Problem 6.1. Determine the splitting fields $\mathbb{Q} \subset K$ of the following polynomials defined over \mathbb{Q} and compute the degree $|K: \mathbb{Q}|$.
(a) $f(x)=x^{4}+1$.
(b) $f(x)=x^{3}-3 x+2=0$

Hint: In Homework Problem 1.5, you solved for the roots of (b).
Problem 6.2.
(a) Show that $\mathbb{Q}(\sqrt{2}, i)$ is the splitting field of $x^{2}-2 \sqrt{2} x+3$ over $\mathbb{Q}(\sqrt{2})$.
(b) Find a polynomial $f(x) \in \mathbb{Q}[x]$ whose splitting field is $\mathbb{Q}(\sqrt[3]{2}, i, \sqrt{3})$.

Problem 6.3. Let K be a field and $L=K(\alpha)$ be a simple field extension of K. If L is normal over K, show that L is the splitting field of the minimal polynomial of α.

Problem 6.4.

(a) Count the number of monic irreducible polynomials over \mathbb{F}_{3} of degree 2, 3 and 4.
(b) For each $d=2,3,4$, explicitly exhibit a monic irreducible polynomial $f \in \mathbb{F}_{3}$ of degree d.

Problem 6.5. For each of the following field extensions, determine (a) whether it is normal and (b) whether it is separable.
(a) $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{-5})$.
(b) $\mathbb{Q}(i) \subseteq \mathbb{Q}(\sqrt[3]{2}, i)$.
(c) $\mathbb{F}_{p} \subseteq \mathbb{F}_{p^{n}}$ where p is a prime.
(d) $\mathbb{F}_{p}\left(x^{p}\right) \subseteq \mathbb{F}_{p}(x)$ where p is a prime.

Clarification: You may use the following facts (to be proven in lecture):

- If the characteristic of K is zero, then any field extension $K \subseteq L$ is separable.
- If the characteristic of K is p and every element of K has a pth root, then any field extension $K \subseteq L$ is separable.

