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Abstract. For the moduli stacks of α-stable curves introduced in [AFSv15], we prove nefness

of natural log canonical divisors generalizing a well-known result of Cornalba and Harris for the

moduli stack of Deligne-Mumford stable curves. We then deduce the projectivity of the good

moduli spaces of α-stable curves and identify these moduli spaces with the log canonical models

of Mg,n appearing in the Hassett-Keel program.

1. Introduction

This is the final part of the trilogy (see also [AFSv15, AFS16]) in which we construct the

second flip in the Hassett-Keel program forMg,n. In [AFSv15], we construct the moduli stacks

Mg,n(α) of α-stable curves (see Definition 2.6). In [AFS16], we prove that the moduli stacks

Mg,n(α) admit proper good moduli spaces, as defined by the first author in [Alp13]. The main

result of this paper is that the good moduli spaces of Mg,n(α) are projective and constitute

steps in the Hassett-Keel program for Mg,n. Namely, for α > 2/3−ε, let Mg,n(α) be the good

moduli space of Mg,n(α), which exists as a proper algebraic space by [AFS16, Theorem 1.1].

Consider the following log canonical models of Mg,n:

(1.1) Mg,n(α) := Proj
⊕
m≥0

H0(Mg,n, bm(KMg,n
+ αδ + (1− α)ψ)c).

We prove that the two independently defined objects, Mg,n(α) and Mg,n(α), are in fact the

same:

Theorem 1.1. For α > 2/3−ε, the following statements hold:

(1) The line bundle KMg,n(α) +αδ+ (1−α)ψ descends to an ample line bundle on Mg,n(α).

(2) There is an isomorphism Mg,n(α) 'Mg,n(α).

In particular, the algebraic stackMg,n(α) has a projective good moduli space for every α > 2/3−ε.

The key ingredient in the proof of Theorem 1.1 is a positivity result for certain line bundles

on Mg,n(α) generalizing the following well-known result of Cornalba and Harris (N.B. we use

∼ to denote numerical proportionality with a positive scalar).

Theorem ([CH88]). The line bundle

KMg,n
+

9

11
δ +

2

11
ψ ∼ 11λ− δ + ψ

is nef on Mg,n for all (g, n), and has degree 0 precisely on the families whose only non-isotrivial

components are A1-attached elliptic tails.
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By using the above result, Cornalba proved that 12λ − δ + ψ is in fact ample on Mg,n and

thus obtained a direct intersection-theoretic proof of the projectivity of Mg,n [Cor93]. In the

introduction to [Cor93], the author says that “... it is hard to see how [these techniques] could

be extended to other situations.” In what follows, we do precisely that in giving intersection-

theoretic proofs of the projectivity for Mg,n(7/10−ε), Mg,n(2/3), and Mg,n(2/3−ε) by proving

the following positivity result:

Theorem 1.2 (Positivity of log canonical divisors).

(a) The line bundle

KMg,n(9/11−ε) +
7

10
δ +

3

10
ψ ∼ 10λ− δ + ψ

is nef on Mg,n(9/11 − ε), and, if (g, n) 6= (2, 0), has degree 0 precisely on the families

whose only non-isotrivial components are A1/A1-attached elliptic bridges. It is trivial if

(g, n) = (2, 0).

(b) The line bundle

KMg,n(7/10−ε) +
2

3
δ +

1

3
ψ ∼ 39

4
λ− δ + ψ

is nef on Mg,n(7/10 − ε), and has degree 0 precisely on the families whose only non-

isotrivial components are A1-attached Weierstrass chains.

Our proof of the above theorem is inspired by [Cor93]. We also refer the reader to [ACG11,

Chapter 14] for an excellent exposition of Cornalba’s original argument and a comprehensive

treatment of intersection-theoretic approaches to the projectivity of Mg,n, many of which make

appearance in this paper.

1.1. Connections with the earlier works. In the case of unpointed curves, the stacks

Mg(7/10) andMg(7/10− ε) were defined in a seminal paper of Hassett and Hyeon constructing

the first flip of Mg [HH13], which largely motivates the present trilogy of papers on the second

flip. Hassett and Hyeon construct the good moduli space Mg(7/10), respectively Mg(7/10−ε),
as a GIT quotient parameterizing Chow, respectively Hilbert, semistable bicanonical curves. As

we show in §5.4, Part (a) of Theorem 1.2 is readily deduced from Hassett and Hyeon’s results.

However, as explained in the introduction to [AFSv15], the present trilogy constructs the moduli

stacks of α-stable curves and establishes the projectivity of their moduli spaces for all α > 2/3−ε
independently of the earlier GIT constructions for α > 7/10 − ε and n = 0 (namely those of

[Sch91, HH09, HH13]). In particular, this work gives a new proof of one of the main results of

[HH13], which is Theorem 1.1 for α > 7/10 − ε and n = 0. To preserve this independence, we

include our intersection-theoretic proof of Theorem 1.2(a).

A major reason for our desire to avoid GIT as much as possible is the expectation that the

GIT construction of Mg(2/3) will necessitate the stability analysis of the 6th Hilbert points of

bicanonical curves [Mor09], something that seems completely out of reach at the moment. At

the same time, our stack-theoretic methods have a hope of being pushed further for at least the

next several steps in the Hassett-Keel program.

There appears no feasible way to deduce the results of Part (b) of Theorem 1.2, for a general

(g, n), from the existing GIT results. We do note that Theorem 1.2(b) was established in



SECOND FLIP IN THE HASSETT-KEEL PROGRAM: PROJECTIVITY 3

[HL14, Section 3] for g = 4 using an assortment of GIT results. In particular, Hyeon and

Lee’s proof in genus 4 makes use of a complete analysis of Chow stability for canonical genus 4

curves obtained in [CMJL12, Kim13], which is greatly simplified by the fact that M4 has only

3 boundary divisors. The Chow stability of higher genus canonical curves (especially for points

corresponding to the generic points of the boundary divisors in Mg) has not been analyzed as

of this writing. Nevertheless, our proof of Theorem 1.2(b) is fundamentally similar to that of

[HL14]. Namely, we do use Chow stability of smooth canonical curves in the guise of Cornalba-

Harris inequality (Proposition 4.1). For families with generically singular fibers, we are able to

ultimately reduce to the generically smooth case. We refer to Section 6 for details.

1.2. Roadmap. Our proof of Theorems 1.1 and 1.2 is organized as follows. We recall the nec-

essary notions and definitions in Section 2. In Section 3, we develop a theory of simultaneous

normalization for families of at-worst tacnodal curves. By tracking how the relevant divisor

classes change under normalization, we can reduce Theorem 1.2 to proving a (more compli-

cated) positivity result for families of generically smooth curves. In Section 4, we collect several

preliminary positivity results, stemming from three sources: the Cornalba-Harris inequality, the

Hodge Index Theorem, and an effectivity result on M0,n. In Sections 5 and 6, we combine these

ingredients to prove parts (a) and (b) of Theorem 1.2, respectively. Finally, in Section 7, we

apply Theorem 1.2 to obtain Theorem 1.1.

2. Preliminaries on line bundles on Mg,n(α)

The following terminology will be in force throughout the paper. We let Ũg(A∞) denote

the stack of connected curves of arithmetic genus g with only A-singularities, and let Ũg(A`) ⊂
Ũg(A∞) be the open substack parameterizing curves with at worst Ak, k ≤ `, singularities. Since

Ũg(A∞) is smooth, we may freely alternate between line bundles and divisor classes on Ũg(A∞).

In addition, any relation between divisor classes on Ũg(A∞) that holds on the open substack

of at-worst nodal curves extends to Ũg(A∞), because the locus of worse-than-nodal curves has

codimension 2.

Let π : X → Ũg(A∞) be the universal family. We define the Hodge class as λ := c1(π∗ωπ)

and the kappa class as κ := π∗(c1(ωπ)2). The divisor parameterizing singular curves in Ũg(A∞)

is denoted δ. It can be further decomposed as δ = δirr + δred, where δred is the closed locus

of curves with disconnecting nodes. (The fact that δred is closed follows, for example, from

[AFSv15, Corollary 2.11]).

By the preceding remarks, Mumford’s relation κ = 12λ − δ holds on Ũg(A∞). Note that for

m ≥ 2, the higher Hodge bundles π∗(ω
m
π ) are well-defined on the open locus in Ũg(A∞) of curves

with nef dualizing sheaf, the complement of the closed substack of curves with rational tails. If

we restrict to this open locus, the Grothendieck-Riemann-Roch formula gives

(2.1) c1(π∗(ω
m
π )) = λ+

m2 −m
2

κ.

Now let C → B be a family of curves in Ũg(A∞). If σ : B → C is any section of the family,

we define ψσ := σ∗ωC/B. We say that σ is smooth if it avoids the relative singular locus of C/B.

From now on, we work only with families C → B over a smooth and proper curve B. If

σ : B → C is generically smooth and the only singularities of fibers that σ(B) passes through
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are nodes, then σ(B) is a Q-Cartier divisor on C, and we define the index of σ to be

(2.2) ι(σ) := (ωC/B + σ) · σ.

Notice that the index ι(σ) is non-negative, and if σ is smooth, then ι(σ) = 0. We also have the

following standard result:

Lemma 2.1. Suppose C → B is a generically smooth family of curves in Ũg(A∞).

(1) Suppose g ≥ 1, the family C → B is not isotrivial, and σ : B → C is a smooth section.

Then σ2 < 0.

(2) If g = 0 and σ, σ′, σ′′ : B → C are 3 smooth sections such that σ is disjoint from σ′ and

σ′′, then σ2 ≤ 0.

Proof. In the positive genus case, the nodal reduction does not change σ2 and passing to the

relative minimal model only increases σ2. The claim now follows from the well-known fact that

any section of a non-isotrivial generically smooth family of Deligne-Mumford semistable curves

has a negative self-intersection; see e.g., [Ara71, p.1291].

In the genus 0 case, we can consider the relative minimal model of C/B that is isomorphic to C
around σ. The claim then follows from the fact that on a geometrically ruled surface any section

that is disjoint from two other distinct sections must have a non-positive self-intersection. �

Let C → B be a one-parameter family of curves in Ũg(A∞). If p ∈ C is a node of its fiber, then

the local equation of C at p is xy = te, for some e ∈ Z called the index of p and denoted index(p).

A rational tail (resp., a rational bridge) of a fiber is a P1 meeting the rest of the fiber in exactly

one (resp., two) nodes. If E ⊂ Cb is a rational tail and p = E ∩ (Cb \ E), then the index of E

is defined to be index(p). Similarly, if E ⊂ Cb is a rational bridge and {p, q} = E ∩ (Cb \ E),

then the index of E is defined to be min{index(p), index(q)}. We also denote the index of E by

index(E). We say that a rational bridge E ⊂ Cb is balanced if index(p) = index(q).

2.1. α-stability. For the reader’s convenience, we recall the definition of α-stability and the

accompanying definitions of elliptic and Weierstrass tails and chains. The following definitions

are taken almost verbatim from [AFSv15, Section 2.1].

Definition 2.2.

(1) An elliptic tail is a 1-pointed curve (E, q) of arithmetic genus 1 which admits a finite

degree 2 map φ : E → P1 ramified at q.

(2) An elliptic bridge is a 2-pointed curve (E, q1, q2) of arithmetic genus 1 which admits a

finite degree 2 map φ : E → P1 such that φ−1({∞}) = {q1 + q2}.
(3) A Weierstrass genus 2 tail is a 1-pointed curve (E, q) of arithmetic genus 2 which admits

a finite degree 2 map φ : E → P1 ramified at q.

Recall that a gluing morphism γ : (E, {qi}mi=1) → (C, {pi}ni=1) between two pointed curves is

a finite morphism E → C, which is an open immersion when restricted to E−{q1, . . . , qm}. We

do not require the points {γ(qi)}mi=1 to be distinct, or to be marked points of C.
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Definition 2.3. An elliptic chain of length r is a 2-pointed curve (E, p1, p2) which admits a

surjective gluing morphism

γ :

r∐
i=1

(Ei, q2i−1, q2i)→ (E, p1, p2)

such that:

(1) (Ei, q2i−1, q2i) is an elliptic bridge for i = 1, . . . , r.

(2) γ(q2i) = γ(q2i+1) is an A3-singularity of E for i = 1, . . . , r − 1.

(3) γ(q1) = p1 and γ(q2r) = p2.

A Weierstrass chain of length r is a 1-pointed curve (E, p) which admits a surjective gluing

morphism

γ :
r−1∐
i=1

(Ei, q2i−1, q2i)
∐

(Er, q2r−1)→ (E, p)

such that:

(1) (Ei, q2i−1, q2i) is an elliptic bridge for i = 1, . . . , r − 1, and (Er, q2r−1) is a Weierstrass

tail.

(2) γ(q2i) = γ(q2i+1) is an A3-singularity of E for i = 1, . . . , r − 1.

(3) γ(q1) = p.

An elliptic (resp., Weierstrass) chain of length 1 is an elliptic bridge (resp., Weierstrass tail).

Definition 2.4. Let (C, {pi}ni=1) be an n-pointed curve. We say that (C, {pi}ni=1) has

(1) Ak-attached elliptic tail if there is a gluing morphism γ : (E, q)→ (C, {pi}ni=1) such that

(a) (E, q) is an elliptic tail.

(b) γ(q) is an Ak-singularity of C, or if k = 1 we allow γ(q) to be a marked point.

(2) Ak1/Ak2-attached elliptic chain if there is a gluing morphism γ : (E, q1, q2)→ (C, {pi}ni=1)

such that

(a) (E, q1, q2) is an elliptic chain.

(b) γ(qi) is an Aki-singularity of C, or if ki = 1 we allow γ(qi) to be a marked point

(i = 1, 2).

(3) Ak-attached Weierstrass chain if there is a gluing morphism γ : (E, q) → (C, {pi}ni=1)

such that

(a) (E, q) is a Weierstrass chain.

(b) γ(q) is an Ak-singularity of C, or if k = 1 we allow γ(q) to be a marked point.

This definition entails an essential, systematic abuse of notation: when we say that a curve has

an A1-attached tail or chain, we always allow the A1-attachment points to be marked points.

Definition 2.5. We say that (R, r1, r2) is a rosary of length ` if there exists a surjective gluing

morphism

γ :
∐̀
i=1

(Ri, q2i−1, q2i) ↪→ (R, r1, r2)

satisfying:

(1) (Ri, q2i−1, q2i) is a 2-pointed smooth rational curve for i = 1, . . . , `.

(2) γ(q2i) = γ(q2i+1) is an A3-singularity of R for i = 1, . . . , `− 1.
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(3) γ(q1) = r1 and γ(q2`) = r2.

We say that (C, {pi}ni=1) has an Ak1/Ak2-attached rosary of length ` if there exists a gluing

morphism γ : (R, r1, r2) ↪→ (C, {pi}ni=1) such that

(a) (R, r1, r2) is a rosary of length `.

(b) For j = 1, 2, γ(rj) is an Akj -singularity of C, or if kj = 1 we allow γ(rj) to be a marked

point of (C, {pi}ni=1).

We say that C is a closed rosary of length ` if C has A3/A3-attached rosary γ : (R, r1, r2) ↪→ C

of length ` such that γ(r1) = γ(r2) is an A3-singularity of C.

Definition 2.6 (α-stability). For α ∈ (2/3−ε, 1], we say that an n-pointed curve (C, {pi}ni=1) is

α-stable if ωC(Σn
i=1pi) is ample and:

For α ∈ (9/11, 1): C has only A1-singularities.

For α = 9/11: C has only A1, A2-singularities.

For α ∈ (7/10, 9/11): C has only A1, A2-singularities, and does not contain:

• A1-attached elliptic tails.

For α = 7/10: C has only A1, A2, A3-singularities, and does not contain:

• A1, A3-attached elliptic tails.

For α ∈ (2/3, 7/10): C has only A1, A2, A3-singularities, and does not contain:

• A1, A3-attached elliptic tails,

• A1/A1-attached elliptic chains.

For α = 2/3: C has only A1, A2, A3, A4-singularities, and does not contain:

• A1, A3, A4-attached elliptic tails,

• A1/A1, A1/A4, A4/A4-attached elliptic chains.

For α ∈ (2/3−ε, 2/3): C has only A1, A2, A3, A4-singularities, and does not contain:

• A1, A3, A4-attached elliptic tails,

• A1/A1, A1/A4, A4/A4-attached elliptic chains,

• A1-attached Weierstrass chains.

A family of α-stable curves is a flat and proper family whose geometric fibers are α-stable. We

let Mg,n(α) denote the stack of n-pointed α-stable curves of arithmetic genus g. By [AFSv15,

Theorem 2.7], we know thatMg,n(α) is an algebraic stack of finite type over C. SinceMg,n(α)

parameterizes unobstructed curves, it is a smooth algebraic stack and thus has a canonical divisor

KMg,n(α). In addition, the universal sections {σi}ni=1 of the universal family π : C → Mg,n(α)

give rise to the total ψ-class:

ψ =

n∑
i=1

ψσi ,

where the individual ψ-classes are defined as before by ψσi = σ∗i
(
ωC/Mg,n(α)

)
. For brevity, we

often write ψi to denote ψσi .

Because non-nodal curves in Mg,n(α) form a closed substack of codimension 2, the standard

relation on Mg,n (cf. [Log03, Theorem 2.6]) gives

KMg,n(α) = 13λ− 2δ + ψ.
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Since λ, δ, and ψ are defined on every Mg,n(α), we have the following formula

KMg,n(αc±ε) = KMg,n(αc)
|Mg,n(αc±ε)

for all αc ∈ {2/3, 7/10, 9/11}.

3. Degenerations and simultaneous normalization

Our first goal is to develop a theory of simultaneous (partial) normalization along generic

singularities in families of at-worst tacnodal curves. In contrast to the situation for nodal

curves, where normalization along a nodal section can always be performed because a node is

not allowed to degenerate to a worse singularity, we must now deal with families where a node

degenerates to a cusp or a tacnode, where two nodes degenerate to a tacnode, or where a cusp

degenerates to a tacnode.

Recall the following definition from [AFSv15]:

Definition 3.1 (Inner/Outer Singularities). We say that an Ak-singularity p ∈ C is outer if

it lies on two distinct irreducible components of C, and inner if it lies on a single irreducible

component. (N.B. If k is even, then any Ak-singularity is necessarily inner.)

We begin by describing all possible degenerations of singularities in one-parameter families of

tacnodal curves:

Proposition 3.2. Suppose C → ∆ is a family of at-worst tacnodal curves over ∆, the spectrum

of a DVR. Denote by Cη̄ the geometric generic fiber and by C0 the central fiber. Then the only

possible limits in C0 of the singularities of Cη̄ are the following:

(1) A limit of a tacnode of Cη̄ is necessarily a tacnode of C0. Moreover, a limit of an outer

tacnode is necessarily an outer tacnode.

(2) A limit of a cusp of Cη̄ is either a cusp or a tacnode of C0.

(3) A limit of an inner node of Cη̄ is either a node, a cusp, or a tacnode of C0.

(4) A limit of an outer node of Cη̄ is either an outer node of C0 or an outer tacnode of C0.

Moreover, if an outer tacnode of C0 is a limit of an outer node, it must be a limit of two

outer nodes, necessarily joining the same components.

Proof. By deformation theory of A-singularities, a cusp deforms only to a node, a tacnode

deforms only either to a cusp, or to a node, or to two nodes. Given this, the result follows

directly from [AFSv15, Proposition 2.10]. �

We describe the operation of normalization along the generic singularities for each of the

following degenerations:

(A) Inner nodes degenerate to cusps and tacnodes (see Proposition 3.4).

(B) Outer nodes degenerate to tacnodes (see Proposition 3.5).

(C) Cusps degenerate to tacnodes (see Proposition 3.6).

We begin with a preliminary result concerning normalization along a collection of generic

nodes. Suppose π : X → B is a family in Ũg(A∞) with sections {σi}ki=1 such that σi(b) are

distinct nodes of Xb for a generic b ∈ B and such that {σi(B)}ki=1 do not meet any other generic

singularities. (The last condition will be automatically satisfied when π : X → B is a family

in Ũg(A3) and {σi}ki=1 is the collection of all inner or all outer nodes.) Let ν : Y → X be the
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normalization of X along ∪ki=1σi(B). Denote by {η+
i , η

−
i } the two preimages of σi (which exist

after a base change). Let R+
i : ν∗OY → Oσi(B) (resp., R−i : ν∗OY → Oσi(B)) be the morphisms

of sheaves on X induced by pushing forward the restriction maps OY → Oη±i (B) and composing

with the natural isomorphisms ν∗(Oη±i (B)) ' Oσi(B). We let Ri := R+
i − R

−
i be the difference

map, and set

R := ⊕ki=1Ri : ν∗OY −→ ⊕ki=1Oσi(B).

In this notation, we have the following result.

Lemma 3.3. There is an exact sequence

(3.1) 0→ OX
ν#−→ ν∗OY

R−→ ⊕ki=1Oσi(B) → K → 0,

where K is supported on the finitely many points of X at which the generic nodes {σi(B)}ki=1

degenerate to worse singularities. Consequently,

λX/B = λY/B + length(π∗K).

Proof. Away from finitely many points on X where the generic nodes degenerate, we have

im (ν#) = ker(R) and R is surjective. Consider now a point p ∈ X where a generic nodes

coalesce to an Am-singularity. A local chart of X around p can be taken to be

SpecC[[x, y, t]]/
(
y2 − (x− s1(t))2 · · · (x− sa(t))2f(x, t)

)
,

where x = si(t) are the equations of generic nodes. By assumption on the generic nodes, f(x, t)

is a square-free polynomial. Hence

Y = SpecC[[x, u, t]]/
(
u2 − f(x, t)

)
and the normalization map is given by

y 7→ u

a∏
i=1

(x− si(t)).

Without loss of generality, the equation of η±i is u = ±vi(t), where vi(t)
2 = f(si(t), t). It

follows that Ri : C[[x, u, t]]/(u2 − f(x, t))→ C[[t]] is given by

Ri
(
g(x, u, t)

)
= g(si(t), vi(t), t)− g(si(t),−vi(t), t).

Write C[[x, u, t]]/(u2− f(x, t)) = C[[x, t]] + uC[[x, t]]. Clearly, C[[x, t]] ⊂ ker(R)∩ im (ν#). Note

that ug(x, t) ∈ ker(R) if and only if Ri
(
ug(x, t)

)
= 2vi(t)g(si(t), t) = 0 for every i = 1, . . . , a if

and only if g(x, t) ∈ (x − si(t)) for every i = 1, . . . , a. Since the generic nodes are distinct, we

conclude that ug(x, t) ∈ ker(R) if and only if
∏a
i=1(x − si(t)) | g(x, t) if and only if ug(x, t) ∈

yC[[x, t]] ⊂ im (ν#). The exactness of (3.1) follows.

Pushing forward (3.1) to B and noting that c1((π ◦ ν)∗OY) = c1(π∗OX) = c1(π∗Oσi(B)) = 0,

we obtain

c1(R1(π ◦ ν)∗OY) = c1(R1π∗OX ) + c1(π∗K).

The formula relating Hodge classes now follows by relative Serre duality. �
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Proposition 3.4 (Type A degeneration). Suppose X/B is a family in Ũg(A3) with sections

{σi}ki=1 such that σi(b) are the inner nodes of Xb for a generic b ∈ B, degenerating to cusps and

tacnodes over a finite set of points of B. Denote by Y the normalization of X along ∪ki=1σi(B)

and by {η+
i , η

−
i } the two preimages of σi. Then {η±i } are sections of Y/B satisfying:

(1) If σi(b) is a cusp of Xb, then η+
i (b) = η−i (b) is a smooth point of Yb.

(2) If σi(b) is a tacnode of Xb and σj(b) 6= σi(b) for all j 6= i, then η+
i (b) = η−i (b) is a node

of Yb and η+
i + η−i is Cartier at b.

(3) If σi(b) = σj(b) is a tacnode of Xb for some i 6= j, then (up to ±) η+
i (b) = η+

j (b) and

η−i (b) = η−j (b) are smooth and distinct points of Yb.

Set ηi := η+
i + η−i and ψηi := ωY/B · ηi = ψη+i

+ ψη−i
. Define

ψinner :=
k∑
i=1

ψηi , δtacn :=
∑
i 6=j

(
ηi · ηj

)
, and δinner =

k∑
i=1

(η+
i · η

−
i ).

Then we have the following formulae:

λX/B = λY/B +
1

2
δtacn + δinner +

k∑
i=1

ι(η+
i ),

δX/B = δY/B − ψinner + 4δtacn + 10δinner + 10

k∑
i=1

ι(η+
i ).

A pair of sections {η+
i , η

−
i } arising from the normalization of a generic inner node will be called

an inner nodal pair and η±i will be called inner nodal transforms.

Proof. The formula for the Hodge class follows from Lemma 3.3, whose notation we keep, once

we analyze the torsion sheaf K on X . Consider the following loci in X :

(a) Cu is the locus of cusps in X/B which are limits of generic inner nodes.

(b) Tn1 is the locus of tacnodes in X/B which are limits of a single generic inner node.

(c) Tn2 is the locus of tacnodes in X/B which are limits of two generic inner nodes.

(a) A local chart of X around a point p ∈ Cu can be taken to be

SpecC[[x, y, t]]/
(
y2 − (x− t2m)2(x+ 2t2m)

)
,

where x = t2m is the equation of the generic node σ degenerating to the cusp p. Then Y =

SpecC[[x, u, t]]/
(
u2 − x − 2t2m

)
and the normalization map is y 7→ u(x − t2m). The preimages

η+ and η− of the generic node σ have equations u =
√

3tm and u = −
√

3tm. Note that Y is

smooth and the intersection multiplicity of η+ and η− at the preimage of p is m. It follows that

the contribution of p to δinner is m.

The elements of C[[x, u, t]]/
(
u2 − x− 2t2m

)
that do not lie in ker(R) are of the form ug(x, t)

and we have R
(
ug(x, t)

)
= 2
√

3tmg(t2m, t). It follows that im (R) = (tm) ⊂ C[[t]]. Hence

Kp = C[[t]]/im (R) has length m.

(b) A local chart of X around a point p ∈ Tn1 can be taken to be

SpecC[[x, y, t]]/
(
y2 − (x− tm)2(x2 + t2c)

)
,
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where x = tm is the equation of the generic node σ degenerating to the tacnode p. Then

Y = SpecC[[x, u, t]]/(u2 − x2 − t2c)

is a normal surface with A2c−1-singularity at the preimage of p, and the normalization map is

given by

y 7→ u(x− tm).

The preimage of σ is the bi-section given by the equation u2 = t2m + t2c, which splits into two

sections given by the equations u = ±v(t), where the valuation of v(t) is equal to min{m, c}. The

map R : C[[x, u, t]]/(u2−x2− t2c)→ C[[t]] sends an element of the form ug(x, t) to 2v(t)g(tm, t)

and all elements of C[[x, t]] to 0. We conclude that Kp = C[[t]]/im (R) has length min{m, c}.
It remains to show that the contribution of p to

(
η+ · η− + ι(η+)

)
is min{m, c}. There are

two cases to consider. First, suppose c ≤ m. Then the equations of η+ and η− are u = αtc and

u = −αtc where α is a unit in C[[t]]. The minimal resolution h : Ỹ → Y has the exceptional

divisor

E1 ∪ · · · ∪ E2c−1,

which is a chain of (−2)-curves. The strict transforms η̃+ and η̃− meet the central (−2)-curve

Ec at two distinct points. Clearly, h∗ωY/B = ωỸ/B and a straightforward computation shows

that

h∗(η+ + η−) = η̃+ + η̃− +
c−1∑
i=1

i(Ei + E2c−i) + cEc.

It follows that the contribution of p to
(
η+ · η− + ι(η+)

)
= (ωY/B + η+ + η−) · η+ is c.

Suppose now that c > m. Then the equations of η+ and η− are u = αtm and u = −αtm,

respectively, where α is a unit in C[[t]]. The exceptional divisor of the minimal resolution

h : Ỹ → Y is still a chain of (−2)-curves of length 2c − 1. However, η̃+ and η̃− now meet Em
and E2c−m, respectively. It follows that the contribution of p to

(
η+ · η− + ι(η+)

)
is m.

(c) A local chart of X around a point p ∈ Tn2 can be taken to be

SpecC[[x, y, t]]/
(
y2 − (x− tm)2(x+ tm)2

)
,

where x = tm and x = −tm are the equations of the generic nodes {σ1, σ2} coalescing to the

tacnode p. Then

Y = SpecC[[x, u, t]]/(u2 − 1)

is a union of two smooth sheets, and the normalization map is given by

y 7→ u(x− tm)(x+ tm).

The preimages η+
1 and η−1 of the generic node σ1 have equations {u = 1, x = tm} and {u =

−1, x = tm}. The preimages η+
2 and η−2 of the generic node σ2 have equations {u = 1, x = −tm}

and {u = −1, x = −tm}. In particular, η±j are smooth sections, with η+
1 meeting η+

2 , and η−1
meeting η−2 , each with intersection multiplicity m. It follows that the contribution of p to δtacn
is 2m.

The elements of C[[x, u, t]]/(u2 − 1) that do not lie in ker(R) are of the form ug(x, t) and we

have R(ug(x, t)) = (2g(tm, t), 2g(−tm, t)) ∈ C[[t]]× C[[t]]. It follows that

im (R) = 〈(1, 1), (t, t), . . . , (tm−1, tm−1)〉+ (tm)× (tm) ⊂ C[[t]]× C[[t]].
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Hence Kp = (C[[t]]× C[[t]])/im (R) has length m.

It remains to prove the formula for the boundary classes. To begin, note that ν∗ωX/B =

ωY/B
(∑k

i=1(η+
i + η−i )

)
. Therefore,

κX/B = κY/B + 2
∑

1≤i<j≤k

(
(η+
i + η−i ) · (η+

j + η−j )
)

+ 2ωY/B ·
k∑
i=1

(η+
i + η−i ) +

k∑
i=1

(η+
i + η−i )2

= κY/B+2δtacn+ωY/B·
k∑
i=1

(η+
i +η−i )+

k∑
i=1

(
ωY/B · η+

i + (η+
i )2 + ωY/B · η−i + (η−i )2

)
+2

k∑
i=1

(
η+
i ·η
−
i

)
= κY/B + 2δtacn + ψinner + 2

k∑
i=1

ι(η+
i ) + 2δinner.

Using Mumford’s relation κ = 12λ − δ and the already established relation between λX/B and

λY/B, we obtain the desired relation between δX/B and δY/B. �

Proposition 3.5 (Type B degeneration). Suppose X/B is a family in Ũg(A3) with sections

{σi}ki=1 such that σi(b) are outer nodes of Xb for a generic b ∈ B, degenerating to outer tacnodes

over a finite set of points of B. Denote by Y the normalization of X along ∪ki=1σi(B) and by

{ζ+
i , ζ

−
i } the two preimages of σi. Then {ζ±i }ki=1 are smooth sections of Y such that ζ+

i and ζ−i
lie on different irreducible components of Y. Setting

δtacn :=
∑
i 6=j

(ζ+
i + ζ−i ) · (ζ+

j + ζ−j ),

we have the following formulae:

λX/B = λY/B +
1

2
δtacn,

δX/B = δY/B −
k∑
i=1

(ψζ+i
+ ψζ−i

) + 4δtacn.

The sections {ζ+
i , ζ

−
i }ki=1 will be called outer nodal transforms.

Proof. By Proposition 3.2, outer nodes can degenerate only to outer tacnodes. Moreover, an

outer tacnode which is a limit of one outer node is a limit of two outer nodes. The statement

now follows by repeating verbatim the proof of Proposition 3.4 (Part (c)), and using Lemma

3.3. �

Proposition 3.6 (Type C degeneration). Suppose X/B is a family in Ũg(A3) with sections

{σi}ki=1 such that σi(b) is a cusp of Xb for a generic b ∈ B, degenerating to a tacnode over a

finite set of points in B. Denote by Y the normalization of X along ∪ki=1σi(B) and by ξi the

preimage of σi. Then ξi is a section of Y/B such that ξi(b) is a node of Yb whenever σi(b) is a

tacnode of Xb and ξi(b) is a smooth point of Yb otherwise. Moreover, 2ξi is Cartier and we have
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the following formulae:

λX/B = λY/B −
k∑
i=1

ψξi + 2

k∑
i=1

ι(ξi),

δX/B = δY/B − 12
k∑
i=1

ψξi + 20
k∑
i=1

ι(ξi).

The sections ξi will be called cuspidal transforms.

Proof. The proof of this proposition is easier than the previous two results because a generic

cusp cannot collide with another generic singularity. In particular, we can consider the case of a

single generic cusp σ. Let ν : Y → X be the normalization along σ. Suppose σ(b) is a tacnode.

Then the local equation of X around σ(b) is

y2 = (x− a(t))3(x+ 3a(t)),

where x = a(t) is the equation of the generic cusp. It follows that Y has local equation u2 =

(x−a(t))(x+3a(t)) and ν is given by y 7→ u(x−a(t)). The preimage of σ is a section ξ : B → Y
given by x− a(t) = u = 0. Note that ξ(b) = {x = u = t = 0} is a node of Yb, and consequently

ξ is not Cartier at ξ(b).

Clearly, ν∗ωX/B = ωY/B(2ξ) and by duality theory for singular curves

π∗ωX/B = (π ◦ ν)∗(ωY/B(2ξ)).

Therefore,

κX/B = (ωY/B + 2ξ)2 = (ωY/B)2 + 4(ξ2 + ξ · ωY/B) = κY/B + 4ι(ξ),

and by Grothendieck-Riemann-Roch formula

λX/B = c1

(
(π ◦ ν)∗(ωY/B(2ξ))

)
= λY/B − ψξ + 2ι(ξ).

The claim follows. �

4. Assorted positivity results

4.1. Cornalba-Harris inequality. We generalize a well-known Cornalba-Harris result on pos-

itivity of divisor classes for generically smooth families of Deligne-Mumford curves to the case

of tacnodal curves.

Proposition 4.1 (Cornalba-Harris inequality). Let g ≥ 2. Suppose f : C → B is a generically

smooth family in Ũg(A3), over a smooth and proper curve B, with ωC/B relatively nef. Then(
8 +

4

g

)
λC/B − δC/B ≥ 0.

Moreover, if the general fiber of C/B is non-hyperelliptic and C/B is non-isotrivial, then the

inequality is strict.

Remark. When the total space C is smooth, this result was proved in [Xia87] and [Sto08, Theorem

2.1], with no restrictions on fiber singularities.
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Proof of Proposition 4.1 in the non-hyperelliptic case: As in [Sto08, Theorem 2.1], if the general

fiber of C/B is non-hyperelliptic, the result is obtained by the original argument of Cornalba

and Harris [CH88], which we now recall.

Suppose Cb for some b ∈ B is a non-hyperelliptic curve of genus g ≥ 3. After a finite base

change, we can assume that λ ∈ Pic(B) is g-divisible. Then the line bundle L := ωC/B⊗f∗(−λ/g)

on C satisfies the following conditions:

(1) det(f∗(L)) ' OB.

(2) f∗(Lm) is a vector bundle of rank (2m− 1)(g − 1) for all m ≥ 2.

(3) Symm f∗(L)→ f∗(Lm) is generically surjective for all m ≥ 1.

For m ≥ 2 and general b ∈ B, the map Symm H0(Cb, ωCb)→ H0(Cb, ω
m
Cb

) defines the mth Hilbert

point of Cb. Since the canonical embedding of Cb has a stable mth Hilbert point for some m� 0

by [Mor09, Lemma 14], the proof of [CH88, Theorem 1.1] gives c1(f∗(Lm)) ≥ 0. Using (2.1), we

obtain

(4.1)

(
8 +

4

g
− 2(g − 1)

gm
+

2

gm(m− 1)

)
λ− δ = c1(f∗(Lm)) ≥ 0.

To conclude we note that δ ≥ 0, and if δ = 0, then λ > 0 for any non-isotrivial family by the

existence of the Torelli morphism Mg → Ag. We conclude that (8 + 4/g)λ− δ > 0. �

4.1.1. Families of 2g + 2-pointed rational curves. Suppose that (Y/B, {σi}2g+2
i=1 ) is a family of

(2g + 2)-pointed at-worst nodal rational curves where σi are smooth sections, ωY/B(
∑2g+2

i=1 σi)

is relatively nef, and no more than 4 sections meet at a point. We say that an irreducible

component E in the fiber Yb of Y/B is an odd bridge if the following conditions hold:

(1) E meets the rest of the fiber Yb \ E in two nodes of equal index,

(2) E ·
∑2g+2

i=1 σi = 2,

(3) the degree of
∑2g+2

i=1 σi on each of the two connected components of Yb \ E is odd.

Suppose h : Y → Z is a blow-down of some collection of odd bridges. The image of
∑2g+2

i=1 σi
in Z will be denoted by Σ. Note that while the individual images of σi’s are not Cartier on Z
along the image of blown-down odd bridges, the total class of Σ is Cartier on Z. We say that a

node p ∈ Zb (resp., p ∈ Yb) is an odd node if the degree of Σ (resp.,
∑2g+2

i=1 σi) on each of the

connected component of the normalization of Zb (resp., Yb) at p is odd. We denote by δodd the

Cartier divisor on B associated to all odd nodes of Z/B (resp., Y/B).

Proof of Proposition 4.1 in the hyperelliptic case: Suppose now that C → B is a family of at-

worst tacnodal curves with a relatively nef ωC/B and a smooth hyperelliptic generic fiber. The

hyperelliptic involution on the generic fiber of f : C → B extends to all of C and realizes C/B as

a double cover of a family (Z/B,Σ) described in §4.1.1 in such a way that C → Z ramifies over

Σ. Let δodd be the divisor of odd nodes of Z/B. We have the following standard formulae:

λC/B =
1

8

(
Σ2 + 2ωZ/B · Σ− δodd

)
Z/B ,

δC/B =

(
Σ2 + ωZ/B · Σ + 2ω2

Z/B −
3

2
δodd

)
Z/B

.
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Consider h : Y → Z. Then h∗(Σ) =
∑2g+2

i=1 σi + E, where E is a collection of odd bridges, and

h∗ωZ/B = ωY/B. Set ψY/B := ωY/B ·
∑2g+2

i=1 σi, δinner :=
∑

i 6=j(σi · σj), and e := −1
2E

2. Then

λC/B =

(
1

8
(ψY/B + 2δinner − δodd) +

1

2
e

)
Y/B

,

δC/B =

(
2δinner + 2δeven +

1

2
δodd + 5e

)
Y/B

.

We obtain(
8 +

4

g

)
λC/B − δC/B =

(
2g + 1

2g
ψ +

1

g
δinner +

(
2

g
− 1

)
e− 2δeven −

(
3

2
+

1

2g

)
δodd

)
Y/B

.

Multiplying by 2g, we reduce to proving that on Y/B we have

(2g + 1)ψ + 2δinner − 4gδeven − (3g + 1)δodd − (2g − 4)e ≥ 0.

Noting that for any family Y/B as in §4.1.1, we have

(2g + 1)ψ + 2δinner =

g+1∑
i=1

i(2g + 2− i)δi,

and using the inequality 2e ≤ δodd, we obtain the desired claim. �

Hodge Index Theorem Inequalities. We apply a method of Harris [Har84] to obtain in-

equalities between the ψ-classes, indices of cuspidal and inner nodal transforms, and the κ class.

In the following lemmas, we use the following variant of Hodge Index Theorem for singular

surfaces.

Lemma 4.2. Let S be a proper integral algebraic space of dimension 2. Suppose H is a Q-

Cartier divisor on S such that H2 > 0. Then the intersection pairing on any d-dimensional

subspace of NS(S) containing H has signature (1, d− 1).

Proof. Let π : S̃ → S be the minimal desingularization of the normalization of S. Then S̃ is

a smooth projective surface. Note that π∗ : NS(S) → NS(S̃) is an injection preserving the

intersection pairing. The statement now follows from the Hodge Index Theorem for smooth

projective surfaces. �

Lemma 4.3. Suppose X/B is a family of Gorenstein curves of arithmetic genus g ≥ 2 with a

section ξ. Assume X is irreducible. Let ι(ξ) = (ξ + ωX/B) · ξ be the index of ξ. Then

(4.2) ψξ ≥
(g − 1)

g
ι(ξ) +

κ

4g(g − 1)
.

Proof. Apply the Hodge Index Theorem to the three divisor classes 〈F, ξ, ωX/B〉, where F is the

fiber class. Since ξ+kF has positive self-intersection for k � 0, the determinant of the following

intersection pairing matrix is non-negative: 0 1 2g − 2

1 −ψξ + ι(ξ) ψξ
2g − 2 ψξ κ

 .

The claim follows by expanding the determinant. �
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Lemma 4.4. Suppose X/B is a family of Gorenstein curves of arithmetic genus g ≥ 2 with a

pair of sections η+, η−. Assume X is irreducible. Then

(4.3) ψη+ + ψη− ≥
2(g − 1)

g + 1

(
(η+ · η−) + ι(η+)

)
+

κ

g2 − 1
.

Proof. Consider the three divisor classes 〈F, η = η+ + η−, ωX/B〉, where F is the fiber class.

Since η+kF has positive self-intersection for k � 0, the Hodge Index Theorem implies that the

determinant of the following intersection pairing matrix is non-negative: 0 2 2g − 2

2 −ψη+ − ψη− + 2(η+ · η−) + ι(η+) + ι(η−) ψη+ + ψη−

2g − 2 ψη+ + ψη− κ

 .

The claim follows by expanding the determinant. �

Lemma 4.5. Suppose X/B is a family in Ũ2(A3) with a smooth section τ . Assume X is

irreducible. Then

(4.4) 8ψτ ≥ κ.

Moreover, if δred = 0, then the equality is satisfied if and only if (X/B, τ) is a family of Weier-

strass genus 2 tails in M2,1(7/10− ε).

Proof. The inequality follows directly from Lemma 4.3 by taking g = 2. Moreover, the proof

of Lemma 4.3 shows that equality holds if and only if the intersection pairing on 〈F, τ, ωX/B〉
is degenerate. Assuming δred = 0, there is a global hyperelliptic involution h : X → X . Hence

ωX/B ≡ τ +h(τ)+xF , for some x ∈ Z. Observe that ωX/B ·τ = ωX/B ·h(τ) and F ·τ = F ·h(τ).

Since no combination of ω and F is in the kernel of the intersection pairing, we conclude that

τ2 = τ · h(τ).

However, the intersection number on the left is negative by Lemma 2.1 and the intersection

number on the right is non-negative whenever τ 6= h(τ). We conclude that equality holds if only

if h(τ) = τ , that is τ is a Weierstrass section. �

We will need special variants of Lemmas 4.3 and 4.4 for the case of relative genus 1 and 0.

Lemma 4.6. Let X/B be a family of Gorenstein curves of arithmetic genus 1 with a pair of

sections η+, η−, and suppose that η+ and η− are disjoint from N smooth pairwise disjoint section

of X/B. Assume X is irreducible. Then

(η+ · η−) + ι(η+) ≤ N + 2

2N
(ψη+ + ψη−) +

1

2N2
δred.

Proof. Let Σ be the sum of N pairwise disjoint smooth sections of X/B disjoint from {η+, η−}.
Then (ωX/B + 2Σ)2 = ω2

X/B = κ. Apply the Hodge Index Theorem to 〈F, η+ + η−, ωX/B + 2Σ〉,
where F is the fiber class. The determinant of the matrix 0 2 2N

−ψη+ − ψη− + 2(η+ · η−) + ι(η+) + ι(η−) ψη+ + ψη−

2N ψη+ + ψη− κ
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is non-negative. Therefore

−4κ+ 8N(ψη+ + ψη−) + 4N2(ψη+ + ψη−) ≥ 8N2
(
(η+ · η−) + ι(η+)

)
,

which gives the desired inequality using κ = −δred. �

Lemma 4.7. Let X/B be a family of Gorenstein curves of arithmetic genus 1 with a section

ξ, and suppose that ξ is disjoint from N smooth pairwise disjoint sections of X . Assume X is

irreducible. Then

ι(ξ) ≤ N + 1

N
ψξ +

1

4N2
δred.

Furthermore, suppose N = 1, with τ being a smooth section disjoint from ξ, and δred = 0. Then

equality holds if and only if 2ξ ∼ 2τ .

Proof. Let Σ be the collection of smooth sections of X/B disjoint from ξ. By the Hodge Index

Theorem applied to 〈F, ξ, ωX/B + 2Σ〉, the determinant of the matrix 0 1 2N

1 −ψξ + ι(ξ) ψξ
2N ψξ κ


is non-negative. Therefore

ι(ξ) ≤ ψξ +
1

N
ψξ −

1

4N2
κ.(4.5)

This gives the desired inequality using κ = −δred.

To prove the last assertion observe that because δred = 0 all fibers of X/B are irreducible

curves of genus 1. In particular, ωX/B ≡ λF and it follows from the existence of the group

law on the set of sections of X/B that there exists a section τ ′ such that 2ξ − τ ≡ τ ′. Since

τ ∩ ξ = ∅, we have τ ′ ∩ ξ = ∅. If equality in (4.5) holds, then the intersection pairing matrix

on the classes 〈F, ξ, τ〉 is degenerate. Hence some linear combination (xξ + yτ + zF ) intersects

F, ξ, τ trivially. Clearly, y 6= 0. Intersecting with τ , we obtain y(τ · τ) + z = 0; and intersecting

with τ ′, we obtain y(τ · τ ′)+z = 0. Hence τ2 = τ · τ ′. This leads to a contradiction if τ 6= τ ′. �

4.2. An inequality between divisor classes on M0,N . The proof of Theorem 1.2 will require

the following effectivity result on M0,N .

Lemma 4.8. Suppose (C/B; {σi}Ni=1) is a one-parameter family in M0,N with generically smooth

fibers. Suppose {η+
i , η

−
i }ai=1 is a subset of {σi}Ni=1. Set ψinner :=

∑a
i=1

(
ψη+i

+ ψη−i

)
and

δinner :=
∑a

i=1 δ{η+i ,η
−
i }

. If a ≥ 2, then we have

(4.6)

ψinner ≥ 4δinner + 4

a∑
i=1

∑
β/∈{η+i ,η

−
i }ai=1

δ{η+i ,η
−
i ,β}

+ 2
a− 2

a− 1

∑
i 6=j

δ{η±i , η
±
j }

+
5a− 9

a− 1

a∑
i=1

∑
j 6=i

δ{η+i ,η
−
i ,η
±
j }
.

Proof. Since the generic point of B maps to the interior M0,N ⊂ M0,N , it suffices to show that

the left-hand side of (4.6) is an effective combination of the boundary divisors on M0,N . To

do so, we apply the Effective Boundary Lemma [Fed14, Lemma 2.3.3]. Let V be the set of N

elements identified with the set {σi}Ni=1. We define the following weighting on the edges of the

complete graph with vertices in V :
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(1) The edges joining η±i and η±j for 1 ≤ i < j ≤ a will have weight 1.

(2) The edge joining η+
i and η−i will have weight −(a− 1).

(3) All other edges will have weight 0.

Using the terminology of [Fed14, Section 2.2], the flow through the vertex η±i is a− 1 for every

1 ≤ i ≤ a, and the flow through all other vertices is 0.

Suppose I t J = V is a partition with |I|, |J | ≥ 2. Let x be the number of pairs {η+
i , η

−
i }

such that η+
i ∈ I and η−i ∈ J , or vice versa, and let y be the number of pairs {η+

i , η
−
i }

contained entirely in I or J . Set z = a − x − y. Then the flow across I t J is w(I | J) =

((x+ 2y)(x+ 2z)− x)− (a− 1)x = x(y + z) + 4yz. We see that

(1) w(I | J) ≥ 0 for every I t J .

(2) If I = {η+
i , η

−
i } or J = {η+

i , η
−
i , β}, where β /∈ {η+

i , η
−
i }ai=1, then x = 0 and y = 1, and

so w(I | J) = 4(a− 1).

(3) If I = {η±i , η
±
j } for i 6= j, then x = 2 and y = 0, and so w(I | J) = 2(a− 2).

(4) If I = {η+
i , η

−
i , η

±
j } for j 6= i, then x = 1 and y = 1, and so w(I | J) = 5a− 9.

It follows that the left-hand side of (4.6) is an effective combination of the boundary divisors by

[Fed14, Lemma 2.3.3]. �

5. Proof of Theorem 1.2(a)

In this section, we give an intersection-theoretic proof of Theorem 1.2(a). At the end of

the section, we also include a short argument deducing Theorem 1.2(a) from the results of

[HH09, HH13].

To begin, notice that 10λ − δ + ψ = 0 on M2,0(9/11 − ε) by the standard relation 10λ =

δirr + 2δred that holds for all families in U2,0(A∞).

We now prove that 10λ− δ+ψ is nef onMg,n(9/11− ε) and has degree 0 precisely on families

whose only non-isotrivial components are A1/A1-attached elliptic bridges, for all (g, n) 6= (2, 0).

Let (C/B, {σi}ni=1) be a (9/11 − ε)-stable family. The proof proceeds by normalizing C along

generic singularities to arrive at a family of generically smooth curves, where the Cornalba-

Harris inequality holds, or at a family of low genus curves, where the requisite inequality is

established by ad-hoc methods. Keeping in mind that generic outer nodes and generic cusps

of C/B do not degenerate, but generic inner nodes of C/B can degenerate to cusps, we begin

by normalizing generic outer nodes, then normalize generic cusps, and finally normalize generic

inner nodes.

5.1. Reduction 1: Normalization along generic outer nodes. Let X be the normalization

of C along generic outer nodes, marked by nodal transforms. By [AFSv15, Lemma 2.17], every

connected component of X/B is a family of generically irreducible (9/11− ε)-stable curves. By

Proposition 3.5, we have

(10λ− δ + ψ)C/B = (10λ− δ + ψ)X/B.

We have reduced to proving 10λ− δ + ψ ≥ 0 for a family with generically irreducible fibers.
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5.2. Reduction 2: Normalization along generic cusps. Suppose (X/B, {σi}ni=1) is a family

of (9/11− ε)-stable curves with generically irreducible fibers. Let Y be the normalization of X
along generic cusps. Denote by {ξi}ci=1 the cuspidal transforms on Y. Set ψcusp :=

∑c
i=1 ψξi

and ψY/B := ψX/B + ψcusp. Then by Proposition 3.6, we have

(10λ− δ + ψ)X/B = (10λ− δ + ψ)Y/B + ψcusp.

We have reduced to proving 10λ− δ+ψ+ψcusp ≥ 0 for a family (Y/B, {σi}ni=1, {ξi}ci=1), where

(1) The fibers are at-worst cuspidal and the generic fiber is irreducible and at-worst nodal.

(2) {σi}ni=1, {ξi}ci=1 are smooth sections and ωY/B(
∑n

i=1 σi +
∑c

i=1 ξi) is relatively ample.

(N.B. A priori only ωY/B(
∑n

i=1 σi + 2
∑c

i=1 ξi) is relatively ample. However, a rational

tail cannot meet only a single cuspidal transform because the original family X/B cannot

have cuspidal elliptic tails.)

5.3. Reduction 3: Normalization along generic inner nodes. Consider the family (Y/B, {σi}ni=1, {ξi}ci=1)

as in Subsection 5.2. Let a be the number of generic inner nodes of Y/B. We let Z → Y be the

normalization and denote by η+
i and η−i the inner nodal transforms of the ith generic node. We

obtain a family (
Z/B, {σi}ni=1, {η±i }

a
i=1, {ξi}ci=1

)
,

where

(1) The fibers are at-worst cuspidal curves and the generic fiber is smooth.

(2) The sections {σi}ni=1, {η
±
i }ai=1, {ξi}ci=1 are all smooth and pairwise disjoint, except that

η+
i can intersect η−i for each i.

(3) ωZ/B
(∑n

i=1 σi +
∑a

i=1(η+
i + η−i ) +

∑c
i=1 ξi

)
is relatively ample.

By Proposition 3.4, we have that

(10λ− δ + ψ + ψcusp)Y/B = (10λ− δ + ψ + ψcusp)Z/B,

where ψcusp =
∑c

i=1 ψξi and ψZ/B = ψY/B +
∑a

i=1(ψη+i
+ ψη−i

).

We let N = n+ 2a+ c be the total number of sections of Z/B, including cuspidal and inner

nodal transforms. Our proof that (10λ−δ+ψ+ψcusp)Z/B ≥ 0 will depend on the relative genus

h of Z/B.

5.3.1. Suppose h ≥ 2. Passing to the relative minimal model of Z/B only decreases the degree

of (10λ − δ + ψ + ψcusp). Hence we will assume that ωZ/B is relatively nef. We still have N

smooth and distinct sections (which can now intersect pairwise). With ωZ/B relatively nef, we

can apply the Cornalba-Harris inequality:

• If h ≥ 3, then 10 > 8 + 4/h and so 10λ − δ > 0 by Proposition 4.1. We also have

ψ + ψcusp ≥ 0, so we are done.

• If h = 2, then Proposition 4.1 gives 10λ − δ ≥ 0. Lemma 2.1 gives ψ + ψcusp > 0 since

we must have N ≥ 1 (if N = 0, then C/B was a family inM2,0(9/11− ε)). We are done.
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5.3.2. Suppose h = 1. Using relations on the stack on N -pointed Gorenstein genus 1 curves

inherited from standard relations in Pic(M1,N ) given by [AC98, Theorem 2.2], we have λ =

δirr/12, and ψ = Nδirr/12 +
∑

S |S|δ0,S ≥ Nδirr/12 + 2δred. If N ≥ 3, we obtain

10λ+ ψ − δ ≥ 10δirr/12 +Nδirr/12 + 2δred − (δirr + δred) > 0.

If N = 2, we obtain 10λ−δ+ψ ≥ δred ≥ 0 and ψcusp ≥ 0. We conclude that 10λ−δ+ψ+ψcusp ≥ 0

with the equality holding if only if ψcusp = δred = 0. This is possible if and only if all fibers are

irreducible and there are no cuspidal transforms (by Lemma 2.1), which implies that X/B =

Y/B is a family of A1/A1-attached elliptic bridges.

5.3.3. Suppose h = 0. Then all fibers of Z/B are in fact at-worst nodal. Because λ = 0, we

can write (10λ− δ + ψ + ψcusp)Z/B = (ψ − δ + ψcusp)Z/B. Blow-up the points of intersection of

η+
i and η−i for each i. We obtain a family

(
W/B, {σi}ni=1, {η

±
i }ai=1, {ξi}ci=1

)
in M0,N . Setting

δinner :=
∑a

i=1 δ{η+i ,η
−
i }

, we have

(ψ − δ + ψcusp)Z/B = (ψ − δ − δinner + ψcusp)W/B .

If a = 0, then δinner = 0 and we are done because ψ− δ > 0 for any family of Deligne-Mumford

stable rational curves, for example by [KM13, Lemma 3.6]. If a ≥ 2, then by Lemma 4.8,∑a
i=1(ψη+i

+ ψη−i
) ≥ 4δinner. In addition, 3ψ ≥ 4δ by a similar argument. It follows that

ψ > δ + δinner and so we are done.

Finally, if a = 1, then
(
Y/B, {σi}ni=1, {ξi}ci=1

)
obtained in Subsection 5.2 is a family of arith-

metic genus 1 (generically nodal) curves. The proof in §5.3.2 goes through without any modifi-

cations to show that (10λ− δ + ψ + ψcusp)Y/B ≥ 0 with the equality if and only if X/B = Y/B
is a (generically nodal) elliptic bridge.

5.4. A different proof. Theorem 1.2(a) also follows immediately from the results of Hassett

and Hyeon [HH09, HH13]. Namely, in the case of n = 0, [HH09, Lemma 4.1 and Proposition 4.2]

imply that KMg(9/11−ε) + 7
10δ is nef. Alternatively, Hassett and Hyeon show that KMg(9/11−ε) +

7
10δ is a pullback of an ample line bundle via a morphism to the GIT quotient of the Chow

variety of bicanonical curves [HH13, p.944]. The case of n ≥ 1 follows from the observation that

KMg+hn(9/11−ε) + 7
10δ pulls back to KMg,n(9/11−ε) + 7

10δ+ 3
10ψ under the morphismMg,n(9/11−

ε)→Mg+nh(9/11−ε) defined by attaching a fixed general curve of genus h ≥ 3 to every marked

point.

6. Proof of Theorem 1.2(b)

In the remaining part of the paper, we prove Theorem 1.2(b). Let (C/B, {σi}ni=1) be a

(7/10−ε)-stable generically non-isotrivial family of curves. We begin by dealing with the case

when C/B has a generic rosary, or a generic A1/A3 or A3/A3-attached elliptic bridge. In both

cases, generic tacnodes come into play and we will repeatedly use the following result that

explains what happens under normalization of a generic tacnode:

Proposition 6.1. Suppose X/B is a family in Ũg(A∞) with a section τ such that τ(b) is a

tacnode of Xb for all b ∈ B. Denote by Y the normalization of X along τ and by τ+ and τ− the
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preimages of τ . Then τ± are smooth sections satisfying ψτ+ = ψτ− and we have the following

formulae:

λX/B = λY/B −
1

2
(ψτ+ + ψτ−),

δX/B = δY/B − 6(ψτ+ + ψτ−).

Proof. This is [Smy11, Proposition 3.4] (although it is stated there only in the case of g = 1). �

6.1. Reduction 1: The case of generic rosaries. Let C be the geometric generic fiber of

C/B and consider a maximal length rosary R = R1 ∪ · · · ∪ R` of C (see Definition 2.5). Since

C/B is non-isotrivial, the rosary cannot be closed. Let T := C \R. The point T ∩ R1 (resp.,

T ∩ R`) is either an outer node or an outer tacnode, so its limit in every fiber is the same

singularity by [AFSv15, Proposition 2.10]. Similarly, the limits of the tacnodes Ri ∩ Ri+1, for

i = 1, . . . , `− 1, remain tacnodes in every fiber. We then have that C = T ∪R1∪ · · · ∪R`, where

the geometric generic fiber of Ri and T is Ri and T respectively. Let χ1 (resp., χ2) be the nodal

or tacnodal section along which T and R1 (resp., R`) meet. Let τi, for i = 1, . . . , `− 1, be the

tacnodal section along which Ri and Ri+1 meet. In the rest of the proof we use the fact that

self-intersections of 2 disjoint smooth sections on a P1-bundle over B are equal of opposite signs.

Together with Proposition 6.1, this gives

(ψχ1)R1/B = −(ψτ1)R1/B = −(ψτ1)R2/B = (ψτ2)R2/B = (−1)`−1(ψτ`−1
)R`/B = (−1)`(ψχ2)R`/B.

In what follows, we set ψT /B =
∑n

i=1 ψσi + ψχ1 + ψχ2 = ψC/B + ψχ1 + ψχ2 .

Case 1: R is A1/A1-attached rosary. An A1/A1-attached rosary of even length is an elliptic

chain and thus cannot appear in an α-stable curve for α < 7/10−ε. Hence ` must be odd. By

Proposition 6.1, we obtain(
39

4
λ− δ + ψ

)
C/B

=

(
39

4
λ− δ + ψ

)
T /B

.

Since (T , {σi}ni=1, χ1, χ2) is (7/10−ε)-stable and R/B is isotrivial, we reduce to proving Theorem

1.2(b) for (T , {σi}ni=1, χ1, χ2), which has one less generic rosary than (C/B, {σi}ni=1).

Case 2: R is A1/A3-attached rosary. Suppose χ1 is a nodal section and χ2 is a tacnodal

section. By the maximality assumption on R, the irreducible component of T meeting R` is not

a 2-pointed smooth rational curve. It follows by Lemma 2.1 that (ψχ2)T ≥ 0. By Proposition

6.1, we have(
39

4
λ− δ + ψ

)
C/B

=

(
39

4
λ− δ + ψ

)
T /B

+ (ψχ1)R1/B +
5

4
(ψχ2)R`/B +

9

4

`−1∑
i=1

(ψτi)Ri .

If ` is odd, then
∑`−1

i=1 (ψτi)Ri = 0 and ψχ1 = −ψχ2 . We thus obtain:(
39

4
λ− δ + ψ

)
C/B

=

(
39

4
λ− δ + ψ

)
T /B

+
1

4
(ψχ2)T /B ≥

(
39

4
λ− δ + ψ

)
T /B

.

Noting that ψχ2 = 0 only if R/B is isotrivial, we again reduce to proving Theorem 1.2(b) for

(T , {σi}ni=1, χ1, χ2).
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If ` is even, then ψχ1 = ψχ2 and
∑`−1

i=1(ψτi)Ri + ψχ2 = 0, so that(
39

4
λ− δ + ψ

)
C/B

=

(
39

4
λ− δ + ψ

)
T /B

.

Furthermore, we observe that R/B is isotrivial and we reduce to proving Theorem 1.2(b) for

(T , {σi}ni=1, χ1, χ2).

Case 3: R is A3/A3-attached rosary. By the maximality assumption on R, neither T ∩
R1 nor T ∩ R2 lies on a 2-pointed rational component of T . It follows by Lemma 2.1 that

(ψχ1)T , (ψχ2)T ≥ 0. However, ψχ1 = (−1)`ψχ2 . Therefore, either ψχ1 = ψχ2 = 0, in which case

R/B is an isotrivial family, or ` is even and ψχ1 = ψχ2 > 0. In either case, Proposition 6.1 gives(
39

4
λ− δ + ψ

)
C/B

=

(
39

4
λ− δ + ψ

)
T /B

+
1

4
(ψχ2)T /B ≥

(
39

4
λ− δ + ψ

)
T /B

,

and the inequality is strict if R is not isotrivial. Thus we reduce to proving Theorem 1.2(b) for

(T , {σi}ni=1, χ1, χ2).

6.2. Reduction 2: The case of generic A1/A3 or A3/A3-attached elliptic bridges. Sup-

pose the geometric generic fiber of C/B can be written as C = T1 ∪ E ∪ T2, where E is an

A1/A3-attached elliptic bridge. Let q1 = T1 ∩ E be a node and q2 = T2 ∩ E be a tacnode. By

[AFSv15, Proposition 2.10], the limit of q1 (resp., q2) remains a node (resp., a tacnode) in every

fiber. Thus we can write C = (T1, τ0)∪ (E , τ1, τ2)∪ (T2, τ3), where τ0 ∼ τ1 are glued nodally and

τ2 ∼ τ3 are glued tacnodally. Since A1/A1-attached elliptic bridges are disallowed, fibers of E
have no separating nodes and so (E , τ1, τ2) is a family of elliptic bridges. By [AFSv15, Lemma

2.16], (T1, τ0) is (7/10− ε)-stable. Also, (T2, τ3) is (7/10− ε)-stable because τ3 cannot lie on an

A1-attached elliptic tail in T2.

Set C′ = (T1, τ0) ∪ (T2, τ3), where we glue by τ0 ∼ τ3 nodally. Then (C′/B, {σi}ni=1) is a

(7/10− ε)-stable family by [AFSv15, Lemma 2.17]. By Proposition 6.1, we have(
39

4
λ− δ + ψ

)
C/B

=

(
39

4
λ− δ + ψ

)
T1/B

+

(
39

4
λ− δ + ψτ1 +

5

4
ψτ2

)
E/B

+

(
39

4
λ− δ + ψ

)
T2/B

=

(
39

4
λ− δ + ψ

)
T1/B

+

(
39

4
λ− δ + ψ

)
T2/B

=

(
39

4
λ− δ + ψ

)
C′/B

,

where we have used relations (ψτ1)E/B = (ψτ2)E/B = λE/B and δE/B = 12λE/B, both of which

hold because (δred)E/B = 0.

Note that (E/B, τ1, τ2) is trivial if and only if ψτ2 = ψτ3 = 0. Thus we have reduced to

proving Theorem 1.2(b) for the family C′/B with one less generic A1/A3-attached elliptic bridge.

Moreover, the equality for C′/B holds if and only if the equality for C/B holds and C′/B is

obtained by replacing a generic node of C′ by a family of elliptic bridges A1/A3-attached along

the nodal transforms.

Similarly, if the generic fiber of C/B has an A3/A3-attached elliptic bridge, then we can

remove the bridge and recrimp the two remaining components of C along a generic tacnode.

The calculation similar to the above shows that the degree of
(

39
4 λ− δ + ψ

)
does not change

under this operation.
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Observe that replacing an attaching node of a Weierstrass chain of length ` by an A1/A3-

attached elliptic bridge in a way that preserves (7/10− ε)-stability gives a Weierstrass chain of

length ` + 1. Similarly, replacing a tacnode in a Weierstrass chain of length ` by an A3/A3-

attached elliptic bridge gives a Weierstrass chain of length `+ 1. In what follows, we will prove

that for a non-isotrivial (7/10−ε)-stable family (C/B, {σi}ni=1) with no generic A1/A3 or A3/A3-

attached elliptic bridges, we have
(

39
4 λ− δ + ψ

)
C/B ≥ 0 and equality holds if and only if C/B is

a family of Weierstrass genus 2 tails. By the preceding observation, this implies that for every

non-isotrivial (7/10−ε)-stable family (C/B, {σi}ni=1), we have
(

39
4 λ− δ + ψ

)
C/B ≥ 0 and equality

holds if and only if C/B is a family of Weierstrass chains!

6.3. Reduction 3: Normalization along generic tacnodes. Consider a family (C/B, {σi}ni=1)

of (7/10− ε)-stable curves with no generic rosaries and no generic A1/A3 or A3/A3-attached el-

liptic bridges. Let X be the normalization of C along generic tacnodes. Denote by {τ±i }di=1 the

preimages of the generic tacnodes, and call them tacnodal transforms. Set ψtacn :=
∑d

i=1(ψτ+i
+

ψτ−i
) and ψX/B := ψC/B + ψtacn. Applying Proposition 6.1 we have(

39

4
λ− δ + ψ

)
C/B

=

(
39

4
λ− δ + ψ +

1

8
ψtacn

)
X/B

.

If we now treat each tacnodal transform τ±i as a marked section, then every connected com-

ponent of X is a generically (7/10 − ε)-stable family (because there are no generic A1/A3

or A3/A3-attached elliptic bridges). Blowing-down all rational tails meeting a single tacn-

odal transform and no other marked sections does not change
(

39
4 λ− δ + ψ

)
X/B but makes

(X/B, {σi}ni=1, {τ
±
i }di=1) into a (7/10 − ε)-stable family. We still have ψtacn ≥ 0 by Lemma

2.1, with strict inequality if d ≥ 1. Thus, we have reduced to proving Theorem 1.2(b) for a

(7/10− ε)-stable family with no generic tacnodes.

6.4. Reduction 4: Normalization along generic outer nodes. Consider a (7/10−ε)-stable

family (X/B, {σi}ni=1) with no generic tacnodes. Let Y be the normalization of X along the

generic outer nodes and let {ζ+
i , ζ

−
i }bi=1 be the transforms of the generic outer nodes. Set

δtacn :=
∑

i 6=j(ζ
±
i · ζ

±
j ) and ψY/B := ψX/B +

∑b
i=1(ψζ+i

+ ψζ−i
). Then by Proposition 3.5, we

have (
39

4
λ− δ + ψ

)
X/B

=

(
39

4
λ− δ + ψ +

7

8
δtacn

)
Y/B

.

6.5. Reduction 5: Normalization along generic cusps. Let Y be as in Subsection 6.4 and

let Z be the normalization of (a connected component of) Y along generic cusps and let {ξi}ci=1

be the cuspidal transforms on Z. Then the family (Z/B, {σi}ni=1, {ζi}bi=1, {ξi}ci=1) satisfies the

following properties:

(1) The generic fiber is irreducible and at-worst nodal.

(2) The sections {σi}ni=1 are smooth, pairwise non-intersecting and disjoint from {ζi}bi=1.

(3) The sections {ζi}bi=1 are smooth and at most two of them can meet at any given point

of Z.

(4) The sections {ξi}ci=1 are pairwise non-intersecting and disjoint from {ζi}bi=1 and {σi}ni=1.
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Set c(B) := 2
∑c

i=1 ι(ξi), where ι(ξi) is the index of the cuspidal transform ξi, and ψcusp :=∑c
i=1 ψξi . Then we have by Proposition 3.6(

39

4
λ− δ + ψ +

7

8
δtacn

)
Y/B

=

(
39

4
λ− δ + ψ +

5

4
ψcusp −

1

4
c(B) +

7

8
δtacn

)
Z/B

.(6.1)

Our goal for the rest of the section is to prove that the expression on the right-hand side of

(6.1) is non-negative and equals 0 if and only if the only non-isotrivial components of the family

X/B from Subsection 6.4 are A1-attached Weierstrass genus 2 tails.

Let h be the geometric genus of the generic fiber of Z and let a be the number of generic

inner nodes of Z. Our further analysis breaks down according to the following possibilities:

(A) h ≥ 3; see §6.5.1.

(B) h = 2, or (h, a) = (1, 1), or (h, a) = (0, 2); see §6.5.2.

(C) h = 1 and a 6= 1, or (h, a) = (0, 1); see §6.5.3.

(D) h = 0 and a ≥ 3, or (h, a) = (0, 0); see §6.5.4.

6.5.1. Case A: Relative geometric genus h ≥ 3. Suppose Z/B is a family as in Subsection 6.5.

Let W be the normalization of Z along the generic inner nodes. Let {η+
i , η

−
i }ai=1 be the inner

nodal transforms on W. Then (W/B, {σi}ni=1, {η
±
i }ai=1, {ζi}bi=1, {ξi}ci=1) satisfies the following

properties:

(1) The generic fiber is a smooth curve of genus h ≥ 3.

(2) Sections {σi}ni=1 are smooth, non-intersecting, and disjoint from {η±i }ai=1, {ζi}bi=1, and

{ξi}ci=1.

(3) Inner nodal transforms {η±i }ai=1 are disjoint from {ζi}bi=1 and {ξi}ci=1. Their properties

are described by Proposition 3.4.

(4) Outer nodal transforms {ζi}bi=1 are disjoint from {ξi}ci=1. Their properties are described

by Proposition 3.5.

(5) Cuspidal transforms {ξi}ci=1 have properties described by Proposition 3.6.

We let ψW/B := ψZ/B +
∑a

i=1(ψη+i
+ ψη−i

) and (δtacn)W/B := (δtacn)Z/B +
∑

i 6=j(η
±
i · η

±
j ). We

set δinner :=
∑a

i=1(η+
i · η

−
i ) and n(B) :=

∑a
i=1 ι(η

+
i ), where ι(η+

i ) is the index of the inner nodal

transform η+
i . Then by Proposition 3.4:

(6.2)

(
39

4
λ− δ + ψ +

5

4
ψcusp −

1

4
c(B) +

7

8
δtacn

)
Z/B

=

(
39

4
λ− δ + ψ − 1

4
δinner −

1

4
n(B)− 1

4
c(B) +

5

4
ψcusp +

7

8
δtacn

)
W/B

.

Passing to the relative minimal model of W/B does not increase the degree of the divisor

on the right-hand side of (6.2). Hence we will assume that ωW/B is relatively nef. Then by

Proposition 4.1, we have (8 + 4/h)λ − δ ≥ 0. Since h ≥ 3 and δ ≥ 0, we obtain 39
4 λ − δ > 0

(when δ = 0, we have λ > 0 by the existence of the Torelli morphism). We proceed to estimate

the remaining terms of the right-hand side of (6.2). Clearly, δtacn ≥ 0. Since h ≥ 3 and
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κ = 12λ− δ > 0, the inequalities of Lemmas 4.3 and 4.4 give

ψcusp =
c∑
i=1

ψξi ≥
(h− 1)

h

c∑
i=1

ι(ξi) + c
κ

4h(h− 1)
=
h− 1

2h
c(B) + c

κ

4h(h− 1)
>

1

3
c(B),

a∑
i=1

(ψη+i
+ ψη−i

) ≥ 2(h− 1)

h+ 1

a∑
i=1

((η+
i · η

−
i ) + ι(η+

i )) + a
κ

h2 − 1
> δinner + n(B).

Summarizing, we conclude that the right-hand side of (6.2) is strictly positive.

6.5.2. Case B: Relative genus 2. Suppose Z/B is a family as in 6.5 with relative geometric genus

h = 2. Let W be the normalization of Z along the generic inner nodes. As in §6.5.1, we reduce

to proving that

(6.3)

(
39

4
λ− δ + ψ − 1

4
δinner −

1

4
n(B)− 1

4
c(B) +

5

4
ψcusp +

7

8
δtacn

)
W/B

≥ 0,

under the assumption that ωW/B is relatively nef.

For any family W/B of arithmetic genus 2 curves with a relatively nef ωW/B, we have

(6.4) 10λ = δirr + 2δred.

This relation implies that δ ≤ 10λ for any generically irreducible family and, consequently,

κ = 12λ − δ ≥ 2λ, with the equality achieved only if δred = 0, i.e., if there are no fibers where

two genus 1 components meet at a node. It follows that 39
4 λ− δ ≥ −λ/4, with the equality only

if δred = 0.

By Lemma 4.4, we have
a∑
i=1

(ψη+i
+ ψη−i

) ≥ 2

3
(δinner + n(B)) + a

κ

3
.

By Lemma 4.3, we have

ψcusp ≥
1

4
c(B) + c

κ

8
.

Putting these inequalities together and using κ ≥ 2λ, we obtain

9

4
ψcusp +

a∑
i=1

(ψη+i
+ ψη−i

) ≥ 1

4
δinner +

1

4
n(B) +

1

4
c(B) +

(
2a

3
+

9c

16

)
λ.

If a+ c ≥ 1, we obtain a strict inequality in (6.3) at once. Suppose a = c = 0. So far, we have

that (
39

4
λ− δ + ψ

)
W/B

≥
n∑
i=1

ψσi +
b∑
i=1

ψζi −
1

4
λ.

We now invoke Lemma 4.5 that gives

n∑
i=1

ψσi +
b∑
i=1

ψζi ≥
(n+ b)

8
κ ≥ (n+ b)

4
λ.

Since n+ b ≥ 1 (otherwise, W/B is an unpointed family of genus 2 curves, which is impossible),

we conclude that
∑n

i=1 ψσi +
∑b

i=1 ψζi − λ/4 ≥ 0 and that equality is achieved if and only if

n+ b = 1, δred = 0, and equality is achieved in Lemma 4.5. This is precisely the situation when

Y/B =W/B is a family of A1-attached Weierstrass genus 2 tails.
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Finally, if (h, a) = (1, 1) or (h, a) = (0, 2), we proceed exactly as above but without normal-

izing the inner nodes: For a family (Z/B, {σi}ni=1, {ζi}bi=1, {ξi}ci=1) as in Subsection 6.5, where

the relative arithmetic genus of Z/B is 2, we need to prove(
39

4
λ− δ + ψ +

5

4
ψcusp −

1

4
c(B) +

7

8
δtacn

)
Z/B
≥ 0.

Applying (6.4) to estimate δ, Lemma 4.3 to estimate ψcusp, and Lemma 4.5 to estimate

n∑
i=1

ψσi +
b∑
i=1

ψζi

(all of which apply even if the total space Z is not normal), we obtain

39

4
λ − δ + ψ +

5

4
ψcusp −

1

4
c(B) +

7

8
δtacn ≥ −

1

4
λ +

4n+ 4b+ 9c

16
λ +

5

16
c(B) +

7

8
δtacn ≥ 0.

Moreover, equality is achieved if and only if δred = 0, c = 0, and n+ b = 1, which is precisely the

situation when Y/B = Z/B is a family of A1-attached (generically nodal) Weierstrass genus 2

tails.

6.5.3. Case C: Relative genus 1. Suppose Z/B is a family as in Subsection 6.5 of relative genus

1 and with a generic inner nodes, where a 6= 1. We consider the case a ≥ 2 first. Let W be the

family obtained from Z by the following operations:

(1) Normalize Z along all generic inner nodes to obtain inner nodal pairs {η+
i , η

−
i }ai=1.

(2) Blow-up all cuspidal and inner nodal transforms to make them Cartier divisors.

(3) Blow-up points of η±i ∩ η
±
j for all i 6= j.

(4) Blow-up points of ζi ∩ ζj for all i 6= j.

As a result, the sections of W/B do not intersect pairwise with the only possible exception that

η+
i is allowed to meet η−i . A node of Z through which ξi passes is replaced in W by a balanced

rational bridge meeting the strict transform of ξi, which we continue to denote by ξi. We say

that such a bridge is a cuspidal bridge associated to ξi. Moreover, if we let c(ξi) be the sum of

the indices of all bridges associated to ξi, then

2ι(ξi)Z/B = c(ξi)W/B.

Suppose {η+
i , η

−
i } is an inner nodal pair of Z/B. Then a node of Z through which η+

i and η−i
both pass is replaced in W by a balanced rational bridge meeting the strict transforms of η+

i

and η−i , which we continue to denote by η+
i and η−i . We say that such a bridge is an inner nodal

bridge associated to {η+
i , η

−
i }. Moreover, if we let n(ηi) be the sum of the indices of all bridges

associated to {η+
i , η

−
i }, then

((η+
i · η

−
i ) + ι(η+

i ))Z/B = ((η+
i · η

−
i ) + n(ηi))W/B.

On W/B, we define

δinner :=

a∑
i=1

(η+
i · η

−
i ), δtacn :=

∑
i 6=j

δ0,{η±i ,η
±
j }

+
∑
i 6=j

δ0,{ζi,ζj},
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and let n(B) (resp., c(B)) be the sum of the indices of all inner nodal (resp., cuspidal) bridges.

We reduce to proving that(
39

4
λ− δ + ψ − 1

4
δinner −

1

4
n(B)− 1

4
c(B) +

5

4
ψcusp −

1

8
δtacn

)
W/B

≥ 0.

We will make use of the standard relations for pointed families of genus 1 curves and Lemmas

4.6 and 4.7. Let N = n+ 2a+ b+ c be the total number of marked sections of W/B. Clearly,

N ≥ 2. We consider first the case when N ≥ 3. Then by Lemma 4.6, we have

δinner + n(B) ≤ N

2(N − 2)

a∑
i=1

(ψη+i
+ ψη−i

) +
a

2(N − 2)2
δred.

Applying Lemma 4.7, we obtain

c(B) ≤ 2N

N − 1
ψcusp +

c

4(N − 1)2
δred.

Using the above two inequalities and rewriting δ = 12λ+ δred, we see that

(6.5)
39

4
λ− δ + ψ − 1

4
(δinner + n(B) + c(B)) +

5

4
ψcusp −

1

8
δtacn

≥ −9

4
λ+

(
5

4
− N

2(N − 1)

)
ψcusp + ψ − N

8(N − 2)

a∑
i=1

(ψη+i
+ ψη−i

)

−
(

1 +
a

8(N − 2)2
+

c

16(N − 1)2

)
δred −

1

8
δtacn.

We rewrite each ψ-class on the right-hand side of (6.5) using the standard relation on families

of arithmetic genus 1 curves:

ψσ = λ+
∑
σ∈S

δ0,S .

The coefficient of λ in the resulting expression for the right-hand side of (6.5) is

(6.6) − 9

4
+ c

(
5

4
− N

2(N − 1)

)
+N − aN

4(N − 2)
.

Using N ≥ 2a+ c and the assumption N ≥ 3, it is easy to check that (6.6) is always positive.

A similarly straightforward but tedious calculation shows that each boundary divisor δ0,S

appears in the resulting expression for the right-hand side of (6.5) with a positive coefficient.

Thus we have shown that the right-hand side of (6.5) is positive for every non-isotrivial family

with N ≥ 3.

We consider now the case of N = 2. Since C/B in Subsection 6.3 has no generic elliptic

bridges (nodally or tacnodally attached), we must have c = 1 and n + b = 1. Let ξ be the

corresponding cuspidal transform and τ be either a marked smooth section (if n = 1) or an

outer nodal transform (if b = 1). We trivially have δinner = n(B) = δtacn = δred = 0. Using
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δirr = 12λ and the inequality c(B) ≤ 4ψcusp from Lemma 4.7, we obtain:

39

4
λ− δ + ψ − 1

4
δinner −

1

4
n(B)− 1

4
c(B) +

5

4
ψcusp −

1

8
δtacn

=
39

4
λ− δ + ψ − 1

4
c(B) +

5

4
ψcusp ≥

39

4
λ− 12λ+ ψ +

1

4
ψcusp

=
39

4
λ− 12λ+ 2λ+

1

4
λ = 0.

Moreover, equality holds only if equality holds in Lemma 4.7. This happens if and only if 2ξ ∼ 2τ

and implies that Y/B in 6.4 is a generically cuspidal family of A1-attached Weierstrass genus 2

tails. We are done with the analysis in the case h = 1 and a 6= 1.

If (h, a) = (0, 1), we proceed exactly as above, but without normalizing the inner node.

6.5.4. Case D: Relative geometric genus 0. Suppose Z/B is a family as in Subsection 6.5 of

relative geometric genus 0 and with a generic inner nodes, where either a ≥ 3 or a = 0. We

consider the case a ≥ 3 first. Let W be the family obtained from Z by the following operations:

(1) Normalize Z along all generic inner nodes to obtain inner nodal pairs {η+
i , η

−
i }ai=1.

(2) Blow-up all cuspidal and inner nodal transforms to make them Cartier divisors. This

operation introduces cuspidal or nodal bridges as in §6.5.3.

(3) Blow-up points of η±i ∩ η
±
j for all 1 ≤ i < j ≤ a.

(4) Blow-up points of ζi ∩ ζj for all 1 ≤ i < j ≤ b.
(5) Blow-up points of η+

i ∩ η
−
i for all 1 ≤ i ≤ a.

(6) Blow-down all rational tails marked by a single section (such tails are necessarily adjacent

either to cuspidal or inner nodal bridges).

As a result, W/B is a family inM0,N , where N = n+ 2a+ b+ c and a ≥ 3. OnW/B, we define

δinner :=

a∑
i=1

δ{η+i ,η
−
i }
, δtacn :=

∑
i 6=j

δ{η±i ,η
±
j }

+
∑
i 6=j

δ{ζi,ζj},

δNB3 :=
a∑
i=1

∑
β 6=η+i ,η

−
i

δ{η+i ,η
−
i ,β}

, δCB2 :=
c∑
i=1

∑
β 6=ξi

δ{ξi,β},

and let n(B) (resp., c(B)) be the sum of the indices of all inner nodal (resp., cuspidal) bridges.

Then(
39

4
λ− δ + ψ +

5

4
ψcusp −

1

4
c(B) +

7

8
δtacn

)
Z/B

=

(
ψ +

5

4
ψcusp − δ −

5

4
δinner −

1

4
(n(B) + c(B) + δNB3 + δCB2 )− 1

8
δtacn

)
W/B

.

We are going to prove that a (strict!) inequality

ψ +
5

4
ψcusp − δ −

5

4
δinner −

1

4
(n(B) + c(B) + δNB3 + δCB2 )− 1

8
δtacn > 0

always holds on W/B. In doing so, we will use the following standard relation on M0,N :

(6.7) ψ =
∑
r≥2

r(N − r)
N − 1

δr.
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First we deal with the case of a family with 3 inner nodal pairs and no other marked sections,

i.e., a = 3 and N = 6. The desired inequality in this case simplifies to

ψ − δ − 5

4
δinner −

1

4
(n(B) + δNB3 )− 1

8
(δ2 − δinner) > 0.

We have an obvious inequality 2n(B) ≤ δ2. Thus we reduce to proving

(6.8) ψ >
5

4
δ2 +

9

8
δinner + δ3 +

1

4
δNB3 .

For a ≥ 3, Lemma 4.8 gives

ψ ≥ 4δinner + δtacn + 3δNB3 = 3δinner + δ2 + 3δNB3 .

Combining this with the standard relation 5ψ = 8δ2 + 9δ3 gives

8ψ ≥ 9δinner + 11δ2 + 9δ3 + 9δNB3 .

This clearly implies (6.8) as desired.

Next, we consider the case of N ≥ 7. In this case, every inner nodal or cuspidal bridge is

adjacent to a node from
∑

r≥3 δr. As a result, we have n(B) + c(B) ≤ 2
∑

r≥3 δr. Furthermore,
1
4δ
CB
2 + 1

8δtacn + 1
4δinner ≤

1
4δ2 (because a node from δ2 can contribute only to one of the δinner,

δtacn, or δCB2 ). Hence we reduce to proving

(6.9) ψ +
5

4
ψcusp −

5

4
δ2 − δinner −

3

2

∑
r≥3

δr −
1

4
δNB3 > 0

We combine the inequality of Lemma 4.8 with the standard relation (6.7), and the obvious

ψ ≥ ψinner to obtain

3

ψ −∑
r≥2

r(N − r)
N − 1

δr

+
(
ψinner − 4δinner − 3δNB3

)
+
(
ψ − ψinner

)
≥ 0.

This gives the estimate

4ψ ≥ 4δinner +
6(N − 2)

N − 1
δ2 +

9(N − 3)

N − 1

∑
r≥3

δr + 3δNB3 .

Using N ≥ 7 and ψcusp ≥ 0, we finally get

ψ +
5

4
ψcusp ≥ δinner +

5

4
δ2 +

3

2

∑
r≥3

δr +
3

4
δNB3 .

Moreover, the equality could be achieved only if N = 7 and ψ − ψinner = 0 which is impossible

because ψ = ψinner implies that all sections are inner nodal transforms and so N must be even.

Hence we have established (6.9) as desired.

At last, we consider the case of a = 0. Because the familyW/B is non-isotrivial, we must have

N ≥ 4. In addition, if N = 4, then there exists a unique family of 4-pointed Deligne-Mumford

stable rational curves. The requisite inequality is easily verified for this family by hand. If

N ≥ 5, then using the inequality 2c(B) ≤ δ, we reduce to proving

ψ +
5

4
ψcusp −

9

8
δ − 1

4
δCB2 − 1

8
δtacn > 0.
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The standard relation (6.7) gives

ψ ≥ 3

2

∑
r≥2

δr >
11

8
δ2 +

9

8

∑
r≥3

δr >
9

8
δ +

1

4
δ2.

Finally, the inequality δ2 ≥ δCB2 + δtacn gives the desired result.

This completes the proof of Theorem 1.2 (b).

7. Projectivity from positivity

Throughout this section, we make use of the following standard abuse of notation: Whenever L
is a line bundle onMg,n(α) that descends to the good moduli space, we denote the corresponding

line bundle on Mg,n(α) also by L. In this situation, pullback defines a natural isomorphism

H0
(
Mg,n(α),L

)
' H0

(
Mg,n(α),L

)
.

We begin with a result that allows us to descend a multiple of KMg,n(α) +αδ+ (1−α)ψ from

the stack to the good moduli space.

Proposition 7.1. Let αc ∈ {2/3, 7/10, 9/11}. For any closed C-point [(C, {pi}ni=1)] ∈Mg,n(αc),

the action of Aut(C, {pi}ni=1)◦ on the fiber of KMg,n(αc)
+αcδ+(1−αc)ψ is trivial. Consequently,

a positive multiple of KMg,n(αc)
+ αcδ + (1− αc)ψ descends to Mg,n(αc).

Proof. We recall that by [AFSv15, Theorem 2.22], an αc-stable curve (C, {pi}ni=1) is closed

Mg,n(αc) if and only if it is αc-closed (see [AFSv15, Definition 2.21]). Furthermore, the com-

binatorial types of αc-closed curves are described in [AFSv15, Definition 2.31]. We prove the

proposition for αc = 2/3 and an αc-closed curve (C, {pi}ni=1) of Type A with just one αc-atom;

the other cases being similar. Let

C = K ′ ∪ L = K ′ ∪R1 ∪ · · · ∪R`−1 ∪ E

be the decomposition of C as in [AFSv15, Definition 2.31], where E is the αc-atom and Rj are

length 3 rosaries. Suppose that the rank of Aut(K ′) is d. By [AFSv15, Remark 2.28], there

exist length 3 rosaries R′1, . . . , R
′
d in K ′ such that Aut(K ′)◦ '

∏d
k=1 Aut(R′k). Thus, we have

Aut(C)◦ = Aut(K ′)◦ ×Aut(L) =

d∏
k=1

Aut(R′k)×

`−1∏
j=1

Aut(Rj)×Aut(E)

 .
Given a line bundle L on Mg,n(αc) and any one-parameter subgroup ρ : Gm → Aut(C), we

let 〈χL, ρ〉 be the character of the induced action of Gm on the fiber of the line bundle L over the

point [C]. Let ρ′k : Gm → Aut(C) (resp., ρj , ϕ) be the one-parameter subgroup corresponding

to Aut(R′k) ⊂ Aut(C) (resp., Aut(Rj),Aut(E) ⊂ Aut(C)). By [AFS14, Sections 3.1.2–3.1.3],

we have
〈χλ, ρ′k〉 = 0 〈χλ, ρj〉 = 0 〈χλ, ϕ〉 = 4

〈χδ−ψ, ρ′k〉 = 0 〈χδ−ψ, ρj〉 = 0 〈χδ−ψ, ϕ〉 = 39.

We provide details only for one character calculation: By definition, ϕ acts non-trivially only

on the αc-atom E, which is an A4-atom in the terminology of [AFS14]. Now, [AFS14, Corollary

3.3] says that the character of the induced action of Gm on the fiber of the line bundle λ over

the point [C] is the same as the analogous character of [E] ∈ M2,1(αc). It follows by [AFS14,

Section 3.1.2] that 〈χλ, ϕ〉 = 4.
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Using the identity

KMg,n(αc)
+ αcδ + (1− αc)ψ = 13λ+ (αc − 2)(δ − ψ)

one easily computes

〈χK+αcδ+(1−αc)ψ, ρ
′
k〉 = 〈χK+αcδ+(1−αc)ψ, ρj〉 = 〈χK+αcδ+(1−αc)ψ, ϕ〉 = 0,

and the claim follows. The descent statement follows by [Alp13, Theorem 10.3]. �

Proposition 7.2. Let α > 2/3− ε. Suppose that KMg,n(α) +βδ+ (1−β)ψ descends to Mg,n(α)

for some β ≤ α. Then we have

Proj R
(
Mg,n(α),KMg,n(α) + βδ + (1− β)ψ

)
'Mg,n(β).

Proof. Consider the rational map fα : Mg,n 99K Mg,n(α). If α > 9/11, then fα is an isomor-

phism. If 7/10 < α ≤ 9/11, then fα|Mg,n\δ1,0 is an isomorphism onto the complement of the

codimension 2 locus of cuspidal curves in Mg,n(α). If α ≤ 7/10, then fα|Mg,n\(δ1,0 ∪ δ1,1) is an

isomorphism onto the complement of the codimension 2 locus of cuspidal and tacnodal curves

in Mg,n(α). (If n = 0, then δ1,1 = ∅). It follows that we have a discrepancy equation

(7.1) f∗α
(
KMg,n(α) + βδ + (1− β)ψ

)
' KMg,n

+ βδ + (1− β)ψ + c0δ1,0 + c1δ1,1,

where c0 = 0 if α > 9/11 and c1 = 0 if α > 7/10.

Let T1 ⊂ Mg,n be a non-trivial family of elliptic tails and T2 ⊂ Mg,n \ δ1,0 be a non-trivial

family of 1-pointed elliptic tails. Then fα is regular along T1, and for α ≤ 9/11 contracts T1

to a point. Similarly, fα is regular along T2, and for α ≤ 7/10 contracts T2 to a point. By

intersecting both sides of (7.1) with T1 and T2, we obtain c0 = 11β − 9 ≤ 0 if α ≤ 9/11, and

c1 = 10β − 7 ≤ 0 if α ≤ 7/10. It follows that

Proj R
(
Mg,n(α),KMg,n(α) + βδ + (1− β)ψ

)
' Proj R

(
Mg,n,KMg,n

+ βδ + (1− β)ψ
)
.

�

Proposition 7.3. Fix αc ∈ {α1 = 9/11, α2 = 7/10, α3 = 2/3} and take α0 = 1. Suppose that for

all 0 < ε� 1,

KMg,n(αc−1−ε) + (αc−1 − ε)δ + (1− αc−1 + ε)ψ

descends to an ample line bundle on Mg,n(αc−1 − ε). In addition, suppose that

KMg,n(αc−1−ε) + αcδ + (1− αc)ψ

is nef on Mg,n(αc−1 − ε) and all curves on which it has degree 0 are contracted by Mg,n(αc−1 −
ε) → Mg,n(αc). Then KMg,n(α) + αδ + (1 − α)ψ descends to an ample line bundle on Mg,n(α)

for all α ∈ [αc, αc−1).

Proof. By Proposition 7.1, KMg,n(αc)
+ αcδ + (1 − αc)ψ descends to Mg,n(αc). Consider the

open immersion of stacksMg,n(αc−1−ε) ↪→Mg,n(αc) and the induced map on the good moduli

spaces j : Mg,n(αc−1 − ε)→Mg,n(αc). We have that

j∗
(
KMg,n(αc)

+ αcδ + (1− αc)ψ
)

= KMg,n(αc−1−ε) + αcδ + (1− αc)ψ.

By our assumptions, KMg,n(αc−1−ε) + αcδ + (1 − αc)ψ descends to a nef line bundle on the

projective variety Mg,n(αc−1 − ε). First, we show that KMg,n(αc−1−ε) + αcδ + (1 − αc)ψ is
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semiample on Mg,n(αc−1− ε). To bootstrap from nefness to semiampleness, we first consider the

case n = 0 and g ≥ 3. By Proposition 7.2, the section ring of KMg(αc−1−ε) +αcδ on Mg(αc−1−ε)
is identified with the section ring of KMg

+αcδ on Mg. The latter line bundle is big, by standard

bounds on the effective cone of Mg, and finitely generated by [BCHM10, Corollary 1.2.1]. We

conclude that KMg(αc−1−ε) + αcδ is big, nef, and finitely generated, and so is semiample by

[Laz04, Theorem 2.3.15]. When n ≥ 1, simply note that KMg+hn(αc−1−ε) + αcδ pulls back to

KMg,n(αc−1−ε) +αcδ+(1−αc)ψ under the morphismMg,n(αc−1−ε)→Mg+nh(αc−1−ε) defined

by attaching a fixed general curve of genus h ≥ 3 to every marked point.

We have established that

j∗
(
KMg,n(αc)

+ αcδ + (1− αc)ψ
)

= KMg,n(αc−1−ε) + αcδ + (1− αc)ψ

is semiample on Mg,n(αc−1 − ε). By assumption, it has degree 0 only on curves contracted by

Mg,n(αc−1 − ε)→Mg,n(αc). We conclude that KMg,n(αc)
+αcδ+ (1−αc)ψ is semiample and is

positive on all curves in Mg,n(αc). Therefore, KMg,n(αc)
+αcδ+ (1−αc)ψ is ample on Mg,n(αc).

The statement for α ∈ (αc, αc−1) follows by interpolation. �

Proposition 7.4. Fix αc ∈ {9/11, 7/10, 2/3}. Suppose that KMg,n(αc)
+αcδ+(1−αc)ψ descends

to an ample line bundle on Mg,n(αc). Then for all 0 < ε� 1,

KMg,n(αc−ε) + (αc − ε)δc + (1− αc + ε)ψ

descends to an ample line bundle on Mg,n(αc − ε).

Proof. Consider the proper morphism π : Mg,n(αc−ε) → Mg,n(αc) given by [AFS16, Theorem

4.25]. Our assumption implies that KMg,n(αc−ε) + αcδ + (1− αc)ψ descends to a line bundle on

Mg,n(αc−ε) which is a pullback of an ample line bundle on Mg,n(αc) via π. To establish the

proposition, it suffices to show that a positive multiple of ψ − δ on Mg,n(αc−ε) descends to a

π-ample line bundle on Mg,n(αc−ε).
For every (αc−ε)-stable curve (C, {pi}ni=1), Proposition 7.1 implies that the induced character

of Aut(C, {pi}ni=1)◦ on both K+αcδ+(1−αc)ψ and K+αc+1δ+(1−αc+1)ψ is trivial. It follows

that the induced character of Aut(C, {pi}ni=1)◦ on δ − ψ is trivial. Applying [Alp13, Theorem

10.3], we obtain that a positive multiple of δ − ψ descends to a line bundle N on Mg,n(αc−ε).
To show that N∨ is relatively ample over Mg,n(αc), consider the commutative cube

W

��

f

zz

W−χ?
_oo

��

xx
Mg,n(αc)

φαc

��

Mg,n(αc−ε)

φαc−ε

��

? _oo

W//G

zz

W−χ //G

xx

oo

Mg,n(αc) Mg,n(αc−ε)
πoo

(7.2)

where W = [SpecA/G] → W//G = SpecAG and W−χδ−ψ → W−χδ−ψ//G = Proj
⊕

d≥0A−d are

the good moduli spaces as in [AFSv15, Proposition 3.3]. Since the vertical arrows are good
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moduli spaces, [AFS16, Proposition 2.7, Lemmas 2.8 and 3.3] imply that after shrinking W
by a saturated open substack we can assume that f sends closed points to closed points and

is stabilizer preserving at closed points, and that the left and right faces of Diagram (7.2) are

Cartesian. The argument in the proof of [AFS16, Theorem 1.3] concerning Diagram (7.2) shows

that the bottom face is Cartesian.

The restriction of N∨ to W−χδ−ψ descends to the relative O(1) on W−χδ−ψ//G. Therefore, the

pullback of N∨ on Mg,n(αc−ε) to W−χδ−ψ//G is O(1) and, in particular, is relatively ample over

W//G. Since the bottom face is Cartesian, it follows by descent that N∨ is relatively ample over

Mg,n(αc). The proposition follows. �

We proceed to prove Theorem 1.1 using Propositions 7.2, 7.3, 7.4 and Theorem 1.2.

Proof of Theorem 1.1. First, we show that Part (2) follows from Part (1). Indeed, suppose

KMg,n(α) + αδ + (1− α)ψ descends to an ample line bundle on Mg,n(α). Then

Mg,n(α) ' Proj R
(
Mg,n(α),KMg,n(α) + αδ + (1− α)ψ

)
'Mg,n(α),

where the second isomorphism is given by Proposition 7.2.

The proof of Part (1) proceeds by descending induction on α beginning with the known case

α > 9/11, when Mg,n(α) = Mg,n. Let αc ∈ {α1 = 9/11, α2 = 7/10, α3 = 2/3} and take

α0 = 1. Suppose we know Part (1) for all α ≥ αc−1 − ε. By Theorem 1.2, the line bundle

KMg,n(αc−1−ε) +αcδ+ (1−αc)ψ is nef onMg,n(αc−1− ε) and all curves on which it has degree 0

are contracted by Mg,n(αc−1 − ε)→Mg,n(αc). It follows by Proposition 7.3 that the statement

of Part (1) holds for all α ≥ αc. Finally, Proposition 7.4 gives the statement of Part (1) for

α ≥ αc − ε. �
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