Math 427 Homework \#7 Solutions

Thomas Sixuan Lou

December 11, 2018

Problem 7.1. Taylor 3.2.8.

Proof. Define function $g: \mathbb{C} \rightarrow \mathbb{C}$ by

$$
g(z)= \begin{cases}\sin (z) / z, & z \neq 0 \\ 1, & z=0\end{cases}
$$

We want to show g is entire. Since $\sin (z)$ is entire and z is analytic and not zero on $\mathbb{C} \backslash\{0\}$, it follows g is analytic on $\mathbb{C} \backslash\{0\}$, it suffices to show g is analytic around 0 . Recall we have power series expansion for $\sin (z)$ around 0 :

$$
\sin (z)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} z^{2 k+1}, \quad z \in \mathbb{C}
$$

Thus by definition of g,

$$
g(z)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} z^{2 k}, \quad z \in \mathbb{C} \backslash\{0\}
$$

Let c_{k} denote the coefficient of the power series of $\sin (z)$, then $c_{1}=(-1)^{0} / 1!=1$, then the power series $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} z^{2 k}$ has value 1 at $z=0$, which agrees with the value of g at 0 . Therefore we conclude g has power series expansion

$$
g(z)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} z^{2 k}, \quad z \in \mathbb{C}
$$

Therefore it follows g is analytic around 0 , hence g is entire.

Problem 7.2. Taylor 3.2.9.

Proof. Since f is analytic on the disk $D_{r}\left(z_{0}\right)$, we have a power series expansion for f about z_{0} with radius r (Theorem 3.2.5):

$$
f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}, \quad z \in D_{r}\left(z_{0}\right)
$$

Since $f \neq 0$ on $D_{r}\left(z_{0}\right)$, it's not the case that $a_{k}=0$ for all $k \geq 0$, thus there exists a minimal k such that $a_{k} \neq 0$. Then

$$
f(z)=\sum_{n=k}^{\infty} a_{k}\left(z-z_{0}\right)^{k}=\left(z-z_{0}\right)^{k} \sum_{n=0}^{\infty} a_{k+n}\left(z-z_{0}\right)^{n}, \quad z \in D_{r}\left(z_{0}\right)
$$

Define $g(z):=\sum_{n=0}^{\infty} a_{k+n}\left(z-z_{0}\right)^{n}$ for $z \in D_{r}\left(z_{0}\right)$, since by construction g has a power series expansion about z_{0} with radius r, it is analytic on $D_{r}\left(z_{0}\right)$. Furthermore, by construction $a_{k}=g\left(z_{0}\right) \neq 0$.

Lemma 0.1. Recall given $z_{0} \in \mathbb{C}$ we define $\lim _{z \rightarrow z_{0}} g(z)=\infty$ if for all $K>0$ there exists $\delta>0$ such that $|g(z)|>K$ whenever $\left|z-z_{0}\right|<\delta$.

Let $g: \mathbb{C} \rightarrow \mathbb{C}$ be a function then $\lim _{z \rightarrow \infty} g(z)=\lim _{z \rightarrow 0} g(1 / z)$.

Proof. We consider two cases:

1. $\lim _{z \rightarrow \infty} g(z)=\infty$. We want to show $\lim _{z \rightarrow 0} g(1 / z)=\infty$ as well, in other words, for any $K>0$ there exists $\delta>0$ such that $|z|<\delta$ implies $|g(1 / z)|>K$.
Let $K>0$ be given, since $\lim _{z \rightarrow \infty} g(z)=\infty$, there exists $M>0$ such that $|z|>M$ implies $|g(z)|>K$. Define $\delta:=1 / M>0$, then if $|z|<\delta$, we have $|1 / z|>1 / \delta=M$, then $|g(1 / z)|>K$ as we wished.
2. Suppose $\lim _{z \rightarrow \infty} g(z)=L \in \mathbb{C}$. We want to show $\lim _{z \rightarrow 0} g(1 / z)=L$ as well, in other words, for any $\epsilon>0$ there exists $\delta>0$ such that $|z|<\delta$ implies $|g(1 / z)-L|<\epsilon$.
Let $\epsilon>0$ be given, since $\lim _{z \rightarrow \infty} g(z)=L$, there exists $R>0$ such that $|z|>R$ implies $|g(z)-L|<\epsilon$. Define $\delta:=1 / R$, then if $|z|<\delta$, we have $|1 / z|>1 / \delta=R$, then $|g(1 / z)-L|<\epsilon$ as we wished.

Problem 7.3. Taylor 3.3.2.

Proof. By Lemma 0.1 it suffices to show $\lim _{z \rightarrow 0} f(1 / z)=\infty$ if and only if $\lim _{z \rightarrow \infty} 1 / f(z)=0$.

1. Suppose $\lim _{z \rightarrow 0} f(1 / z)=\infty$. Let $\epsilon>0$ be given, we want $R>0$ such that $|z|>R$ implies $|1 / f(z)|<\epsilon$. Since $\lim _{z \rightarrow 0} f(1 / z)=\infty$, there exists $\delta>0$ such that $|z|<\delta$ implies then $|f(1 / z)|>1 / \epsilon$. Define $R:=1 / \delta$, then if $|z|>R$, we know $|1 / z|<1 / R=\delta$, then $|f(1 /(1 / z))|=|f(z)|>1 / \epsilon$, then $|1 / f(z)|<\epsilon$ as we wished.
2. Suppose $\lim _{z \rightarrow \infty} 1 / f(z)=0$. Let $K>0$ be given, we want $\delta>0$ such that $|z|<\delta$ implies $|f(1 / z)|>K$. Since $\lim _{z \rightarrow \infty} 1 / f(z)=0$, there exists $R>0$ such that $|z|>R$ implies $|1 / f(z)|<1 / K$. Define $\delta:=1 / R$, then if $|z|<\delta$, then $|1 / z|>1 / \delta=R$, then $|1 / f(1 / z)|<1 / K$, then $|f(1 / z)|>K$ as we wished.

Problem 7.4. Taylor 3.3.3.

Proof. Suppose $f: \mathbb{C} \rightarrow \mathbb{C}$ is entire, and $\lim _{z \rightarrow \infty} f(z)=\infty$, suppose $f(z) \neq 0$ for all $z \in \mathbb{C}$, then the function $1 / f$ is well-defined and analytic on the whole complex plane. By the previous problem we know $\lim _{z \rightarrow \infty} 1 / f(z)=0$, then we can find $R>0$ such that $|1 / f(z)|<1$ whenever $|z|>R$. Since the closed disk $\bar{D}_{R}(0)=\{z \in \mathbb{C}:|z| \leq R\}$ is a compact and $1 / f$ is continuous on it, the function $1 / f$ attains a maximum value M at some $z_{0} \in \bar{D}_{R}(0)$, therefore for all $z \in \mathbb{C},|1 / f(z)| \leq \max \{1, M\}$, the function $1 / f$ is bounded on \mathbb{C}. By Liouville's Theorem the function $1 / f$ must be constant, there's some $c \in \mathbb{C}$ such that $1 / f(z)=c$ for all $z \in \mathbb{C}$. But this contradicts the assumption that $\lim _{z \rightarrow \infty} f(z)=\infty$ as there's no $z \in \mathbb{C}$ such that $|f(z)|>c$.

Problem 7.5. Taylor 3.3.5.

Proof. Suppose we are given an entire function $f=u+i v$ such that u is bounded on \mathbb{C}. Consider $g(z):=e^{f(z)}=e^{u(z)} e^{i v(z)}$. Then $|g(z)|=\left|e^{u(z)} e^{i v(z)}\right|=\left|e^{u(z)}\right|$ is bounded on \mathbb{C}. Since f is entire and the exponential function is entire, by composition, g is entire, but g is also bounded, thus g is constant, i.e., there's some $c \in \mathbb{C}$ such that $g(z)=c$ for all $z \in \mathbb{C}$. Since $e^{z} \neq 0$ for all $z \in \mathbb{C}, c$ cannot be zero, thus $f(z)=\log (c) \in \mathbb{C}$ for all $z \in \mathbb{C}, f$ is constant.

Problem 7.6. Taylor 3.3.6.

Proof. Let f be an entire nonconstant function, suppose for contradiction that $f(\mathbb{C})$ is not dense in \mathbb{C}, then there exists $z_{0} \in \mathbb{C}$ and $r>0$ such that $D_{r}\left(z_{0}\right) \subseteq \mathbb{C} \backslash f(\mathbb{C})$. Define $g(z):=1 /\left(f(z)-z_{0}\right)$, since $z_{0} \notin f(\mathbb{C})$, the function g is well-defined and entire. We claim the function g must be bounded, it suffices to show there exists $\epsilon>0$ such that $\left|f(z)-z_{0}\right|>\epsilon$ for all $z \in \mathbb{C}$. Put ϵ to be $r / 2$ suffices, since for all $z \in \mathbb{C}, f(z) \notin D_{r}\left(z_{0}\right)$, which means $\left|f(z)-z_{0}\right| \geq r>r / 2=\epsilon$. Since the entire function g is bounded, it follows g is constant, and hence $f=z_{0}+1 / g$ is also constant.

Problem 7.7. Taylor 3.3.15.

Proof. Let p be a polynomial of degree n with real coefficients, then by fundamental theorm of algebra it factors into linear terms over \mathbb{C} :

$$
p(z)=\lambda\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right), \quad z_{i}, \lambda \in \mathbb{C}
$$

Problem 10 tells us that if $(z-r)$ is a factor of p, where $r \in \mathbb{C} \backslash \mathbb{R}$, then $(z-\bar{r})$ is also a factor of p. Therefore it suffices to show for $r \in \mathbb{C} \backslash \mathbb{R},(z-r)(z-\bar{r})$ is a polynomial of degree at most 2 with real coefficients. Expand the product we get $(z-r)(z-\bar{r})=z^{2}-(r+\bar{r}) z z+r \bar{r}$. Since $r+\bar{r}=\operatorname{Re}(r)$ and $r \bar{r}=|r|^{2}$ are real, the product is a polynomial of degree 2 of real coefficients.

Problem 7.8. Taylor 3.4.4.

Solution: Recall we have power series expansion of $\sin (z)$ around 0 :

$$
\sin (z)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} z^{2 k+1}, \quad z \in \mathbb{C}
$$

Therefore $\sin (z)-z$ has power series expansion around 0 :

$$
\sin (z)-z=\sum_{k=1}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} z^{2 k+1}=z^{3} \sum_{k=1}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} z^{2 k-2}, \quad z \in \mathbb{C}
$$

Define $g(z):=\sum_{k=1}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} z^{2 k-2}$, then $g(0)=(-1)^{1} / 3!\neq 0$, thus $\sin (z)-z$ has zero of order 3 at 0 with the factorization given above.

Problem 7.9. Taylor 3.4.9.

Proof. Since f and g are analytic on U, and $z_{0} \in U$, they have power series expansion around z_{0}, by Theorem 3.4.1 there exists $k, l \in \mathbb{N}$ and we may write

$$
\begin{aligned}
f(z)=\left(z-z_{0}\right)^{k} \tilde{f}(z), & z \in D_{r_{1}}\left(z_{0}\right) \\
g(z)=\left(z-z_{0}\right)^{l} \tilde{g}(z), & z \in D_{r_{2}}\left(z_{0}\right)
\end{aligned}
$$

where \tilde{f} and \tilde{g} are analytic on $D_{r_{1}}\left(z_{0}\right)$ and $D_{r_{2}}\left(z_{0}\right)$ respectively and $\tilde{f}\left(z_{0}\right), \tilde{g}\left(z_{0}\right) \neq 0$. Thus we know in particular that $\lim _{z \rightarrow z_{0}} \tilde{f}(z)=\tilde{f}\left(z_{0}\right) \neq 0, \lim _{z \rightarrow z_{0}}(\tilde{f})^{\prime}(z)=(\tilde{f})^{\prime}\left(z_{0}\right) \in \mathbb{C}, \lim _{z \rightarrow z_{0}}(\tilde{g})^{\prime}(z)=(\tilde{g})^{\prime}\left(z_{0}\right) \in \mathbb{C}$. Therefore,

$$
\lim _{z \rightarrow z_{0}} \frac{f^{\prime}(z)}{g^{\prime}(z)}=\lim _{\substack{z \in z_{0} \\ z \in D_{r_{1}}\left(z_{0}\right) \\ z \in D_{r_{2}}\left(z_{0}\right)}} \frac{f^{\prime}(z)}{g^{\prime}(z)}=\lim _{\substack{z \rightarrow z_{0} \\ z \in D_{r_{1}}\left(z_{0}\right) \\ z \in D_{r_{2}}\left(z_{0}\right)}} \frac{\left[\left(z-z_{0}\right)^{k} \tilde{f}(z)\right]^{\prime}}{\left[\left(z-z_{0}\right)^{l} \tilde{g}(z)\right]^{\prime}} .=\lim _{z \rightarrow z_{0}} \frac{\left[\left(z-z_{0}\right)^{k} \tilde{f}(z)\right]^{\prime}}{\left[\left(z-z_{0}\right)^{l} \tilde{g}(z)\right]^{\prime}} .
$$

Notice since $f\left(z_{0}\right)=g\left(z_{0}\right)=0$, we must have $k, l \geq 1$. By product rule for complex differentiable functions,

$$
\lim _{z \rightarrow z_{0}} \frac{f^{\prime}(z)}{g^{\prime}(z)}=\lim _{z \rightarrow z_{0}} \frac{k\left(z-z_{0}\right)^{k-1} \tilde{f}(z)+\left(z-z_{0}\right)^{k}(\tilde{f})^{\prime}(z)}{l\left(z-z_{0}\right)^{l-1} \tilde{g}(z)+\left(z-z_{0}\right)^{l}(\tilde{g})^{\prime}(z)}
$$

We consider the following three cases:

1. $k=l$. In this case

$$
\lim _{z \rightarrow z_{0}} \frac{f^{\prime}(z)}{g^{\prime}(z)}=\lim _{z \rightarrow z_{0}} \frac{k \tilde{f}(z)+\left(z-z_{0}\right)(\tilde{f})^{\prime}(z)}{k \tilde{g}(z)+\left(z-z_{0}\right)(\tilde{g})^{\prime}(z)}
$$

Using the theorem on sum, product and quotient of converging limits, we conclude

$$
\lim _{z \rightarrow z_{0}} \frac{f^{\prime}(z)}{g^{\prime}(z)}=\frac{k \tilde{f}\left(z_{0}\right)+0}{k \tilde{g}\left(z_{0}\right)+0}=\frac{\tilde{f}\left(z_{0}\right)}{\tilde{g}\left(z_{0}\right)}
$$

2. $k<l$. Then

$$
\lim _{z \rightarrow z_{0}} \frac{f^{\prime}(z)}{g^{\prime}(z)}=\lim _{z \rightarrow z_{0}} \frac{k \tilde{f}(z)+\left(z-z_{0}\right)(\tilde{f})^{\prime}(z)}{l\left(z-z_{0}\right)^{l-k} \tilde{g}(z)+\left(z-z_{0}\right)^{l-k+1}(\tilde{g})^{\prime}(z)}
$$

Observe the limit of the numerator exists and nonzero,

$$
\lim _{z \rightarrow z_{0}} k \tilde{f}(z)+\left(z-z_{0}\right)(\tilde{f})^{\prime}(z)=k \tilde{f}\left(z_{0}\right) \in \mathbb{C} \backslash\{0\}
$$

However the limit of the denominator is

$$
\lim _{z \rightarrow z_{0}} l\left(z-z_{0}\right)^{l-k} \tilde{g}(z)+\left(z-z_{0}\right)^{l-k+1}(\tilde{g})^{\prime}(z)=0+0=0 .
$$

Thus we conclude the $\lim _{z \rightarrow z_{0}} f^{\prime}(z) / g^{\prime}(z)$ is unbounded, in which case we denote the limit by ∞.
3. $l<k$. Then

$$
\lim _{z \rightarrow z_{0}} \frac{f^{\prime}(z)}{g^{\prime}(z)}=\lim _{z \rightarrow z_{0}} \frac{k\left(z-z_{0}\right)^{k-l} \tilde{f}(z)+\left(z-z_{0}\right)^{k-l+1}(\tilde{f})^{\prime}(z)}{l \tilde{g}(z)+\left(z-z_{0}\right)(\tilde{g})^{\prime}(z)}
$$

Using the theorem on sum, product and quotient of converging limits, we conclude,

$$
\lim _{z \rightarrow z_{0}} k\left(z-z_{0}\right)^{k-l} \tilde{f}(z)+\left(z-z_{0}\right)^{k-l+1}(\tilde{f})^{\prime}(z)=0+0=0
$$

and

$$
\lim _{z \rightarrow z_{0}} l \tilde{g}(z)+\left(z-z_{0}\right)(\tilde{g})^{\prime}(z)=l \tilde{g}\left(z_{0}\right) \neq 0
$$

Therefore, $\lim _{z \rightarrow z_{0}} f^{\prime}(z) / g^{\prime}(z)=0$.

Problem 7.10. Exercises Taylor 3.4.12-16.

Solution:

1. Observe the function $z-z^{3}$ is entire, and it is only zero when $z=0$ or $z= \pm 1$, thus f is analytic on $\mathbb{C} \backslash\{0,1,-1\}$. If there were isolated singularities of f, they may only occur at 0,1 and -1 . First we look at 0 , near the origin the function f has factorization $f(z)=z^{-1} g(z)$ where $g(z)=1 /[(z+1)(z-1)]$, which is analytic around 0 , thus f has a pole of order 1 at 0 . Secondly we look at 1 , similarly we have factorization $f(z)=(z-1)^{-1} g(z)$ where $g(z)=1 /[z(z+1)]$, which is analytic around 1 , thus f has a pole of order 1 at 1 . Finally by the same reasoning, f has a pole of order 1 at -1 as well.
2. By power series expansion of $\sin (z)$, we have

$$
\sin (1 / z)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} z^{-(2 k+1)}, \quad z \in \mathbb{C} \backslash\{0\}
$$

Since there are infinitely many terms in the power series expansion of $\sin (1 / z)$ about 0 where z has negative exponent. Thus $\sin (1 / z)$ has an essential singularity at 0 . Away from 0 however, the function $1 / z$ is analytic, hence by composition $\sin (1 / z)$ is analytic on $\mathbb{C} \backslash\{0\}$, hence 0 is the only isolated singularity of $\sin (1 / z)$.
3. Since the numerator of f is $e^{z}-1-z$, which is entire; the denominator of f is z^{2}, which is also entire. It follows the isolated singularity of f may only occur at where denominator vanishes, which happens only if $z=0$. Recall we have power series expansion of e^{z} about 0 :

$$
e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}, \quad z \in \mathbb{C}
$$

then we have

$$
f(z)=\frac{\left(\sum_{n=0}^{\infty} z^{n} / n!\right)-1-z}{z^{2}}=\sum_{n=2}^{\infty} \frac{z^{n-2}}{n!}, \quad z \in \mathbb{C} \backslash\{0\} .
$$

If we define $f(0)$ to be $1 / 2$, the function f has power series expansion $\sum_{n=2}^{\infty} \frac{z^{n-2}}{n!}$ around 0 , hence we conclude f has a removable singularity at 0 .
4. Observe $f(z)=\frac{z+1-e^{z}}{z\left(e^{z}-1\right)}$, and both the numerator and the denominator are entire and the denominator is only zero when $z=2 \pi i n$ for $n \in \mathbb{Z}$. Thus the isolated singularity of f may only occur at those points. By change of variable we have power series expansion of $e^{z-2 \pi i n}$ around $2 \pi i n$:

$$
e^{z-2 \pi i n}=\sum_{k=0}^{\infty} \frac{(z-2 \pi i n)^{k}}{k!}, \quad z \in \mathbb{C}
$$

Observe since $e^{2 \pi i n}=1$, the left hand side equals e^{z}, thus we have power series expansion of e^{z} around $2 \pi i n$:

$$
e^{z}=\sum_{k=0}^{\infty} \frac{(z-2 \pi i n)^{k}}{k!}, \quad z \in \mathbb{C}
$$

Therefore we have power series expansion of the numerator around $2 \pi i n$:

$$
z+1-e^{z}=2 \pi i n-\sum_{k=2}^{\infty} \frac{(z-2 \pi i n)^{k}}{k!}, \quad z \in \mathbb{C}
$$

If $n=0$, it can be factored as

$$
z+1-e^{z}=z^{2}\left(-\sum_{k=2}^{\infty} \frac{z^{k-2}}{k!}\right)=: z^{2} g(z)
$$

Thus the numerator is entire and has a zero of order 2 at 0 , it does not have a zero at $2 \pi i n$ for $n \neq 0$. Consider the denominator $z\left(e^{z}-1\right)$, observe the function z is entire and is zero when $n=0$, it's nonzero when $n \neq 0$. Furthermore the power series expansion of $e^{z}-1$ around $2 \pi i n$ has factorization

$$
e^{z}-1=(z-2 \pi i n) \sum_{k=1}^{\infty} \frac{(z-2 \pi i n)^{k-1}}{k!}
$$

Therefore we conclude the denominator is entire and has a zero of order 2 at 0 , and has a zero of order 1 at $2 \pi i n$ when $n \neq 0$. We conclude using Example 3.4.10 that f has a removable singularity at 0 and a pole at $2 \pi i n$ for $n \in \mathbb{Z}, n \neq 0$. Recall to remove a removable singularity, we define the value of the function to be the constant term in its power series expansion around that singularity. Since f has power series expansion around 0 :

$$
f(z)=\frac{z^{2}\left(-\sum_{k=2}^{\infty} z^{k-2} / k!\right)}{z^{2}\left(\sum_{k=1}^{\infty} z^{k-1} / k!\right)}=\frac{-\sum_{k=2}^{\infty} z^{k-2} / k!}{\sum_{k=1}^{\infty} z^{k-1} / k!}
$$

the constant term is the constant term of the numerator $(-1 / 2)$ divided by the constant term of the denominator 1 , which is $-1 / 2$.
5. Recall the principal branch of the $\operatorname{logarithm} \log (z)$ is analytic on $\mathbb{C} \backslash(-\infty, 0]$. Since the denominator $(1-z)^{2}$ is entire and is zero only when $z=1$, it follows f is analytic on $\mathbb{C} \backslash((-\infty, 0] \cup\{1\})$.
Observe for all $z_{0} \in(-\infty, 0]$, and all open ball containing z_{0}, the open ball also contains points in $(-\infty, 0]$, this tells us none of points in $(-\infty, 0]$ is an isolated singularity of f, we only need to consider the point $z_{0}=1$.

Recall we have power series expansion of $\log (1+z)$ around 0 :

$$
\log (1+z)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} z^{n}, \quad|z|<1
$$

then by a change of variable, we have a power series expansion of $\log (z)$ around 1 :

$$
\log (z)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}(z-1)^{n}, \quad|z-1|<1
$$

We can factor this expansion into:

$$
\log (z)=(z-1)\left(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}(z-1)^{n-1}\right)=:(z-1) g(z), \quad|z-1|<1
$$

Then g is analytic around 0 and $g(1) \neq 0$, thus $\log (z)$ has a zero of order 1 at 1 . Since the denominator $(z-1)^{2}$ has a zero of order 2 at 1 , it follows from Example 3.4.10 that f has a pole of order 1 at 1 .

