Please do 6 of the following 10 problems.

Problem 2.1 (Faithfully flat ring homomorphisms).

Let $\phi \colon R \to S$ be a flat ring homomorphism. Show that the following statements are equivalent:

- (i) an *R*-module *M* is zero if and only if $M \otimes_R S$ is zero.
- (ii) a complex $0 \to M' \to M \to M'' \to 0$ of *R*-modules is exact if and only if $0 \to M' \otimes_R S \to M \otimes_R S \to M'' \otimes_R S \to 0$ is exact.
- (iii) for every *R*-module *M*, the induced map $M \to M \otimes_R S, m \mapsto m \otimes 1$ is injective.
- (iv) Spec $S \to \text{Spec } R$ is surjective.
- (v) any maximal ideal $\mathfrak{m} \subset R$ is in the image of the map $\operatorname{Spec} S \to \operatorname{Spec} R$.
- (vi) For every ideal $I \subset R$, there is an equality $I = \phi^{-1}(IR)$.

If the above equivalent conditions are satisfied, we say that $R \rightarrow S$ is *faithfully flat*.

Problem 2.2 (Properties of faithful flatness).

- (a) Let $R \to S$ be a flat local homomorphism of local rings. Show that $R \to S$ is faithfully flat.
- (b) Let (R, \mathfrak{m}) be a Noetherian local ring and $\widehat{R} = \varprojlim R/\mathfrak{m}^n$. Show that $R \to \widehat{R}$ is faithfully flat.
- (c) Let $R \to S$ be a faithfully flat ring homomorphism. Show that an R-module M is flat if and only if the S-module $M \otimes_R S$ is flat.
- (d) Let $R \to S$ be a faithfully flat ring homomorphism. Show that if *S* is Noetherian, so is *R*.

Problem 2.3 (Hensel's Lemma). Prove the following version of Hensel's Lemma: Let (R, \mathfrak{m}) be a complete local ring and $f \in R[x]$. Denote by $f' \in R[x]$ the derivative of f. Suppose that $a_0 \in R/\mathfrak{m}$ is a solution to f modulo \mathfrak{m} such that $f'(a_0) \notin \mathfrak{m}$. Then there exists a solution $a \in R$ to f such that $a \cong a_0 \pmod{\mathfrak{m}}$.

Hint: Let $f_n \in R/\mathfrak{m}^n[x]$ be the image of f. Inductively define $a_{n+1} \in R/\mathfrak{m}^{n+1}$ as follows: first pick an arbitrary lift $b \in R/\mathfrak{m}^{n+1}$ of a_n and then set

$$a_{n+1} := b - \frac{f_{n+1}(b)}{f'_{n+1}(b)} \in R/\mathfrak{m}^{n+1}.$$

Show that this makes sense and that $a = (a_0, a_1, ...) \in R$ is a solution.

Problem 2.4 (Cohen's Structure Theorem).

(a) Let $R \to S$ be a ring homomorphism. Suppose that S is complete with respect to an ideal J. Show that if $a_1, \ldots, a_n \in J$, there is an induced ring homomorphism

$$R[[x_1,\ldots,x_n]] \to S$$

such that the image of x_i is a_i .

(b) Let (R, m) → (S, n) be a local ring homomorphism of complete local Noetherian rings. Suppose that R/m → S/n is an isomorphism and that m/m² → n/n² is surjective. Show that R → S is surjective.

Hint: Show that the graded ring homomorphism $\operatorname{gr}_{\mathfrak{m}} R \to \operatorname{gr}_{\mathfrak{n}} S$ is surjective and appeal to a lemma from a lecture to conclude that $R \to S$ is surjective as well.

(c) Use Parts (1) and (2) to show the following special case of Cohen's Structure Theorem: Let (R, \mathfrak{m}) be a complete local Noetherian ring with residue field $k = R/\mathfrak{m}$. Suppose that there is an inclusion $k \subset R$ such that $k \to R \to R/\mathfrak{m}$ is an isomorphism. Show that $R \cong k[[x_1, \ldots, x_n]]/I$ for some ideal *I*.

Problem 2.5 (Nodal cubic). Let *k* be a field and $R = k[x, y]/(y^2 - x^2 - x^3)$. Let \widehat{R} be the completion of *R* along (x, y). Show that $\widehat{R} \cong k[u, v]/(uv)$.

Problem 2.6 (Hilbert polynomials). In class, we will show that if M is a finitely generated graded module over the polynomial ring $k[x_0, \ldots, x_n]$, then for sufficiently large $d \gg 0$, the Hilbert function $H_M(d) = \dim_k M_d$ agrees with a polynomial. This polynomial is called the *Hilbert polynomial* of M and is denoted by P_M .

Compute the following Hilbert polynomials:

(a) $k[x, y, z]/(xz - y^2)$ (b) k[x, y, z]/(xz)(c) $k[x, y, z, w]/(yw - z^2, xw - yz, xz - y^2)$ (d) $k[x, y, z, w]/(yw - z^2, xw - yz, xz)$ (e) $k[x_0, \dots, x_3]/(x_0, x_1) \cap (x_2, x_3)$ (f) $k[x_0, \dots, x_4]/(x_0, x_1) \cap (x_2, x_3)$ (g) $k[x_0, \dots, x_5]/(x_0, x_1, x_2) \cap (x_3, x_4, x_5)$

You may use Macaulay2 if you'd like. Macaulay2 has a function hilbertPolynomial which computes the Hilbert polynomial. The output is often expressed in terms of the Hilbert polynomial P_n of $k[x_0, ..., x_n]$ but you expand out the expression and write out the coefficients of the polynomial.

Side comment: Part (f) corresponds to the union two projective planes in \mathbb{P}^4 along a point, and Part (g) corresponds to the disjoint union of two projective planes in \mathbb{P}^5 .

2

Problem 2.7 (Equivalences between graded modules). Let $R = \bigoplus_{d \ge 0} R_d$ be a graded ring such that R is finitely generated as an algebra over R_0 by elements of degree 1 and that R_1 is finitely generated as an R_0 -module.

If *M* is a finitely generated graded *R*-module and *N* is a positive integer, we define $M^{\geq K} := \bigoplus_{d \geq 0} (M^{\geq K})_d$ by

$$(M^{\geq K})_d := \begin{cases} 0 & \text{if } d \geq K \\ M_d & \text{if } d > K \end{cases}$$

- (a) Show that $M^{\geq K}$ is a finitely generated graded *R*-submodule of *M*. If $R_0 = k$ is a field, show that *M* and $M^{\geq K}$ have the same Hilbert polynomials but in general different Hilbert functions.
- (b) Let $M \rightarrow N$ be a homomorphism of finitely generated graded *R*-modules. Show that the following two statements are equivalent:
 - (i) the induced map $M^{\geq N} \to N^{\geq N}$ is an isomorphism for some N, and
 - (ii) the induced map

$$(M_f)_0 \to (N_f)_0$$

is an isomorphism for each $f \in R_1$. Here $(M_f)_0$ is the degree 0 component of the localization M_f (which is naturally a graded R-module).

Problem 2.8 (Hilbert polynomials and flatness). Let $R = \bigoplus_{d \ge 0} R_d$ be a graded ring such that R is finitely generated as an algebra over R_0 by elements of degree 1 and that R_1 is finitely generated as an R_0 -module.

- (a) Suppose R_0 be a local Noetherian domain. Let M be a finitely generated graded R-module. Show that the following two statements are equivalent:
 - (a) for each prime ideal $\mathfrak{p} \subset R_0$, the Hilbert polynomial $P_{M \otimes_{R_0} k(\mathfrak{p})}$ is independent of \mathfrak{p} , and
 - (b) for each $f \in R_1$, the R_0 -module $(M_f)_0$ is flat.

Side comment: You should compare this result to the theorem from lecture where we showed that M is flat if and only if the Hilbert function $H_{M\otimes_{R_0}k(\mathfrak{p})}$ is independent of \mathfrak{p} .

- (b) Is the ring homomorphism $k[t]_{(t)} \rightarrow k[x, y, z, t]_{(t)}/(xz ty^2)$ flat?
- (c) Is the ring homomorphism $k[t]_{(t)} \rightarrow k[x, y, z, w, t]_{(t)}/(yw z^2, xw yz, xz ty^2)$ flat?

Problem 2.9 (Regular sequences).

- (a) Let R = k[x, y, z]. Show that x, (x 1)y, (x 1)z is a regular sequence but that (x 1)y, (x 1)z, x is not.
- (b) Let *R* be a Noetherian local ring and x_1, \ldots, x_n be a regular sequence. Show that dim $R/(x_1, \ldots, x_n) = \dim R - n$.

Problem 2.10 (Free resolutions and Betti tables). Using the Macaulay2 commands res and betti, compute the minimal graded free resolutions and graded Betti tables for each of the rings in Problem 2.6(a)-(g).

4