Due: Monday, May 6

Problem 3.1. Determine all polynomials f(x, y, z) in k[x, y, z] which have complexity $C(f) \leq 3$.

Problem 3.2. Determine whether the following sequences of polynomials are *p*-computable.

(a)
$$f_n(x_1, ..., x_n) = x_1^n + \cdots + x_n^n$$

(b)

$$f_n(x_1,\ldots,x_{n^2}) = \sum_{i=1}^{n^2} x_i^i$$

(c)

$$f_n(x_1,\ldots,x_n) = \prod_{i=1}^n x_i^i$$

(d)

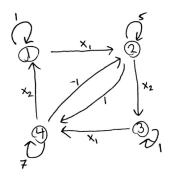
$$f_n(x_1,\ldots,x_n) = \sum_{\substack{I=(i_1,\ldots,i_n)\\|I|=n}} \frac{n!}{i_1!\cdots i_n!} x^I$$

Problem 3.3. Let $\{g_n\} \in \text{VP}$ and let $\{f_n(x_1, \ldots, x_{m_n})\}$ be a sequence of polynomials such that $\{m_n\}$ is polynomial bounded. Suppose that for each $n \geq 1$, there is an affine linear map $L_n \colon k^{m_n} \to k^{m'_n}$, where m'_n is the number of variables of g_n , such that

$$f_n(x_1,\ldots,x_{m_n}) = g_n(L_n(x_1,\ldots,x_{m_n})).$$

Show that $\{f_n\} \in VP$.

Problem 3.4. Define the following directed labelled graph G



- (a) Calculate perm(G).
- (b) Calculate det(G).
- (c) Determine the adjacency matrix of G.

Problem 3.5. Let G be an (undirected and unlabelled) bipartite graph with 2n vertices separated into two groups: v_1, \ldots, v_n and w_1, \ldots, w_n . Define an $n \times n$ matrix $A = (a_{i,j})_{1 \leq i,j \leq n}$ as follows: $a_{i,j} = 1$ if there exists an edge $v_i \to w_j$ in G; otherwise, $a_{i,j} = 0$. Show that $\operatorname{perm}(A)$ is the number of perfect matchings of G.