Problem 8.1. Let ω be a primitive 7 th root of unity. Show that $\mathbb{Q} \subseteq \mathbb{Q}(\omega)$ is a Galois extension and compute its Galois group.

Problem 8.2.

(a) Show that $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{5}, i)$ is a Galois extension and compute its Galois group.
(b) Give the complete correspondence between intermediate field extensions $\mathbb{Q} \subseteq$ $E \subseteq \mathbb{Q}(\sqrt{5}, i)$ and subgroups $H \subseteq \operatorname{Gal}(\mathbb{Q}(\sqrt{5}, i) / \mathbb{Q})$.
Problem 8.3. Let L be the splitting field of $f(x)=x^{3}-2$ over \mathbb{Q}.
(a) Compute the Galois group $\operatorname{Gal}(L / \mathbb{Q})$.
(b) Give the complete correspondence between intermediate field extensions $\mathbb{Q} \subseteq$ $E \subseteq L$ and subgroups $H \subseteq \operatorname{Gal}(L / \mathbb{Q})$.
Problem 8.4. Let L be the splitting field of $f(x)=x^{4}-2$ over \mathbb{Q}.
(a) Determine $\operatorname{Gal}(L / \mathbb{Q})$.
(b) Give the complete correspondence between intermediate field extensions $\mathbb{Q} \subseteq$ $E \subseteq L$ and subgroups $H \subseteq \operatorname{Gal}(L / \mathbb{Q})$.
Problem 8.5. Let K be a field with $\operatorname{char}(K) \neq 3$. Suppose that $f(x)=x^{3}-$ $3 x+1 \in K[x]$ is irreducible. Let $L=K(\alpha)$ where α is a root of f. Prove that f splits over L, and deduce that $K \subseteq L$ is a Galois extension with Galois group $\mathbb{Z} / 3 \mathbb{Z}$.
Hint: Factor f over L as $(x-\alpha) g$, and solve for the roots of g using the quadratic formula. Use the fact that $12-3 \alpha^{2}=\left(-4+\alpha+2 \alpha^{2}\right)^{2}$ is a perfect square in $K(\alpha)$.

