbits.

4.1. Reduction to the unipotent case. Our first step is to show that every
maximal elementary subalgebra may be conjugated into u, the Lie algebra of the
unipotent radical of the Borel. This is a result of Levy, McNinch and Testerman
based on the following theorem.

Theorem 4.2 ([LMT09, 2.2]). Let G be a semisimple group and p a very non-
torsion prime for G. Let U be a unipotent subgroup scheme of G. Then U is
contained in a Borel subgroup of G.

Remark 4.3. Reading the proof in [LMT09], one finds that the theorem above
holds for any prime when G is SLn or Spn, and consequently it holds for any group
which is separably isogeneous to SLn or Spn.

Corollary 4.4. Let G be semisimple and p either separably good or very non-torsion
for G. Then any elementary subalgebra E of g may be conjugated into u.

Proof. Let G(1) ≤ G be the first Frobenius kernel of G which is a closed normal
subgroup scheme. An elementary subalgebra E of g corresponds to an infinitesimal
subgroup scheme E ≤ G(1), and this correspondence is compatible with the conju-
gation action of G on G(1) and the adjoint action on g [Jan03, I.9.6]. As E consists
entirely of nilpotent elements of g we have, by Engel’s theorem, that E is a unipo-
tent subgroup scheme of G. Theorem 4.2 then gives that E may be conjugated into
our choice of Borel B and therefore E may be conjugated into the Lie algebra of B.
As E is nilpotent its conjugate must then lie in the nilpotent radical u of this Lie
algebra. �

Remark 4.5. Explicitly, the condition on p in corollary 4.4 amounts to p separably
good or G of type G2 and p = 3. The latter produces an interesting counter-example
to the separability lemma 4.8 which we explain in example 4.10.
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Example 4.6. This conjugation property is not true for a general prime. One can
check that when p = 2 the nilpotent cone of pgl2 is a linear subspace of dimension 2.
This is necessarily maximal among elementary subalgebras and is not contained in
the Lie algebra of any Borel. Examples of maximal elementary subalgebras which
are not contained in a Borel exist for pgl3 when p = 3 (see [LMT09]) and pgl4 when
p = 2. While it is true that for all n there exists an elementary subalgebra of pgln
which is not contained in a Borel, it is not known for larger n whether such an
elementary subalgebra can be maximal.

Corollary 4.7. Let G be semisimple and p separably good for G. Then

E(g) =
⋃

R∈Max(Φ)
R an ideal

G · Lie(R).

Proof. Follows immediately from corollary 3.9 and the corollary above. �

4.2. Ideal orbits. Now we geometrically identify orbits of the formG·Lie(R) where
R is an ideal in Max(Φ). Observe that such E = Lie(R) are fixed by B under the ad-
joint action (see Malle and Testerman [MT11, 15.4]). The stabilizer P = StabG(E)
is then a standard parabolic and is generated by B and representatives ṡi ∈ NG(T )
of some collection of simple roots si in the Weyl group W = NG(T )/CG(T ). As
ṡi Lie(R) = Lie(siR) we have ṡi ∈ P if and only if si ∈ StabW (R). Thus P is
identified by the information in Table 3 above.

The orbit map π : G → G · E factors to a bijective morphism G/P → G · E
and we show below that this morphism is in fact an isomorphism. Note that the
fact that the orbit map π induces an isomorphism G/P ∼= G · E is equivalent to
π being separable. This, in turn, is equivalent to the condition that the kernel of
the tangent map at the identity ker dπ1 is contained in Lie(P ) (see, for example,
[Bor91, 6.7]). We show in theorem 4.9 that this condition does, indeed, hold.

Lemma 4.8. If π : G → E(r, g) is the orbit map g 7→ g · E for some elementary
subalgebra E ∈ E(r, g) then ker dπ1 = Ng(E).

Proof. Let e = (e1, . . . , er) be a basis of E . As E(r, g) is a closed subvariety in
Grass(r, g) we may consider the latter to be the codomain of π. This gives the
following diagram

(4.8.1) (g×r)◦

φ

��

G

π̃

g 7→g·e

99

π

g 7→g·E
// Grass(r, g)

where (g×r)◦ is the open subset of g×r consisting of linearly independent r-tuples
and φ : (g×r)◦ → Grass(r, g) is the canonical projection. The map φ is, in particular,
a GLr-torsor and hence is locally trivial. Its tangent map at e can be identified as
the linear map

dφe : Hom(E , g)→ Hom(E , g/E)

induced by the projection g → g/E . Indeed, locally on the affine neighborhood
defined by the non-vanishing of the Plucker coordinate associated with E , the torsor
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trivializes as follows:

Ar(n−r) ×GLr

φ

��

� � // Arn = Mr×n ' Homk(E , g)

��

Ar(n−r) Hom(E , g/E).

Replace diagram 4.8.1 with the corresponding diagram for tangent spaces:

g×r ∼= Hom(E , g)

dφe

��

g

dπ̃1

g 7→([g,e])

88

dπ1

// Hom(E , g/E).

We are interested in ker dπ1 = ker(dφ1 ◦ dπ̃1). Note that in diagram 4.8.1 the
identification g×r ∼= Hom(E , g) is given by sending an r-tuple (g1, . . . , gr) to the
map E → g defined by ei 7→ gi. Hence, the kernel of the vertical map is E×r ⊂ g×r.
The map dπ̃1 is given by g 7→ ([g, e1], . . . , [g, er]). To land in ker dφ1 = E×r we
must have [g, ei] ∈ E for any 1 ≤ i ≤ r. Hence, dφ1 ◦ dπ̃1(g) = 0 if and only if
g ∈ Ng(E). �

Theorem 4.9. If P = StabG(E) is parabolic then the orbit G · E ⊆ E(g) is isomor-
phic to the flag variety G/P .

Proof. By Borel [Bor91, 6.7] and the above lemma this is equivalent to the state-
ment that Ng(E) ⊆ Lie(P ). Without loss of generality we assume P is a standard
parabolic, then E is fixed by the torus and therefore is a Chevalley subalgebra. The
normalizer Ng(E) is then fixed by the torus as well so it suffices to choose α ∈ Φ
and show that xα ∈ Ng(E) implies xα ∈ Lie(P ).

We assume that p is separably good for G so, in particular, p is greater or equal to
the length of the longest root string in Φ. This implies that any structure constants
which are zero in k are zero in Z. We get then that the Z-form of xα normalizes the
Z-form of E . The action of the root space Uα on g is given by exponentiating the
adjoint action of the Z-form of xα and then base changing to k, thus Uα stabilizes
E . As xα spans the Lie algebra of Uα we have xα ∈ Lie(P ) as desired. �

Example 4.10. To see how the above argument can fail when p is less than the
maximal length of a root string in Φ consider G of type G2 and p = 3. We saw
in subsection 3.11 that E = Lie(R1) is a maximal elementary subalgebra. The
stabilizer of E is the Borel B but one can check that in gZ we have [x−α1

, E ] =
3Zxα2

+ E , thus x−α1
normalizes E in gF3

. If M0 ∈ M14(Z) is the matrix of
ad(x−α1

) in gZ and M3 ∈M14(F3) is its mod 3 image, i.e., the matrix of ad(x−α1
)

in gF3 , then M3
0 6= 0 but M3

3 = 0. Thus even though exp(M0) and exp(M3) are
both well defined and exp(M3) stabilizes E , the action of U−α1 is given by the mod
3 image of exp(M0) and this does not equal exp(M3).

4.3. Majority case. Retaining the notation from the previous section we now
consider G which is not of type A2 or G2.
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Theorem 4.11. Let G be a simple algebraic group, not of type A2 or G2. Assume
that p is separably good for G. Then

E(g) =
∐

R∈Max(Φ)
R an ideal

G/PR,

where PR = StabG(Lie(R)).

Proof. From corollary 4.7 the variety E(g) is a union of orbits G · Lie(R) where R
ranges over the ideals in Max(Φ) and theorem 4.9 gives that each orbit G · Lie(R)
is isomorphic to the flag variety G/PR. These orbits are therefore closed and we
need only prove that they are distinct.

By the Bruhat decomposition two such Lie(R) are conjugate if and only if the
corresponding R are conjugate via the Weyl group. At most one ideal in Max(Φ) is
not of the form Φrad

i for some i so lemma 2.6 gives that distinct maximal commuting
ideals are non-conjugate as desired. �

Combining theorem 4.11 with Table 2 we get, except for types A2 and G2, the
explicit type-by-type calculation of E(g) found in Table 4.

Table 4. E(g) for p separably good.

Type
Restrictions

on rank
E(g)

A2n

n = 1 Irreducible, 5-dimensional

n ≥ 2 G/P∆\{αn}
∐
G/P∆\{αn+1}

A2n+1 n ≥ 0 G/P∆\{αn+1}

Bn

n = 2, 3 G/P∆\{α1}

n = 4 G/P∆\{α1}
∐
G/P{α2,α3}

n ≥ 5 G/P∆\{α1,αn}

Cn n ≥ 3 G/P∆\{αn}

Dn

n = 4 G/P∆\{α1}
∐
G/P∆\{α3}

∐
G/P∆\{α4}

n ≥ 5 G/P∆\{αn−1}
∐
G/P∆\{αn}

E6 G/P∆\{α1}
∐
G/P∆\{α6}

E7 G/P∆\{α7}

E8 G/P∆\{α2}

F4 G/P{α1,α3}

G2 Irreducible, 8-dimensional

4.4. Type A2. In type A2 there are 3 disjoint orbits, two of which contain Cheval-
ley subalgebras corresponding to ideals and one which does not contain a Chevalley
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subalgebra. The following are representatives of the three orbits

L1 = 〈xα2 , xα1+α2〉,
L2 = 〈xα1

, xα1+α2
〉,

L3 = 〈xα1
+ xα2

, xα1+α2
〉.

The stabilizers of these subalgebras are

StabG(L1) = P1,

StabG(L2) = P2,

StabG(L3) = 〈α∨1 (λ1)α∨2 (λ2), U | λ3
1 = λ3

2〉,

and so the orbits have dimensions

dim(G · L1) = 2,

dim(G · L2) = 2,

dim(G · L3) = 5.

As G · L1 ' G/P1 and G · L2 ' G/P2 they are closed orbits and G · L3 is open.
The map P1 → E(g) given by [a : b] 7→ 〈axα1

+ bxα2
, xα1+α2

〉 then yields that the
closure of G · L3 contains the other two orbits. So G · L3 is dense, hence E(g) is
irreducible of dimension 5.

4.5. Type G2. In type G2 there are again 3 disjoint orbits, two of which contain
Chevalley subalgebras and one which does not, but now only one orbit contains a
Chevalley subalgebra corresponding to an ideal. The following are representatives
of the three orbits

L = 〈xα2
+ x3α1+α2

, x2α1+α2
, x3α1+2α2

〉
Lie(C3) = 〈xα2

, x2α1+α2
, x3α1+2α2

〉,
Lie(C5) = 〈x2α1+α2

, x3α1+α2
, x3α1+2α2

〉,

and C5 is the ideal. The stabilizers of these subalgebras are

StabG(L) = 〈α∨1 (λ1)α∨2 (λ2), Uα | λ2
1 = λ3

2, α ∈ Φ+ \ {α1}〉,
StabG(Lie(C3)) = 〈T,Uα | α ∈ Φ+ \ {α1}〉,
StabG(Lie(C5)) = P2,

so the orbits have dimensions

dim(G · L) = 8,

dim(G · Lie(C3)) = 7,

dim(G · Lie(C5)) = 5.

As E(g) is a closed subvariety of the Grassmannian it is complete. The Borel fixed
point theorem then gives that G · Lie(C5) is the only closed orbit. Boundaries of
orbits are unions of orbits of smaller dimension therefore the closure of G · Lie(C3)
is its union with G ·Lie(C5) and the orbit G ·L is open. To see that G ·Lie(C3) is not
open we need that the closure of G · L contains G · Lie(C3); one sees this from the
map A1 → E(g) defined by a 7→ 〈xα2 + ax3α1+α2 , x2α1+α2 , x3α1+2α2〉 which sends
A1 \ {0} into G · L and 0 to Lie(C3). In particular, we have now shown that G · L
is dense and so E(g) is irreducible of dimension 8.
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5. Applications to Chevalley groups

Let k = Fp be the algebraic closure of Fp and let G be a reductive k-group,
defined and split over Z as above. Our calculation of E(g) yields information about
the maximal elementary abelian p-subgroups of the Chevalley groups G(Fq) for
q = p` and their conjugacy classes. Since any such subgroup can be conjugated
into the Sylow p-subgroup U(Fq), we can assume that G is semi-simple simply
connected. Assume p is good for G, and let U1(G) and N1(g) be the varieties of
p-unipotent and p-nilpotent elements in G and g respectively.

To translate between the Lie algebra and Chevalley group we use the theorem
below.

Theorem 5.1 ([Sob15, 4.3]). There exists a unique isomorphism φ : N1(g) →
U1(G) satisfying

(1) φ is G-equivariant,
(2) x, y ∈ g commute if and only if φ(x), φ(y) ∈ G commute,
(3) x ∈ gFq if and only if φ(x) ∈ G(Fq).

Such a φ gives an inclusion preserving bijection between p-nilpotent commu-
tative subsets of gFq and p-unipotent commutative subsets of G(Fq). A maximal
commuting set of p-unipotent elements in G(Fq) is necessarily a maximal elemen-
tary abelian subgroup. Similarly a maximal set of commuting p-nilpotent elements
in gFq is necessarily a maximal elementary subalgebra, and therefore corresponds
to a maximal elementary subalgebra of g that is defined over Fq. As the Fq-rational
points of the Grassmannian are exactly the subspaces defined over Fq we now have
the following.

Theorem 5.2. The map φ induces a G(Fq)-equivariant bijection between the Fq-
rational points of E(g) and the maximal elementary abelian subgroups of G(Fq).

We note that when p is greater than the Coxeter number of the root system
this theorem is a special case of a more general theorem of Warner [War15, 3.9]
which gives a bijection between all elementary subalgebras of g defined over Fq and
what he calls the Fq-linear elementary abelian subgroups of G(Fq). Our version
has a weaker restriction on the prime p, but consequently only applies in the case
of maximal elementary subalgebras and maximal elementary abelian subgroups.

Even though we don’t need this observation for our application to Chevalley
groups, the following enhancement of corollary 4.4 is worthy of pointing out:

Corollary 5.3. Let E be an Fq-rational point of E(g). Then E is G(Fq)-conjugate
to a subalgebra of u.

Proof. The subalgebra E corresponds, using φ, to a maximal elementary abelian
subgroup of G(Fq). As U(Fq) is a p-Sylow subgroup of G(Fq) an element g ∈ G(Fq)
conjugates this elementary abelian into U(Fq). The equivariance of φ then gives
that g conjugates E into u. �

Theorem 3.9 together with the calculation for A2 in section 3 show that in all
types except for G2 if two elementary subalgebras in E(u) are defined over Fq and
conjugate by an element in G(k) then they are already conjugate by an element
in G(Fq). This observation, combined with theorem 5.2, allows us to translate the
results for E(u) from section 3 to the classification of conjugacy classes of maximal
elementary abelian p-subgroups of G(Fq). Consequently, we recover the results
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of Barry [Bar79] on maximal elementary abelian p-subgroups of Chevalley groups
of classical type, and supplement Barry’s results with similar information for the
exceptional types.

Theorem 5.4. Let G be a simple algebraic group defined and split over Z. Assume
p is good for G. Then the conjugacy classes and ranks of the elementary abelian
p-subgroups of G(Fq) of maximal rank are given in Table 5, where in types E8 and
F4 we take R to be the unique ideal in Max(Φ).

Note that for G reductive, the representatives of conjugacy classes of maximal
elementary abelian p-subgroups of G(Fq) are given by products of representatives
for each simple entry in the direct product decomposition of the derived group
[G,G].

Example 5.5. In type G2 we used the fact that k is algebraically closed in a
nontrivial way in subsection 3.9 to conclude that E(g) had three G-orbits. Thus
we can only conclude that there are at least three conjugacy classes of maximal
elementary abelian subgroups in G(Fq). In fact the number of conjugacy classes
depends on q. For example, if q = 5` then G(Fq) has three conjugacy classes of
elementary abelian subgroups when ` is odd but has six such conjugacy classes
when ` is even.

As implied by the Quillen stratification theorem [Qui71] the above calculation
gives the number of irreducible components of maximal dimension for SpecH∗(G(Fq), k).

Corollary 5.6. Let G be a simple algebraic group defined and split over Z. Assume
p is good for G. Then the dimension of SpecH∗(G(Fq), k) and the number of
irreducible components of maximal dimension are given in Table 6.

Proof. By Quillen [Qui71] the dimension of SpecH∗(G(Fq), k) equals the maximal
rank of an elementary abelian p-subgroup of G(Fq) which can be read from Table 5.
The Quillen stratification theorem also implies that the number of irreducible com-
ponents equals the number of conjugacy classes of maximal elementary abelian
p-subgroups which once again can be read from Table 5. �

Appendix A. Maximal sets of commuting roots

In the Appendix we give some details for the description of the maximal subsets
of commuting positive roots found in Table 2 and the stabilizers of certain ideals in
Table 3. Note that the maximal subsets of commuting positive roots are computed
in Malcev [Mal51] (except that he skips the proof for E8) so we give details here
only for completeness of our arguments.

We begin with the computation of maximal subsets of commuting positive roots.
For type E, Dn when n < 7, and Bn when n < 5 we use a computer program which
we have made available online [Sta14a]. For the remaining types we provide the
following arguments. In several cases we start by looking at commutative subsets
of the entire root system Φ, not just the positive roots. In this case, Γ ⊂ Φ is a
commutative subset if for any α, β ∈ Γ, α+ β is not a root and β 6= −α.

A.1. Type An. One can check, as in Grantcharov and Serganova [GS13], that
sending J ⊆ {1, 2, . . . , n+ 1} to the set of roots {εi − εj | i ∈ J, j /∈ J} yields a
bijection between proper nontrivial subsets of {1, 2, . . . , n+ 1} and sets of inclusion
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Table 5. Maximal elementary abelian subgroups of G(Fq), q = p`.

Type
# conjugacy

classes
rank Representatives

A2n

n = 1 3 2`

〈Uα1 , Uα1+α2〉

〈Uα2
, Uα1+α2

〉

〈φ(Fq(xα1
+ xα2

)), Uα1+α2
〉

n ≥ 2 2 n(n+ 1)`
〈Uα(Fq) | α ∈ Φrad

n+1〉

〈Uα(Fq) | α ∈ Φrad
n 〉

A2n+1 n ≥ 0 1 (n+ 1)2` 〈Uα(Fq) | α ∈ Φrad
n+1〉

Bn

n = 2, 3 1 (2n− 1)` 〈Uα(Fq) | α ∈ Φrad
1 〉

n = 4 2 7`
〈Uα(Fq) | α ∈ Φrad

1 〉

〈Uα(Fq) | α ∈ S1〉

n ≥ 5 1
(
n
2

)
`+ ` 〈Uα(Fq) | α ∈ S1〉

Cn n ≥ 2 1
(
n+1

2

)
` 〈Uα(Fq) | α ∈ Φrad

n 〉

Dn

n = 4 3 6`

〈Uα(Fq) | α ∈ Φrad
1 〉

〈Uα(Fq) | α ∈ Φrad
3 〉

〈Uα(Fq) | α ∈ Φrad
4 〉

n ≥ 5 2
(
n
2

)
`

〈Uα(Fq) | α ∈ Φrad
n−1〉

〈Uα(Fq) | α ∈ Φrad
n 〉

E6 2 16`
〈Uα(Fq) | α ∈ Φrad

1 〉

〈Uα(Fq) | α ∈ Φrad
6 〉

E7 1 27` 〈Uα(Fq) | α ∈ Φrad
7 〉

E8 1 36` 〈Uα(Fq) | α ∈ R〉

F4 1 9` 〈Uα(Fq) | α ∈ R〉

G2 ≥ 3 3`

maximal commutative subsets of Φ. As J gets sent to a set of size |J |(n+ 1− |J |)
we see that this set is of maximal order when n = 2m and |J | = m,m + 1 or
when n = 2m + 1 and |J | = m + 1. It is a set of positive roots if and only if
J < {1, . . . , n+ 1} \ J , thus in type A2m we have J = {1, . . . ,m} or {1, . . . ,m+ 1}
yielding Φrad

m and Φrad
m+1, respectively, and in type A2m+1 we have {1, . . . ,m+ 1}

yielding Φrad
m+1.

A.2. Type Bn. We assume n ≥ 5. The set R = {εi | 1 ≤ i ≤ n} is an inclusion
maximal set of non-commuting roots so any maximal set of commuting roots in Φ+

consists of a maximal set of commuting roots in Φ+ \R together with at most one
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Table 6. SpecH∗(G(Fp`), k).

Type
# of irreducible
components of
max dimension

dimension

A2n

n = 1 3 2`

n ≥ 2 2 n(n+ 1)`

A2n+1 n ≥ 0 1 (n+ 1)2`

Bn

n = 2, 3 1 `(2n− 1)

n = 4 1 7`

n ≥ 4 1
(
n
2

)
`+ `

Cn n ≥ 2 1
(
n+1

2

)
`

Dn

n = 4 3 6`

n ≥ 5 2
(
n
2

)
`

E6 2 16`

E7 1 27`

E8 1 36`

F4 1 9`

G2 ≥ 3 3`

element from R. Observe that Ψ = Φ\±R is a root system of type Dn with simple
roots {α1, . . . , αn−1, αn−1 + 2αn}. The maximal set Ψrad

n can commute with any εi
and yields Si. The maximal set Ψrad

n−1 commutes with εi when i < n and yields S∗i .

A.3. Type Cn. Sending J ⊆ {1, . . . , n} to the set

φ(J) = {εi + εi′ , εi − εj ,−εj − εj′ | i, i′ ∈ J and j, j′ /∈ J}

gives a bijection φ between the power set of {1, . . . , n} and inclusion maximal
unipotent commuting subsets of Φ. Among those subsets J satisfying |J | = m, the
number of positive roots in φ(J) attains a maximum of 1

2m(m + 1) + m(n − m)
when J < {1, . . . , n}\J and this maximum value for a given m attains a maximum
of 1

2n(n+ 1) when m = n. Thus we take the positive roots of φ({1, . . . , n}) and get

Φrad
n .

A.4. Type Dn. We assume n ≥ 7.

Lemma A.1. Let Φ be type Dn. If R ⊆ Φrad
α1,α2

is an inclusion maximal set of

commuting roots which contains ε1 − ε2 then R = Φrad
1 has order 2n− 2. If it does

not contain ε1 − ε2 then it consists of the root ε1 + ε2 together with one choice of
root from each of the sets {ε1 + εr, ε2 − εr}2<r≤n and {ε1 − εr, ε2 + εr}2<r≤n, and
hence has order 2n− 3.
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Proof. We have Φrad
α1,α2

= {ε1 ± εi, ε2 ± εj | 2 ≤ i ≤ n and 3 ≤ j ≤ n}. If ε1 − ε2 is
contained in our maximal set then the roots ε2 ± εj are not, so the set contains at
most the roots ε1 ± εi, i.e., the roots of Φrad

1 . These indeed commute and there
are 2n − 2 of them. If ε1 − ε2 is not contained in our maximal set then note that
ε1 + ε2 is the longest root and therefore is contained in any inclusion maximal set
of commuting roots. The remaining roots form the sets of non-commuting pairs
given in the statement. One sees that roots from distinct pairs commute and there
are 2n− 4 such pairs. �

Observe that m(Φ) ≥ |Φrad
n | = 1

2n(n− 1). Also Φrad
1 is inclusion maximal and of

smaller order so no element of Max(Φ) contains Φrad
1 . Now Ψ = Φ \ ±Φrad

α1,α2
is a

root system of type Dn−2 with simple roots {α3, . . . , αn}. Every set of commuting
roots in Φ+ is the union of sets of commuting roots from Ψ+ and Φrad

α1,α2
. By the

lemma above the set of commuting roots from Φrad
α1,α2

can have at most 2n − 3

elements and by induction the set from Ψ+ can have at most 1
2 (n − 2)(n − 3).

These sum to the order of Φrad
n so a maximal set of commuting roots must be the

union of a maximal set from Ψ+ and a set of order 2n− 3 from Φrad
α1,α2

.

Now it suffices to take R ∈ Max(Ψ) and check which roots in Φrad
α1,α2

it commutes

with. If R = Ψrad
n then εi + εn ∈ R for all 2 < i < n so ε1 − εj , ε2 − εj /∈ R for

all 2 < j ≤ n. This identifies a unique inclusion maximal set of commuting roots
in Φrad

α1,α2
and it’s union with Ψrad

n is Φrad
n . If R = Ψrad

n−1 then εi − εn ∈ R for all
2 < i < n so ε1 − εi, ε2 − εi, ε1 + εn, ε2 + εn /∈ R. Again this identifies the inclusion
maximal set in Φrad

α1,α2
and its union with Ψrad

n−1 is Φrad
n−1.

A.5. Type F4. Recall that the roots of F4 are

±εi,±εi ± εj ,
1

2
(±ε1 ± ε2 ± ε3 ± ε4).

We will denote positive roots of the last type by εijk = 1
2 (ε1 + iε2 + jε3 +kε4) where

i, j, k ∈ {±1} and will write, for example, ε+−+ instead of ε1,−1,1.

Lemma A.2. If εijk 6= εi′j′k′ then εijk and εi′j′k′ commute if and only if there is
exactly one sign change between (i, j, k) and (i′, j′, k′). In particular, a commuting
set of roots can have at most 2 roots of the form εijk.

Proof. Observe that the terms in εijk + εi′j′k′ are exactly those et for which the
sign did not change (including ε1). If there are 1 or 2 such terms then εijk + εi′j′k′

is a root. As the roots are distinct there cannot be 4 such terms, therefore for εijk
and εi′j′k′ to commute there must be 3 such terms, hence exactly one sign change.

If (i, j, k), (i′, j′, k′), and (i′′, j′′, k′′) are mutually distinct and there is exactly
one sign change from (i, j, k) to (i′, j′, k′) and (i′′, j′′, k′′) then there are 2 sign
changes from (i′, j′, k′) to (i′′, j′′, k′′). This proves that 3 roots of the form (i, j, k)
cannot pairwise commute. �

Now observe that the roots ±εi and ±εi ± εj give B4 ⊆ F4. As the commuting
property is preserved when intersecting with a subroot system the lemma above
gives that a maximal set of commuting roots in F4 can have at most 9 roots: 7
from a maximal set in B4 plus 2 additional roots of the form εijk. This maximum is
indeed attained so every maximal set of commuting positive roots in F4 is identified
by a tripel (C, ijk, i′j′k′), where C ⊆ B4 is a maximal set of commuting roots and
εijk and εi′j′k′ are the two additional roots. We now compute all the possibilities.
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A.5.1. C = Φrad
1 . Every εijk commutes with C = {ε1, ε1 ± εi | i = 2, 3, 4}. Once

(i, j, k) are chosen there are three tripels (i′, j′, k′) which differ by a single sign
change. This gives 24 ordered pairs of roots (εijk, εi′j′k′) that can be added, thus
12 possible sets of roots for this case.

A.5.2. C = St. We have C = {εt, εi + εj | 1 ≤ i < j ≤ 4} and for εijk to commute
with εt the sign on εt must be positive. We cannot have more than one negative
sign in (i, j, k) otherwise εijk would not commute with some root of the form εi+εj .
Thus the two roots of the form εijk must be ε+++ and εijk where there is exactly
one negative sign in (i, j, k) and this negative sign is not on the εt term.

Thus for C = S1 we get three maximal sets corresponding to the three choices
for a negative sign and for C = S2, S3, S4 we get two maximal sets each. This gives
9 possible sets of roots for this case.

A.5.3. C = S∗t . We have C = {εt, εi + εj , εi′ − ε4 | 1 ≤ i < j < 4, 1 ≤ i′ < 4}. Be-
cause of the εi′ − ε4 terms the only εijk with a single negative that commutes with
C is ε++−. As ε−−+ and ε−−− don’t commute with ε2 + ε3 we find that the two
additional elements must be ε++− and ε+++ or ε++− and εij− where exactly one
of i, j is negative and the negative is not on the εt term.

The first choice is valid for any t. For the second when C = S1 there are two
choices for the additional negative and when C = S2, S3 there is one choice for the
additional negative. This gives 7 possible sets of roots for this case.

A.6. Type G2. There are 3 short and 3 long positive roots. No pair of short pos-
itive roots commute so there can be at most 1 short root in a maximal commuting
set. The pair of long roots (α2, 3α1 + α2) does not commute so a maximal set
contains the highest root 3α1 + 2α2 together with at most 1 other long and 1 short
root. With this one can check that the maximal sets are

{α1, 3α1 + α2, 3α1 + 2α2} ,
{α1 + α2, 3α1 + α2, 3α1 + 2α2} ,
{α2, 2α1 + α2, 3α1 + 2α2} ,
{α2, α1 + α2, 3α1 + 2α2} ,
{2α1 + α2, 3α1 + α2, 3α1 + 2α2} .
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