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Problem 5.1. Taylor 2.6.4.

Solution: Suppose 0 is in the interior of γ, then there exists ε > 0 such that the closed ball Bε(0) is
contained entirely in the interior of γ. Split the regions into the following:

Re

Im

1

ε

γ1

γ2

γ3

γ4

Then by additivity of countour integral we have∫
γ

dz

z
=

4∑
i=1

∫
γi

dz

z
+

∫
|z|=ε

dz

z
.

Since each γi is contained in a convex open set where 1/z is analytic on, each
∫
γi
dz/z is zero. Therefore,∫

γ

dz

z
=

∫
|z|=ε

dz

z
=

∫ 2π

0

εieit

εeit
dt = 2πi.

Suppose on the other hand that γ is the circle centered at z0 with radius r, and 0 is not contained in the
interior of γ, then there exists ε > 0 such that the circle centered at z0 with radius r+ε does not contain 0 as
well. Since Dr+ε(z0) = {z ∈ C : |z − z0| < r + ε} is open convex and does not contain 0, hence the function
1/z is analytic on it. It follows by Cauchy’s Integral Theorem that

∫
γ
dz/z = 0. �

Problem 5.2. Taylor 2.6.7.

Proof. Let γ1 and γ2 be two paths in U both begin at a and end at b, where a, b ∈ U . Then the path
γ1 − γ2, the path construted by γ1 followed by the reverse of γ2 is a closed path in U starting and ending
at a. Since f is analytic on U it follows by Cauchy’s Integral Theorem that the integral

∫
γ1−γ2 fdz is zero.

Since countour integral is additive in paths, we know by Theorem 2.4.6∫
γ1−γ2

fdz =

∫
γ1

fdz −
∫
γ2

fdz = 0.

1



2

Therefore it follows ∫
γ1

fdz =

∫
γ2

fdz,

as we wished.

Problem 5.3. Taylor 2.6.10.

Solution:

Indγ(z0) =
1

2πi

∫
γ

dw

w − z0
=

1

2πi

∫ 2π

0

ineintdt

z0 + eint − z0

=
1

2πi

∫ 2π

0

indt =
2πin

2πi
= n.

�

Problem 5.4. Taylor 2.6.13.

Solution:

1. By partial fraction we can decompose the integrand 1/(z2 − 1) into:

1

z2 − 1
=

1

2

( 1

z − 1
− 1

z + 1

)
.

Then by linearity the integral becomes:

1

2

∫
|z−1|=1

dz

z − 1
− 1

2

∫
|z−1|=1

dz

z + 1
.

For the first integral, we may apply a change of variable w := z−1 and observe it equals (1/2)
∫
|w|=1

dw/w,

which by Problem 5.1 Taylor 2.6.4 we know equals πi. We apply the change of variable w := z + 1 in
the second integral and turn it into (1/2)

∫
|w−2|=1

dw/w. Observe it integrates 1/w around the circle

of radius 1 centered at 2 (which does not have 0 in its interior), again by Problem 5.1 we conclude the
integral is 0. Therefore the answer to this part is πi.

2. Use the same partial fraction decomposition we turn the integral into

1

2

∫
|z+1|=1

dz

z − 1
− 1

2

∫
|z+1|=1

dz

z + 1
.

Apply change of variable w := z− 1 in the first integral and w := z+ 1 in the second integral, we turn
the above into

1

2

∫
|w+2|=1

dw

w
− 1

2

∫
|w|=1

dw

w
.

The first integral integrates 1/w around a circle of radius 1 centered at −2, which does not include 0
in its interior. By Problem 5.1 we see its zero. The second integral by Problem 5.1 is 2πi. Therefore
the answer to this part is −πi.

�

Lemma 0.1. Let f, g be continuous functions defined on an open set U , suppose f is differentiable on U .
Let γ : [a, b]→ C be a smooth path, such that γ([a, b]) ⊂ U , then∫

γ

f ′(z)g(z)dz =
[
(f ◦ γ)(t)(g ◦ γ)(t)

]b
a
−
∫
γ

f(z)g′(z)dz.
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Proof. By definition of the contour integral,∫
γ

f ′(z)g(z)dz =

∫ b

a

f ′(γ(t))g(γ(t))γ′(t)dt =

∫ b

a

(f ◦ γ)′(t)(g ◦ γ)(t)dt.

By the integration by parts of complex-valued (i.e. vector valued) functions, we can rewrite the above integral
as: [

(f ◦ γ)(t)(g ◦ γ(t))
]b
a
−
∫ b

a

(f ◦ γ)(t)(g ◦ γ)′(t)dt.

Then by definition of contour integral, we have[
(f ◦ γ)(t)(g ◦ γ(t))

]b
a
−
∫ b

a

f(γ(t))g′(γ(t))γ′(t)dt =
[
(f ◦ γ)(t)(g ◦ γ(t))

]b
a
−
∫
γ

f(z)g′(z)dz,

as we wished.

Problem 5.5. Let γ be the counterclockwise parameterization of the unit circle centered at the origin.
Compute the integral ∫

γ

ez

zn
dz

for every integer n.

Solution:

1. Suppose n ≤ 0, then n = −m for some integer m ≥ 0. Then the integrand ez/zn = ezzm is analytic
on the entire complex plane. By Cauchy’s Integral Theorem the integral is zero.

2. Suppose n ≥ 1, we induction on n to prove the integral equals 2πi/(n − 1)!. Suppose n = 1, then by
Cauchy’s Integral Formula, ∫

γ

ez

z
dz = (2πi) Indγ(0)e0 = 2πi =

2πi

0!
.

Suppose n > 1, integration by parts (Lemma 0.1) tells us that∫
γ

ez

zn
dz =

∫
γ

( z−n+1

−n+ 1

)′
ezdz =

[ei(−n+1)t

−n+ 1
· ee

it
]2π
0
−
∫
γ

z−n+1

−n+ 1
ezdz.

By inductive hypothesis ∫
γ

ez

zn−1
dz =

2πi

(n− 2)!
,

therefore ∫
γ

ez

zn
dz =

[ei(−n+1)t

−n+ 1
· ee

it
]2π
0

+
1

n− 1

2πi

(n− 2)!
=

2πi

(n− 1)!
.

This concludes the induction.

�

Problem 5.6. Let γ be the clockwise parameterization of the circle of radius 2 centered at 1 + i. Compute∫
γ

dz

z4 − 1
.
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Proof. By partial fraction, we have

1

z4 − 1
=

1

4

( −1

z + 1
+

1

z − 1
− i

z + i
+

i

z − i

)
.

Therefore the integral becomes

−1

4

∫
γ

dz

z + 1
+

1

4

∫
γ

dz

z − 1
− i

4

∫
γ

dz

z + i
+
i

4

∫
γ

dz

z − i
.

Make change of variable w = z + 1, w = z − 1, w = z + i and w = z − i in the four integrals respectively, we
get

−1

4

∫
|w−(2+i)|=2

dw

w
+

1

4

∫
|w−i|=2

dw

w
− i

4

∫
|w−(1+2i)|=2

dw

w
+
i

4

∫
|w−1|=2

dw

w
.

Recall the path γ were parametrized to travel clockwise, hence the four integrals above are integrated
around a circle clockwise once. We may compute each of them using Problem 5.1. That is, if the circle we
are integrating over has 0 in its interior, then the result of the integral is −2πi, otherwise the integral is 0.
The first and third does not, and the second and fourth does. Therefore the integral is∫

γ

dz

z4 − 1
=
−2πi

4
+
i(−2πi)

4
= −πi

2
+
π

2
.

Problem 5.7. Taylor 2.7.1.

Proof. Let {Uα}α∈I be a collection of connected sets in C, suppose a common p is contained in the
intersection ∩α∈IUα. For contraction suppose ∪α∈IUα is separated: there exists open sets A,B ⊂ C such

that ∪α∈IUα ⊂ A ∪B,
(
∪α∈I Uα

)
∩A 6= ∅,

(
∪α∈I Uα

)
∩B 6= ∅ and A ∩B = ∅.

Since p ∈ ∪α∈IUα ⊂ A ∪ B, and A is disjoint from B either p ∈ A or p ∈ B. Without loss of generality
suppose p ∈ A, since p ∈ ∩α∈IUα, we must have Uα ∩ A 6= ∅ for all α ∈ I. Since for each α ∈ I, we have
Uα ⊂ A ∪ B, Uα ∩ A 6= ∅ and A ∩ B. Since Uα is connected, it cannot have a separation, then it must be
the case that Uα ∩B = ∅. Therefore,( ⋃

α∈I
Uα

)
∩B =

⋃
α∈I

Uα ∩B = ∅,

a contradiction to the fact that A ∪B is a separation.

Problem 5.8. Taylor 2.7.8.

Solution: Suppose the path travel the figure eight in the direction below: We have three connected com-
ponents

A = {z ∈ C : |z − i| > 1 and |z + i| > 1}
B = {z ∈ C : |z − i| < 1}
C = {z ∈ C : |z + i| < 1}

Since A is unbounded, Indγ(z) = 0 for all z ∈ A. Crossing γ from A to B at 2i increases the index by 1,
thus Indγ(z) = 1 for all z ∈ B. Similarly when we cross γ from A to C at −2i decreases the index by 1, thus
Indγ(z) = −1 for all z ∈ C. �
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Figure 1: Problem 5.8

Problem 5.9. Taylor 2.7.9.

Solution: Apply Theorem 2.7.8. �

Figure 2: Problem 5.9

Problem 5.10. Taylor 2.7.10.

Proof. By definition,

Indγ1+γ2(z) =
1

2πi

∫
γ1+γ2

dζ

ζ − z
, Ind−γ1(z) =

1

2πi

∫
−γ1

dζ

ζ − z
.

Since z is not on either paths, the function 1/(ζ − z) is continuous as ζ runs through γ1 and γ2, by Theorem
2.4.6, we may rewrite the integrals above as:

Indγ1+γ2(z) =
1

2πi

(∫
γ1

dζ

ζ − z
+

∫
γ2

dζ

ζ − z

)
, Ind−γ1(z) = − 1

2πi

∫
γ1

dζ

ζ − z
.

Therefore it follows,

Indγ1+γ2(z) = Indγ1(z) + Indγ2(z), Ind−γ1(z) = − Indγ1(z).


