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Problem 4.1. Taylor 2.3.2.

Solution: Recall we defined the complex function sin by

sin(z) :=
eiz − e−iz

2i
.

Therefore, by definition of the Riemann integral of complex-valued functions, we can rewrite the integral of
interest as ∫ 1

0

sin(it)dt =
1

2i

∫ 1

0

e−t − etdt,

where the integral
∫ 1

0
e−t − etdt is an ordinary Riemann integral of real-valued function. Therefore∫ 1

0

sin(it)dt = − i

2

[
− e−t − et

]1
0
= − i

2

(
− 1

e
− e+ 2

)
= i(

1

2e
+

e

2
− 1).

□

Problem 4.2. Taylor 2.3.5.

Solution:

(a) Recall if the path γ traces over a circle in C centered at the origin of radius r, counterclockwise once
from time 0 to 2π, then it may be parametrized by the function γ(t) = reit for 0 ≤ t ≤ 2π. If we
translate the circle to be centered at z0 ∈ C instead, then the parametrization is also translated to
γ(t) = z0 + reit, for 0 ≤ t ≤ 2π.

(b) Based on part (a), if we also want to reverse the direction of the path, we will want the parameter to go
from 2π back to 0. Therefore we may define the new parametrization by change of variable s = 2π− t,
yielding γ(s) = z0 + reis, where s = 2π − t, and t ranges from 0 to 2π. Since ei(2π−t) = e−it, this is
equivalent to the parametrization γ(t) := z0 + re−it where t ranges from 0 to 2π.

(c) Based on part (a), if we also want to speed up how the parametrization traces over the circle to trace
3 times around the circle {|z − z0| = r : z ∈ C} from time 0 to 2π. We will want the parameter to go
3 times faster, hence we may define the new parametrization by change of variable s = 3t, yielding
γ(s) := z0 + reis, where s = 3t, and t ranges from 0 to 2π. This is equivalent to the parametrization
γ(t) := z0 + rei3t where t ranges from 0 to 2π.

□

Problem 4.3. Taylor 2.3.7.
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Proof. Recall the fundamental theorem of calculus for real-valued functions: if f is a real valued function
continuous on the interval [a, b], and it has F as its primitive on (a, b) (this means F is differentiable on
(a, b), with F ′(t) = f(t) for all t ∈ (a, b)), then∫ b

a

f(t)dt = F (b)− F (a).

Now let f be a smooth complex-valued function on an interval [a, b], we can write it as f(t) = u(t)+ iv(t),
where u and v are real-valued functions that are smooth on (a, b). Since u and v are smooth, it has continuous
derivatives of all orders, in particular u′(t) and v′(t) are both continuous on (a, b). And we may define their
value at the end points of [a, b] by taking the one sided limits so they are continuous on the whole interval.
Then by the fundamental theorem of calculus, and the definition of integrating complex-valued functions on
an interval,∫ b

a

f ′(t)dt =

∫ b

a

u′(t) + iv′(t)dt =

∫ b

a

u′(t)dt+ i

∫ b

a

v′(t)dt

= u(b)− u(a) + i(v(b)− v(a)) = (u(b) + iv(b))− (u(a) + iv(a)) = f(b)− f(a).

Problem 4.4. Taylor 2.3.13.
Proof. No, we will present a counterexample. Consider the function f(z) = 1/z. Since z is analytic and
nonzero on C \ {0}, the quotient is analytic on C \ {0}. We will compute the integral of it when we trace
over the unit circle in C. Consider the parametrization given by γ(t) = eit for 0 ≤ t ≤ 2π. On the one hand,

Re
[ ∫

|z|=1

1

z
dz

]
= Re

[ ∫ 2π

0

e−it(ieit)dt
]
= Re

[ ∫ 2π

0

idt
]
= Re[2πi] = 0.

But on the other hand,∫
|z|=1

Re
[1
z

]
dz =

∫ 2π

0

Re
[
e−it

]
(ieit)dt = −

∫ 2π

0

cos(t) sin(t)dt+ i

∫ 2π

0

cos2(t)dt = iπ.

Problem 4.5. Taylor 2.4.2.

Solution: Let γ trace around the unit circle twice in the counterclockwise direction, from time 0 to 2π.
Consider the parametrization given by γ(t) = e−2it for 0 ≤ t ≤ 2π. Then by the definition of contour
integral, ∫

γ

dz

z
=

∫ 2π

0

e2it(2ie−2it)dt =

∫ 2π

0

2idt = 4πi.

□
Problem 4.6. Taylor 2.4.10.
Proof. Write the polynomial as p(z) = anz

n + · · · + a1z + a0. If we show that
∫
γ
zm = 0 for each integer

m ≥ 0, then by Theorem 2.4.6 in Taylor, we may conclude that∫
γ

p(z) = an

∫
γ

zn + · · ·+ a0

∫
γ

z0 = a0 · 0 + · · ·+ a0 · 0 = 0.

Therefore it is suffices to show
∫
γ
zm = 0 for all integer m ≥ 0. Let integer m ≥ 0 be fixed,∫

γ

zm =

∫ 2π

0

eimt(ieit)dt = i

∫ 2π

0

ei(m+1)tdt = i
[ ei(m+1)t

(m+ 1)i

]2π
0

=
1

m+ 1

(
ei(m+1)2π − 1

)
= 0.

This proves the statement.

Problem 4.7. Taylor 2.6.3.
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Solution: Observe since the function ez is analytic on C, the function 1 − ez is also analytic on C. It
is zero only when ez = 1, which happens if and only if z = 2πki for some k ∈ Z. Therefore we con-
clude the function (1 − ez)−1 is analytic on C \ {2πki : k ∈ Z}. In particular, it is analytic on the strip
{x+ iy : y ∈ (0, 2π), x ∈ R}, which is a convex open set. Since the path γ is contained entirely in the strip
(because γ is a circle centered at 2i with radius 1). By Cauchy’s Integral Theorem, it follows∫

γ

dz

1− ez
= 0.

□

Problem 4.8. Taylor 2.6.5.

Solution: Let γ be a closed curve in C \ {0}, by Jordan Curve Theorem, the (image of the) curve divides
the complex plane into two connected components, one is bounded, the other is unbounded, let D denote
the bounded component together with the boundary (thus γ = ∂D). We consider two cases: (1) 0 ̸∈ D and
(2) 0 ∈ D.

1. Suppose 0 ̸∈ D, define subsets of D (illustrated in Figure 1):

D1 := D ∩ {x+ iy : x+ iy ̸= 0, x ≥ 0, y ≥ 0}
D2 := D ∩ {x+ iy : x+ iy ̸= 0, x ≤ 0, y ≥ 0}
D3 := D ∩ {x+ iy : x+ iy ̸= 0, x ≤ 0, y ≤ 0}
D4 := D ∩ {x+ iy : x+ iy ̸= 0, x ≥ 0, y ≤ 0} .

In other words, Di, is the part of D that is in the i-th quadrant. Since if two quadrants are adjacent,
the two Di’s share a same boundary edge. Therefore, the contour integral of 1/z2 over ∂D is exactly
the sum of contour integrals of 1/z2 over each ∂Di.
Observe each Di is contained in a convex open set on which 1/z2 is analytic. Explicitly, D1 is con-
tained in the convex open set {x+ iy : y > −x}; D3 is contained in {x+ iy : y < −x}; D2 is contained
in {x+ iy : y > x} and D4 is contained {x+ iy : y < x}. Therefore by Cauchy’s Integral Theorem,∫
∂Di

1/z2dz = 0 for all i, hence ∫
∂D

dz

z2
=

4∑
i=1

∫
∂Di

dz

z2
= 0.

Figure 1: Case 1
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2. Suppose 0 ∈ D, since 0 is not in the image of γ, we may find a closed ball Bϵ(0) = {z ∈ C : |z| ≤ ϵ}
that is contained entirely in D. Define regions:

D1 := D ∩ {x+ iy : |x+ iy| ≥ ϵ, x ≥ 0, y ≥ 0}
D2 := D ∩ {x+ iy : |x+ iy| ≥ ϵ, x ≤ 0, y ≥ 0}
D3 := D ∩ {x+ iy : |x+ iy| ≥ ϵ, x ≤ 0, y ≤ 0}
D4 := D ∩ {x+ iy : |x+ iy| ≥ ϵ, x ≥ 0, y ≤ 0} .

Since if two quadrants are adjacent, the corresponding Di’s share a same boundary edge. Therefore,∫
∂D

dz

z2
=

4∑
i=1

∫
∂Di

dz

z2
+

∫
|z|=ϵ

dz

z2
,

where we travel the contour |z| = ϵ counterclockwise, we may parametrize it with Γ(t) := ϵeit for
0 ≤ t ≤ 2π. By the same argument as case 1, we conclude

∫
∂Di

1/z2dz = 0 for all i, therefore∫
∂D

dz

z2
=

∫
|z|=ϵ

dz

z2
=

∫ 2π

0

ϵieit

ϵ2ei2t
dt =

i

ϵ

∫ 2π

0

e−itdt = 0.

Figure 2: Case 2

In either case we discover that the contour integral of 1/z2 over γ is 0.
□

Problem 4.9.

1. Provide a parameterization γ(t) of a path in C which traces clockwise the triangle with vertices (0,−1),
(1, 1) and (−1, 1).

2. Compute explicitly the integral ∫
γ

dz

z
.

3. How does your answer agree with the conclusion of Cauchy’s Integral Theorem?

Proof.

1. Since contour integral is path additive (Theorem 2.4.6 of Taylor), we divide the contour into three
parts, the first one travels from −1 + i to 1 + i, the second one travels from 1 + i to −i, and the third
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travels from −i back to −1 + i. We denote their parametrizations γ1, γ2 and γ2 respectively. More
explicitly, they are defined as follows:

γ1(t) = t+ (−1 + i), 0 ≤ t ≤ 2

γ2(t) = (1 + i) + t(−1− 2i), 0 ≤ t ≤ 1

γ3(t) = −i+ t(−1 + 2i), 0 ≤ t ≤ 1.

2. Recall 1/z is analytic on C\{0}, and it has logI(z) as a primitive, where the choices of branch I depend
on the domain of interest. For example, on the set C \ (−∞, 0], the function 1/z has the principal
branch of log(z) as a primitive. Therefore we can apply Theorem 2.5.6 to conclude∫

γ1

dz

z
= log(1 + i)− log(−1 + i) = log(

√
2) + i

π

4
− log(

√
2)− i

3π

4
= −πi

2
,

and ∫
γ2

dz

z
= log(−i)− log(1 + i) = log(1) + i

(
− π

2

)
− log(

√
2)− i

π

4
= − log(

√
2)− 3πi

4
.

For the integral over γ3, since the path γ3 crosses the negative real line, we may not use the principal
branch of log. Instead, we use logI(z), where I = (0, 2π] (the cut line of this branch of log is the line
[0,∞)). Therefore∫

γ3

dz

z
= logI(−1 + i)− logI(−i) = log(

√
2) + i

3π

4
− log(1)− i

3π

2
= log(

√
2)− 3πi

4
.

Therefore, we conclude∫
γ

dz

z
=

3∑
i=1

∫
γ3

dz

z
= −πi

2
− log(

√
2)− 3πi

4
+ log(

√
2)− 3πi

4
= −2πi.

3. Cauchy’s Integral Theorem does not apply here since (1) the open set C \ {0} is not a convex open
set and (2) there’s no way to define the value of 1/z at the origin making the function continuous at 0
(too see this, notice 1/z is unbounded as z approaches the origin).

Problem 4.10. Taylor 2.6.12.

Solution: Recall the exponential function ez is analytic on the entire complex plane (which is convex).
Therefore by Cauchy’s Integral Formula,

Ind|z|=1(0) · e0 =
1

2πi

∫
|z|=1

ez

z − 0
dz.

Therefore the integral of interest is: ∫
|z|=1

ez

z
dz = 2πi Ind|z|=1(0).

To compute the index Ind|z|=1(0) we choose the parametrization γ(t) = eit for 0 ≤ t ≤ 2π,

Ind|z|=1(0) =
1

2πi

∫
γ

dw

w
=

1

2πi

∫ 2π

0

idz = 1.

Therefore, ∫
|z|=1

ez

z
dz = 2πi.

□


