Math 404A: Introduction to Modern Algebra (Spring 2021) Jarod Alper Homework 4 Due: Friday, April 23

Problem 4.1. Use Lagrange's method to solve the quartic $x^4 + x + 3/4 = 0$.

Problem 4.2. Recall that \mathbb{F}_2 denotes the field $\mathbb{Z}/2$ with 2 elements.

- (a) How many irreducible polynomials $f(x) \in \mathbb{F}_2[x]$ are there of degree 3?
- (b) What about degree 4?
- (c) Show explicitly that $\mathbb{F}_2[x]/(x^3+x+1)$ and $\mathbb{F}_2[x]/(x^3+x^2+1)$ are isomorphic.

Problem 4.3. Let $L = \mathbb{Q}(\sqrt{2}, \sqrt{3}) \subset \mathbb{C}$. Find all intermediate field extensions $\mathbb{Q} \subset K \subset L.$

Problem 4.4. Determine (with proof) the degrees of the following field extensions, and write down an explicit basis for each:

- (a) $\mathbb{Q} \subset \mathbb{Q}(1 + \sqrt[3]{2} + \sqrt[3]{4})$ (b) $\mathbb{Q} \subset \mathbb{Q}(e^{2\pi i/p})$ for a prime p
- (c) $\mathbb{Q} \subset \mathbb{Q}(\sqrt{10+4\sqrt{6}},\sqrt{6})$

Problem 4.5.

- (a) Find the minimal polynomial of $\alpha = 1 + \sqrt[3]{2} + \sqrt[3]{4}$ over \mathbb{Q} .
- (b) Find the minimal polynomial of $\sqrt{10 + 4\sqrt{6}}$ over \mathbb{Q} .
- (c) Find the minimal polynomial of $\sqrt{10 + 4\sqrt{6}}$ over $\mathbb{Q}(\sqrt{6})$.
- (d) Find the minimal polynomial of $\sqrt{\pi} + \sqrt{3}$ over $\mathbb{Q}(\pi)$.

Problem 4.6. Prove that a field extension $K \subset L$ of prime degree is simple.