Bisecting Angle (1,0) and (A,B) () Reduce to angle between two points on unit (incle 2) Draw circles of radius I about (A,B) and (1,0), mark off (C,D) intersection 3) Draw line between origin this line bisects (AB) the angle (C, b)(cxy) (٥,٥) Chuj Circle rading 1 at (A,B) and (C, D)UN circle reading | at cl, o/ $((-A)^{2} + (D-B)^{2} = 1 \text{ and } ((-1)^{2} + 0^{2} = 1)$ $(C-A)^{2} - ((-1)^{2} + (D-B)^{2} - D^{2} = 0$

·	$-AC + A^{2} - [$	2 ² ~ 2 C + 1) + J ²	- 2DB +	₿ [°] - 1 [°]	· · ·
	- -ZA(-		(
	ZC = 2AC .	LDB				
	Ct AC+	рB				
	((- A)	= DB	50	$\frac{D}{C} = \frac{L}{R}$	$\frac{A}{3} = \frac{\gamma}{x}$	<i>گ^تا با ۲</i> ۲
hant 2)	ry = B (From	donfle	angle	Sincola	LC4.05in g
1 = X 1 V r	$ = X_{r} + \int_{r} \frac{1}{r}$	$(A_{1})^{2}\chi^{2} \sim \chi$	r (+	$\left(\frac{1-A}{B}\right)^{2}$	 (<u>,</u>	
$\int a x^2 =$	$\frac{1}{1+\left(\frac{1-A}{B}\right)^2} = \frac{1}{2}$	B ² - B ² - 2(1-)) A co		• •
	(+(<u>-</u> B)					
	$\left(\frac{A}{3}\right)^2$ $\left(\frac{B^2 + 1}{2}\right)^2$	- A ² - ZA	2-2A B2			
	$= 2 \times \frac{1-A}{B} =$					

90° Trisecting angle 10,0) ((,0), and (0,1), draw unit angle between (\mathbf{l}) Reduce łð Livele (entered at vadjus (0,1), mark off intersection (\mathfrak{I}) Draw circle Draw line between origin and (X,Y). This Yields (3) angle (Kr) 50 27

Donble	the	ડવા	nare										
						· ())	start	· Wi	ĥς	GUAN	ڡ		
		•)raw						
							onstru					k	
, B		1		>			AB	+0	fini	ish			
•							(see	nez-	f pa	rge	for		
• •	٠	Ă					defo	ŭl <u>s</u>	Ūη	(Z))		

Draw square given Side 1) Start with AB D 3 Draw circle of Ľ. radius AB, Center A, mark off 3) Draw Perpindicular С, B A bise Hor to BC, mark off D 4 Repeal 1, 2, 3 on other to get BE≘AD (5) Draw ED to Finish (dayhed)

Math 404 HW 4 Solutions

1 Problem 5.4

Let η be a primitive 9th root of unity.

- (a) What is the minimal polynomial for η ?
- (b) Write η^{-1} as a Q-linear combination of $1, \eta, \eta^2, \ldots, \eta^5$.
- 1. We understand the minimal polynomials for primitive *p*-th roots of unity where *p* is a prime, so here we try to relate the study of this 9th root of unity to that of a primitive 3rd root of unity. In particular, note that $(\eta^3)^3 = 1$ and $\eta^3 \neq 1$, so that η^3 is a primitive 3rd root of unity. The last homework yields that η^3 is a root of $f(x) = x^2 + x + 1$. Thus, we have that η is a root of

$$g(x) := f(x^3) = x^6 + x^3 + 1.$$

Then we note that

$$g(x+1) = x^6 + 6x^5 + 15x^4 + 21x^3 + 18x^2 + 9x + 3$$

which satisfies Eisenstein's criterion at p = 3, so is irreducible. Thus, we have that g(x) is irreducible, and so is the minimal polynomial for η .

2. We give two solutions. One that is more following your nose, and another that's more abstract.

1.1 Following your nose

Suppose we have a linear combination

$$\eta^{-1} = \sum_{i=0}^5 a_i \eta^i$$

with $a_i \in \mathbb{Q}$. By definition of multiplicative inverses, this is true if and only if

$$\left(\sum_{i=0}^{5} a_i \eta^{i+1}\right) - 1 = 0.$$

The left hand side of this equation is a polynomial η . By definition of a minimal polynomial, this holds if and only if there is some $h(x) \in \mathbb{Q}[x]$ so that

$$\left(\sum_{i=0}^{5} a_i x^{i+1}\right) - 1 = h(x) \cdot (x^6 + x^3 + 1).$$

Since the left hand side is a nonzero polynomial of degree at most 6, the only possibility is that h(x) is a nonzero constant. Investigating the constant terms on both sides yields that we must have h(x) = -1. This yields $a_5 = -1$, $a_2 = -1$, and $a_i = 0$ for all other *i*. That is, we have

$$\eta^{-1} = -\eta^5 - \eta^2.$$

1.2 More abstract

We know by previous work that we have an isomorphism $\varphi : \mathbb{Q}[x]/(g(x)) \xrightarrow{\sim} \mathbb{Q}(\eta)$ defined by sending $x \mapsto \eta$. We also know that the former ring is a \mathbb{Q} -vector space with basis $1, x, \ldots, x^5$ (all powers of x smaller than the degree of g). Since $\mathbb{Q}[x]/(g(x))$ is a field, with η identified under this isomorphism with the class of x, we must have that 1/x is a linear combination of these x^i . Furthermore, if we actually go back and look at our proof that $\mathbb{Q}[x]/(g(x))$ is a field when g is irreducible, we actually get an algorithm for finding the inverses of elements.

Since g is irreducible and x does not divide g (if it did, then by irreducibility we would have g = x so $\eta = 0$), we must have that the greatest common divisor of g and x is 1. Furthermore, by applying

the Euclidean algorithm, we can produce polynomials u and v so that ug + vx = 1. Then the class of v will be the inverse of x in $\mathbb{Q}[x]/(g(x))$. And we can furthermore find these u and v by just doing repeated division with remainder.

Indeed, by one division with remainder we get

$$g = x^{6} + x^{3} + 1 = x(x^{5} + x^{2}) + 1.$$

Rearranging gives

$$1 = g + x(-x^5 - x^2).$$

Thus, we have that $-x^5 - x^2 = x^{-1}$ in the quotient ring, and applying φ yields $\eta^{-1} = -\eta^5 - \eta^2$.

Exercise The reasoning above applies much more generally. See if you can carry it out for any field extension $K \subset K(\eta)$, with η algebraic. Let $g(x) = x^n + \sum_{i=0}^{n-1} a_i x^i$ be the minimal polynomial for η . Show that $a_0 \neq 0$, and find a formula for $1/\eta$ in terms of the a_i . Furthermore, let $h(x) \in K[x]$ be a nonzero polynomial of degree less than n. Let $\gamma = g(\eta)$. Show abstractly that γ^{-1} can be written as a K-linear combination of η^i , with $0 \leq i \leq n-1$. See if you can use this to find $(1 + \eta)^{-1}$ in $\mathbb{Q}(\eta)$ where η is a primitive 9th root of unity.

2 Problem 5.5

Determine the splitting fields $\mathbb{Q} \subset K$ of each of the following polynomials defined over \mathbb{Q} and compute the degree $|K:\mathbb{Q}|$.

- (a) $f(x) = x^3 2$.
- (b) $f(x) = x^4 3$ (c) $f(x) = x^9 1$.
- (a) Let $\sqrt[3]{2}$ denote the real cube root of 2. Let ω be a primitive cube root of unity. I claim $K = \mathbb{Q}(\sqrt[3]{2}, \omega)$, and $|K : \mathbb{Q}| = 6$. For the first claim, note that the other roots of f are $\alpha = \omega \sqrt[3]{2}$ and $\beta = \omega^2 \sqrt[3]{2}$. This shows that $\mathbb{Q}(\sqrt[3]{2},\omega)$ contains all the roots of f, so by minimality we have $K \subset \mathbb{Q}(\sqrt[3]{2}, \omega)$. For the reverse containment, note that K contains $\sqrt[3]{2}$ and α , so K also contains $\alpha/\sqrt[3]{2} = \omega$. Thus, we have $K = \mathbb{Q}(\sqrt[3]{2}, \omega)$.

For the degree statement, consider the tower of fields $\mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{2}) \subset$ $\mathbb{Q}(\sqrt[3]{2},\omega)$. Since f is irreducible over \mathbb{Q} by Eisenstein, the degree of the first field extension is three. For the extension $\mathbb{Q}(\sqrt[3]{2}) \subset \mathbb{Q}(\sqrt[3]{2}, \omega)$, recall that ω is a root of $q = x^2 + x + 1$. So this extension is of degree either 2 or 1. However, it can not be of degree 1, as $\sqrt[3]{2} \in \mathbb{R}$ so $\mathbb{Q}(\sqrt[3]{2}) \subset \mathbb{R}$ but $\omega \notin \mathbb{R}$. Thus, this extension must be degree 2, and the result holds by the multiplicative property of the degree.

(b) Let $\sqrt[4]{3}$ denote the real fourth root of 3. I claim that $K = \mathbb{Q}(\sqrt[4]{3}, i)$, and $|K:\mathbb{Q}|=8$. For the first claim, note that the roots of f are $\pm \sqrt[4]{3}$ and $\pm i\sqrt[4]{3}$, which shows that all the roots of f are in $\mathbb{Q}(\sqrt[4]{3},i)$, so $K \subset \mathbb{Q}(\sqrt[4]{3}, i)$. For the reverse containment, note that since K contains all the roots of f, it contains $\sqrt[4]{3}$ and $\frac{i\sqrt[4]{3}}{\sqrt[4]{3}} = i$, so we get $K \supset \mathbb{Q}(\sqrt[4]{3}, i)$, and equality holds.

For the degree statement, consider the tower of fields $\mathbb{Q} \subset \mathbb{Q}(\sqrt[4]{3}) \subset$ $\mathbb{Q}(\sqrt[4]{3}, i)$. Since f is irreducible over \mathbb{Q} by Eisenstein, the first extension is of degree 4. Since i is a root of $g = x^2 + 1$, we have that the latter extension is of degree at most 2. Since $\sqrt[4]{3} \in \mathbb{R}$, we have that

 $\mathbb{Q}(\sqrt[4]{3}) \subset \mathbb{R}$. Since $i \notin \mathbb{R}$, we must have that $\mathbb{Q}(\sqrt[4]{3}) \neq \mathbb{Q}(\sqrt[4]{3}, i)$, and so this extension must be of degree 2. The result holds by the multiplicative property of the degree.

(c) Let η be a primitive 9th root of unity. I claim that $K = \mathbb{Q}(\eta)$, and that $|K : \mathbb{Q}| = 6$. The latter statement will follow from the first, as we previously showed that η has a minimal polynomial of degree 6. By definition of primitive roots, the roots of f are the elements η^i for $0 \le i \le 8$. This shows that $\mathbb{Q}(\eta)$ contains all the roots of f, so we must have $K \subset \mathbb{Q}(\eta)$. Since η is a root of f, we must have $\eta \in K$ so $\mathbb{Q}(\eta) \subset K$, and the result holds.

3 Problem 5.6

Show that the multiplicative group \mathbb{F}_{11}^{\times} of nonzero elements is isomorphic to $\mathbb{Z}/10\mathbb{Z}$.

Proof. We have a group homomorphism $\varphi : \mathbb{Z} \to \mathbb{F}_{11}^{\times}$ sending $1 \mapsto 2$ (the former as a group under addition, and the latter as a group under multiplication). Computing powers of 2 mod 11 yields that φ is surjective. Furthermore we can just see that $\varphi(10) = 1$ and $\varphi(n) \neq 1$ for 0 < n < 10. This shows that ker(φ) = 10 \mathbb{Z} , so the first isomorphism theorem yields $\mathbb{F}_{11}^{\times} \cong \mathbb{Z}/10\mathbb{Z}$. The other possible choices of generators are 8, 7, and 6.