CLASSIFICATION OF CONJUGACY CLASSES OF MAXIMAL ELEMENTARY ABELIAN SUBGROUPS OF $GL(4, \mathbb{F}_p)$.

Strategy: we divide elementary abelian subgroups into several classes according to the maximal Jordan form occuring in the subgroup.

Any elementary abelian subgroup can be conjugated into $U(4, \mathbb{F}_p)$. Thus, any element has all eigenvalues equal to 1. Let $J_{\underline{\lambda}}$ be the matrix in the standard Jordan form corresponding to the partition $\underline{\lambda}$ with 0's on the main diagonal. Observe that if a subgroup E has an element of standard Jordan form $I + J_{\underline{\lambda}}$ then E can be conjugated into a subgroup of the centralizer of the element $J_{\underline{\lambda}} \in sl_4$.

We use notation [i] for a single Jordan block of size $i \times i$ with zeros on the main diagonal. Let V be the standard representation of GL_4 .

There are 5 possibilities for nilpotent Jordan forms in sl_4 :

 $\begin{array}{cccc} (\mathrm{I}) & [4] & p > 3 \\ (\mathrm{II}) & [3] + [1] & p > 2 \\ (\mathrm{III}) & [2]^2 \\ (\mathrm{IV}) & [2] + [1]^2 \\ (\mathrm{V}) & [1]^4 \end{array}$

We can dismiss (V) right away since it corresponds to a trivial subgroup which is not elementary abelian and is certainly never maximal such.

Case I. [4], p > 3. The unipotent part of the centralizer of the regular nilpotent element is the abelian group

$$E_1 = \left\{ \begin{pmatrix} 1 & a & b & c \\ 0 & 1 & a & b \\ 0 & 0 & 1 & a \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad a, b, c \in \mathbb{F}_p \right\}$$

This group is elementary abelian, and, thus, maximal among such.

CASE II. [3] + [1],
$$p > 2$$
.

$$J_{3,1} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
. The centralizer is $\begin{pmatrix} r & a & b & c \\ 0 & r & a & 0 \\ 0 & 0 & r & 0 \\ 0 & 0 & d & s \end{pmatrix}$ (see [1]).
Using permutation matrix

$$S = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Date: December 2, 2005.

we conjugate $J_{3,1}$ to

$$u = \left(\begin{array}{rrrr} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

The unipotent part of the centralizer becomes

Thus, any two elements from an abelian subgroup of C_u must satisfy the relation

cd' = c'd

This leaves us with the following choices:

(1)
$$\mathbf{c} = 0. \ E_2 = \begin{pmatrix} 1 & a & 0 & b \\ 0 & 1 & 0 & a \\ 0 & 0 & 1 & d \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

(2) $d = 0. \ E_3 = \begin{pmatrix} 1 & a & c & b \\ 0 & 1 & 0 & a \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$
(3) $d = \eta c, \eta \in \mathbb{F}_p^*. \ E_{4,\eta} = \begin{pmatrix} 1 & a & c & b \\ 0 & 1 & 0 & a \\ 0 & 0 & 1 & \eta c \\ 0 & 0 & 0 & 1 \end{pmatrix}$

(i) None of the groups corresponding to [3]+[1] are conjugate to E_1 since they have the same rank but do not have elements of the standard Jordan form [4].

(ii) The groups from the class (c) - $(E_{4,\eta})$ - have $(p^3 - p)$ or $(p^3 - 3p + 2)$ elements of Jordan form [3]+[1] (see (iv)), whereas the groups E_2 and E_3 have $(p^3 - p^2)$ such elements each (when $a \neq 0$). Thus, $E_{4,\eta}$ are not conjugate to E_2 , E_3 .

(iii) We now show that E_2 , E_3 give two different conjugacy classes. Let

$$B_2 = \left\{ \begin{pmatrix} 1 & 0 & 0 & b \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad b, d \in \mathbb{F}_p \right\} \subset E_2,$$

$$B_3 = \left\{ \begin{pmatrix} 1 & 0 & c & b \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad b, c \in \mathbb{F}_p \right\} \subset E_3$$

Subgroups B_2 , B_3 consist of all elements of the corresponding groups E_2 , E_3 of standard Jordan type strictly less than the "generic" Jordan type for E_2 , E_3 . Namely, of elements of the types $[2] + [1]^2$ and $[1]^4$. Suppose there exists $g \in GL(V)$ such that $E_2^g = E_3$. Then the above observation

implies that $B_2^g = B_3$. On the other hand, we have $\operatorname{Im}(I(kB_2)V) = \operatorname{Im}\left(\begin{pmatrix} 0 & 0 & 0 & b \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & d \\ 0 & 0 & 0 & 0 \end{pmatrix}V\right)$

conjugate.

(iv) Let's analyze the type (c). Let

$$A = \left(\begin{array}{rrrrr} 1 & a & c & b \\ 0 & 1 & 0 & a \\ 0 & 0 & 1 & \eta c \\ 0 & 0 & 0 & 1 \end{array}\right)$$

Assume either c or a is non-zero. Then rk(A - I) = 2. We also have

Thus, the Jordan type of A is [3]+[1] if $\eta \neq -(a^2/c^2)$ in \mathbb{F}_p and [2]+[2] otherwise. More precisely, we get the following:

(a) If $\eta \neq -N^2$, then there are $p^3 - p$ elements of Jordan type [3]+[1], p - 1 elements of

Jordan type [2]+[1]+[1], and a trivial element. (b) If $\eta = -N^2$, then there are $p^3 - p - 2(p-1)$ elements of Jordan form [3]+[1], 2(p-1)elements of Jordan type [2]+[2] (one for each pair (a,c) such that $\eta = -a^2/c^2$), p-1 elements of the type [2]+[1]+[1], and a trivial element.

The following lemma guarantees that types (a) and (b) above provide exactly one new conjugacy class each.

Lemma. Let $\eta = x^2 \zeta$. Then $E_{4,\eta}$ is conjugate to $E_{4,\zeta}$.

Proof. Let

$$g = \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & x & 0\\ 0 & 0 & 0 & 1 \end{array}\right)$$

Then

$$g^{-1} \cdot \begin{pmatrix} 1 & a & c & b \\ 0 & 1 & 0 & a \\ 0 & 0 & 1 & \eta c \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot g = \begin{pmatrix} 1 & a & xc & b \\ 0 & 1 & 0 & a \\ 0 & 0 & 1 & x^{-1}\eta c \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a & (xc) & b \\ 0 & 1 & 0 & a \\ 0 & 0 & 1 & \zeta(xc) \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

CONCLUSION: There are 4 conjugacy classes in this case.

CASE III.
$$[2]^2$$

$$J_{2,2} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$
 The centralizer is $\begin{pmatrix} r & a & e & b \\ 0 & r & 0 & e \\ f & c & s & d \\ 0 & f & 0 & s \end{pmatrix}$ (see [1]).

Using the same permutation matrix S as before we conjugate $J_{2,2}$ into the element

$$u = \left(\begin{array}{rrrrr} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

The centralizer becomes

$$C_u = \left\{ \begin{pmatrix} r & e & a & b \\ f & s & c & d \\ 0 & 0 & r & e \\ 0 & 0 & f & s \end{pmatrix} \quad a, b, c, d, e, f \in \mathbb{F}_p, rs - ef = 1 \right\}$$

Let E be an abelian subgroup of C_u containing u (any conjugacy class of elementary abelians arising in this case will have such representative). Write a general element of E as a block matrix

$$\left(\begin{array}{cc}T & R\\0 & T\end{array}\right)$$

The matrices T must form an elementary abelian subgroup of GL(2, p). Any such subgroup can be conjugated into U(2, p). Thus, we can find a 2×2 matrix C such that $\begin{pmatrix} C & 0 \\ 0 & C \end{pmatrix} \cdot E \cdot \begin{pmatrix} C^{-1} & 0 \\ 0 & C^{-1} \end{pmatrix}$ is upper triangular. Moreover, we preserved the property that the entries (1, 2)and (3, 4) are the same and that element I + u is in the subgroup. Thus, we may assume that E

$$\left\{ \left(\begin{array}{cccc} 1 & e & a & b \\ 0 & 1 & c & d \\ 0 & 0 & 1 & e \\ 0 & 0 & 0 & 1 \end{array} \right) \quad a, b, c, d, e, \in \mathbb{F}_p \right\}$$

containing

is a subgroup of

$$I + u = \left(\begin{array}{rrrr} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right).$$

For further analysis we need to separate out the case p = 2. Assume $\mathbf{p} > 2$. Let $A = \begin{pmatrix} 1 & e & a & b \\ 0 & 1 & c & d \\ 0 & 0 & 1 & e \\ 0 & 0 & 0 & 1 \end{pmatrix} \in E$. Since $I + u \in E$, we have $A' = (I + u)A = \begin{pmatrix} 1 & e & 1 + a & b + e \\ 0 & 1 & c & 1 + d \\ 0 & 0 & 1 & e \\ 0 & 0 & 0 & 1 \end{pmatrix} \in E$.

We must have

since the maximal allowed Jordan type here is $[2]^2$. Similarly,

Since $p \neq 2$, at least one of a + d and a + d + 2 is non-zero. Thus, we obtain e = 0. We therefore get the subgroup

$$E_6 = \left\{ \begin{pmatrix} 1 & 0 & a & b \\ 0 & 1 & c & d \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad a, b, c, d \in \mathbb{F}_p \right\},\$$

the only subgroup arising in this class. Since it has rank 4, it is clearly new.

Now let $\mathbf{p} = \mathbf{2}$, and let $A = \begin{pmatrix} 1 & e & a & b \\ 0 & 1 & c & d \\ 0 & 0 & 1 & e \\ 0 & 0 & 0 & 1 \end{pmatrix}$. We consider two cases:

- e = 0. Then we get E_6 as in the case p > 2.

 $-e \neq 0$. Then c = 0 or otherwise A would have an element of order greater than 2. Since $\begin{pmatrix} 0 & 0 & 0 & e(a+d) \\ 0 & 0 & 0 & 0 \end{pmatrix}$

reduced to a subgroup

$$E^{sp} = \left\{ \begin{pmatrix} 1 & e & a & b \\ 0 & 1 & 0 & a \\ 0 & 0 & 1 & e \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad a, b, e \in \mathbb{F}_p \right\}$$

Proceeding as in II.(iii), we observe that $\operatorname{Im}(I(kE^{sp})V) = \operatorname{Im}\left(\begin{pmatrix} 0 & e & a & b \\ 0 & 0 & 0 & a \\ 0 & 0 & 0 & e \\ 0 & 0 & 0 & 0 \end{pmatrix}V$ is 3-dimensional

whereas $\operatorname{Im}(I(kE_6)V) = \operatorname{Im}\left(\begin{pmatrix} 0 & 0 & a & b \\ 0 & 0 & c & d \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}V$ is 2-dimensional. Hence, E^{sp} gives a new con-

jugacy class in the special case p = 2.

We conclude that CASE III yields one new conjugacy class - the one of rank 4 represented by E_6 - when p > 2. When p = 2 we get yet another one represented by E^{sp} .

Remark. The subgroup E^{sp} does, in fact, show up for other p as well, but in that case the corresponding "generic" Jordan type is [3]+[1] and E^{sp} belongs to the conjugacy class of $E_{4,-1}$.

CASE IV. $[2] + [1]^2$. Since any p-subgroup can be conjugated into $U(4, \mathbb{F}_p)$, we may assume that an elementary subgroup E from this class is upper-triangular. If every matrix $A \in E$ satisfies $A_{12} = A_{34} = 0$ then E is a subgroup of E_6 and, hence, is not maximal. Thus, we can find a matrix $A \in E$ such that either $A_{12} \neq 0$ or $A_{34} \neq 0$. Assume E contains an element A such that $A_{12} \neq 0$. For any such A we must have that the 2nd and 3rd rows of A - I are all zero since otherwise A - I

will have rank at least 2. Thus,
$$A = \begin{pmatrix} 1 & a & b & c \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 with $a \neq 0$. Let $A' = \begin{pmatrix} 1 & 0 & b & c \\ 0 & 1 & d & e \\ 0 & 0 & 1 & f \\ 0 & 0 & 0 & 1 \end{pmatrix}$

be any element in E such that $A'_{12} = 0$. We have $AA' = \begin{pmatrix} 1 & u & * & * \\ 0 & 1 & d & e \\ 0 & 0 & 1 & f \\ 0 & 0 & 0 & 1 \end{pmatrix}$. One immediately

observes that if any of e, d or f is non-zero, then $\operatorname{rk} AA' - I > 1$. Thus, all elements of E only have non-zero elements in the first row. We get a subgroup

$$E_7 = \left\{ \begin{pmatrix} 1 & a & b & c \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad a, b, c \in \mathbb{F}_p \right\}$$

Arguing similarly in the case when $A_{34} \neq 0$, we get

$$E_8 = \left\{ \begin{pmatrix} 1 & 0 & 0 & c \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & a \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad a, b, c \in \mathbb{F}_p \right\}$$

Finally, we check that these two subgroups are not conjugate and new:

- E_7 and E_8 are not conjugate since dim $I(kE_7)V = 1$ and dim $I(kE_8)V = 3$.

- E_7 and E_8 each have $p^3 - 1$ elements of Jordan type [2]+[1]+[1]. This is more than any of the previous groups have. Thus, these two groups are new.

And now we are done! The result is 8 for p > 3 and here is the complete list:

CLASSIFICATION OF CONJUGACY CLASSES OF MAXIMAL ELEMENTARY ABELIAN SUBGROUPS OF $GL(4, \mathbb{F}_p)$

 $\begin{pmatrix} 1 & a & b & c \\ 0 & 1 & a & b \\ 0 & 0 & 1 & a \\ 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & a & 0 & b \\ 0 & 1 & 0 & a \\ 0 & 0 & 1 & d \\ 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & a & c & b \\ 0 & 1 & 0 & a \\ 0 & 0 & 1 & \eta c \\ 0 & 0 & 0 & 1 \end{pmatrix},$ where $(-\eta)$ is a quadratic residue modulo p, $\begin{pmatrix} 1 & a & c & b \\ 0 & 1 & 0 & a \\ 0 & 0 & 1 & \eta c \\ 0 & 0 & 0 & 1 \end{pmatrix},$ where $(-\eta)$ is a non-quadratic residue modulo p, $\begin{pmatrix} 1 & a & c & b \\ 0 & 1 & 0 & a \\ 0 & 0 & 1 & \eta c \\ 0 & 0 & 0 & 1 \end{pmatrix},$ where $(-\eta)$ is a non-quadratic residue modulo p, $\begin{pmatrix} 1 & a & b & c \\ 0 & 1 & 0 & a \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$ $\begin{pmatrix} 1 & a & b & c \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$

For $\mathbf{p} = \mathbf{3}$, the first group from the above list is missing, the count is 7.

For
$$\mathbf{p} = \mathbf{2}$$
, we get 4: the last 3 subgroups on the list plus the subgroup
 $E^{sp} = \left\{ \begin{pmatrix} 1 & e & a & b \\ 0 & 1 & 0 & a \\ 0 & 0 & 1 & e \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad a, b, e \in \mathbb{F}_p \right\}$

References

 J. Jantzen, Nilpotent orbits in representation theory, Lie theory, Progr. Math., 228, 1-211, Birkhuser Boston, Boston, MA, 2004.