Definition 1. A Turing Machine is a 7-tuple

 $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$

Where Q is the finite set of states, Σ is the input alphabet, Γ is the tape alphabet (" $_$ " $\in \Gamma$ and $\Sigma \subset \Gamma$), δ is the transition function ($\delta : Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$), q_0 is the initial state, and q_{accept} and q_{reject} are the accept and reject states.

1 0 1 0	1	_ 1	
------------	---	-----	--

Definition 2. If $A \subset \Sigma^*$ is a language, we say a Turing Machine (TM) M recognizes A if for all $w \in \Sigma^*$

```
M accepts w \Leftrightarrow w \in A.
```

Definition 3. A language A is **recognizable** if there exists a TM which recognizes it. **Example 1.** Let

 $EVEN = \{string \ w_n \dots w_1 \ in \ binary | n \in \mathbb{Z}, n = \Sigma w_i 2^i \ is \ even \}$

Design a TM that recognizes EVEN. Algorithm:

1. If it reads a symbol that's not _ move to the right and repeat rule 1

2. If it reads _ move to the left and read that symbol **Example 2.** Let

 $NOTPRIME = \{n \in \mathbb{Z}, n > 0 \text{ in binary which are not prime}\} = \{1, 4, 6, 8, 9, \dots\}$

Design a TM that recognizes EVEN. Algorithm:

1. Set i = 2

2. Divide the imput n by i, if it divides and $i \neq n$, accept, otherwise, i = i + 2 and repeat rule 2

This TM recognizes NOTPRIME, but does not necessarily reject on NOTPRIME^c. Algorithm:

- 1. Set i = 2
- 2. Divide the imput n by i, if it divides and $i \neq n$, accept, if i = n, reject otherwise, i = i + 2 and repeat rule 2

This TM recognizes NOTPRIME and rejects on NOTPRIME^c.

Let $A \subset \Sigma^*$: **Definition 4.** A TM *M* recognizes *A* if for all $w \in \Sigma^*$

$$M$$
 accepts $w \Leftrightarrow w \in A$

Definition 5. A TM *M* decides *A* if for all $w \in \Sigma *$

```
M \text{ accepts } w \Leftrightarrow w \in AM \text{ rejects } w \Leftrightarrow w \notin A
```

Definition 6. A TM with **multiple tapes** has multiple tapes and multiple heads

Theorem 1. A TM with multiple tapes is equivalent to a TM with 1 tape

Definition 7. A non-deterministic Turing Machine is similar to a TM, but at every step the machine can proceed in multiple ways simultaneously. i.e., "it can perform multiple branches at the same time." **Definition 8.** A power set of a set $S \mathcal{P}(S)$ is set of subset of S. E.g.,

 $\mathcal{P}(\{0,1,2\}) = \{\{\},\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\}$

Example 3 (How an Non-Deterministic Turing Machine (NDTM) operates). $\boxed{\gamma_0 \ 0 \ 1 \ 0 \ \dots \ 1 \ \dots}$ with the q_0 at γ_0 and $\delta(q_0, \gamma_0) \rightarrow \{(q_1, \gamma_1, L \text{ or } R), \dots, (q_n, \gamma_n, L \text{ or } R)\}$. Thus it goes from 1 to n branches in a single step. This can obviously grow exponentially. **Example 4.** Let's design an efficient NDTM which recognizes NOTPRIME. Given input n

- Let i = 2.
- For each possibility, divide n by corresponding integer. If it divides accept, otherwise i = i + 1 and repeat step 2.