Example 1. $EVEN = \{n \ge 0 \in \mathbb{Z} \text{ written in binary } | n \text{ is even} \}, \text{ then}$

 $n = \{0, 00, 10, 000, 010, 100, 110, \dots\}.$

Example 2. $PRIME = \{p \ge 2 \in \mathbb{Z} \text{ written in binary } | p \text{ is prime}\}, \text{ then } p = \{10, 11, 101, ... \}.$

More generally, can consider any set Σ (which we call alphabet) and set Σ *, the set of all string of Σ of finite length.

Definition 3. A language over Σ is a subset $A \subset \Sigma^*$. **Example 3.** $\Sigma = \{0, 1, 2\}$. **Example 4.** $\Sigma = \mathbb{Z}/n := \{0, 1, \dots, n-1\}$. **Example 5.** $\Sigma = \mathbb{Z}$. **Example 6.** $\Sigma = \mathbb{R}$. **Goal 1.** Given a language $A \subset \Sigma^*$, we would like a computational model for determining if a given string $w \in \Sigma^*$ is in A.

Turing Machines:

Definition 4 (Conceptual). A **Turing Machine** is a finite state machine (which has a finite set (which we will call states) and a finite set of rules which govern the action depending on the current state and what the head reads from the tape).

The action is either

- a print a symbol form Σ .
- b moves to left or right.
- c move to a different state.
- d terminate with "accept" or "reject."

Definition 5 (Precise). A **Turing Machine** is a 7-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$

- 1. Q is a finite set (of states).
- 2. Σ is the input alphabet (not containing the blank symbol).
- 3. Γ is tape alphabet (containing the blank, $\Sigma \subset \Gamma$).
- 4. δ is $Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$
- 5. $q_0 \in Q$ is the start state.
- 6. $q_{\text{accept}} \in Q$ is the accept state.
- 7. $q_{\text{reject}} \in Q$ is the reject state.

Definition 6. Let $A \subset \Sigma^*$. We say a turing maching M recognizes A if for any $w = w_1, w_2, \ldots, w_n \in \Sigma^*$, then M accepts $w \Leftrightarrow w \in A$.

Definition 7. A language is **recognizable** if there exists a turing machine which recognizes it.