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Problem 2.1. Taylor 1.4.1.

Solution: To find the polar form of a complex number z, we first need to find the modulus of z, then find
the argument of z, which is the angle the number makes with the positive real axis. Notice the choice of the
argument is not unique, they may differ up to an integer multiple of 2π.

1. The modulus is 1, the argument is π + 2kπ, where k ∈ Z, thus −1 = ei(π+2kπ) (k ∈ Z).

2. The modulus is 1, the argument is π/2 + 2kπ, where k ∈ Z, hence i = ei(π/2+2kπ) (k ∈ Z).

3. The modulus is 1, the argument is 3π/2 + 2kπ, where k ∈ Z, hence −i = ei(3π/2+2kπ) (k ∈ Z).

4. The modulus is

√
1 +
√

3
2

= 2, the argument is π/3 + 2kπ, where k ∈ Z, hence 1 +
√

3i = 2ei(π/3+2kπ)

(k ∈ Z).

5. The modulus is
√

52 + (−5)2 = 5
√

2, the argument is −π/4 + 2kπ, where k ∈ Z, hence 5 − 5i =

5
√

2ei(−π/4+2kπ) (k ∈ Z).

Pick any k ∈ Z gives a correct solution. �

Problem 2.2. Taylor 1.4.3.

Solution: Recall from the textbook that the n-th power of eπi/8 is e(πin)/8. Also recall e2πi = 1. Therefore,
given any integer n, we can uniquely write n = 16k + r for some integer k and r = n mod 16, then

(eπi/8)n = e(πi(16k+r))/8 = e2kπieπir/8 = eπir/8.

Because there are 16 distinct integers modulo 16, there are precisely 16 distinct powers of eπi/8, which are
eπir/8 for r = 0, . . . , 15. �

Problem 2.3. Taylor 1.4.6.

Proof. Since z is on the unit circle, we know |z| = 1.

(“if”) Suppose the argument of z is a rational multiple of 2π, then we can write the argument of z as
(p/q)2π + 2kπ, where k ∈ Z and p/q ∈ Q. Therefore, the n-th power of z is |z|n ei[(p/q)2nπ+2nkπ] =
ei[(p/q)2nπ]. We can uniquely write n in the form n = 2ql + r, for some integer l and r = n mod 2q.
Then substitute n = 2ql + r into the n-th power of z, we get

ei[(p/q)2π(2ql+r)] = ei[(p/q)4qlπ+(p/q)2rπ] = ei(p/q)4qlπei(p/q)2rπ = (ei2π)2plei(p/q)2rπ

= ei(p/q)2rπ = zr.

This shows that n-th powers of z is equal to (n mod 2q)-th power of z. Since there are finitely many
distinct integers modulo 2q, there are only finitely many distinct powers of z.
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(“only if”) Suppose there are only finitely many distinct powers of z, then there must exist integers n and m with
n > m such that zn = zm. But this means that zn−m = 1. Since z is on the unit circle, we can write
z = eiθ for some θ ∈ R, then we would have ei(n−m)θ = 1. This implies (n − m)θ = 2kπ for some
positive integer k, or in other words that θ = 2kπ

n−m is a rational multiplie of 2π.

Problem 2.4. Taylor 1.4.10.

Solution:

1. The angle −i makes with the positive real axis in the complex plane is −π/2 + 2kπ radians, since we
are interested in the argument that lies in I = (−π, π], we may take k = 0, and the argument is −π/2.

2. The angle −i makes with the positive real axis in the complex plane is −π/2 + 2kπ radians, since
we are interested in the argument that lies in I = (0, 2π], we may take k = 1, and the argument is
−π/2 + 2π = 3π/2.

3. The number z = 1 lies on the positive real axis, hence it has argument 2kπ for some k ∈ Z. Since we
are only interested in the argument that lies in [3π/2, 7π/2), we may take k = 1, and the argument is
2π ∈ [3π/2, 7π/2).

�

Problem 2.5. Taylor 1.4.11.

Solution: The modulus of 1− i is
√

12 + (−1)2 =
√

2, the argument of 1− i in the principal branch (−π, π]
is −π/4, hence the in principal branch of the log function,

log(1− i) = log |1− i|+ i arg(−π,π](1− i) = log(
√

2) + i(−π/4).

�

Problem 2.6. Taylor 1.4.16.

Solution: Since we are using the principal branch of the log function to define the square root in this
problem, the cut line for

√
z is the half-line of negative real axis. We want to find cut line(s) for z such

that when z crosses those line(s), 1− z2 crosses the negative real axis, then those cut lines will be the set of
discontinuities for the function

√
1− z2. We will find those lines by working backwards. When 1−z2 crosses

the negative real axis counterclockwise, −z2 crosses the line (−∞,−1) counterclockwise, hence z2 crosses
the line (1,∞) counterclockwise. For that to happen z must crosses either the line (1,∞) or (−∞,−1)
counterclockwise. Therefore the set of discontinuities for

√
1− z2 is {x+ i0 : x ∈ R, |x| > 1}. �

Problem 2.7. Taylor 2.1.4.

Proof. Let w = x + iy be a point in A, we want to show w is the center of an open disc that is entirely
contained in A. By definition we know Re(w) = x > 0, hence we may pick r := x/2 > 0 and consider the
disc Dr(w). We claim the disc Dr(w) is contained in A. Let ζ = a+ ib ∈ Dr(w) be given, by definition we
know |ζ − w| < r, by triangle inequality, we know

|a− x| ≤ |(a− x) + i(b− y)| = |ζ − w| < r = x/2.

In particular, we know
−x/2 < a− x.

Adding x on both sides we get inequality
x/2 < a.

Since x/2 > 0, it follows a = Re(ζ) > 0, therefore ζ ∈ A by definition. This proves Dr(w) ⊂ A, hence proves
the claim that A is open.

Problem 2.8. Taylor 2.1.5.
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Solution:

(a) Open.

(b) Neither. It’s not open since every open disc centered at 1/2 contains a point out side of the set. It’s
not closed since every open disc of 0 contains a point of the set.

(c) Closed.

�

Problem 2.9. Taylor 2.1.6.

Solution: The interior is the set
{z ∈ C : 1 < |z| < 2} .

The closure is the set
{z ∈ C : 1 ≤ |z| ≤ 2} .

The boundary is the set
{z ∈ C : |z| = 1} .

�

Problem 2.10. Taylor 2.1.9.

Proof.

1. The function Re(z) is continuous on C. Let z0 = x0 + iy0 ∈ C be picked, we want to show
limz→z0 Re(z) = Re(z0). That is: for any ε > 0, there exists δ > 0 such that |Re(z)−Re(z0)| < ε
whenever |z − z0| < δ.
Let ε > 0 be picked, set δ = ε, and let z = x+ iy ∈ C with |z − z0| < δ = ε be given. By the triangle
inequality, we know

|Re(z)−Re(z0)| = |x− x0| ≤ |(x− x0) + i(y − y0)| = |z − z0| < ε.

Which is what we wanted.

2. One could modify the above argument to show that Im(z) is continuous. We provide however an
alternative argument here. Since the identity function id(z) = z = Re(z) + iIm(z) is continuous on C
and the function Re(z) is continuous on C, it follows the function iIm(z) is continuous on C. Since
the nonzero constant function i is continuous on C, it follows Im(z) = (iIm(z))/i is continuous on C.

3. Since the functions Re(z), Im(z) and the constant function i are continuous on C, it follows the
function z = Re(z)− iIm(z) is continuous on C.

Problem 2.11. Taylor 2.1.14.

Proof.

1. Observe we can rewrite the set as

{z ∈ U : |f(z)| < r} = f−1(Dr(0)),

which is the preimage of a continuous function f of an open set, which is open by Theorem 2.1.13 of
Taylor.
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2. Let S denote the set {z ∈ C : Re(z) < r}, we first show S is open. Let z = x + iy ∈ S be given, by
definition we know x < r, we claim the open disk D(r−x)/2(z) is contained in S: let w = a + ib ∈
D(r−x)/2(z) be given, by definition |w − z| < (r − x)/2, then by triangle inequality,

|a− x| ≤ |(a− x) + i(b− y)| = |w − z| < (r − x)/2.

In particular we get
a− x < r/2− x/2,

by adding x to both sides, we get inequality

Re(w) = a < r/2 + x/2 < r/2 + r/2 = r,

which by definition tells us that w ∈ S. This shows S is open.

Observe we can write the set of interest as

{z ∈ U : Re(f(z)) < r} = f−1(S),

which is the preimage of a continuous function of an open set, which is open by Theorem 2.1.13 of
Taylor.


