Please do 6 of the following 10 problems.

Problem 1.1.

(a) Find a system of parameters for the local ring

$$kx, y, z, w/(xyz, xyw, xzw).$$

(b) Find a system of parameters for the local ring $k[\{X_{i,j}\}_{0 \le i,j \le 3}]_{\mathfrak{m}}/I$ where \mathfrak{m} is the maximal ideal generated by all the $X_{i,j}$ and I is the ideal generated by the 2×2 minors of

$$\begin{pmatrix} X_{0,0} & X_{0,1} & X_{0,2} & X_{0,3} \\ X_{1,0} & X_{1,1} & X_{1,2} & X_{1,3} \\ X_{2,0} & X_{2,1} & X_{2,2} & X_{2,3} \\ X_{3,0} & X_{3,1} & X_{3,2} & X_{3,3}. \end{pmatrix}$$

For (2), you may use Macaulay2 if you'd like.

Comment: We computed this ideal in the Macaulay2 tutorial in the case of 3×3 matrices. Also, you can make Macualay2 print out answers in tex with the command tex(...).

Problem 1.2.

- (a) Let k be a field and $R = k[\epsilon]/(\epsilon^2)$ be the dual numbers over k. Compute $\operatorname{Tor}_i^R(k,k)$ for all i. Check your answer by computing the answer for $i = 0, \ldots, 5$ using Macaulay2.
- (b) Compute $\operatorname{Tor}_{i}^{\mathbb{Z}}(\mathbb{Z}/p, \mathbb{Z}/q)$ for every $i \geq 0$ and primes p and q. Again, check your answer in Macaulay2 by computing a few cases.

Problem 1.3.

- (a) Show that $k[x, y] \rightarrow k[u, v]$ defined by $x \mapsto u, y \mapsto uv$ is not flat.
- (b) Show that k[x, y]/(y² − x³) → k[t] defined by x → t², y → t³ is not flat. Side comment: k[t] is the integral closure of k[x, y]/(y² − x³) in its fraction field k(t) where t = y/x.)
- (c) Is the inclusion of rings $k[x,y] \hookrightarrow k[x,y,z,w]/(xz,xw,yz,yw)$ a flat homomorphism?

Problem 1.4. Fill in the missing details from the proof in class of the converse to the Principal Ideal Theorem: If *R* is a Noetheiran ring and $\mathfrak{p} \subset R$ is a prime ideal of codimension *c*, then \mathfrak{p} is minimal over some ideal generated by *c* elements.

More specifically, in class, we had let $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_{c-1} \subsetneq \mathfrak{p}_c = \mathfrak{p}$ be a chain of prime ideals. We constructed elements x_1, \ldots, x_c inductively by letting $x_i \in \mathfrak{p}_i$ be any element not contained in any minimal prime over (x_1, \ldots, x_{i-1}) . In class, we claimed that for each *i* the ideal (x_1, \ldots, x_i) had codimension *i* or, in other words, that every prime minimal over (x_1, \ldots, x_i) has codimension *i*. Prove this claim.

Problem 1.5. Let $\phi \colon R \to S$ be a ring homomorphism.

- (a) Prove that if *M* is a flat *R*-module, then $M \otimes_R S$ is a flat *S*-module.
- (b) Prove that R → S is flat if and only if for every prime q ⊂ S the induced ring homomorphism R_{φ⁻¹(q)} → S_q is flat.

Hint: For (2), use the fact that Tor commutes with localization, i.e., for *R*-modules *M* and *N* and a prime ideal $\mathfrak{p} \subset R$, then $\operatorname{Tor}_{i}^{R}(M, N)_{\mathfrak{p}} \cong \operatorname{Tor}_{i}^{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, N_{\mathfrak{p}})$.

Problem 1.6. Let $\phi: R \to S$ be a ring homomorphism where *R* is a PID and *S* is Noetherian. Prove that $R \to S$ is flat if and only if for every associated prime $\mathfrak{q} \subset S$, $\phi^{-1}(\mathfrak{q}) = (0)$.

Hint: Use the fact that a prime $q \subset S$ is associated if and only if every non-zero element of q is a zero-divisor.

Problem 1.7. Given an example of an injective local homomorphism $(R, \mathfrak{m}) \rightarrow (S, \mathfrak{n})$ of local rings such that

$$\dim S < \dim R + \dim S/\mathfrak{m}S.$$

Problem 1.8. (Key lemma in proof of Equational criterion for flatness) Let *R* be a ring. Let *M* and *N* be *R*-modules. Suppose that $\{n_i\}_{i \in I}$ is a generating set of *N*. Let $x = \sum_i m_i \otimes n_i \in M \otimes_R N$ be a finite sum where each $m_i \in M$. Show that x = 0 if and only if there exists elements $m'_j \in M$ for each *j* in some set *J* and $a_{i,j} \in R$ such that: (1) $\sum_j a_{i,j}m'_j = m_i$ for all *i* and (2) $\sum_i a_{i,j}n_i = 0$ for all *j*.

Problem 1.9. (Infinitesimal criterion of flatness) Let $(R, \mathfrak{m}) \rightarrow (S, \mathfrak{n})$ be a local ring homomorphism of local Noetherian rings. Suppose M is a finitely generated S-module. Prove that M is flat as an R-module if and only if $M/\mathfrak{m}^n M$ is flat as an R/\mathfrak{m}^n -module for every n.

Problem 1.10. Let k be a field.

- (a) Let $R = k[x]_{(x)}$ and M be any R-module. Show that M is flat if and only if $\operatorname{Tor}_{1}^{R}(R/(x), M) = 0$.
- (b) Let $R = k[x, y]_{(x,y)}$. Let M = k(x) be the *R*-module where *y* acts by 0. Show that *M* is not flat but $\operatorname{Tor}_{1}^{R}(R/(x, y), M) = 0$.