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Problem 1.1.5.

Proof. Suppose z = a + ib satisfies 22 = 4, then expanding the equation and equating the real and
imaginary parts we get relations a? = b% and 2ab = 1. The first relation is equivalent to @ = +b, substituting
it into the second one we get a?> = +£1/2 so a = ++/2/2. Finally, we check that the only possibilities
of (a,b) = (£v/2/2,+v/2/2) that give actual solutions are when a and b have the same solution, that is
(a,b) = (vV/2/2,v/2/2) or (a,b) = (—v/2/2,—+/2/2). Therefore, the solutions are z = v/2/2 + v/2/2i and
2z =/2/2+/2/2i.

O

Problem 1.1.13.
Proof.

Problem 1.1.17.

Geometric Proof. The set of points in C with modulus 1 are precisely the set of points in the complex plane
that is of distance 1 to the origin. Therefore any such point may be parametrized by cos @ + i sin # for some
0 eR. O
Algebraic Proof. Suppose z = a + ib € C has |z| = 1, then a® + b* = 1. Since 0 < a?,b?, we must have
0<a%b? <1 = 0<|a] <1. Therefore we may pick a 0 < § < 27 with cos@ := a and such that the
sin @ as the same sign as b. By substituting ¢ = cos 6, we get the equation cos? # +b? = 1 which implies that
b? = sin®§. Thus, b = % sin be we've already arranged that b has the same sign as sinf. We conclude that
b = sin#. This proves the claim. O

Problem 1.2.4.

Geometric Proof. Note 1/v/2+1i/v/2 = cosm/4 + isinm/4 = exp(im/4), hence the n-th power is exp(imn/4).
In another word, each such point lies on the unit circle and increasing the exponent by 1 amounts to rotate
it counterclockwise 7/4 radians. Therefore the sequence does not converge to anything.
Algebraic Proof. Observe powers of 1/v/2 +i/+/2 is periodic in the finite sequence
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Hence no limit exist.
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Problem 1.5. Prove that the sequence (6 — ni)~! converges to 0.

Proof. First observe for z € C, |1/z| = ‘E/ |z|2‘ = |z /21> = 1/ |2|. Therefore

1 1
li = lim —— < lim — =0
where we have used that ——— < 1 O

364n2 — n°
Problem 1.2.12.

Proof. For each term of the series to be well-defined 22 # —n? = z # in for any n € N. Suppose z € C is

a complex number which is not equal to in for any n € N, that is each term in the series is well-defined. We
claim the series converges absolutely by using the limit comparison test: if {a,} and {b,} are sequences of
positive real numbers such that lim, e § => 0, then >37% ; a,, converges if and only if 32 b, converges.

Let us compare the series > o 1/ |n? + 22| with 37 1/n?, the latter of which we know is convergent.
Suppose z = a + ib then the limit of the ratios of the terms in the series is
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n—o00 |n + z | n—o00 \/714 + 2712(&2 _ b2) + (14 + b4 + 2a2b2
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n—o0 \/1 +2(a? — b2)/n2 + (a* + b* + 2a2b2) /nt

Since > 07, 1/n? coverges, so does Y " 1/ |n? + 22| for all z € C where z # in for any n € N. O
Problem 1.3.3.

Proof.
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Problem 1.10. Let {z,} and {w,} be sequences such that lim, . 2, = z and lim,,_,cc w, = w. Show that
lim,, 00 (2rwy ) = 2zw.

Proof.

We will first prove the following claim:

Claim: Given squences {a,} and {b,} of real numbers with lim, o a, — 0 and lim,_, b, — 0, then
lim,, o0 anb, = 0.

Proof of Claim: Let € > 0 be given, there exists N; and Ny such that |a,| < € and |b,| < 1 for all
n > max{Ny, No}. Therefore, we have |a,b,| = |ay]| |bn] < € for n > max{Ny, No}. This proves the claim.

Let {z,} and {w, } be sequences such that lim,, . 2z, = z and lim,,_, .o w,, = w. We know lim,, o |2, — 2| =
0 and lim, o |w, — w| = 0. By the claim above, we have

lim |z, — 2| |w, —w| = 0.
n—0
By triangle inequality, for each n, we have the inequality

[(zn — 2)(wy, — w)| = |(zpwn — z2w) — (zpw — zw) — (2w, — zw)|

> |zpwy — zw| — |zpw — zw| — |zw, — zw|



This implies that for all n, we have
|znwy, — zw| < |z, — 2] |wyp — W] + |2pw — 2wW| + |z2w, — 2w
Since each summand on the right has limit 0, that is
nhﬁngo |2, — 2| |wy, — w| = nhﬁngo |zpw — zw| = nl;rgo |zw, — zw| =0,

we may conclude that lim,, o |z,w, — zw| = 0, as desired.



