Problem 4.1. Assume that the characteristic of the field k is zero. Suppose that $\left\{g_{n}\right\}$ is a p-computable sequence of polynomials such that g_{n} has exactly n variables. Let $\left\{d_{n}\right\}$ is a polynomially bounded sequence of positive integers. Define the polynomial f_{n} of degree $\leq d_{n}$ as follows:

$$
f_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{I=\left(i_{1}, \ldots, i_{n}\right), \sum_{j} i_{j}=d_{n}} g_{n}\left(i_{1}, \ldots, i_{n}\right) x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}
$$

(a) Show that $\left\{f_{n}\right\}$ is a p-projection of a sequence of polynomials

$$
f_{n}^{\prime}\left(x_{1}, \ldots, x_{m_{n}}\right)=\sum_{e_{1}, \ldots, e_{m_{n}} \in\{0,1\}} g_{n}^{\prime}\left(e_{1}, \ldots, e_{m_{n}}\right) x_{1}^{e_{1}} \cdots x_{m_{n}}^{e_{m_{n}}}
$$

where $\left\{g_{n}^{\prime}\right\}$ is p-computable and m_{n} is an integer depending on n.
Hint: Write

$$
x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}=\underbrace{x_{1}^{1} \cdots x_{1}^{1}}_{i_{1} \text { times }} \underbrace{x_{1}^{0} \cdots x_{1}^{0}}_{d_{n}-i_{1} \text { times }} \cdots \cdots \cdot \underbrace{x_{n}^{1} \cdots x_{n}^{1}}_{i_{n} \text { times }} \underbrace{x_{n}^{0} \cdots x_{n}^{0}}_{d_{n}-i_{n} \text { times }}
$$

and argue that $\left\{f_{n}\right\}$ is a p-projection of suitably defined polynomials $\left\{f_{n}^{\prime}\right\}$ where f_{n}^{\prime} has $n d_{n}$ number of variables.
(b) Conclude that $\left\{f_{n}\right\}$ is p-definable.

Problem 4.2. Let G be directed labelled graph. A Hamiltonian cycle of G is a cycle which is also a cycle cover; that is, it is a cycle of G that passes through every vertex precisely once. Define

$$
\operatorname{Ham}(G)=\sum_{\text {Hamiltonian cycles } \sigma} \operatorname{weight}(\sigma) .
$$

Let G_{n} be the directed labelled graph with n vertices where the label between vertex i and j is the variable $x_{i, j}$. Analogous to the sequence $\left\{\operatorname{perm}_{n}\right\}$, define the sequence of Hamiltonian polynomials $\left\{\mathrm{Ham}_{n}\right\}$ as

$$
\operatorname{Ham}_{n}=\operatorname{Ham}\left(G_{n}\right)
$$

(a) Compute $\mathrm{Ham}_{2}, \mathrm{Ham}_{3}$ and Ham_{4}.
(b) Show that $\left\{\operatorname{Ham}_{n}\right\}$ is p-definable.

Problem 4.3. Show that the following sequences of polynomials is p-definable: (a)

$$
f_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{I,|I|=n} x^{I}
$$

where as usual $I=\left(i_{1}, \ldots, i_{n}\right),|I|=\sum_{k=1}^{n} i_{k}$ and $x^{I}=x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}$.
(b)

$$
f_{n}\left(x_{1,1}, \ldots, x_{n, n}\right)=\sum_{e_{i, j} \in\{0,1\}, \sum_{i, j} e_{i, j}=n} x_{1,1}^{e_{1,1}} \cdots x_{n, n}^{e_{n, n}}
$$

(c)

$$
f_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{0 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{n} \leq n} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}
$$

Problem 4.4. Let G_{1} and G_{2} be acyclic directed labelled graphs each with distinguished vertices s (for 'source') and t (for 'target') such that the edge $t \mapsto s$ has label 1. Let $f_{1}=\operatorname{perm}\left(G_{1}\right)$ and $f_{2}=\operatorname{perm}\left(G_{2}\right)$.
(a) Construct an acyclic directed labelled graph G_{3} with distinguished vertices s and t such that $f_{1}+f_{2}=\operatorname{perm}\left(G_{3}\right)$.
(b) Construct an acyclic directed labelled graph G_{3} with distinguished vertices s and t such that $f_{1} f_{2}=\operatorname{perm}\left(G_{3}\right)$.

Problem 4.5. In lecture, we covered an analogous procedure of parts (a) and (b) of Problem 4.4 to find a determinantal expression for any polynomial.
(a) Find an explicit determinantal expression for $x y(x+y)+x+z$. You should write down the corresponding directed labelled graph and the matrix.
(b) Modify your answer to find a 'perminantal' expression of $x y(x+y)+x+z$; that is, find a directed labeled graph G such that $\operatorname{perm}(G)=x y(x+y)+x+z$.
Problem 4.6. Repeat Problem 4.5(a) for the polynomial $x^{2} y+y^{2} z+x z^{2}-4 x y z$. You do not need to write down the matrix.

Problem 4.7.

(a) The procedure from lecture allows us to construct a determinantal expression for perm $_{3}$. What is the size of this determinantal expression? This gives an upper bound for $\mathrm{dc}\left(\mathrm{perm}_{3}\right)$.
(b) Provide an upper bound for $\mathrm{dc}\left(\operatorname{perm}_{n}\right)$.

You do not need to explicitly write down the determinantal expressions.
Problem 4.8. Let $f=x^{d}+y^{d}$.
(a) Show that if the base field k is the complex numbers \mathbb{C}, then $\operatorname{dc}(f)=d$.
(b) (Extra credit) Is the same true over \mathbb{R} or \mathbb{Q} ?

