Math 427 Homework \#5 Solutions

Thomas Sixuan Lou

November 15, 2018

Problem 5.1. Taylor 2.6.4.

Solution: Suppose 0 is in the interior of γ, then there exists $\epsilon>0$ such that the closed ball $\bar{B}_{\epsilon}(0)$ is contained entirely in the interior of γ. Split the regions into the following:

Then by additivity of countour integral we have

$$
\int_{\gamma} \frac{d z}{z}=\sum_{i=1}^{4} \int_{\gamma_{i}} \frac{d z}{z}+\int_{|z|=\epsilon} \frac{d z}{z}
$$

Since each γ_{i} is contained in a convex open set where $1 / z$ is analytic on, each $\int_{\gamma_{i}} d z / z$ is zero. Therefore,

$$
\int_{\gamma} \frac{d z}{z}=\int_{|z|=\epsilon} \frac{d z}{z}=\int_{0}^{2 \pi} \frac{\epsilon i e^{i t}}{\epsilon e^{i t}} d t=2 \pi i
$$

Suppose on the other hand that γ is the circle centered at z_{0} with radius r, and 0 is not contained in the interior of γ, then there exists $\epsilon>0$ such that the circle centered at z_{0} with radius $r+\epsilon$ does not contain 0 as well. Since $D_{r+\epsilon}\left(z_{0}\right)=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<r+\epsilon\right\}$ is open convex and does not contain 0 , hence the function $1 / z$ is analytic on it. It follows by Cauchy's Integral Theorem that $\int_{\gamma} d z / z=0$.

Problem 5.2. Taylor 2.6.7.

Proof. Let γ_{1} and γ_{2} be two paths in U both begin at a and end at b, where $a, b \in U$. Then the path $\gamma_{1}-\gamma_{2}$, the path construted by γ_{1} followed by the reverse of γ_{2} is a closed path in U starting and ending at a. Since f is analytic on U it follows by Cauchy's Integral Theorem that the integral $\int_{\gamma_{1}-\gamma_{2}} f d z$ is zero. Since countour integral is additive in paths, we know by Theorem 2.4.6

$$
\int_{\gamma_{1}-\gamma_{2}} f d z=\int_{\gamma_{1}} f d z-\int_{\gamma_{2}} f d z=0
$$

Therefore it follows

$$
\int_{\gamma_{1}} f d z=\int_{\gamma_{2}} f d z
$$

as we wished.
Problem 5.3. Taylor 2.6.10.

Solution:

$$
\begin{aligned}
\operatorname{Ind}_{\gamma}\left(z_{0}\right) & =\frac{1}{2 \pi i} \int_{\gamma} \frac{d w}{w-z_{0}}=\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{i n e^{i n t} d t}{z_{0}+e^{i n t}-z_{0}} \\
& =\frac{1}{2 \pi i} \int_{0}^{2 \pi} i n d t=\frac{2 \pi i n}{2 \pi i}=n
\end{aligned}
$$

Problem 5.4. Taylor 2.6.13.

Solution:

1. By partial fraction we can decompose the integrand $1 /\left(z^{2}-1\right)$ into:

$$
\frac{1}{z^{2}-1}=\frac{1}{2}\left(\frac{1}{z-1}-\frac{1}{z+1}\right)
$$

Then by linearity the integral becomes:

$$
\frac{1}{2} \int_{|z-1|=1} \frac{d z}{z-1}-\frac{1}{2} \int_{|z-1|=1} \frac{d z}{z+1}
$$

For the first integral, we may apply a change of variable $w:=z-1$ and observe it equals $(1 / 2) \int_{|w|=1} d w / w$, which by Problem 5.1 Taylor 2.6 .4 we know equals πi. We apply the change of variable $w:=z+1$ in the second integral and turn it into $(1 / 2) \int_{|w-2|=1} d w / w$. Observe it integrates $1 / w$ around the circle of radius 1 centered at 2 (which does not have 0 in its interior), again by Problem 5.1 we conclude the integral is 0 . Therefore the answer to this part is πi.
2. Use the same partial fraction decomposition we turn the integral into

$$
\frac{1}{2} \int_{|z+1|=1} \frac{d z}{z-1}-\frac{1}{2} \int_{|z+1|=1} \frac{d z}{z+1}
$$

Apply change of variable $w:=z-1$ in the first integral and $w:=z+1$ in the second integral, we turn the above into

$$
\frac{1}{2} \int_{|w+2|=1} \frac{d w}{w}-\frac{1}{2} \int_{|w|=1} \frac{d w}{w}
$$

The first integral integrates $1 / w$ around a circle of radius 1 centered at -2 , which does not include 0 in its interior. By Problem 5.1 we see its zero. The second integral by Problem 5.1 is $2 \pi i$. Therefore the answer to this part is $-\pi i$.

Lemma 0.1. Let f, g be continuous functions defined on an open set U, suppose f is differentiable on U. Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a smooth path, such that $\gamma([a, b]) \subset U$, then

$$
\int_{\gamma} f^{\prime}(z) g(z) d z=[(f \circ \gamma)(t)(g \circ \gamma)(t)]_{a}^{b}-\int_{\gamma} f(z) g^{\prime}(z) d z
$$

Proof. By definition of the contour integral,

$$
\int_{\gamma} f^{\prime}(z) g(z) d z=\int_{a}^{b} f^{\prime}(\gamma(t)) g(\gamma(t)) \gamma^{\prime}(t) d t=\int_{a}^{b}(f \circ \gamma)^{\prime}(t)(g \circ \gamma)(t) d t
$$

By the integration by parts of complex-valued (i.e. vector valued) functions, we can rewrite the above integral as:

$$
[(f \circ \gamma)(t)(g \circ \gamma(t))]_{a}^{b}-\int_{a}^{b}(f \circ \gamma)(t)(g \circ \gamma)^{\prime}(t) d t
$$

Then by definition of contour integral, we have

$$
[(f \circ \gamma)(t)(g \circ \gamma(t))]_{a}^{b}-\int_{a}^{b} f(\gamma(t)) g^{\prime}(\gamma(t)) \gamma^{\prime}(t) d t=[(f \circ \gamma)(t)(g \circ \gamma(t))]_{a}^{b}-\int_{\gamma} f(z) g^{\prime}(z) d z
$$

as we wished.
Problem 5.5. Let γ be the counterclockwise parameterization of the unit circle centered at the origin. Compute the integral

$$
\int_{\gamma} \frac{e^{z}}{z^{n}} d z
$$

for every integer n.

Solution:

1. Suppose $n \leq 0$, then $n=-m$ for some integer $m \geq 0$. Then the integrand $e^{z} / z^{n}=e^{z} z^{m}$ is analytic on the entire complex plane. By Cauchy's Integral Theorem the integral is zero.
2. Suppose $n \geq 1$, we induction on n to prove the integral equals $2 \pi i /(n-1)$!. Suppose $n=1$, then by Cauchy's Integral Formula,

$$
\int_{\gamma} \frac{e^{z}}{z} d z=(2 \pi i) \operatorname{Ind}_{\gamma}(0) e^{0}=2 \pi i=\frac{2 \pi i}{0!}
$$

Suppose $n>1$, integration by parts (Lemma 0.1) tells us that

$$
\int_{\gamma} \frac{e^{z}}{z^{n}} d z=\int_{\gamma}\left(\frac{z^{-n+1}}{-n+1}\right)^{\prime} e^{z} d z=\left[\frac{e^{i(-n+1) t}}{-n+1} \cdot e^{e^{i t}}\right]_{0}^{2 \pi}-\int_{\gamma} \frac{z^{-n+1}}{-n+1} e^{z} d z
$$

By inductive hypothesis

$$
\int_{\gamma} \frac{e^{z}}{z^{n-1}} d z=\frac{2 \pi i}{(n-2)!}
$$

therefore

$$
\int_{\gamma} \frac{e^{z}}{z^{n}} d z=\left[\frac{e^{i(-n+1) t}}{-n+1} \cdot e^{e^{i t}}\right]_{0}^{2 \pi}+\frac{1}{n-1} \frac{2 \pi i}{(n-2)!}=\frac{2 \pi i}{(n-1)!}
$$

This concludes the induction.

Problem 5.6. Let γ be the clockwise parameterization of the circle of radius 2 centered at $1+i$. Compute

$$
\int_{\gamma} \frac{d z}{z^{4}-1}
$$

Proof. By partial fraction, we have

$$
\frac{1}{z^{4}-1}=\frac{1}{4}\left(\frac{-1}{z+1}+\frac{1}{z-1}-\frac{i}{z+i}+\frac{i}{z-i}\right)
$$

Therefore the integral becomes

$$
-\frac{1}{4} \int_{\gamma} \frac{d z}{z+1}+\frac{1}{4} \int_{\gamma} \frac{d z}{z-1}-\frac{i}{4} \int_{\gamma} \frac{d z}{z+i}+\frac{i}{4} \int_{\gamma} \frac{d z}{z-i}
$$

Make change of variable $w=z+1, w=z-1, w=z+i$ and $w=z-i$ in the four integrals respectively, we get

$$
-\frac{1}{4} \int_{|w-(2+i)|=2} \frac{d w}{w}+\frac{1}{4} \int_{|w-i|=2} \frac{d w}{w}-\frac{i}{4} \int_{|w-(1+2 i)|=2} \frac{d w}{w}+\frac{i}{4} \int_{|w-1|=2} \frac{d w}{w}
$$

Recall the path γ were parametrized to travel clockwise, hence the four integrals above are integrated around a circle clockwise once. We may compute each of them using Problem 5.1. That is, if the circle we are integrating over has 0 in its interior, then the result of the integral is $-2 \pi i$, otherwise the integral is 0 . The first and third does not, and the second and fourth does. Therefore the integral is

$$
\int_{\gamma} \frac{d z}{z^{4}-1}=\frac{-2 \pi i}{4}+\frac{i(-2 \pi i)}{4}=-\frac{\pi i}{2}+\frac{\pi}{2}
$$

Problem 5.7. Taylor 2.7.1.

Proof. Let $\left\{U_{\alpha}\right\}_{\alpha \in I}$ be a collection of connected sets in \mathbb{C}, suppose a common p is contained in the intersection $\cap_{\alpha \in I} U_{\alpha}$. For contraction suppose $\cup_{\alpha \in I} U_{\alpha}$ is separated: there exists open sets $A, B \subset \mathbb{C}$ such that $\cup_{\alpha \in I} U_{\alpha} \subset A \cup B,\left(\cup_{\alpha \in I} U_{\alpha}\right) \cap A \neq \varnothing,\left(\cup_{\alpha \in I} U_{\alpha}\right) \cap B \neq \varnothing$ and $A \cap B=\varnothing$.

Since $p \in \cup_{\alpha \in I} U_{\alpha} \subset A \cup B$, and A is disjoint from B either $p \in A$ or $p \in B$. Without loss of generality suppose $p \in A$, since $p \in \cap_{\alpha \in I} U_{\alpha}$, we must have $U_{\alpha} \cap A \neq \varnothing$ for all $\alpha \in I$. Since for each $\alpha \in I$, we have $U_{\alpha} \subset A \cup B, U_{\alpha} \cap A \neq \varnothing$ and $A \cap B$. Since U_{α} is connected, it cannot have a separation, then it must be the case that $U_{\alpha} \cap B=\varnothing$. Therefore,

$$
\left(\bigcup_{\alpha \in I} U_{\alpha}\right) \cap B=\bigcup_{\alpha \in I} U_{\alpha} \cap B=\varnothing
$$

a contradiction to the fact that $A \cup B$ is a separation.

Problem 5.8. Taylor 2.7.8.

Solution: Suppose the path travel the figure eight in the direction below: We have three connected components

$$
\begin{aligned}
& A=\{z \in \mathbb{C}:|z-i|>1 \text { and }|z+i|>1\} \\
& B=\{z \in \mathbb{C}:|z-i|<1\} \\
& C=\{z \in \mathbb{C}:|z+i|<1\}
\end{aligned}
$$

Since A is unbounded, $\operatorname{Ind}_{\gamma}(z)=0$ for all $z \in A$. Crossing γ from A to B at $2 i$ increases the index by 1 , thus $\operatorname{Ind}_{\gamma}(z)=1$ for all $z \in B$. Similarly when we cross γ from A to C at $-2 i$ decreases the index by 1 , thus $\operatorname{Ind}_{\gamma}(z)=-1$ for all $z \in C$.

Figure 1: Problem 5.8

Problem 5.9. Taylor 2.7.9.

Solution: Apply Theorem 2.7.8.

Figure 2: Problem 5.9

Problem 5.10. Taylor 2.7.10.
Proof. By definition,

$$
\operatorname{Ind}_{\gamma_{1}+\gamma_{2}}(z)=\frac{1}{2 \pi i} \int_{\gamma_{1}+\gamma_{2}} \frac{d \zeta}{\zeta-z}, \quad \operatorname{Ind}_{-\gamma_{1}}(z)=\frac{1}{2 \pi i} \int_{-\gamma_{1}} \frac{d \zeta}{\zeta-z}
$$

Since z is not on either paths, the function $1 /(\zeta-z)$ is continuous as ζ runs through γ_{1} and γ_{2}, by Theorem 2.4.6, we may rewrite the integrals above as:

$$
\operatorname{Ind}_{\gamma_{1}+\gamma_{2}}(z)=\frac{1}{2 \pi i}\left(\int_{\gamma_{1}} \frac{d \zeta}{\zeta-z}+\int_{\gamma_{2}} \frac{d \zeta}{\zeta-z}\right), \quad \operatorname{Ind}_{-\gamma_{1}}(z)=-\frac{1}{2 \pi i} \int_{\gamma_{1}} \frac{d \zeta}{\zeta-z}
$$

Therefore it follows,

$$
\operatorname{Ind}_{\gamma_{1}+\gamma_{2}}(z)=\operatorname{Ind}_{\gamma_{1}}(z)+\operatorname{Ind}_{\gamma_{2}}(z), \quad \operatorname{Ind}_{-\gamma_{1}}(z)=-\operatorname{Ind}_{\gamma_{1}}(z)
$$

