CLASSIFICATION OF CONJUGACY CLASSES OF MAXIMAL ELEMENTARY ABELIAN SUBGROUPS OF $G L\left(4, \mathbb{F}_{p}\right)$.

Strategy: we divide elementary abelian subgroups into several classes according to the maximal Jordan form occuring in the subgroup.

Any elementary abelian subgroup can be conjugated into $U\left(4, \mathbb{F}_{p}\right)$. Thus, any element has all eigenvalues equal to 1 . Let $J_{\underline{\lambda}}$ be the matrix in the standard Jordan form corresponding to the partition $\underline{\lambda}$ with 0 's on the main diagonal. Observe that if a subgroup E has an element of standard Jordan form $I+J_{\underline{\lambda}}$ then E can be conjugated into a subgroup of the centralizer of the element $J_{\underline{\lambda}} \in s l_{4}$.
We use notation $[i]$ for a single Jordan block of size $i \times i$ with zeros on the main diagonal. Let V be the standard representation of $G L_{4}$.

There are 5 possibilities for nilpotent Jordan forms in $s l_{4}$:
(I) $[4] \quad p>3$
(II) $[3]+[1] \quad p>2$
(III) $[2]^{2}$
(IV) $[2]+[1]^{2}$
(V) $[1]^{4}$

We can dismiss (V) right away since it corresponds to a trivial subgroup which is not elementary abelian and is certainly never maximal such.

Case I. [4], $p>3$. The unipotent part of the centralizer of the regular nilpotent element is the abelian group

$$
E_{1}=\left\{\left(\begin{array}{cccc}
1 & a & b & c \\
0 & 1 & a & b \\
0 & 0 & 1 & a \\
0 & 0 & 0 & 1
\end{array}\right) \quad a, b, c \in \mathbb{F}_{p}\right\}
$$

This group is elementary abelian, and, thus, maximal among such.
CASE II. $\quad[3]+[1], p>2$.
$J_{3,1}=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) . \quad$ The centralizer is $\left(\begin{array}{cccc}r & a & b & c \\ 0 & r & a & 0 \\ 0 & 0 & r & 0 \\ 0 & 0 & d & s\end{array}\right)$ (see [1]).
Using permutation matrix

$$
S=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

we conjugate $J_{3,1}$ to

$$
u=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The unipotent part of the centralizer becomes

$$
C_{u}=\left\{\left(\begin{array}{cccc}
1 & a & c & b \\
0 & 1 & 0 & a \\
0 & 0 & 1 & d \\
0 & 0 & 0 & 1
\end{array}\right) \quad a, b, c \in \mathbb{F}_{p}\right\}
$$

Let $A=\left(\begin{array}{cccc}1 & a & c & b \\ 0 & 1 & 0 & a \\ 0 & 0 & 1 & d \\ 0 & 0 & 0 & 1\end{array}\right), A^{\prime}=\left(\begin{array}{cccc}1 & a^{\prime} & c^{\prime} & b^{\prime} \\ 0 & 1 & 0 & a^{\prime} \\ 0 & 0 & 1 & d^{\prime} \\ 0 & 0 & 0 & 1\end{array}\right)$ be two elements of C_{u}. Then

$$
A A^{\prime}-A^{\prime} A=\left(\begin{array}{cccc}
0 & 0 & 0 & c d^{\prime}-c^{\prime} d \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Thus, any two elements from an abelian subgroup of C_{u} must satisfy the relation

$$
c d^{\prime}=c^{\prime} d
$$

This leaves us with the following choices:
(1) $\mathrm{c}=0 . E_{2}=\left(\begin{array}{cccc}1 & a & 0 & b \\ 0 & 1 & 0 & a \\ 0 & 0 & 1 & d \\ 0 & 0 & 0 & 1\end{array}\right)$
(2) $d=0 . E_{3}=\left(\begin{array}{cccc}1 & a & c & b \\ 0 & 1 & 0 & a \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
(3) $d=\eta c, \eta \in \mathbb{F}_{p}^{*} . E_{4, \eta}=\left(\begin{array}{cccc}1 & a & c & b \\ 0 & 1 & 0 & a \\ 0 & 0 & 1 & \eta c \\ 0 & 0 & 0 & 1\end{array}\right)$
(i) None of the groups corresponding to $[3]+[1]$ are conjugate to E_{1} since they have the same rank but do not have elements of the standard Jordan form [4].
(ii) The groups from the class (c) - $\left(E_{4, \eta}\right)$ - have $\left(p^{3}-p\right)$ or $\left(p^{3}-3 p+2\right)$ elements of Jordan form [3]+[1] (see (iv)), whereas the groups E_{2} and E_{3} have $\left(p^{3}-p^{2}\right)$ such elements each (when $a \neq 0)$. Thus, $E_{4, \eta}$ are not conjugate to E_{2}, E_{3}.
(iii) We now show that E_{2}, E_{3} give two different conjugacy classes. Let

$$
B_{2}=\left\{\left(\begin{array}{cccc}
1 & 0 & 0 & b \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d \\
0 & 0 & 0 & 1
\end{array}\right) \quad b, d \in \mathbb{F}_{p}\right\} \subset E_{2}
$$

$$
B_{3}=\left\{\left(\begin{array}{cccc}
1 & 0 & c & b \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad b, c \in \mathbb{F}_{p}\right\} \subset E_{3}
$$

Subgroups B_{2}, B_{3} consist of all elements of the corresponding groups E_{2}, E_{3} of standard Jordan type strictly less than the "generic" Jordan type for E_{2}, E_{3}. Namely, of elements of the types [2]+ $[1]^{2}$ and $[1]^{4}$. Suppose there exists $g \in G L(V)$ such that $E_{2}^{g}=E_{3}$. Then the above observation implies that $B_{2}^{g}=B_{3}$. On the other hand, we have $\operatorname{Im}\left(I\left(k B_{2}\right) V\right)=\operatorname{Im}\left(\left(\begin{array}{cccc}0 & 0 & 0 & b \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & d \\ 0 & 0 & 0 & 0\end{array}\right) V\right)$ is 2-dimensional whereas $\operatorname{Im}\left(I\left(k B_{3}\right) V\right)=\operatorname{Im}\left(\left(\begin{array}{cccc}0 & 0 & c & b \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) V\right)$ is 1-dimensional. Here, I denotes the augmentation ideal of the corresponding group algebra. Hence, B_{2}, B_{3} are not conjugate.
(iv) Let's analyze the type (c). Let

$$
A=\left(\begin{array}{cccc}
1 & a & c & b \\
0 & 1 & 0 & a \\
0 & 0 & 1 & \eta c \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Assume either c or a is non-zero. Then $r k(A-I)=2$. We also have

$$
(A-I)^{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & \eta c^{2}+a^{2} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Thus, the Jordan type of A is [3]+[1] if $\eta \neq-\left(a^{2} / c^{2}\right)$ in \mathbb{F}_{p} and [2]+[2] otherwise. More precisely, we get the following:
(a) If $\eta \neq-N^{2}$, then there are $p^{3}-p$ elements of Jordan type [3]+[1], $p-1$ elements of Jordan type $[2]+[1]+[1]$, and a trivial element.
(b) If $\eta=-N^{2}$, then there are $p^{3}-p-2(p-1)$ elements of Jordan form [3]+[1], 2(p-1) elements of Jordan type [2]+[2] (one for each pair (a, c) such that $\eta=-a^{2} / c^{2}$), $p-1$ elements of the type $[2]+[1]+[1]$, and a trivial element.

The following lemma guarantees that types (a) and (b) above provide exactly one new conjugacy class each.

Lemma. Let $\eta=x^{2} \zeta$. Then $E_{4, \eta}$ is conjugate to $E_{4, \zeta}$.
Proof. Let

$$
g=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & x & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Then

$$
g^{-1} \cdot\left(\begin{array}{cccc}
1 & a & c & b \\
0 & 1 & 0 & a \\
0 & 0 & 1 & \eta c \\
0 & 0 & 0 & 1
\end{array}\right) \cdot g=\left(\begin{array}{cccc}
1 & a & x c & b \\
0 & 1 & 0 & a \\
0 & 0 & 1 & x^{-1} \eta c \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cccc}
1 & a & (x c) & b \\
0 & 1 & 0 & a \\
0 & 0 & 1 & \zeta(x c) \\
0 & 0 & 0 & 1
\end{array}\right)
$$

CONCLUSION: There are 4 conjugacy classes in this case.
CASE III. $[2]^{2}$
$J_{2,2}=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right) . \quad$ The centralizer is $\left(\begin{array}{cccc}r & a & e & b \\ 0 & r & 0 & e \\ f & c & s & d \\ 0 & f & 0 & s\end{array}\right)$ (see [1]).
Using the same permutation matrix S as before we conjugate $J_{2,2}$ into the element

$$
u=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The centralizer becomes

$$
C_{u}=\left\{\left(\begin{array}{cccc}
r & e & a & b \\
f & s & c & d \\
0 & 0 & r & e \\
0 & 0 & f & s
\end{array}\right) \quad a, b, c, d, e, f \in \mathbb{F}_{p}, r s-e f=1\right\}
$$

Let E be an abelian subgroup of C_{u} containing u (any conjugacy class of elementary abelians arising in this case will have such representative). Write a general element of E as a block matrix

$$
\left(\begin{array}{cc}
T & R \\
0 & T
\end{array}\right)
$$

The matrices T must form an elementary abelian subgroup of $G L(2, p)$. Any such subgroup can be conjugated into $U(2, p)$. Thus, we can find a 2×2 matrix C such that $\left(\begin{array}{cc}C & 0 \\ 0 & C\end{array}\right) \cdot E$. $\left(\begin{array}{cc}C^{-1} & 0 \\ 0 & C^{-1}\end{array}\right)$ is upper triangular. Moreover, we preserved the property that the entries $(1,2)$ and $(3,4)$ are the same and that element $I+u$ is in the subgroup. Thus, we may assume that E is a subgroup of

$$
\left\{\left(\begin{array}{cccc}
1 & e & a & b \\
0 & 1 & c & d \\
0 & 0 & 1 & e \\
0 & 0 & 0 & 1
\end{array}\right) \quad a, b, c, d, e, \in \mathbb{F}_{p}\right\}
$$

containing

$$
I+u=\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

For further analysis we need to separate out the case $p=2$. Assume $\mathbf{p}>\mathbf{2}$. Let $A=$ $\left(\begin{array}{cccc}1 & e & a & b \\ 0 & 1 & c & d \\ 0 & 0 & 1 & e \\ 0 & 0 & 0 & 1\end{array}\right) \in E$. Since $I+u \in E$, we have $A^{\prime}=(I+u) A=\left(\begin{array}{cccc}1 & e & 1+a & b+e \\ 0 & 1 & c & 1+d \\ 0 & 0 & 1 & e \\ 0 & 0 & 0 & 1\end{array}\right) \in E$.

We must have

$$
(A-I)^{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & e(a+d) \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=0
$$

since the maximal allowed Jordan type here is $[2]^{2}$. Similarly,

$$
\left(A^{\prime}-I\right)^{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & e(a+d+2) \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=0
$$

Since $p \neq 2$, at least one of $a+d$ and $a+d+2$ is non-zero. Thus, we obtain $e=0$.
We therefore get the subgroup

$$
E_{6}=\left\{\left(\begin{array}{cccc}
1 & 0 & a & b \\
0 & 1 & c & d \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad a, b, c, d \in \mathbb{F}_{p}\right\}
$$

the only subgroup arising in this class. Since it has rank 4, it is clearly new.
Now let $\mathbf{p}=\mathbf{2}$, and let $A=\left(\begin{array}{cccc}1 & e & a & b \\ 0 & 1 & c & d \\ 0 & 0 & 1 & e \\ 0 & 0 & 0 & 1\end{array}\right)$. We consider two cases:

- $e=0$. Then we get E_{6} as in the case $p>2$.
$-e \neq 0$. Then $c=0$ or otherwise A would have an element of order greater than 2 . Since $(A-I)^{2}=\left(\begin{array}{cccc}0 & 0 & 0 & e(a+d) \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)=0$, we get $a+d=0$. Hence, $a=d$. We are therefore reduced to a subgroup

$$
E^{s p}=\left\{\left(\begin{array}{cccc}
1 & e & a & b \\
0 & 1 & 0 & a \\
0 & 0 & 1 & e \\
0 & 0 & 0 & 1
\end{array}\right) \quad a, b, e \in \mathbb{F}_{p}\right\}
$$

Proceeding as in II.(iii), we observe that $\operatorname{Im}\left(I\left(k E^{s p}\right) V\right)=\operatorname{Im}\left(\left(\begin{array}{cccc}0 & e & a & b \\ 0 & 0 & 0 & a \\ 0 & 0 & 0 & e \\ 0 & 0 & 0 & 0\end{array}\right) V\right)$ is 3-dimensional whereas $\operatorname{Im}\left(I\left(k E_{6}\right) V\right)=\operatorname{Im}\left(\left(\begin{array}{cccc}0 & 0 & a & b \\ 0 & 0 & c & d \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) V\right)$ is 2-dimensional. Hence, $E^{s p}$ gives a new conjugacy class in the special case $p=2$.

We conclude that CASE III yields one new conjugacy class - the one of rank 4 represented by E_{6} - when $p>2$. When $p=2$ we get yet another one represented by $E^{s p}$.

Remark. The subgroup $E^{s p}$ does, in fact, show up for other p as well, but in that case the corresponding"generic" Jordan type is $[3]+[1]$ and $E^{s p}$ belongs to the conjugacy class of $E_{4,-1}$.

CASE IV. $\quad[2]+[1]^{2}$. Since any p-subgroup can be conjugated into $U\left(4, \mathbb{F}_{p}\right)$, we may assume that an elementary subgroup E from this class is upper-triangular. If every matrix $A \in E$ satisfies $A_{12}=A_{34}=0$ then E is a subgroup of E_{6} and, hence, is not maximal. Thus, we can find a matrix $A \in E$ such that either $A_{12} \neq 0$ or $A_{34} \neq 0$. Assume E contains an element A such that $A_{12} \neq 0$. For any such A we must have that the $2^{\text {nd }}$ and $3^{\text {rd }}$ rows of $A-I$ are all zero since otherwise $A-I$ will have rank at least 2. Thus, $A=\left(\begin{array}{cccc}1 & a & b & c \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$ with $a \neq 0$. Let $A^{\prime}=\left(\begin{array}{cccc}1 & 0 & b^{\prime} & c^{\prime} \\ 0 & 1 & d & e \\ 0 & 0 & 1 & f \\ 0 & 0 & 0 & 1\end{array}\right)$ be any element in E such that $A_{12}^{\prime}=0$. We have $A A^{\prime}=\left(\begin{array}{cccc}1 & a & * & * \\ 0 & 1 & d & e \\ 0 & 0 & 1 & f \\ 0 & 0 & 0 & 1\end{array}\right)$. One immediately observes that if any of e, d or f is non-zero, then $\operatorname{rk} A A^{\prime}-I>1$. Thus, all elements of E only have non-zero elements in the first row. We get a subgroup

$$
E_{7}=\left\{\left(\begin{array}{cccc}
1 & a & b & c \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad a, b, c \in \mathbb{F}_{p}\right\}
$$

Arguing similarly in the case when $A_{34} \neq 0$, we get

$$
E_{8}=\left\{\left(\begin{array}{cccc}
1 & 0 & 0 & c \\
0 & 1 & 0 & b \\
0 & 0 & 1 & a \\
0 & 0 & 0 & 1
\end{array}\right) \quad a, b, c \in \mathbb{F}_{p}\right\}
$$

Finally, we check that these two subgroups are not conjugate and new:

- E_{7} and E_{8} are not conjugate since $\operatorname{dim} I\left(k E_{7}\right) V=1$ and $\operatorname{dim} I\left(k E_{8}\right) V=3$.
- E_{7} and E_{8} each have $p^{3}-1$ elements of Jordan type [2]+[1]+[1]. This is more than any of the previous groups have. Thus, these two groups are new.

And now we are done! The result is $\mathbf{8}$ for $\mathbf{p}>\mathbf{3}$ and here is the complete list:

CLASSIFICATION OF CONJUGACY CLASSES OF MAXIMAL ELEMENTARY ABELIAN SUBGROUPS OF GL(4, $\left.\mathbb{F}_{p}\right) 7$.

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & a & b & c \\
0 & 1 & a & b \\
0 & 0 & 1 & a \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{cccc}
1 & a & 0 & b \\
0 & 1 & 0 & a \\
0 & 0 & 1 & d \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{cccc}
1 & a & c & b \\
0 & 1 & 0 & a \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{cccc}
1 & a & c & b \\
0 & 1 & 0 & a \\
0 & 0 & 1 & \eta c \\
0 & 0 & 0 & 1
\end{array}\right), \text { where }(-\eta) \text { is a quadratic residue modulo } p \\
& \left(\begin{array}{cccc}
1 & a & c & b \\
0 & 1 & 0 & a \\
0 & 0 & 1 & \eta c \\
0 & 0 & 0 & 1
\end{array}\right), \text { where }(-\eta) \text { is a non-quadratic residue modulo } p \\
& \left(\begin{array}{llll}
1 & 0 & a & b \\
0 & 1 & c & d \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{cccc}
1 & a & b & c \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{cccc}
1 & 0 & 0 & c \\
0 & 1 & 0 & b \\
0 & 0 & 1 & a \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

For $\mathbf{p}=\mathbf{3}$, the first group from the above list is missing, the count is $\mathbf{7}$.

For $\mathbf{p}=\mathbf{2}$, we get 4: the last 3 subgroups on the list plus the subgroup $E^{s p}=\left\{\left(\begin{array}{cccc}1 & e & a & b \\ 0 & 1 & 0 & a \\ 0 & 0 & 1 & e \\ 0 & 0 & 0 & 1\end{array}\right) \quad a, b, e \in \mathbb{F}_{p}\right\}$

References

[1] J. Jantzen, Nilpotent orbits in representation theory, Lie theory, Progr. Math., 228, 1-211, Birkhuser Boston, Boston, MA, 2004.

