Math 480A: Algebraic Complexity Theory, Spring Quarter 2019 Jarod Alper Homework 2 Due: Friday, April 26

Problem 2.1. Show that $\{0,1\}^*$ is countable.

Problem 2.2. A *commutative ring* is a set R endowed with two binary options

 $\begin{array}{l} +: R \times R \to R \\ \times: R \times R \to R \end{array} \quad (addition)$

satisfying the following properties for all $a, b, c \in R$.

(1) $(a+b) + c = a + (b+c)$	(addition + is associative)
$(2) \ a+b=b+a$	(addition + is commutative)
(3) There is a $0 \in R$ with $a + 0 = a$.	(there is an additive identity 0)
(4) For each $x \in R$, there exists $y \in R$ with $x + y = 0$	(there is an additive inverse
	of x which we usually as $(-x)$.
(5) $(a \times b) \times c = a \times (b \times c)$	(multiplication \times is associative)
(6) $a \times b = b \times a$	(multiplication \times is commutative)
(7) There is a $1 \in R$ with $a \times 1 = a$	(There is a multiplicative identity 1)
(8) $a \times (b+c) = a \times b + a \times c$	(Multiplication distributes over addition).
Let k be \mathbb{Q} , \mathbb{R} or \mathbb{C} and define	

 $k[x_1,\ldots,x_n] :=$ set of all polynomials $f(x_1,\ldots,x_n)$ with coefficients in k

Show that $k[x_1, \ldots, x_n]$ is a commutative ring where + and \times are the usual addition and multiplication of polynomials.

Problem 2.3. Let *n* be a positive integer. Define $\mathbb{Z}/n := \{0, 1, 2, ..., n-1\}$. If $a \in \mathbb{Z}$, we define a modular *n*, which we denote by *a* mod *n*, as the the unique integer $a' \in \mathbb{Z}/n$ such that a - a' is divisible by *n*. Define addition (resp. multiplication) in \mathbb{Z}/n by taking the usual addition (resp. multiplication) and then taking it modular *n*.

- (a) Compute 73 mod 13.
- (b) Show that \mathbb{Z}/n is a commutative ring.
- (c) Show that the map of sets $f: \mathbb{Z} \to \mathbb{Z}/n$ which maps $a \mapsto a \mod n$ satisfies the following three properties: (i) f(x+y) = f(x) + f(y), (ii) $f(x \times y) = f(x) \times f(y)$ and f(1) = 1. A map between rings satisfying these three properties is called a *ring homomorphism*.
- (d) Convince yourself that your argument for Problem 2.2 also shows that the set $\mathbb{Z}/n[x_1,\ldots,x_n]$ of polynomials $f(x_1,\ldots,x_n)$ with coefficients in \mathbb{Z}/n is also a ring. (You need not write anything down here.)

Problem 2.4. A *field* is a commutative ring R satisfying the additional property (9) For each nonzero $x \in R$, there exists $y \in R$ with $x \times y = 1$ (there is a multiplicative inverse of x which we usually write it as ' x^{-1} '.)

Examples of fields include \mathbb{Q} , \mathbb{R} and \mathbb{C} . Show that if p > 1 is a prime integer, then \mathbb{Z}/p is a field.

Problem 2.5. Let $k = \mathbb{Q}$, \mathbb{R} , \mathbb{C} , or \mathbb{Z}/p (or more generally any field).

- (1) For integers d and n, what is the dimension of the vector space $k[x_1, \ldots, x_n]_{\leq d}$ consisting of all polynomials in variables x_1, \ldots, x_n of degree $\leq d$?
- (2) What is the dimension of the vector space $k[x_1, \ldots, x_n]_d$ of homogeneous polynomials in x_1, \ldots, x_n of degree d?
- (3) What is the dimension of the vector space of homogeneous polynomials f in x_1, \ldots, x_n of degree d in which all of the exponents of every monomial appearing in f are either 0 or 1? For example, $x_1x_2x_4x_5$ would be in the vector space but $x_1^2x_4x_5$ would not be.

Problem 2.6. Show that the language CLIQUE is NP-complete.

Problem 2.7. Define the language $ROOTS \subset \{0,1\}^*$ to be the set of polynomials $f(x_1, \ldots, x_n)$ (not necessarily homogeneous) with coefficients in $\mathbb{Z}/2$ which have a root (i.e., there exists $(a_1, \ldots, a_n) \in (\mathbb{Z}/2)^n$ with $f(a_1, \ldots, a_n) \cong 0 \mod 2$). Show that ROOTS is NP-complete.

Problem 2.8. Problem 7.29 about 3COLOR from Sipser, 3rd edition (It is Problem 7.34 in the 1st and 2nd edition and Problem 7.38 from the international version of the 3rd edition).

Problem 2.9. A bipartite graph is a graph G = (W, E) where the set vertices W is decomposed into two disjoint sets U and V such that every edge connects a vertex from U to a vertex from V. An example:

From wikipedia

A *perfect matching* is a collection of edges in G such that each vertex is contained in exactly one edge. Consider the language PERFECT consisting of bipartite graphs that contain a perfect matching. Show that PERFECT is NP-complete.

Problem 2.10. Define the Boolean operation NAND by $x \text{ NAND } y := \overline{x \land y}$ (i.e., x NAND y is the opposite of x AND y). Show that any Boolean expression can be written using only NAND operations.