
Math 404 HW 9 Solutions

Problem 9.1

Let p be a prime. Let ρ = e2πi/p be a primitive pth root of unity.

(a) Prove that Q ⊂ Q(ρ) is a Galois field extension and that the Ga-
lois group Gal(Q(ρ)/Q) is isomorphic to the multiplicative group
(Z/p)× of units in Z/p.

(b) Let L = Q(ρ). Give the complete correspondence between interme-
diate field extensions Q ⊂ L′ ⊂ L and subgroups H ⊂ Gal(L/Q).

Proof. Part (a) is exactly the same argument as in the last homework. That
arugment yields an isomorphism ϕ : (Z/p)× ∼−→ Gal(L/Q) determined by
ϕ(n)(ρ) = ρn.

We also recall two group theoretic facts.

1. There is an isomorphism (Z/p)× ∼= Z/(p− 1).

2. There is a bijection

ψ : {Subgroups of Z/(p− 1)} ∼−→ {Divisors of p− 1}
G 7→ |G|.

with the following properties:

(a) G ⊂ H if and only if |G| divides |H|.
(b) The inverse of ψ sends a divisor d of p−1 to 〈p−1

d
〉, so in particular

every subgroup is cyclic.
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Combining this with the result of part (a) reduces us to the following
problem.

Given an element n ∈ (Z/pZ)× of order m, determine the fixed
field of 〈n〉.

To do this, let ν : Q(ρ)→ Q(ρ) be the automorphism over Q determined
by ν(ρ) = ρn. Define

α = ρ+ ρn + ρ(n
2) + · · ·+ ρ(n

m−1).

I claim that the fixed field of 〈ν〉 is exactly

L〈ν〉 = Q(α).

To see this, note that the orbit of ρ under 〈ν〉 ⊂ Gal(L/Q), corresponding
to 〈n〉 ⊂ (Z/p)×, is {ρ, ρn, ρ(n2), . . . , ρ(n

m−1)}. As we remarked last week, if
s ∈ Q[x0, . . . , xm−1] is any symmetric polynomial, then s(ρ, . . . , ρ(n

m−1)) will
be fixed by 〈ν〉. It turns out that s = s1 = x0 + x1 + · · · + xm−1 generates
the whole fixed field.

As a sanity check, we can first verify that α is indeed fixed by ν, which
will imply that α is fixed by 〈ν〉.

ν(α) = ν(ρ+ ρn + ρ(n
2) + · · ·+ ρ(n

m−1))

= ν(ρ) + [ν(ρ)]n + [ν(ρ)](n
2) + · · ·+ [ν(ρ)](n

m−1)

= ρn + [ρn]n + [ρn](n
2) + · · ·+ [ρn](n

m−1)

= ρn + ρ(n
2) + ρ(n

3) + · · ·+ ρ(n
m).

Since we assumed that n was of order m in (Z/p)×, we have the congruence
nm ≡ 1 (mod p). Since ρp = 1, this yields that ρ(n

m) = ρ1 = ρ. Thus, the
above computation yields

ν(α) = ρn + ρ(n
2) + ρ(n

3) + · · ·+ ρ(n
m−1) + ρ = α,

as desired.
Either this computation or the reasoning preceding it yields that α ∈ L〈ν〉,

so Q(α) ⊂ L〈ν〉. Now it remains to show the containment L〈ν〉 ⊂ Q(α). Since
the Galois correspondence is bijective and reverses inclusions, it is equivalent
to show that 〈ν〉 ⊃ Gal(L/Q(α)). So suppose that τ ∈ Gal(L/Q(α)). Our
goal is to show that τ ∈ 〈ν〉.
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To see this, let t ∈ (Z/p)× be the element corresponding to τ , so that
τ(ρ) = ρt. Then by assumption we have

ρ+ ρn + ρ(n
2) + · · ·+ ρ(n

m−1) = α

= τ(α)

= ρt + ρtn + ρ(tn
2) + · · ·+ ρ(tn

m−1).

Since t ∈ (Z/p)×, the elements t, tn, tn2, . . . tnm−1 are all distinct residues
mod p. Since ρ is a primitive pth root of unity, we have that the value of
ρs depends exactly on the residue class of s mod p. So α and τ(α) are both
sums of m distinct powers of ρ. Since the elements 1, ρ, ρ2, . . . , ρp−1 are all
linearly independent over Q, we must have that these are both sums over the
same powers of ρ, that is we must have an equality

{1, n, n2, . . . , nm−1} = {t, tn, tn2, . . . , tnm−1}

in Z/p. In particular, we must have that t = ni mod p, which is true if and
only if t ∈ 〈n〉 ⊂ (Z/p)×. Thus, in the Galois group, we must have that
τ ∈ 〈ν〉, as desired.
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Problem 9.2

Let N and H be finite groups. Denote by Aut(N) the group of au-
tomorphisms of N (remark for later, this yields an action of H
on N). Let ϕ : H → Aut(N) be a group homomorphism. Define the
following group operation on the set N ×H via

(n1, h1) • (n2, h2) = (n1ϕ (h1) (n2) , h1h2)

(a) Show that N ×H is a group with the operation •. We call this the
semi-direct product of N and H via ϕ and denote it by N oϕ H.

(b) Show that H and N are naturally subgroups of N oϕ H.

(c) Show that N is a normal subgroup.

(d) Show that the dihedral group

D2n =
{
σ, τ | σn = τ 2 = id, στ = τσ−1

}
is isomorphic to the semi-direct product Z/n oϕ Z/2 where ϕ :
Z/2 = {0, 1} → Aut(Z/n) is the group homomorphism where ϕ(0) :
Z/n→ Z/n is the identity and ϕ(1) : Z/n→ Z/n sends x 7→ −x.

(a) Let eN and eH be the identity elements for N and H, respectively.
We show that (eN , eH) is an identity element for •. Since ϕ is a group
homomorphism, we must have that ϕ(eH) is the identity automorphism
of N . With this in mind, we compute

(eN , eH) • (n, h) = (eNϕ(eH)n, ehh)

= (idH(n), h)

= (n, h).

The computation for the other order of multiplication is similar.

Now we show that inverses exist. Let (n, h) ∈ N × H. Since ϕ(h) ∈
Aut(N), there exists a unique n′ ∈ N so that ϕ(h)(n′) = n−1. I claim



5

that (n′, h−1) is an inverse for (n, h) under •. To see this, we compute

(n, h) • (n′, h−1) = (nϕ(h)(n′), hh−1)

= (nn−1, eH)

= (eN , eH).

For the other order of multiplication, we compute

(n′, h−1) • (n, h) = (n′ϕ(h−1)(n), h−1h)

= (n′ϕ(h−1)(n), eH).

So we just need to show

n′ϕ(h−1)(n) = eN .

To see this, we compute

n′ϕ(h−1)(n) = n′[ϕ(h)]−1(n) (as ϕ is a group homomorphism)

= [ϕ(h)]−1(n−1)[ϕ(h)]−1(n) (apply [ϕ(h)]−1 to ϕ(h)(n′) = n−1)

= [ϕ(h)]−1(n−1n) (as [ϕ(h)]−1 is a homomorphism)

= [ϕ(h)]−1(eN)

= eN ,

as [ϕ(h)]−1 is a homomorphism. Phew!

Now for associativity. Let n1, n2, n3 ∈ N and h1, h2, h3 ∈ H. We omit
excess parentheses for computations within N and H as multiplication
in those groups is associative by assumption. We compute[

(n1, h1) • (n2, h2)
]
• (n3, h3) =

(
n1ϕ(h1)(n2), h1h2

)
• (n3, h3)

=
(
n1ϕ(h1)(n2)ϕ(h1h2)(h3), h1h2h3

)
.

We similarly compute

(n1, h2) •
[
(n2, h2) • (n3, h3)

]
= (n1, h1) • (n2ϕ(h2)(n3), h2h3)

=
(
n1ϕ(h1)

[
n2ϕ(h2)(n3)

]
, h1h2h3

)
.

So we have reduced down to showing the following equality

n1ϕ(h1)(n2)ϕ(h1h2)(h3) = n1ϕ(h1)
[
n2ϕ(h2)(n3)

]
. (1)
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We compute

n1ϕ(h1)(n2)ϕ(h1h2)(h3) = n1ϕ(h1)(n2)
[
ϕ(h1) ◦ ϕ(h2)

]
(h3) (as ϕ is a homomorphism)

= n1ϕ(h1)
[
n2ϕ(h2)(h3)

]
(as ϕ(h1) is a homomorphism.)

This is the desired equality, and so associativity holds. Since this is the
last of three group axioms, we have a group! Huzzah!

(b) Let ιN : N → N oϕ H and ιH : H → N oϕ H be the functions given
by

ιN(n) = (n, eH)

ιH(h) = (eN , h).

(think ι for i for inclusion). Since ιN and ιH are both clearly injective,
we just need to show that they are homomorphisms. We compute

ιN(n)ιN(n′) = (n, eH) • (n′, eH)

= (nϕ(eH)n′, eHeH)

= (nn′, eH)

= ιN(nn′).

The third equality holds as ϕ, being a homomorphism, sends the iden-
tity of H to the identity automorphism of N . Thus, ιN is a homomor-
phism.

For ιH , we compute

ιH(h)ιH(h′) = (eN , h) • (eN , h
′)

= (eNϕ(h)(eN), hh′)

= (eNeN , hh
′)

= (eN , hh
′)

= ιH(hh′).

The third equality holds as ϕ(h), being an automorphism of N , pre-
serves the identity. Thus, ιH is a homomorphism, and the result holds.
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(c) One way to do this is to note that the definition of multiplication in the
semidirect product shows that π : N oϕ H → H given by π(n, h) = h
is a surjective homomorphism. Furthermore, we have that N = kerϕ,
and since kernels of homomorphisms are normal, we have that N is
normal.

We can also verify this by direct computation. First, we note that for
any (n, h) ∈ N oϕ H, we have

(n, eH) • (eN , h) = (nϕ(eH)eN , eHh) = (n, h).

Thus, we have that N oϕH = NH. That is, any subgroup of N oϕH
containing both N and H must be the whole group.

So, let K be the normalizer of N in N oϕ H. Since we automatically
have N ⊂ K, if we can show H ⊂ K, then we will have K = N oϕ H,
meaning that N is a normal subgroup.

So let (n, eH) ∈ N and (eN , h) ∈ H. Since the embedding ιH : H →
N oϕ H is a homomorphism, we have that

(eN , h)−1 = ιH(h)−1 = ιH(h−1) = (eN , h
−1).

Thus, we compute

(eN , h) • (n, eH) • (eN , h
−1) = (eN , h) • (n, h−1) (see the beginning of (c))

= (eNϕ(h)(n), hh−1)

= (ϕ(h)(n), eH) ∈ N

Thus, N is normal. Furthermore, this computation reveals something
important about the semidirect product that’s worth highlighting

The action ϕ of H on N in N oϕ H is exactly conjugation
of N by H in N oϕ H.
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(d) First a technical lemma we will use later. This is very much in the
same spirit that the elements fixed by a subgroup of the Galois group
of a field extension form a field.

Lemma 1. Let G be a group, and let γ : G → G be a homomor-
phism (also called an endomorphism in this case where the domain and
codomain are the same). Define

H = {g ∈ G : γ(g) = g}.

Then H is a subgroup of G

Prove this yourself! It really does follow directly from the definitions.
The same argument yields the following result, of which the previous
lemma is a special case, which isn’t needed for this homework but is
worthwhile in its own right.

Optional exercise Let γ : G→ K and δ : G→ K be homomorphisms.
Let H the set of all g ∈ G such that γ(g) = δ(g). Then H is a subgroup
of G.

Now for the task at hand! Let α : D2n → Z/n oϕ Z/2 be the map
determined by

α(σ) = (1, 0)

α(τ) = (0, 1).

This is a fairly natural choice, singling out an element of order n and
an element of order 2 in Z/noZ/2. We will show later that α induces
a well-defined homomorphism.

This can yield the desired result in one of two ways. Since (1, 0) and
(0, 1) are both in the image of α, and these elements generate Z/noϕ

Z/2, we get that α is surjective. If we already know that D2n is a
group on 2n elements with exactly these relations, then α is a surjective
homomorphism between two finite groups of the same size, and so it is
an isomorphism. If you accept this, then in the section to follow called
“Showing α and β are homomorphisms”, feel free to ignore the part
about β, and you can ignore the rest of this section.

If you haven’t already shown that the group with these generators and
relations is of order 2n (which in my opinion is pretty hard to show
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directly), then we can actually prove that here by building an inverse
to α explicitly, and then just noting that Z/n× Z/2 has 2n elements.

So carrying on, let’s try to build an inverse β : Z/noϕ Z/2→ D2n. To
be an inverse to α we are forced to define β(1, 0) = σ and β(0, 1) = τ .
For β to be a homomorphism, since (i, 0) is (1, 0) multiplied by itself i
times, we must have β(i, 0) = σi and also β(0, j) = τ j. We would then
also have to have

β(i, j) = β
(

(i, 0) • (0, j)
)

= β(i, 0)β(0, j) = σiτ j.

So we define β by this formula and later we’ll show that this is indeed
a homomorphism. Note that since σn = id and τ 2 = id, the elements
σiτ j only depend on the residues of i mod n and j mod 2, so this does
at least make sense as a function on Z/n oϕ Z/2, and further yields
that β is a homomorphism when restricted to either Z/n or Z/2.

For now, let us assume that both α and β are homomorphisms, and
show that they are inverses.

First we show that β ◦ α : D2n → D2n is the identity. By the lemma,
the elements fixed by β ◦ α form a subgroup of D2n. Since σ and τ
generate D2n, if we can show that β ◦α fixes these elements, then β ◦α
must fix everything. That is, β ◦α = id. But β ◦α fixes these elements
by design, so indeed we get β ◦ α = id

For the other composition, we again use that the elements fixed by α◦β
form a subgroup of Z/noϕZ/2, call this subgroup K. As we remarked
at the beginning of part (c), to show that K = Z/n oϕ Z/2, we just
have to show that Z/n ⊂ K and Z/2 ⊂ K. Since (1, 0) generates Z/n
and (0, 1) generates Z/2, we just have to show that these elements are
fixed by α◦β. But these elements are fixed by design, and so α◦β = id.

Showing that α and β are homomorphisms

For α to be a homomorphism, we first recall a fact about groups given
by generators and relations.

As a reminder, we have D2n = 〈σ, τ : σn = τ 2 = 1, στ = τσ−1〉.
Suppose we have a homomorphism γ : D2n → G, where G is any
group. Then we have elements g = γ(σ) and h = γ(τ). Since γ is
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a homomorphism, these elements must satisfy the same relations as σ
and τ . Saying that D2n is the group with these generators and relations
says that supplying elements g, h ∈ G satisfying the same relations as σ
and τ yields a unique homomorphism γ : D2n → G such that γ(σ) = g
and γ(τ) = h.

So to show that α yields a homomorphism, we just need to show that
(1, 0) and (0, 1) ∈ Z/n oϕ Z/2 satisfy the same relations as σ and τ .
We have that (1, 0)n == (n, 0) = (0, 0), and (0, 1)2 = (0, 2) = (0, 0).
So we just need to check the commutativity relation.

Since τ 2 = eD2n , the commutativity relation στ = τσ−1 is equivalent
to the relation τστ−1 = σ−1. That is, conjugating σ by τ inverts σ.
On the semidirect product side, this would be saying that conjugating
(1, 0) by (0, 1) inverts (1, 0). But as we remarked at the end of part
(c), conjugating (1, 0) by (0, 1) yields

(ϕ(1)(1), 0) = (−1, 0) = (1, 0)−1

So the conjugation relation also holds, and α yields a genuine homo-
morphism.

Now we show that β is a homomorphism. Let (a, i), (b, j) ∈ Z/noϕZ/2.
We compute

β(a, i)β(b, j) = σaτ iσbτ j.

We also compute

β
(

(a, i) • (b, j)
)

= β(a+ ϕ(i)(b), i+ j)

= σa+ϕ(i)(b)τ i+j

= σaσϕ(i)(b)τ iτ j.

So we wish to show

σaτ iσbτ j = σaσϕ(i)(b)τ iτ j ⇐⇒
τ iσb = σϕ(i)(b)τ i ⇐⇒

τ iσbτ−i = σϕ(i)(b).

If i = 0, then this last equality reads

σb = σϕ(0)(b),
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which is true. If i = 1, then we have

τσbτ−1 = [τστ−1]b = (σ−1)b = σ−b = σϕ(i)(b),

as desired. Since this exhausts all possibilities for i and b, and our
desired equality only depends on i and b, we have that β is a homo-
morphism, as desired.
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Optional Exercise You can bootstrap the reasoning above about
β to get a method for building homomorphisms out of semidirect
products. The idea is that since the semidirect product is built
out of two subgroups, homomorphisms out of it are built out of
homomorphisms of these two subgroups.

Indeed, if β : N oϕH → G is a group homomorphism, then we get
homomorphisms βN := β ◦ ιN : N → G and βH := β ◦ ιH : N → G,
fitting into a diagram

N

N oϕ H G

H

ιN

βN

β

ιH

βH

And in fact, these βN and βH determine β uniquely. We can com-
pute

β(n, h) = β((n, 1) • (1, h)) = β(n, 1)β(1, h) = βN(n)βH(h).

So knowledge of these component homomorphisms βN and βH de-
termine β uniquely. So a natural question to ask is can we go the
other way? If someone hands us homomorphisms βN : N → G and
βH : H → G, do we get a homomorphism β : N oϕH → G defined
by β(n, h) = βN(n)βH(h)? Can we fill in the following diagram?

N

N oϕ H G

H

ιN

βN

∃β?

ιH

βH

See if you can alter the preceding computations to build a criterion
on βN and βH for when the resulting β is a homomorphism. (Hint:
it will involve relating ϕ to conjugation in G).
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Problem 9.3

Prove the the Galois group of xp−2 over Q for a prime p is isomorphic
to the semi-direct product

Z/poϕ (Z/p)×

with ϕ : (Z/p)× → Aut(Z/p) given by ϕ(a) is the automorphism of Z/p
defined by multiplication by a.

Proof. Let L be the splitting field of xp − 2. Let ρ be a primitive pth root
of unity. Arguments that at this point are familiar yield that L = Q(ρ, p

√
2).

Then we have a commutative diagram of field extensions with known degrees
labeled

L

Q( p
√

2) Q(ρ)

Q
p p−1

We will show three things

1. N := Gal(L/Q(ρ)) ∼= Z/p

2. H := Gal(L/Q( p
√

2)) ∼= (Z/p)×

3. Gal(L/Q) ∼= N oϕ H with ϕ being the action given in the problem
statement under the precedeing isomorphisms.

Let’s get started!
Since p and p − 1 are relatively prime, the reasoning from homework 3

problem 5 in the subsection ”leveraging the multiplicative property of the
degree” yields that |Q( p

√
2, ρ) : Q| = p(p − 1). The multiplicative property
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of the degree lets us complete the above diagram with all degrees known.

L

Q( p
√

2) Q(ρ)

Q

p−1 p

p p−1

Let f = xp−1 + xp−2 + · · · + x + 1, so that f is the minimal polynomial for
ρ over Q. Since L = Q( p

√
2)(ρ) and deg f = |L : Q( p

√
2)|, we have that f is

irreducible over Q( p
√

2) and L ∼= Q( p
√

2)[x]/f . Thus, for every i ∈ (Z/p)× we
have an automorphism τi ∈ Gal(L/Q( p

√
2)) given by

τi(
p
√

2) =
p
√

2

τi(ρ) = ρi.

These τi comprise the entirety of Gal(L/Q( p
√

2), as there are p−1 of the τi and
the group in question is of order p− 1. The reasoning that Gal(L/Q( p

√
2)) ∼=

(Z/p)× is the same as in problem 1.
Similarly we have that L ∼= Q(ρ)[x]/(xp − 2). We get an automorphism

σ ∈ Gal(L/Q(ρ))

σ(ρ) = ρ

σ(
p
√

2) = ρ
p
√

2.

Since σ 6= id, and # Gal(L/Q(ρ) = p, we have that 〈σ〉 = Gal(L/Q(ρ) ∼= Z/p.
For any m ∈ Z/p and i ∈ (Z/p)× we compute

σm ◦ τi( p
√

2) = σm(
p
√

2)

= ρm
p
√

2,

and similarly

σm ◦ τi(ρ) = σm(ρi)

= [σm(ρ)]i

= ρi
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Thus, the elements σm◦τi ∈ Gal(L/Q) are all distinct. Since there are p(p−1)
of these, and p(p− 1) = |L : Q| = # Gal(L/Q), these elements comprise the
Galois group. So we have a bijection of sets λ : Z/poϕ (Z/p)× ∼−→ Gal(L/Q)
given by λ(m, i) = σm ◦ τi. So now we just need to show that λ preserves the
group structure. We compute

[λ(m, i) ◦ λ(n, j)](ρ) = (σm ◦ τi) ◦ (σn ◦ τj)(ρ)

= (σm ◦ τi)(ρj)

=
[
(σm ◦ τi)(ρ)

]j
= (ρi)j

= ρij.

We similarly compute

[λ(m, i) ◦ λ(n, j)](
p
√

2) = (σm ◦ τi) ◦ (σn ◦ τj)( p
√

2)

= (σm ◦ τi)(ρn p
√

2)

=
[
(σm ◦ τi)(ρ)

]n
·
[
(σm ◦ τi)( p

√
2)
]

= ρin · ρm p
√

2

= ρm+in p
√

2.

These two computations together yield

[λ(m, i) ◦ λ(n, j)] = σm+in ◦ τij
= λ(m+ in, ij).

Recall from the definition of the semidirect product that

(m, i) • (n, j) = (m+ ϕ(i)(n), ij) = (m+ in, ij).

Combining all of the above computations yields

λ(m, i) ◦ λ(n, j) = λ
(

(m, i) • (n, j)
)
,

so that λ is a homomorphism. Since λ is bijective, it is an isomorphism, as
desired.
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Problem 9.4

Recall that a finite group G is said to be solvable if there exists a
chain of subgroups

1 = H0 ⊆ H1 ⊆ H2 ⊆ · · · ⊆ Hk−1 ⊆ Hk = G

such that for each i = 0, . . . , k − 1, the subgroup Hi ⊆ Hi+1 is normal
and Hi+1/Hi

∼= Z/pi for some prime pi

(a) Show that any subgroup H of a solvable group is also solvable.

(b) If H is a normal subgroup of a finite group G, show that G is
solvable if and only if both H and G/H are solvable.

(c) Show that every finite abelian group is solvable.

(d) Use (c) to conclude that in the definition of solvable, it is equivalent
to require that the quotients Hi+1/Hi be abelian.

Throughout the argument below we’ll use non-standard terminology that a
chain of subgroups demonstrating solvability of a given group will be called
a solvable chain.

(a) Let
1 = N0 ⊂ N1 ⊂ N2 ⊂ · · · ⊂ Nk−1 ⊂ Nk = G

be a solvable chain for G, so that Ni+1/Ni
∼= Z/pi for some prime pi.

Let Hi = Ni ∩ H. Then Hk = H and H0 = 1. I claim that for all i
we have Hi+1/Hi

∼= Z/pi or Hi = Hi+1. Deleting repeat occurences of
subgroups from this chain will then yield a solvable chain for H.

To prove the claim, note that for any i we have a commutative diagram
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of group homomorphisms.

H ∩Ni H ∩Ni+1

Ni Ni+1

Ni+1/Ni

ι

ψ

0
π

with the hooked arrows being inclusions, and the arrow marked 0 send-
ing every element to the identity. I claim that ker(ψ) = H ∩ Ni.
Indeed, since ker(π) = Ni, we have that h ∈ ker(ψ) if and only if
h ∈ H ∩Ni+1 ∩Ni = H ∩Ni. Since kernels of group homomorphisms
are normal, we have that H ∩ Ni is a normal subgroup of H ∩ Ni+1.
Furthermore, the first isomorphism theorem yields

H ∩Ni+1

H ∩Ni

∼= im(ψ) ⊂ Ni+1

Ni

∼= Z/pi.

Since pi is a prime, Lagrange’s theorem yields that im(ψ) is either the
trivial subgroup or all of Z/pi. The former means H ∩Ni+1 = H ∩Ni.
The latter yields a desired link in the solvable chain. This is the desired
dichotomy, and so the result holds.

(b) Here’s the idea. Let π : G → G/H be the canonical projection ho-
momorphisms. If we have a chain of subgroups of G, then intersecting
with H and applying π yields chains of subgroups. We we have a chain
of subgroups of H and a chain of subgroups of G/H, then including
the chain from H into G and then extending this chain by taking the
preimage under π of the chain in G/H yields a chain in G. Then it
turns out that these operations send solvable chains to solvable chains.
Now for the actual proof.

First let’s suppose that G is solvable. Part (a) yields that H is solvable,
so it suffices to show that G/H is solvable.

Let π : G→ G/H be the canonical projection homomorphism. Let

1 = N0 ⊂ N1 ⊂ N2 ⊂ · · · ⊂ Nk−1 ⊂ Nk = G
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be a solvable chain for G. Let Fi = π(Ni). I claim that

1 = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fk−1 ⊂ Fk = G/H

is a solvable chain for G/H. Indeed, since group homomorphisms pre-
serve the identity, we have that π(1) = 1, and since π is surjective, we
have that π(G) = G/H, so this chain does end where we say it does.

To see that this is a solvable chain, note that we have a commutative
diagram

Ni Ni+1

Fi Fi+1

Fi+1

Fi

π

δ

0
γ

with the hooked arrows inclusions, and the double headed arrows sur-
jective. (Note πi+1 and γ are surjective by definition, so δ is surjec-
tive as a composition of surjections). Since surjective homomorphisms
send normal subgroups to normal subgroups, each Fi is normal in Fi+1.
Commutativity of the diagram yields that Ni ⊂ ker(δ). Explicitly, if
n ∈ Ni, then π(n) ∈ π(Ni) = Fi, so

γ ◦ δ(n) = δ(n) = 0.

Since ker(δ) ⊃ Ni, we get another commutative diagram (feel free to
ask Jarod or come to office hours about this)

Ni+1

Z/pi Ni+1/Ni Fi+1/Fi

δ
ϕ

∼=
δ̃

Since δ is surjective, so is δ̃. To see this, let y ∈ Fi+1/Fi. Since δ is

surjective, there is an x ∈ Ni+1 with δ(x) = y. Then δ̃(ϕ(x)) = δ(x) =

y, so y is in the image of δ̃. So then #Fi+1/Fi divides #Ni+1/Ni = pi.
Since pi is prime, either #Fi+1/Fi = pi or #Fi+1/Fi = 1. In the first
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case, we have Fi+1/Fi ∼= Z/pi, a link in the solvable chain. In the latter
case, we have Fi = Fi+1, and we can throw out this repeat occurence.
Either way, we have built up a solvable chain.

So now let’s suppose H and G/H are solvable, and build up a solvable
chain for G. Again, let π : G→ G/H be the canonical projection.

Let
1 = F0 ⊂ F1 ⊂ · · · ⊂ Fk−1 ⊂ Fk = G/H.

be a solvable chain for G/H. Let Ni = π−1(Fi). Note that Nk = G
and N0 = H. Once again, we have a commutative diagram

π−1(Fi) = Ni Ni+1

Fi Fi+1

Fi+1

Fi

∼= Z/pi

π

δ

0
γ

Since Ni = π−1(Fi), we have that ker(δ) = Ni. Since kernels are
normal we have that Ni is normal in Ni+1. Since δ is surjective, the
first isomorphism theorem yields

Ni+1

Ni

∼=
Fi+1

Fi
∼= Z/pi.

So we have built up a chain of normal subgroups

H = N0 ⊂ N1 ⊂ · · · ⊂ Nk = G,

with each Ni normal in the following and quotients of prime order.
Since H is solvable it has a solvable chain of subgroups. Tacking on
this chain at the beginning of the above chain yields a solvable chain
for G.

(c) Let G be a finite abelian group. We prove that G is solvable by induc-
tion on the order of G. The base case of #G = 1 is fine, as the trivial
group is also solvable.
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Now suppose #G > 1, and let p be a prime dividing #G. Then by one
of Cauchy’s theorems, there exists an element g ∈ G of order p. Thus,
we have Z/p ∼= 〈g〉 ⊂ G (you could also get such a subgroup using the
fundamental theorem of finitely generated abelian groups). Since G
is abelian, every subgroup is normal. Furthermore, G/〈g〉 has smaller
order than G, so by induction G/〈g〉 is solvable. Since Z/p is solvable,
part (b) yields that G is solvable, as desired.

(d) Let
1 = H0 ⊂ H1 ⊂ · · · ⊂ Hk−1 ⊂ Hk ⊂ G

be a chain of subgroups with Hi normal in Hi+1 and Hi+1/Hi a finite
abelian group (they’re all finite because G is finite by assumption). We
prove by induction on i that each Hi is solvable, so taking i = k yields
G is solvable.

The base case i = 0 is trivial. For the inductive step, we suppose that
Hi is solvable, and show that Hi+1 is solvable. Since Hi+1/Hi is finite
abelian, part (c) yields that this quotient is solvable. Part (b) yields
that Hi+1 is solvable. Thus, the result holds by induction.

Problem 9.5

(a) In problem 2 we showed D8
∼= Z/4 o Z/2. As we remarked in part

(c) of problem 2, this yields Z/2 ∼= D8/(Z/4). Since Z/4 and Z/2 are
solvable (being finite abelian groups), D8 is solvable by problem 4 part
(b).

(b) Let H be the following subset of A4.

H = {id, (12)(34), (13)(24), (14)(23)}.

So H is the identity together with all the products of two disjoint
transpositions. A quick computation shows that H is a subgroup of
A4, and that H ∼= Z/2× Z/2, so H is solvable. Furthermore, since H
consists of all the permutations of a given cycle type, and conjugation
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in S4 doesn’t change the cycle type of a permutation, we have that H
is normal in S4, so also normal in A4.

Furthermore, since #A4 = 4!/2 = 12, we have that #(A4/H) = 12/4 =
3, which is prime, so A4/H ∼= Z/3, which is solvable. Thus A4 is
solvable by problem 4 part (b).

(c) Consider the sign homomorphism sgn : S4 → Z/2. This is surjective
and by definition of the alternating group we have A4 = ker(sgn). Since
A4 and Z/2 are solvable, problem 4 part (b) yields that S4 is solvable.


