Recap: For languages $A \subset \{0,1\}^*$, there are two language claess: P and NP

- $P \subset NP \subset \{\text{recognizable}\}$
- {decidable} \subset {recognizable}
- A_{TM} is recognizable but not decidable
- DEF A (undirected) graph is a finite set of vertices with edges connecting some of the vertices. More precisly, a graph G = (V, E) where V is a **finite** set and $E \subset V \times V$
- DEF A directed graph is a finite set G = (V, E) where V is a **finite** set and $E \subset V \times V$ Notation: given an edge $e = (v_1, v_2)$, the source of $e, s(e) := v_1$; the target of $e, t(e) := v_2$.
- DEF A labelled graph is a finite set of vertices with edges connecting some of the vertices s.t. each edge is labelled.
- DEF A path in G is a sequence of edges $e_1, ..., e_n$ with $t(e_i) = s(e_{i+1})$ for i = 1, ..., n-1
- DEF A Hamiltonian path in G is a path which passes through each vertex exactly once.

Assume that a graph can be encoded as a binary string in $\{0, 1\}^*$. Then we can define a language, **HAMPATH**={directed graphs G chich have a Hamiltonian path} Let n = |V| = #vertices in G, then the numer of possible paths is n!

proposition There is a TM deciding HAMPATH with running time $O((\sqrt{n})!)$ which is worse than $O(2^n)$.

proposition $HAMPATH \in NP$

proof: We can design a NDTM as follow:

- (1) Input directed graph G = (V, E). Let n = |V|.
- (2) Assume $V = \{1, ..., n\}$
- (3) For each i_1 from 1 to n:
- (4) As j goes from 1 to n
- (5) brach over every edge with $s(e) = i_i$, set $i_{i+1} = t(e)$.
- (6) Go back to (4)
- (7) check if $(i_1, ..., i_n)$ is a Hamiltonian path. If yes, *accpet*.
- DEF A k-Clique of a graph G = (V, E) is a subset $V' \subset V$ of k vertices s.t. G contains every edge between.

Then we define the language: **CLIQUE**= $\{(G, k) | G \text{ has a k-clique} \}$.

proposition $CLIQUE \in NP$.

Quesiton to consider: Are HAMPATH and CLIQUE in P?