
Math 480A: Algebraic Complexity Theory

Jarod Alper

University of Washington
Spring 2019

April 1, 2019

Jarod Alper (UW) Algebraic Complexity April 1, 2019



Motivating Questions

Why are some problems easy to solve and others are hard?

How can you decide if a problem is easy or hard?

Showing that a problem is easy is easy: you need to find an efficient
algorithm.

Showing that a problem is hard is hard: you need to show that there
does not exist an efficient algorithm.

Jarod Alper (UW) Algebraic Complexity April 1, 2019



P vs NP

P

Define P as the set of problems that can be solved efficiently.

Example: Calculate the greatest common divisor of two integers.

NP

Define NP as the set of problems that can be verified efficiently.

Example: Determine whether a given integer n is not a prime integer.
For instance, is 21079 prime? Not sure?
Easier question: is 21079 divisible by 107? Yes, 21079 = 107 ∗ 197.

The holy grail of theoretical computer science.

Is P = NP?

Jarod Alper (UW) Algebraic Complexity April 1, 2019



Can we be more precise?

What exactly do we mean by a problem?

What does it mean to solve a problem efficiently?

To answer these questions we need to introduce a formalism for
computation.

Jarod Alper (UW) Algebraic Complexity April 1, 2019



What is a problem?

Let {0, 1}∗ be the set of all strings of 0’s and 1’s.

Example: 0101110 and 00010100000100

We define a problem to be a subset of {0, 1}∗.

Example: Let PRIME be the set of prime integers written out in binary.
That is, PRIME = { 10︸︷︷︸

2

, 11︸︷︷︸
3

, 101︸︷︷︸
5

, 111︸︷︷︸
7

, 1011︸︷︷︸
11

, 1101︸︷︷︸
13

, . . .}.

A solution to a problem A ⊂ {0, 1}∗ is an algorithm to determine whether
a given string of 0’s and 1’s belongs to the subset A.

What do we mean by an algorithm? We need to introduce a
computational model.

Jarod Alper (UW) Algebraic Complexity April 1, 2019



Turing Machines: invented in 1936

Alan Turing

Image from wikipedia.org

Image from plus.maths.org

Jarod Alper (UW) Algebraic Complexity April 1, 2019



P and NP again

P

We define P as the set of problems A ⊂ {0, 1}∗ for which there exists a
Turing machine that can decide whether a given string is in A in
polynomial time.

By polynomial time, we mean that there is some polynomial p(n) (such as
4n3 or n2019) such that the number of steps the Turing machine takes on
an input of length n is less than p(n).

NP

We define NP as the set of problems A ⊂ {0, 1}∗ for which there exists a
Turing machine that can verify whether a given string is in A in polynomial
time.

By verify, we mean that the Turing machine has access to a “guess” which
it may use to determine if the string is in A.

Jarod Alper (UW) Algebraic Complexity April 1, 2019



The million dollar question: Is P = NP?

This is difficult. Two reasons why:

While showing a problem is in P may be easy, it is very challenging to
show that a problem is not in P.

There is not much mathematical structure in the formulation of the P
vs NP problem. Thus we can’t apply many of our favorite techniques
from geometry and algebra.

Instead let’s try to solve a simpler question!

Jarod Alper (UW) Algebraic Complexity April 1, 2019



Algebraic complexity theory

In 1978, Leslie Valiant introduced an algebraic approach to complexity
theory.

Leslie Valiant

Image from wikipedia.org

Instead of solving problems, we will try to compute the value of
polynomials.

Jarod Alper (UW) Algebraic Complexity April 1, 2019



VP vs VNP

Consider a sequence of polynomials

f1(x1), f2(x1, x2), . . . , fn(x1, . . . , xn), . . .

Here fn is a polynomial in the n variables x1, . . . , xn.
Examples:

f1 = x1, f2 = x1x2, . . . , fn = x1 · · · xn, . . ..
f1 = x1, f2 = x21 + x22 , . . . , fn = xn1 + · · ·+ xnn , . . ..

VP

Define VP as the set of sequences of polynomials f1, f2, . . . whose value
can be computed in polynomial time.

VNP

Define VNP as the set of sequences of polynomials f1, f2, . . . whose
coefficients can be computed in polynomial time.

Jarod Alper (UW) Algebraic Complexity April 1, 2019



Is VP = VNP?

VP

Define VP as the set of sequences of polynomials f1, f2, . . . whose value
can be computed in polynomial time.

VNP

Define VNP as the set of sequences of polynomials f1, f2, . . . whose
coefficients can be computed in polynomial time.

We have VP ⊂ VNP.

The big question

Is VP = VNP?

This is an algebraic analogue of the P vs NP question. It should be easier.

Jarod Alper (UW) Algebraic Complexity April 1, 2019



Hold on: what do we mean by computing a polynomial?

Just as Turing machines were our computation model for solving problems,
we need a computational model for polynomials.

I’ll give two equivalent models. Here is the first one:

Arithmetic complexity

The arithmetic complexity of a polynomial f (x1, . . . , xn) is the minimum
number of operations (additions and multiplications) needed to compute
the value.

VP

VP is the set of sequences f1, f2, . . . of polynomials such that there is
polynomial p(n) so that the arithmetic complexity of fn is less than p(n).

Jarod Alper (UW) Algebraic Complexity April 1, 2019



Arithmetic circuits

Arithmetic complexity can be visualized using arithmetic circuits

Example: Consider f (x1, x2) = x21 + 2x1x2 + x22 .

x21 + 2x1x2 + x22 (x1 + x2)2

Images from Communications of the ACM

Jarod Alper (UW) Algebraic Complexity April 1, 2019



A tale of two polynomials: determinants and permanents

Consider a matrix

X =


x1,1 x1,2 · · · x1,n
x2,1 x2,2 · · · x2,n

...
. . .

...
xn,1 xn,2 · · · xn,n

 .

where each xi ,j is a variable. Define the determinant det(X ) as follows:

n = 1 : det
(
x1,1
)

= x1,1

n = 2 : det

(
x1,1 x1,2
x2,1 x2,2

)
= x1,1x2,2 − x1,2x2,1

n = 3 :

det

x1,1 x1,2 x1,3
x2,1 x2,2 x2,3
x3,1 x3,2 x3,3

 =x1,1x2,2x3,3 − x1,1x2,3x3,2 + x1,2x2,3x3,1−

x1,2x2,1x3,3 + x1,3x2,1x3,2 − x1,3x2,2x3,1

Jarod Alper (UW) Algebraic Complexity April 1, 2019



Determinant

As before, let

X =


x1,1 x1,2 · · · x1,n
x2,1 x2,2 · · · x2,n

...
. . .

...
xn,1 xn,2 · · · xn,n

 .

The determinant is one of the most natural operations in mathematics.
Using the group Sn of permutations, we can write

detX =
∑
σ∈Sn

(−1)sgn(σ)x1,σ(1) · · · xn,σ(n).

The permanent

The permanent perm(X ) is defined just like the determinant det(X ) but
without the pesky ’-’ signs.

Jarod Alper (UW) Algebraic Complexity April 1, 2019



Permanent

The permanent

The permanent perm(X ) is defined just like the determinant det(X ) but
without the pesky ’-’ signs.

Example:

perm

x1,1 x1,2 x1,3
x2,1 x2,2 x2,3
x3,1 x3,2 x3,3

 =x1,1x2,2x3,3 + x1,1x2,3x3,2 + x1,2x2,3x3,1+

x1,2x2,1x3,3 + x1,3x2,1x3,2 + x1,3x2,2x3,1

What’s easier to compute: the determinant or permanent?

Jarod Alper (UW) Algebraic Complexity April 1, 2019



The determinant is easier!

The determinant has magical properties:

det(XY ) = det(X ) det(Y )
In particular, the determinant det(X ) does not change if you perform
elementary row and column operations to X .

These facts are not true for the permanent!

Gaussian elimination: After performing row and column operations to
X , we may arrange X to have the following form:

X =


x1,1 x1,2 · · · x1,n

0 x2,2 · · · x2,n
...

. . .
...

0 0 · · · xn,n

 .

and in this case det(X ) = x1,1x2,2 · · · xn,n.

Theorem

The sequence of polynomials det1, det2, det3, . . . is in VP.

Jarod Alper (UW) Algebraic Complexity April 1, 2019



Even more is true

Not only is the determinant easy to compute, but any other polynomial
can be in fact computed as a determinant.

Example: x2 + y2 = det

(
x −y
y x

)
This leads us to our next computation model for polynomials:

Determinantal complexity

The determinantal complexity of a polynomial f (x1, . . . , xn) is the size of
the smallest matrix

L =


L1,1 L1,2 · · · L1,m
L2,1 L2,2 · · · L2,m

...
. . .

...
Lm,1 Lm,2 · · · Lm,m


where each Li ,j is linear in the x1, . . . , xn, such that f = det L.

Jarod Alper (UW) Algebraic Complexity April 1, 2019



The determinantal complexity of the permanent

Valiant’s conjecture

The determinant complexity dc(permn) of the n × n permanent grows
faster than any polynomial.

In other words, there is no polynomial p(n) such that dc(permn) < p(n)
for all n.

Important Fact

This conjecture is equivalent to showing that VP 6= VNP.

Example: Since

perm

(
x1,1 x1,2
x2,1 x2,2

)
= det

(
x1,1 −x1,2
x2,1 x2,2

)
the determinantal complexity of the 2× 2 permanent is 2.

Jarod Alper (UW) Algebraic Complexity April 1, 2019



The best known bounds for dc(permn)

Theorem (Mignon–Ressayre and Grenet)

For n > 2,
n2/2 ≤ dc(permn) ≤ 2n − 1

For n = 3, this implies that 5 ≤ dc(perm3) ≤ 7. Grenet’s formula gives

perm3

x1,1 x1,2 x1,3
x2,1 x2,2 x2,3
x3,1 x3,2 x3,3

 = det7



0 x1,1 x2,1 x3,1 0 0 0
0 1 0 0 x3,3 x2,3 0
0 0 1 0 0 x1,3 x3,3
0 0 0 1 x1,3 0 x2,3
x2,2 0 0 0 1 x1,3 0
x3,2 0 0 0 0 1 0
x1,2 0 0 0 0 0 1


Can we do better?

What actually is dc(perm3)? Is it 5, 6, or 7?

Jarod Alper (UW) Algebraic Complexity April 1, 2019



No, 7 is optimal.

Theorem (Alper–Bogart–Velasco)

The determantal complexity dc(perm3) of the 3× 3 permanent is 7.

Tristram Bogart Mauricio Velasco

Jarod Alper (UW) Algebraic Complexity April 1, 2019


	First Section
	Subsection Example


