Math 404A: Introduction to Modern Algebra (Spring 2021) Jarod Alper Homework 6 Due: Friday, May 7

Problem 6.1. Determine the splitting fields $\mathbb{Q} \subset K$ of the following polynomials defined over \mathbb{Q} and compute the degree $|K : \mathbb{Q}|$.

- (a) $f(x) = x^4 + 1$.
- (b) $f(x) = x^3 3x + 2 = 0$

Hint: In Homework Problem 1.5, you solved for the roots of (b).

Problem 6.2.

(a) Show that Q(√2, i) is the splitting field of x² - 2√2x + 3 over Q(√2).
(b) Find a polynomial f(x) ∈ Q[x] whose splitting field is Q(³√2, i, √3).

Problem 6.3. Let K be a field and $L = K(\alpha)$ be a simple field extension of K. If L is normal over K, show that L is the splitting field of the minimal polynomial of α .

Problem 6.4.

- (a) Count the number of monic irreducible polynomials over \mathbb{F}_3 of degree 2, 3 and 4.
- (b) For each d = 2, 3, 4, explicitly exhibit a monic irreducible polynomial $f \in \mathbb{F}_3$ of degree d.

Problem 6.5. For each of the following field extensions, determine (a) whether it is normal and (b) whether it is separable.

- (a) $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{-5}).$
- (b) $\mathbb{Q}(i) \subseteq \mathbb{Q}(\sqrt[3]{2}, i).$
- (c) $\mathbb{F}_p \subseteq \mathbb{F}_{p^n}$ where p is a prime.
- (d) $\mathbb{F}_p(x^p) \subseteq \mathbb{F}_p(x)$ where p is a prime.

Clarification: You may use the following facts (to be proven in lecture):

- If the characteristic of K is zero, then any field extension $K \subseteq L$ is separable.
- If the characteristic of K is p and every element of K has a pth root, then any field extension K ⊆ L is separable.