Problem 5.1.

(a) Show that any angle can be bisected using only a ruler and a compass.
(b) Show that the angle 90° can be trisected using only a ruler and a compass.
(c) Extra credit (5 points): Show that the angle θ can be trisected using only a ruler and a compass if and only if the polynomial

$$
4 x^{3}-3 x-\cos \theta
$$

is reducible over $\mathbb{Q}(\cos \theta)$.

Problem 5.2.

(a) Show that a square can be doubled (i.e. it is possible to construct a new square with twice of the area of the original square) using only a ruler and a compass.
(b) Given a line segment $A B$, construct a square whose side lengths are $|A B|$ using only a ruler and a compass.
Problem 5.3. Given a circle, construct a regular hexagon that inscribes the circle using only a ruler and compass.

Problem 5.4. Let η be a primitive 9 th root of unity.
(a) What is the minimal polynomial for η ?
(b) Express η^{-1} as a \mathbb{Q}-linear combination of $1, \eta, \eta^{2}, \ldots, \eta^{5}$.

Problem 5.5. Recall that the splitting field of a polynomial $f(x) \in \mathbb{Q}[x]$ is the smallest subfield $K \subset \mathbb{C}$ containing \mathbb{Q} and all the roots of $f(x)$. Determine the splitting fields $\mathbb{Q} \subseteq K$ of the following polynomials defined over \mathbb{Q} and compute the degree $|K: \mathbb{Q}|$.
(a) $f(x)=x^{3}-2$.
(b) $f(x)=x^{4}-3$.
(c) $f(x)=x^{9}-1$.

Problem 5.6. Show that the multiplicative group \mathbb{F}_{11}^{\times}of non-zero elements is isomorphic to $\mathbb{Z} / 10 \mathbb{Z}$.

