
Math 404 HW 8 Solutions

Problem 8.1

Let ω be a primitive 7th root of unity. Show that Q ⊂ Q(ω) is a
Galois extension and compute its Galois group.

Proof. Let f(x) = x7 − 1. Then all the roots of f are of the form ωi for
some 1 ≤ i ≤ 7, so Q(ω) is the splitting field of f over Q. Since Q is
of characteristic zero, this extension is separable. Since splitting fields are
normal, this extension is Galois.

I claim that the Galois group is (Z/7Z)× ∼= Z/6Z. To see this, let p(x) =
x7−1
x−1 , and let G = Gal(Q(ω)/Q). We have previously shown that p is the

irreducible polynomial for ω over Q. Thus, we have that

|Q(ω) : Q| = |G| = 6.

Any element σ ∈ G is uniquely determined by where it sends ω, and it
must send ω to some root of p(x). That is, we must have σ(ω) = ωi for
a unique 1 ≤ i ≤ 6 (not ω7 = 1, as that is not a root of p). I claim that
the function ϕ : G → (Z/7Z)× defined by sending σ ∈ G to the element
i ∈ (Z/7Z)× so that σ(ω) = ωi yields a group isomorphism.

Injectivity of ϕ follows from the above discussion. Since

|G| = |(Z/7Z)|× = 6,

we have that ϕ is bijective, so we just need to show that it is a homomorphism.
To see this, let σi, σj ∈ G be elements such that σi(ω) = ωi and similarly for
σj. Write ij = 7q+ r with 1 ≤ r ≤ 6 (the first inequality is satisfied because
i, j ∈ (Z/7Z)×) so that r = ij in Z/7Z. We compute
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We compute

σi ◦ σj(ω) = σi(ω
j)

= (σi(ω))j

= (ωi)j

= ωij

= ω7q+r

= ω7qωr

= (ω7)qωr

= 1qωr

= ωr.

This shows that

ϕ(σi ◦ σj) = r = i · j = ϕ(σi) · ϕ(σj),

so ϕ is a homomorphism, as desired.
The final isomorphism (Z/7Z)× ∼= Z/6Z comes from just noting that 3

generates (Z/7Z)×, as do a couple other elements.
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Problem 8.2

(a) Let L = Q(
√

5, i). Show that L/Q is Galois and compute its Galois
group.

(b) Give the explicit correspondence between subgroupsH ⊂ Gal(L/Q)
and intermediate fields Q ⊂ E ⊂ L.

1. L is the splitting field of (x2 − 5)(x2 + 1), so it is normal and finite.
It is separable as we’re in characteristic zero, so we’re Galois. Let
G = Gal(L/Q). Any element σ ∈ G sends

√
5 to ±

√
5, and sends

i 7→ ±i. Thinking of Z/2Z as the group on the symbols {+1,−1} with
multiplication, we get a map ϕ : G → Z/2Z × Z/2Z sending σ to the
”signs” of σ(

√
5) and σ(i). Then we just check that it’s an isomorphism,

which is similar to the argument in problem 1.

2. We’ll just give the two lattices of subgroups and intermediate fields,
with arrows pointing from the smaller thing to the bigger thing. I
also use the notation that if I have elements g1, . . . , gn in a group G,
then I write 〈g1, . . . , gn〉 to mean the subgroup of G generated by these
elements.

I made these diagrams using the following very heplful applet https://
tikzcd.yichuanshen.de/ which you can also find on github at https:
//github.com/yishn/tikzcd-editor.

Q(
√

5, i) 0

Q(
√

5) Q(
√

5i) Q(i) 1× Z/2Z 〈(−1,−1)〉 Z/2Z× 1

Q Z/2× Z/2

https://tikzcd.yichuanshen.de/
https://tikzcd.yichuanshen.de/
https://github.com/yishn/tikzcd-editor
https://github.com/yishn/tikzcd-editor
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Problem 8.3

Let L be the splitting field of f(x) = x3 − 2 over Q.

(a) Show that L/Q is Galois and compute its Galois group.

(b) Give the explicit correspondence between subgroupsH ⊂ Gal(L/Q)
and intermediate fields Q ⊂ E ⊂ L.

(a) The action of the Galois group on the roots of f yields an embedding
Gal(L/Q) ↪→ S3, which turns out to be an isomorphism. The argument
is exactly the same as the one for the splitting field of x3 − 5 given at
the end of class on May 19th.

We give the correspondence on the next page.
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(b) Let ω be a primitive 3rd root of unity. We number the roots of f as

(1) 3
√

2

(2) 3
√

2ω

(3) 3
√

2ω2.

With this labeling we build intermediate field and subgroup diagrams.

Q( 3
√

2, ω)

Q( 3
√

2ω2) Q( 3
√

2ω) Q( 3
√

2)

Q(ω)

Q

2
2

2

3

2

3
3

3

1

〈(12)〉 〈(13)〉 〈(23)〉

〈(123)〉

S3
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Problem 8.4

Let L be the splitting field of f = x4 − 2 over Q

(a) Show that L/Q is Galois and compute its Galois group.

(b) Give the explicit correspondence between subgroupsH ⊂ Gal(L/Q)
and intermediate fields Q ⊂ E ⊂ L.

(a) First you can show L = Q( 4
√

2, i) by at this point somewhat standard
splitting field arguments. Since L is a splitting field over Q, it is normal
over Q. Since Q has characteristic zero, any extension of Q is separable.
So L/Q is finite, normal and separable, i.e. L/Q is Galois. We can show
|L : Q| = 8 by at this point familiar arguments, so we’re looking for
some group of order 8.

I claim that the Galois group is D8, the dihedral group of order 8, with
generators σ, τ defined by

σ(
4
√

2) = i
4
√

2

σ(i) = i

τ(
4
√

2) =
4
√

2

τ(i) = −i.

To see this, note that L/Q( 4
√

2) is the splitting field of x2 + 1, which
is irreducible over Q( 4

√
2) (this field is contained in R). So we get an

automorphism τ of L fixing Q( 4
√

2) and sending τ(i) = −i. This is the
τ given above.

We also have that L/Q(i) is the splitting field of x4− 2. We can play a
game of degrees of field extensions in towers to show that |L : Q(i)| = 4.
Since L = Q(i)( 4

√
2) and 4

√
2 is a root of x4−2, we must have that x4−2

is irreducible over Q(i). Thus, we get an automorphism σ of L fixing
Q(i) and sending 4

√
2 to i 4

√
2, as i 4

√
2 is another root of the minimal

polynomial for 4
√

2 over Q(i).

We may directly compute that σ is of order 4. So 〈σ, τ〉 ⊂ Gal(L/Q)
is a subgroup of order larger than 4. Since Gal(L/Q) has order 8,
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Lagrange’s theorem yields Gal(L/Q) = 〈σ, τ〉. So we have generators,
what are the relations?

By looking at the action on 4
√

2 and i, we may compute

σ4 = τ 2 = id, and τστ = σ3 = σ−1.

These are the defining relations for the Dihedral group D8 (with σ
as rotation by π/2 and τ a reflection). So we get a homomorphism
ϕ : D8 → Gal(L/Q). We know that ϕ is surjective because we already
showed that σ and τ generate Gal(L/Q). Since both groups are finite
of the same order, we must have that ϕ is an isomorphism, as desired.

(b) First, we just give the correspondence (every arrow indicating a field
extension is degree 2, so I didn’t label them to avoid cluttering the
diagram)

Q( 4
√

2, i)

Q( 4
√

2) Q(i 4
√

2) Q(
√

2, i) Q( 4
√

2− i 4
√

2) Q( 4
√

2 + i 4
√

2)

Q(
√

2) Q(
√

2i) Q(i)

Q

1

〈τ〉 〈σ2τ〉 〈σ2〉 〈σ−1τ〉 〈στ〉

〈σ2, τ〉 〈σ2, στ〉 〈σ〉

D8
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Here are some hints for how you might go about getting the above
diagrams. On the intermediate fields side, I think every field pictured
besides the fields Q( 4

√
2± i 4

√
2) is a natural one to consider. Then you

can just test and see which elements of D8 fix these fields by seeing
which ones fix the elements generating them. You have a check for this
because if an intermediate field Q ⊂ E ⊂ L corresponds to a subgroup
H ⊂ D8, you know that |L : E| = |H|.
Then you just have two subgroups of D8 missing, and you have to figure
out their fixed fields.

Finding elements fixed by a given subgroup

Homework 2 problem 4

One way to do this is to use a result almost completely analogous to
problem 4 on homework 2, and hinted at in class. That is, say you have
a subgroup H ⊂ Gal(L/Q), and an element λ ∈ L. Let {λ1, . . . , λn} be
the orbit of λ under the action of H. Let s ∈ Q[x1, . . . , xn] be a sym-
metric polynomial (that is, it’s fixed by the Sn action on Q[x1, . . . , xn]
given by permuting the variables). Then s(λ1, . . . , λn) is fixed by H.
Prove this yourself, you’ll see the same proof as in the homework prob-
lem goes through. Good choices of λ and s then can have a hope to
yield generators for LH , the fixed field of H.

For instance, since (στ)2 = id, the orbit of 4
√

2 under the action of 〈στ〉
is just

{ 4
√

2, στ(
4
√

2)} = { 4
√

2, i
4
√

2}.

so any symmetric polynomial in 2 variables, evaluated at these two ele-
ments, will yield an element fixed by 〈στ〉. Natural choices for symmet-
ric polynomials are the two elementary symmetric polynomials, which
yield the elements 4

√
2 + i 4

√
2 and 4

√
2(i 4
√

2) = i
√

2. These two ele-
ments generate the two intermediate fields which are fixed by στ , one
containing the other.
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Computing with a basis

Another way you can figure out which field elements are fixed by a given
element of the Galois group is to compute with a basis well-tailored to
the action of the Galois group.

For instance, the proof of the multiplicative property of the degree
yields that L/Q has a basis

B = {1, 4
√

2, (
4
√

2)2 =
√

2, (
4
√

2)3, i
4
√

2, i
√

2, i(
4
√

2)3}.

So you can just directly compute what an element of the Galois group
does to a given linear combination of these basis elements, and then the
field felements fixed by the group element are those which are the same
linear combination before and after the action of the group element.

For example, let A,B,C, . . . , H ∈ Q, and compute

σ2τ
(
A+B

4
√

2 + C
√

2 +D(
4
√

2)3 + Ei+ Fi
4
√

2 +Gi
√

2 +Hi(
4
√

2)3
)

=

A−B 4
√

2 + C
√

2−D(
4
√

2)3 − Ei+ Fi
4
√

2−Gi
√

2 +Hi(
4
√

2)3.

Thus, the elements of L〈σ
2τ〉 are those with B = D = E = G = 0.

Thus, L〈σ
2τ〉 has basis

{1,
√

2, i
4
√

2, i(
4
√

2)3} = {1,−(i
4
√

2)2, i
4
√

2,−(i
4
√

2)3}.

Since i 4
√

2 has minimal polynomial x4 − 2, this latter form for a basis
of L〈σ

2τ〉 yields
L〈σ

2τ〉 = Q(i
4
√

2).
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Problem 8.5

Let K be a field with Char(K) 6= 3. Suppose that f(x) = x3−3x+1 ∈
K[x] is irreducible. Let L = K(α) where α is a root of f . Prove that f
splits over L, and deduce that K ⊆ L is a Galois extension with Galois
group Z/3Z.

Proof. Polynomial long division yields

f(x) = (x− α)(x2 + αx+ α2 − 3).

Let us for the moment assume Char(K) 6= 2, as well. Then the quadratic
formula applies, and we can compute the roots of f/(x− α) as

x =
−α±

√
12− 3α2

2

=
−α± (−4 + α + 2α2)

2
(by the hint)

= {−2− α− α2,−2 + α2}.
This last form for the roots also makes sense in characteristic 2, and indeed
you can plug these elements into f/(x−α) in characteristic 2 and verify that
you still get zero. These roots also clearly live in L = K(α), so we have that
f splits in K(α)

Thus, we have that L is the splitting field of f , and in particular it is
normal over K. Since f ′ = 3x2−3 6= 0 and f is irreducible, we have that f is
separable, so these three roots are distinct. We can show thatK ⊂ L is Galois
in at least two ways. One is to cite a hard theorem that if L = K(α1, . . . , αn)
with each αi separable over K, then L is separable over K, which is proven
at https://stacks.math.columbia.edu/tag/09GZ (it’s lemma 9.12.10, but
you need the stuff before it to make sense of it).

Another starts by noting that L ∼= K[x]/f . Since f is separable, there are
three distinct roots of f in L. Sending x to each of these three roots yields
three distinct automorphisms of L, fixing K. Thus, |Gal(L/K)| ≥ 3. But we
also have |Gal(L/K)| ≤ |L : K| for any finite extension. Since |L : K| = 3,
we must have equality in the above inequalities, and the extension is Galois.

The final result follows from the fact that any group of order 3 is isomor-
phic to Z/3Z (indeed any group of prime order p is isomorphic to Z/pZ).

https://stacks.math.columbia.edu/tag/09GZ

