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Problem 1.1.5.

Proof. Suppose z = a + ib satisfies z2 = i, then expanding the equation and equating the real and
imaginary parts we get relations a2 = b2 and 2ab = 1. The first relation is equivalent to a = ±b, substituting
it into the second one we get a2 = ±1/2 so a = ±

√
2/2. Finally, we check that the only possibilities

of (a, b) = (±
√

2/2,±
√

2/2) that give actual solutions are when a and b have the same solution, that is
(a, b) = (

√
2/2,
√

2/2) or (a, b) = (−
√

2/2,−
√

2/2). Therefore, the solutions are z =
√

2/2 +
√

2/2i and
z =
√

2/2 +
√

2/2i.

Problem 1.1.13.

Proof.

1

<

=

i

Problem 1.1.17.

Geometric Proof. The set of points in C with modulus 1 are precisely the set of points in the complex plane
that is of distance 1 to the origin. Therefore any such point may be parametrized by cos θ + i sin θ for some
θ ∈ R.
Algebraic Proof. Suppose z = a + ib ∈ C has |z| = 1, then a2 + b2 = 1. Since 0 ≤ a2, b2, we must have
0 ≤ a2, b2 ≤ 1 =⇒ 0 ≤ |a| ≤ 1. Therefore we may pick a 0 ≤ θ < 2π with cos θ := a and such that the
sin θ as the same sign as b. By substituting a = cos θ, we get the equation cos2 θ+ b2 = 1 which implies that
b2 = sin2 θ. Thus, b = ± sin θ be we’ve already arranged that b has the same sign as sin θ. We conclude that
b = sin θ. This proves the claim.

Problem 1.2.4.

Geometric Proof. Note 1/
√

2 + i/
√

2 = cosπ/4 + i sinπ/4 = exp(iπ/4), hence the n-th power is exp(iπn/4).
In another word, each such point lies on the unit circle and increasing the exponent by 1 amounts to rotate
it counterclockwise π/4 radians. Therefore the sequence does not converge to anything.
Algebraic Proof. Observe powers of 1/

√
2 + i/

√
2 is periodic in the finite sequence

1√
2

+
i√
2
, i, − 1√

2
+

i√
2
, −1, − 1√

2
+− i√

2
, −i, 1√

2
+− i√

2
, 1

Hence no limit exist.
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Problem 1.5. Prove that the sequence (6− ni)−1 converges to 0.

Proof. First observe for z ∈ C, |1/z| =
∣∣∣z/ |z|2∣∣∣ = |z| / |z|2 = 1/ |z|. Therefore

lim
n→∞

∣∣∣∣ 1

6− in

∣∣∣∣ = lim
n→∞

1√
36 + n2

≤ lim
n→∞

1

n
= 0

where we have used that 1
36+n2 ≤ 1

n .

Problem 1.2.12.

Proof. For each term of the series to be well-defined z2 6= −n2 =⇒ z 6= in for any n ∈ N. Suppose z ∈ C is
a complex number which is not equal to in for any n ∈ N, that is each term in the series is well-defined. We
claim the series converges absolutely by using the limit comparison test: if {an} and {bn} are sequences of
positive real numbers such that limn→∞

an
bn

=> 0, then
∑∞
n=0 an converges if and only if

∑∞
n=0 bn converges.

Let us compare the series
∑∞
n=0 1/

∣∣n2 + z2
∣∣ with

∑∞
n=0 1/n2, the latter of which we know is convergent.

Suppose z = a+ ib then the limit of the ratios of the terms in the series is

lim
n→∞

n2

|n2 + z2|
= lim
n→∞

n2√
n4 + 2n2(a2 − b2) + a4 + b4 + 2a2b2

= lim
n→∞

1√
1 + 2(a2 − b2)/n2 + (a4 + b4 + 2a2b2)/n4

= 1

Since
∑∞
n=0 1/n2 coverges, so does

∑∞
n=0 1/

∣∣n2 + z2
∣∣ for all z ∈ C where z 6= in for any n ∈ N.

Problem 1.3.3.

Proof.
1√
2

+ i
1√
2

= eiπ/4

Problem 1.10. Let {zn} and {wn} be sequences such that limn→∞ zn = z and limn→∞ wn = w. Show that
limn→∞(znwn) = zw.

Proof.
We will first prove the following claim:

Claim: Given squences {an} and {bn} of real numbers with limn→∞ an → 0 and limn→∞ bn → 0, then
limn→∞ anbn = 0.
Proof of Claim: Let ε > 0 be given, there exists N1 and N2 such that |an| < ε and |bn| < 1 for all
n > max{N1, N2}. Therefore, we have |anbn| = |an| |bn| < ε for n ≥ max{N1, N2}. This proves the claim.

Let {zn} and {wn} be sequences such that limn→∞ zn = z and limn→∞ wn = w. We know limn→∞ |zn − z| =
0 and limn→∞ |wn − w| = 0. By the claim above, we have

lim
n→0
|zn − z| |wn − w| = 0.

By triangle inequality, for each n, we have the inequality

|(zn − z)(wn − w)| = |(znwn − zw)− (znw − zw)− (zwn − zw)|
≥ |znwn − zw| − |znw − zw| − |zwn − zw|
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This implies that for all n, we have

|znwn − zw| ≤ |zn − z| |wn − w|+ |znw − zw|+ |zwn − zw|

Since each summand on the right has limit 0, that is

lim
n→∞

|zn − z| |wn − w| = lim
n→∞

|znw − zw| = lim
n→∞

|zwn − zw| = 0,

we may conclude that limn→∞ |znwn − zw| = 0, as desired.


