Definition 1. A non-deterministic TM is $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$ with $\delta: Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times$ $\{L, R\}), \delta(q, \gamma) \subset Q \times \Gamma \times\{L, R\}$ (δ is a finite subset) i.e., it can simultaneously branch in different ways

0	1	$\gamma=1$	\cdots	
$q \quad \hat{Q}$				

Theorem 1. Any non-deterministic TM (NDTM) has an equivalent TM
Proof. Given a NDTM N, we want to design a TM M which accepts precisely the same set of strings as N. Idea: At each step, iterate over the possibilities given by $\delta(q, \gamma)$.
Design M to have three tapes

Algorithm

1. Copy input onto tape 2
2. Set $n=1$.
3. For each setring $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{n}}$ in $Q \times \Gamma \times\{L, R\}$ of length n, Simulate the branch of N given by $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{n}}$ on tape 2. Accept in N accepts.
4. $n=n+1$ and repeat 3 .

This explores all brances to level one of the tree, then all branches to level two, etc.
Corollary 1. A language $A \subset \Sigma *$ is recognized by a NDTM iff A is recognized by a TM.
Complexity of Algorithms
How can we measure complexity? Introduce Big-O Notation.
Example 1. Let

$$
\text { NOTPRIME }=\{\text { integers } n \geq 0 \text { that are not prime }\}
$$

and use our TM defined by this algorithm
0. Let n be input

1. $i=2$
2. Ff i divides n, accept. If $i=n$ reject. Otherwise $i=i+1$ and repeat step 2.

The number of steps this takes is around n, or around 2^{ℓ} where $\ell=$ length of input in binary (ignoring constants) Now take our NDTM
0. Let n be the input

1. $i=2$
2. Simultaneously check if $2, \ldots, 2^{i}$ divide n. If yes, accept. If $i=n$ reject. Otherwise $i=i+1$ and repeat step 2.
This takes around $\log _{2} n$ steps (or around ℓ)

Definition 2. Let f, g be functions $\mathbb{N} \rightarrow \mathbb{N}$. We say $f(n)$ is $O(g(n))$ if there exists some constant C such that $f(n) \leq C g(n)$ for all n.

Example 2.

1. $3 n+6$ is $O(n)$ because $3(n)=6 \leq 9 n$.
2. $7 n^{3}+8 n+19$ is $O\left(n^{3}\right)$.
3. $2^{n}+n^{2019}$ is $O\left(2^{n}\right)$.

Definition 3. The running time of a TM M is

$$
f(\ell)=\max \# \text { of steps } M \text { takes on an input of length } \ell
$$

Definition 4. Let $\mathbf{P}=\left\{A \subset\{0,1\} * \mid, \exists\right.$ a TM M which recognizes A with run time $O\left(n^{k}\right)$ for some $\left.k\right\}$ (in the space of binary strings). In other words, the running time $f(n)$ of M is bounded by a polynomial
Definition 5. Let NP $=\left\{A \subset\{0,1\} * \mid, \exists\right.$ a NDTM N which recognizes A with run time $O\left(n^{k}\right)$ for some $\left.k\right\}$ (in the space of binary strings).
Theorem 2. $P \subset N P$
Conjecture 1. $P=N P$
This is the central question of the course.

