Math 404A: Introduction to Modern Algebra (Spring 2021) Jarod Alper Homework 7 Due: Friday, May 14

Problem 7.1. Show that any field extension $K \subseteq L$ of degree 2 is normal.

Problem 7.2. Prove that every element of a finite field can be written as the sum of two squares.

Problem 7.3. Prove that there exists an inclusion of fields $\mathbb{F}_{p^a} \subseteq \mathbb{F}_{p^b}$ if and only if a|b.

Problem 7.4. Let p be a prime and $q = p^n$. Consider the map

$$\sigma \colon \mathbb{F}_q \to \mathbb{F}_q$$
$$x \mapsto x^p.$$

- (a) Show that σ is a well-defined homomorphism of fields.
- (b) Show that σ is the identity on the subfield $\mathbb{F}_p \subset \mathbb{F}_q$.
- (c) Show that $\sigma \colon \mathbb{F}_q \to \mathbb{F}_q$ is an isomorphism.
- (d) Show that the set of elements fixed by σ is precisely \mathbb{F}_p ; in other words, show that

$$\mathbb{F}_p \cong \{ x \in \mathbb{F}_q \mid \sigma(x) = x \}.$$

If $K \subset L$ is a field extension, an *automorphism of* K over L is a field isomorphism $\sigma: L \to L$ that is the identity on K, i.e. for all $x \in K$, $\sigma(x) = x$. Let $\operatorname{Gal}(L/K)$ be the set of all automorphisms σ of K over L.

Problem 7.5. Let $K \subset L$ be a field extension.

- (a) Show that $\operatorname{Gal}(L/K)$ is a group under composition.
- (b) Let $\alpha \in L$ be a root of a polynomial $f(x) \in K[x]$. If σ is an automorphism of L over K, show that $\sigma(\alpha)$ is also a root of f(x).

Problem 7.6.

- (a) Determine $\operatorname{Gal}(\mathbb{Q}(\sqrt{2})/\mathbb{Q})$.
- (b) Determine $\operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q})$.
- (c) Determine $\operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2},\sqrt{3}i)/\mathbb{Q}).$
- (d) Determine $\operatorname{Gal}(\mathbb{F}_{p^2}/\mathbb{F}_p)$.