Problem 3.1. Determine all polynomials $f(x, y, z)$ in $k[x, y, z]$ which have complexity $C(f) \leq 3$.

Problem 3.2. Determine whether the following sequences of polynomials are p-computable.
(a) $f_{n}\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{n}+\cdots+x_{n}^{n}$
(b)

$$
f_{n}\left(x_{1}, \ldots, x_{n^{2}}\right)=\sum_{i=1}^{n^{2}} x_{i}^{i}
$$

(c)

$$
f_{n}\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} x_{i}^{i}
$$

(d)

$$
f_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\substack{I=\left(i_{1}, \ldots, i_{n}\right) \\|I|=n}} \frac{n!}{i_{1}!\cdots i_{n}!} x^{I}
$$

Problem 3.3. Let $\left\{g_{n}\right\} \in \mathrm{VP}$ and let $\left\{f_{n}\left(x_{1}, \ldots, x_{m_{n}}\right)\right\}$ be a sequence of polynomials such that $\left\{m_{n}\right\}$ is polynomial bounded. Suppose that for each $n \geq 1$, there is an affine linear map $L_{n}: k^{m_{n}} \rightarrow k^{m_{n}^{\prime}}$, where m_{n}^{\prime} is the number of variables of g_{n}, such that

$$
f_{n}\left(x_{1}, \ldots, x_{m_{n}}\right)=g_{n}\left(L_{n}\left(x_{1}, \ldots, x_{m_{n}}\right)\right)
$$

Show that $\left\{f_{n}\right\} \in \mathrm{VP}$.
Problem 3.4. Define the following directed labelled graph G

(a) Calculate $\operatorname{perm}(G)$.
(b) Calculate $\operatorname{det}(G)$.
(c) Determine the adjacency matrix of G.

Problem 3.5. Let G be an (undirected and unlabelled) bipartite graph with $2 n$ vertices separated into two groups: v_{1}, \ldots, v_{n} and w_{1}, \ldots, w_{n}. Define an $n \times n$ matrix $A=\left(a_{i, j}\right)_{1 \leq i, j \leq n}$ as follows: $a_{i, j}=1$ if there exists an edge $v_{i} \rightarrow w_{j}$ in G; otherwise, $a_{i, j}=0$. Show that $\operatorname{perm}(A)$ is the number of perfect matchings of G.

