$$
411612019 .
$$

Monday $5 / 6$: midterm

$$
\text { HO } 3 \text { due }
$$

$\left.\begin{array}{l}5 / 8 \\ 5 / 10\end{array}\right\}$ no class. group discussion for project
Potential project group - email by wed.

* Recap: complexity theory
setup: Problem: Language $A \subset\{0,1\}^{*}$ determine if $\omega \in A$.
- Computational model: Turing Machine
- Complexity class: PCNP

Main Th<compat>ᅳ: (Coo k-Levin)
The language SAT and 3-SAT are NP-complete.
Using the $T h^{m}$, one can show many other languages are NP-complete. (CLIQUE, 3COLOR, PERFECT. HAMPATH)

* Transition to algebraic complexity theory

Let k be a field, ex: $K=\mathbb{R}, \mathbb{R}, \mathbb{C}$ or \mathbb{Z} / p where p is prime. (everything we do depends on k)

Define the ring $k\left[x_{1}, \ldots, x_{n}\right]=$ set of all polynomials $f\left(x_{1}, \ldots, x_{n}\right)$ with coefficient in k.

Def n: The complexity of a polynomial $f \in k\left[x_{1}, \ldots, x_{n}\right]$ is the minimal number of addition and multiplicentim needed to compute f. Denoted the complexity of f as $(C f)$.

An arithmetic circuit is a directed graph where

- vertices are labeled as "+" or "x"
- no cycles.
- input (sources) of the graph are variables X_{1}, \ldots, X_{n} or constant in k
- output is what circuit computes.

Ex:

The complexity of f is the minimum number of " + " and " x " in an arithmetic circuit computes f.

Ex: $\quad f\left(x_{1}, x_{2}\right)=x_{1}{ }^{2}+2 x_{1} x_{2}+x_{2}^{2}=\left(x_{1}+x_{2}\right)^{2}$

Prop: $\quad C(f)=2$
For $f \in k\left[x_{1}, x_{2}\right]$: complexity 0 : $f=x_{1}, \ldots, x_{n}$ or $f=\alpha, \alpha \in K$.
complexity 1: $\quad x_{i} x_{j}$

$$
x_{i}+x_{j}
$$

$$
\alpha x_{i}
$$

$$
\alpha+x_{i}
$$

$$
\Rightarrow c(f)=2 .
$$

Ex: $f(x)=x_{1}{ }^{3}+x_{2}{ }^{3}$

Let's consider $k=\mathbb{R} / 3 \quad \Rightarrow 3=0$
then $f(x)=x_{1}{ }^{3}+x_{2}{ }^{3}=\left(x_{1}+x_{2}\right)^{3}=x_{1}{ }^{3}+\frac{3 x_{1}{ }^{2} x_{2}}{0 x_{1}{ }^{2} x_{2}}+\frac{3 x_{1} x_{2}{ }^{2}}{O x_{1} x_{2}{ }^{2}}+x_{2}^{3}$

* characteristic

Let R be a ring, the characteristic of R is the minimum integer $n>0$ sit. $\forall x \in R, \quad n x=x+x+\cdots+x=0$. If $\nexists n$, the characteristic of R is 0 .

Ex: Characteristic of \mathbb{Z} / n is u

$$
\left.\begin{array}{l}
\mathbb{\mathbb { Q }} \\
\mathbb{R} \\
\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \\
\mathbb{Z} / p\left[x_{1}, \ldots, x_{n}\right] \text { is } p
\end{array}\right\} 0
$$

special property in $\mathbb{Z} / p\left[x_{1}, \ldots, x_{n}\right]$ characteristic p when p is prime
(1) $(a+b)^{p}=a^{p}+b^{p}$
(2) For $\mathbb{Z} / p, \forall \alpha \in \mathbb{Z} / p, \alpha P=\alpha \quad$ (Fermat's little Th

$$
\begin{aligned}
\forall \alpha \in P, \quad \alpha P & \equiv \alpha(\bmod P) \\
\Rightarrow \alpha^{P-1} & \equiv 1(\bmod P)
\end{aligned}
$$

Key point: \quad Let $k=\mathbb{E} / p$
then let $f_{1}(x)=x . \quad f_{2}(x)=x P$.
clearly $f_{1} \neq f_{2}$ as polynomials, but they have the same values, ie, $\forall \alpha \in \mathbb{P} / p, f_{1}(\alpha)=f_{2}(\alpha)$.

If $f(x)=x^{P}$, the arithmetic circuit
output \otimes does not compute f.

