Math 404A: Introduction to Modern Algebra (Spring 2021)
Jarod Alper
Homework 4
Due: Friday, April 23

Problem 4.1. Use Lagrange's method to solve the quartic $x^{4}+x+3 / 4=0$.
Problem 4.2. Recall that \mathbb{F}_{2} denotes the field $\mathbb{Z} / 2$ with 2 elements.
(a) How many irreducible polynomials $f(x) \in \mathbb{F}_{2}[x]$ are there of degree 3 ?
(b) What about degree 4?
(c) Show explicitly that $\mathbb{F}_{2}[x] /\left(x^{3}+x+1\right)$ and $\mathbb{F}_{2}[x] /\left(x^{3}+x^{2}+1\right)$ are isomorphic.

Problem 4.3. Let $L=\mathbb{Q}(\sqrt{2}, \sqrt{3}) \subset \mathbb{C}$. Find all intermediate field extensions $\mathbb{Q} \subset K \subset L$.
Problem 4.4. Determine (with proof) the degrees of the following field extensions, and write down an explicit basis for each:
(a) $\mathbb{Q} \subset \mathbb{Q}(1+\sqrt[3]{2}+\sqrt[3]{4})$
(b) $\mathbb{Q} \subset \mathbb{Q}\left(e^{2 \pi i / p}\right)$ for a prime p
(c) $\mathbb{Q} \subset \mathbb{Q}(\sqrt{10+4 \sqrt{6}}, \sqrt{6})$

Problem 4.5.
(a) Find the minimal polynomial of $\alpha=1+\sqrt[3]{2}+\sqrt[3]{4}$ over \mathbb{Q}.
(b) Find the minimal polynomial of $\sqrt{10+4 \sqrt{6}}$ over \mathbb{Q}.
(c) Find the minimal polynomial of $\sqrt{10+4 \sqrt{6}}$ over $\mathbb{Q}(\sqrt{6})$.
(d) Find the minimal polynomial of $\sqrt{\pi}+\sqrt{3}$ over $\mathbb{Q}(\pi)$.

Problem 4.6. Prove that a field extension $K \subset L$ of prime degree is simple.

