Definition 1. A non-deterministic TM is $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$ with $\delta : Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R\}), \delta(q, \gamma) \subset Q \times \Gamma \times \{L, R\}$ (δ is a finite subset) i.e., it can simultaneously branch in different ways

0	1	$\gamma = 1$			
		q \hat{Q}			

Theorem 1. Any non-deterministic TM (NDTM) has an equivalent TM

Proof. Given a NDTM N, we want to design a TM M which accepts precisely the same set of strings as N. *Idea*: At each step, iterate over the possibilities given by $\delta(q, \gamma)$. Design M to have three tapes

1 : Input (never change)		1	0		1	
	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	
2: Simulation		1	0		1	
3 : Keep Track of Branching						

Algorithm

- 1. Copy input onto tape 2
- 2. Set n = 1.
- 3. For each setting $a_{i_1}, a_{i_2}, \ldots, a_{i_n}$ in $Q \times \Gamma \times \{L, R\}$ of length n, Simulate the branch of N given by $a_{i_1}, a_{i_2}, \ldots, a_{i_n}$ on tape 2. Accept in N accepts.
- 4. n = n + 1 and repeat 3.

This explores all brances to level one of the tree, then all branches to level two, etc.

Corollary 1. A language $A \subset \Sigma^*$ is recognized by a NDTM iff A is recognized by a TM.

COMPLEXITY OF ALGORITHMS How can we measure complexity? Introduce Big-O Notation. Example 1. Let

 $NOTPRIME = \{integers \ n \ge 0 \ that \ are \ not \ prime\}$

and use our TM defined by this algorithm

0. Let n be input

1. i = 2

2. *Ff i* divides *n*, accept. *If* i = n reject. Otherwise i = i + 1 and repeat step 2.

The number of steps this takes is around n, or around 2^{ℓ} where $\ell = \text{length of input in binary (ignoring constants)}$ Now take our NDTM

0. Let n be the input

1. i = 2

2. Simultaneously check if $2, ..., 2^i$ divide n. If yes, accept. If i = n reject. Otherwise i = i + 1 and repeat step 2.

This takes around $\log_2 n$ steps (or around ℓ)

Definition 2. Let f, g be functions $\mathbb{N} \to \mathbb{N}$. We say f(n) is O(g(n)) if there exists some constant C such that $f(n) \leq Cg(n)$ for all n.

Example 2.

1. 3n + 6 is O(n) because $3(n) = 6 \le 9n$.

2.
$$7n^3 + 8n + 19$$
 is $O(n^3)$.

3. $2^n + n^{2019}$ is $O(2^n)$.

Definition 3. The **running time** of a TM M is

 $f(\ell) = \max \# \text{ of steps } M \text{ takes on an input of length } \ell$

Definition 4. Let $\mathbf{P} = \{A \subset \{0, 1, \} * | \exists a \text{ TM } M \text{ which recognizes } A \text{ with run time } O(n^k) \text{ for some } k\}$ (in the space of binary strings). In other words, the running time f(n) of M is bounded by a polynomial **Definition 5.** Let $\mathbf{NP} = \{A \subset \{0, 1, \} * | \exists a \text{ NDTM } N \text{ which recognizes } A \text{ with run time } O(n^k) \text{ for some } k\}$ (in the space of binary strings). **Theorem 2.** $P \subset NP$ **Conjecture 1.** P = NP

This is the central question of the course.