Math 404A: Introduction to Modern Algebra (Spring 2021) Jarod Alper Homework 5 Due: Friday, April 30

Problem 5.1.

- (a) Show that any angle can be bisected using only a ruler and a compass.
- (b) Show that the angle 90° can be trisected using only a ruler and a compass. (c) Extra credit (5 points): Show that the angle θ can be trisected using only a
- ruler and a compass if and only if the polynomial

$$4x^3 - 3x - \cos\theta$$

is reducible over $\mathbb{Q}(\cos \theta)$.

Problem 5.2.

- (a) Show that a square can be doubled (i.e. it is possible to construct a new square with twice of the area of the original square) using only a ruler and a compass.
- (b) Given a line segment AB, construct a square whose side lengths are |AB|using only a ruler and a compass.

Problem 5.3. Given a circle, construct a regular hexagon that inscribes the circle using only a ruler and compass.

Problem 5.4. Let η be a primitive 9th root of unity.

- (a) What is the minimal polynomial for η ?
- (b) Express η^{-1} as a Q-linear combination of $1, \eta, \eta^2, \ldots, \eta^5$.

Problem 5.5. Recall that the splitting field of a polynomial $f(x) \in \mathbb{Q}[x]$ is the smallest subfield $K \subset \mathbb{C}$ containing \mathbb{Q} and all the roots of f(x). Determine the splitting fields $\mathbb{Q} \subseteq K$ of the following polynomials defined over \mathbb{Q} and compute the degree $|K:\mathbb{Q}|$.

(a) $f(x) = x^3 - 2$.

- (b) $f(x) = x^4 3$. (c) $f(x) = x^9 1$.

Problem 5.6. Show that the multiplicative group \mathbb{F}_{11}^{\times} of non-zero elements is isomorphic to $\mathbb{Z}/10\mathbb{Z}$.