Bisecting Angle
$a, 0)$ and (A, B)
(1) Reduce to angle between two points an init circle
(2). Draw circles of radius 1 about $(A ; B)$ and $(1,0)$, mark off (C, D)
(3) Draw line between origin and (C,D),
this line bisects the angle
 intersection
(C, D) on circle radians I at $\left(A_{1} B\right)$ and circle radius 1 at $(1,0)$

$$
\begin{aligned}
& (C-A)^{2}+(D-B)^{2}=1 \text { and }(C-I)^{2}+D^{2}=1 \\
& (C-A)^{2}-(C-I)^{2}+(D-B)^{2}-D^{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& X^{2}-2 A C+A^{2}-\left[C^{x}-2 C+1\right]+A^{2}-2 D B+B^{2}-D^{2}=0 \\
& 2 C-1-2 A C-2 D B+A^{2}+B^{2}=D \\
& 2 C=2 A C+2 D B \\
& C A C+D B \\
& C(1-A)=D B=10 \quad \frac{D}{C}=\frac{1-A}{B}=\frac{y}{x} x^{2}+y^{2}=1
\end{aligned}
$$

want $2 x y=B \cdot$ From. double angle $\sin (2 \theta)=2 \cos \theta \sin \theta$

$$
\begin{aligned}
& 1=x^{2}+y^{2}=x^{2}+\left(\frac{1-A}{B}\right)^{2} x^{2}=x^{2}\left(1+\left(\frac{1-A}{B}\right)^{2}\right)=1 \\
& \text { So } x^{2}=1+\left(\frac{1-A}{B}\right)^{2}=\frac{B^{2}}{2-2 A}=\frac{B^{2}}{2(-1)} S_{0} 0 x=\frac{B}{\sqrt{2-2 A}}=\frac{B}{\sqrt{2} \sqrt{1-A}} \\
& 1+\left(\frac{1-A}{B}\right)^{2}=\frac{B^{2}+1+A^{2}-2 A}{B^{2}}=\frac{2-2 A}{B^{2}} \\
& \text { So } 2 x y=2 x^{2} \frac{1-A}{B}=2\left(\frac{1-A}{B}\right)\left(\frac{B^{2}}{2(1-A)}\right)=B
\end{aligned}
$$

Triseiting 90° angle
(1) Reduce to angle between. $(1,0)$, , and $(0,0) 1)$, draw whit. civcle
(2) Draw circle vadius I centeved at $(0,1)$, mank off interectron
(3)

Yielos the (x, y). 30° ongle.

$$
\begin{gathered}
x^{2}+y^{2}=1 \quad x^{2}+(1-y)^{2}=1 \\
y^{2}-(1-y)^{2}=0 \\
y^{2}-\left[1+y^{2}-2 y\right]=0
\end{gathered}
$$

So

$$
\begin{aligned}
2 y & =1 \\
\text { so } y & =\frac{1}{2} .
\end{aligned}
$$

Donble the squave
(1) Start with squave

(2). Draw. diagonal. $A B$.
(3). Coustrucit sinave with side $A B$. to finigh

Csee next page for details on (3))

Draw square given side

(1) start with $A B$
(4) Drawn circle of. radius $A B$, center A, mark off C
(3). Draw Perpendicular bisector to $B C$, mark off D
(4) Repeal $1,2,3$ on other side to set $B E \cong A D$
(5) Draw ED to Finish (dashed)

Math 404 HW 4 Solutions

1 Problem 5.4

Let η be a primitive 9 th root of unity.
(a) What is the minimal polynomial for η ?
(b) Write η^{-1} as a \mathbb{Q}-linear combination of $1, \eta, \eta^{2}, \ldots, \eta^{5}$.

1. We understand the minimal polynomials for primitive p-th roots of unity where p is a prime, so here we try to relate the study of this 9 th root of unity to that of a primitive 3 rd root of unity. In particular, note that $\left(\eta^{3}\right)^{3}=1$ and $\eta^{3} \neq 1$, so that η^{3} is a primitive 3 rd root of unity. The last homework yields that η^{3} is a root of $f(x)=x^{2}+x+1$. Thus, we have that η is a root of

$$
g(x):=f\left(x^{3}\right)=x^{6}+x^{3}+1 .
$$

Then we note that

$$
g(x+1)=x^{6}+6 x^{5}+15 x^{4}+21 x^{3}+18 x^{2}+9 x+3
$$

which satisfies Eisenstein's criterion at $p=3$, so is irreducible. Thus, we have that $g(x)$ is irreducible, and so is the minimal polynomial for η.
2. We give two solutions. One that is more following your nose, and another that's more abstract.

1.1 Following your nose

Suppose we have a linear combination

$$
\eta^{-1}=\sum_{i=0}^{5} a_{i} \eta^{i}
$$

with $a_{i} \in \mathbb{Q}$. By definition of multiplicative inverses, this is true if and only if

$$
\left(\sum_{i=0}^{5} a_{i} \eta^{i+1}\right)-1=0
$$

The left hand side of this equation is a polynomial η. By definition of a minimal polynomial, this holds if and only if there is some $h(x) \in \mathbb{Q}[x]$ so that

$$
\left(\sum_{i=0}^{5} a_{i} x^{i+1}\right)-1=h(x) \cdot\left(x^{6}+x^{3}+1\right)
$$

Since the left hand side is a nonzero polynomial of degree at most 6 , the only possibility is that $h(x)$ is a nonzero constant. Investigating the constant terms on both sides yields that we must have $h(x)=-1$. This yields $a_{5}=-1, a_{2}=-1$, and $a_{i}=0$ for all other i. That is, we have

$$
\eta^{-1}=-\eta^{5}-\eta^{2}
$$

1.2 More abstract

We know by previous work that we have an isomorphism $\varphi: \mathbb{Q}[x] /(g(x)) \xrightarrow{\sim}$ $\mathbb{Q}(\eta)$ defined by sending $x \mapsto \eta$. We also know that the former ring is a \mathbb{Q}-vector space with basis $1, x, \ldots, x^{5}$ (all powers of x smaller than the degree of $g)$. Since $\mathbb{Q}[x] /(g(x))$ is a field, with η identified under this isomorphism with the class of x, we must have that $1 / x$ is a linear combination of these x^{i}. Furthermore, if we actually go back and look at our proof that $\mathbb{Q}[x] /(g(x))$ is a field when g is irreducible, we actually get an algorithm for finding the inverses of elements.
Since g is irreducible and x does not divide g (if it did, then by irreducibility we would have $g=x$ so $\eta=0$), we must have that the greatest common divisor of g and x is 1 . Furthermore, by applying
the Euclidean algorithm, we can produce polynomials u and v so that $u g+v x=1$. Then the class of v will be the inverse of x in $\mathbb{Q}[x] /(g(x))$. And we can furthermore find these u and v by just doing repeated division with remainder.

Indeed, by one division with remainder we get

$$
g=x^{6}+x^{3}+1=x\left(x^{5}+x^{2}\right)+1 .
$$

Rearranging gives

$$
1=g+x\left(-x^{5}-x^{2}\right)
$$

Thus, we have that $-x^{5}-x^{2}=x^{-1}$ in the quotient ring, and applying φ yields $\eta^{-1}=-\eta^{5}-\eta^{2}$.

Exercise The reasoning above applies much more generally. See if you can carry it out for any field extension $K \subset K(\eta)$, with η algebraic. Let $g(x)=x^{n}+\sum_{i=0}^{n-1} a_{i} x^{i}$ be the minimal polynomial for η. Show that $a_{0} \neq 0$, and find a formula for $1 / \eta$ in terms of the a_{i}. Furthermore, let $h(x) \in K[x]$ be a nonzero polynomial of degree less than n. Let $\gamma=g(\eta)$. Show abstractly that γ^{-1} can be written as a K-linear combination of η^{i}, with $0 \leq i \leq n-1$. See if you can use this to find $(1+\eta)^{-1}$ in $\mathbb{Q}(\eta)$ where η is a primitive 9th root of unity.

2 Problem 5.5

Determine the splitting fields $\mathbb{Q} \subset K$ of each of the following polynomials defined over \mathbb{Q} and compute the degree $|K: \mathbb{Q}|$.
(a) $f(x)=x^{3}-2$.
(b) $f(x)=x^{4}-3$
(c) $f(x)=x^{9}-1$.
(a) Let $\sqrt[3]{2}$ denote the real cube root of 2 . Let ω be a primitive cube root of unity. I claim $K=\mathbb{Q}(\sqrt[3]{2}, \omega)$, and $|K: \mathbb{Q}|=6$. For the first claim, note that the other roots of f are $\alpha=\omega \sqrt[3]{2}$ and $\beta=\omega^{2} \sqrt[3]{2}$. This shows that $\mathbb{Q}(\sqrt[3]{2}, \omega)$ contains all the roots of f, so by minimality we have $K \subset \mathbb{Q}(\sqrt[3]{2}, \omega)$. For the reverse containment, note that K contains $\sqrt[3]{2}$ and α, so K also contains $\alpha / \sqrt[3]{2}=\omega$. Thus, we have $K=\mathbb{Q}(\sqrt[3]{2}, \omega)$.
For the degree statement, consider the tower of fields $\mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{2}) \subset$ $\mathbb{Q}(\sqrt[3]{2}, \omega)$. Since f is irreducible over \mathbb{Q} by Eisenstein, the degree of the first field extension is three. For the extension $\mathbb{Q}(\sqrt[3]{2}) \subset \mathbb{Q}(\sqrt[3]{2}, \omega)$, recall that ω is a root of $g=x^{2}+x+1$. So this extension is of degree either 2 or 1 . However, it can not be of degree 1 , as $\sqrt[3]{2} \in \mathbb{R}$ so $\mathbb{Q}(\sqrt[3]{2}) \subset \mathbb{R}$ but $\omega \notin \mathbb{R}$. Thus, this extension must be degree 2 , and the result holds by the multiplicative property of the degree.
(b) Let $\sqrt[4]{3}$ denote the real fourth root of 3 . I claim that $K=\mathbb{Q}(\sqrt[4]{3}, i)$, and $|K: \mathbb{Q}|=8$. For the first claim, note that the roots of f are $\pm \sqrt[4]{3}$ and $\pm i \sqrt[4]{3}$, which shows that all the roots of f are in $\mathbb{Q}(\sqrt[4]{3}, i)$, so $K \subset \mathbb{Q}(\sqrt[4]{3}, i)$. For the reverse containment, note that since K contains all the roots of f, it contains $\sqrt[4]{3}$ and $\frac{i \sqrt[4]{3}}{\sqrt[4]{3}}=i$, so we get $K \supset \mathbb{Q}(\sqrt[4]{3}, i)$, and equality holds.

For the degree statement, consider the tower of fields $\mathbb{Q} \subset \mathbb{Q}(\sqrt[4]{3}) \subset$ $\mathbb{Q}(\sqrt[4]{3}, i)$. Since f is irreducible over \mathbb{Q} by Eisenstein, the first extension is of degree 4. Since i is a root of $g=x^{2}+1$, we have that the latter extension is of degree at most 2 . Since $\sqrt[4]{3} \in \mathbb{R}$, we have that
$\mathbb{Q}(\sqrt[4]{3}) \subset \mathbb{R}$. Since $i \notin \mathbb{R}$, we must have that $\mathbb{Q}(\sqrt[4]{3}) \neq \mathbb{Q}(\sqrt[4]{3}, i)$, and so this extension must be of degree 2 . The result holds by the multiplicative property of the degree.
(c) Let η be a primitive 9th root of unity. I claim that $K=\mathbb{Q}(\eta)$, and that $|K: \mathbb{Q}|=6$. The latter statement will follow from the first, as we previously showed that η has a minimal polynomial of degree 6 . By definition of primitive roots, the roots of f are the elements η^{i} for $0 \leq i \leq 8$. This shows that $\mathbb{Q}(\eta)$ contains all the roots of f, so we must have $K \subset \mathbb{Q}(\eta)$. Since η is a root of f, we must have $\eta \in K$ so $\mathbb{Q}(\eta) \subset K$, and the result holds.

3 Problem 5.6

Show that the multiplicative group \mathbb{F}_{11}^{\times}of nonzero elements is isomorphic to $\mathbb{Z} / 10 \mathbb{Z}$.

Proof. We have a group homomorphism $\varphi: \mathbb{Z} \rightarrow \mathbb{F}_{11}^{\times}$sending $1 \mapsto 2$ (the former as a group under addition, and the latter as a group under multiplication). Computing powers of $2 \bmod 11$ yields that φ is surjective. Furthermore we can just see that $\varphi(10)=1$ and $\varphi(n) \neq 1$ for $0<n<10$. This shows that $\operatorname{ker}(\varphi)=10 \mathbb{Z}$, so the first isomorphism theorem yields $\mathbb{F}_{11}^{\times} \cong \mathbb{Z} / 10 \mathbb{Z}$. The other possible choices of generators are 8,7 , and 6 .

