Definition 1. A Turing Machine is a 7 -tuple

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{a c c e p t}, q_{\text {reject }}\right)
$$

Where Q is the finite set of states, Σ is the input alphabet, Γ is the tape alphabet ($"$ " $\in \Gamma$ and $\Sigma \subset \Gamma$), δ is the transition function $(\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}), q_{0}$ is the initial state, and $q_{\text {accept }}$ and $q_{\text {reject }}$ are the accept and reject states.

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 1 & 0 & 1 & 0 & \ldots & 1 & - & 1 & \ldots \\
\hline
\end{array}
$$

Definition 2. If $A \subset \Sigma *$ is a language, we say a Turing Machine (TM) M recognizes A if for all $w \in \Sigma *$
M accepts $w \Leftrightarrow w \in A$.
Definition 3. A language A is recognizable if there exists a TM which recognizes it.
Example 1. Let

$$
E V E N=\left\{\text { string } w_{n} \ldots w_{1} \text { in binary } \mid n \in \mathbb{Z}, n=\Sigma w_{i} 2^{i} \text { is even }\right\}
$$

Design a TM that recognizes EVEN.
Algorithm:

1. If it reads a symbol that's not - move to the right and repeat rule 1
2. If it reads - move to the left and read that symbol

Example 2. Let

$$
\text { NOTPRIME }=\{n \in \mathbb{Z}, n>0 \text { in binary which are not prime }\}=\{1,4,6,8,9, \ldots\}
$$

Design a TM that recognizes EVEN.
Algorithm:

1. Set $i=2$
2. Divide the imput n by i, if it divides and $i \neq n$, accept, otherwise, $i=i+2$ and repeat rule 2

This TM recognizes NOTPRIME, but does not necessarily reject on NOTPRIME ${ }^{c}$.
Algorithm:

1. Set $i=2$
2. Divide the imput n by i, if it divides and $i \neq n$, accept, if $i=n$, reject otherwise, $i=i+2$ and repeat rule 2

This TM recognizes NOTPRIME and rejects on NOTPRIME ${ }^{c}$.
Let $A \subset \Sigma *$:
Definition 4. A TM M recognizes A if for all $w \in \Sigma *$

$$
M \text { accepts } w \Leftrightarrow w \in A
$$

Definition 5. A TM M decides A if for all $w \in \Sigma *$

$$
\begin{aligned}
& M \text { accepts } w \Leftrightarrow w \in A \\
& M \text { rejects } w \Leftrightarrow w \notin A
\end{aligned}
$$

Definition 6. A TM with multiple tapes has multiple tapes and multiple heads

Theorem 1. A TM with multiple tapes is equivalent to a TM with 1 tape
Definition 7. A non-deterministic Turing Machine is similar to a TM, but at every step the machine can proceed in multiple ways simultaneously. i.e., "it can perform multiple branches at the same time."
Definition 8. A power set of a set $S \mathcal{P}(S)$ is set of subset of S. E.g.,

$$
\mathcal{P}(\{0,1,2\})=\{\{ \},\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\}
$$

Example 3 (How an Non-Deterministic Turing Machine (NDTM) operates).

γ_{0}	0	1	0	\ldots	1	\ldots

with the q_{0} at γ_{0} and $\delta\left(q_{0}, \gamma_{0}\right) \rightarrow\left\{\left(q_{1}, \gamma_{1}, L\right.\right.$ or $\left.R\right), \ldots,\left(q_{n}, \gamma_{n}, L\right.$ or $\left.\left.R\right)\right\}$. Thus it goes from 1 to n branches in a single step. This can obviously grow exponentially.
Example 4. Let's design an efficient NDTM which recognizes NOTPRIME.
Given input n

- Let $i=2$.
- For each possibility, divide n by corresponding integer. If it divides accept, otherwise $i=i+1$ and repeat step 2.

