
Math 404 HW 4 Solutions

1 Problem 1

Use Lagrange’s method to solve the quartic

f(x) = x4 + x+ 3/4

Let α1, . . . , α4 be the roots of f . Let s1, . . . , s4 denote the elementary sym-
metric functions in the αi. Then we have

s1 = 0

s2 = 0

s3 = −1

s4 = 3/4.

Define

f1 = (α1 + α2)(α3 + α4)

f2 = (α1 + α3)(α3 + α4)

f3 = (α1 + α4)(α2 + α3)

1
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Then as in homework 2, we have

α1 =

√
−f1 +

√
−f2 +

√
−f3

2

α2 =

√
−f1 −

√
−f2 −

√
−f3

2

α3 =
−
√
−f1 +

√
−f2 −

√
−f3

2

α4 =
−
√
−f1 −

√
−f2 +

√
−f3

2

So now we just have to find the fi.
From homework 2, we have the equalities

f1 + f2 + f3 = 2s2 = 0

f1f2 + f1f3 + f2f3 = s22 + s1s3 − 4s4 = −3

f1f2f3 = s1s2s3 − s23 − s21s4 = −1.

Let g(y) be the resolvent cubic of f , which using the equalities above is

g(y) = (y − f1)(y − f2)(y − f3)
= y3 − (f1 + f2 + f3)y

2 + (f1f2 + f1f3 + f2f3)y − f1f2f3
= y3 − 3y + 1.

To solve this cubic, we make the substitution

y = z − −3

3z
= z +

1

z
.

After applying this substitution and simplifying, we get the equation

z6 + z3 + 1 = 0.

Applying the quadratic formula yields the solution

z3 =
−1

2
± i
√

3

2
≈ −0.5± 0.8660i.

One solution is

z0 =
3

√
−1

2
+ i

√
3

2
≈ 0.7660 + 0.6428i.
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The other solutions are ωz and ω2z, with ω = e2πi/3, the primitive cube root
of unity. These yield the solutions

z0 ≈ 0.7660 + 0.6428i

ωz0 ≈ −0.9397 + 0.6428i

ω2z0 ≈ 0.1736− 0.9848i.

Applying the substitution y = z + 1/z yields the equations

f1 ≈ 1.5321

f2 ≈ −1.8794

f3 ≈ 0.3473

In turn, these yield the solutions for the αi as

α1 ≈ 0.6855 + 0.9135i

α2 ≈ −0.6855 + 0.3242i

α3 ≈ 0.6855− 0.9135i

α4 ≈ −0.6855− 0.3242i,

which can be checked by plugging back into the original polynomial f . Al-
ternately, we could have expressed everything in radicals.
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2 Problem 2

First we make a general observation about roots over F2. A polynomial
f(x) ∈ F2[x] has f(0) = 0 if and only if it has zero constant term, and it has
f(1) = 0 if and only if it has an even number of nonzero terms. The method
we use below is called the Sieve of Eratosthenes, if you want to look into it
further.

(a) There are 2. A polynomial of degree 3 is irreducible if and only if it
has no roots. Using the root-finding criterion given above, we have just
the two polynomials x3 + x+ 1 and x3 + x2 + 1.

(b) There are 3. A polynomial of degree 4 is irreducible if and only if it
has no roots and no irreducible quadratic factor. The only irreducible
quadratic in F2[x] is f = x2 + x + 1. So the only polynomial with f
as a factor and no roots is f 2 = x4 + x2 + 1. So every polynomial of
degree 4 with no roots besides this one is irreducible. Thus, we have
the full list

x4 + x+ 1, x4 + x3 + 1, x4 + x3 + x2 + x+ 1

(c) Define

K =
F2[x]

(x3 + x+ 1)

L =
F2[y]

(y3 + y2 + 1)
.

Since K and L are both fields, any ring homomorphism L→ K will be
injective. Furthermore, any ring homomorphism commutes with the
action of F2 (multiplying by 1 does nothing, and 0 goes to 0), so any
ring homomorphism will also be an inclusion of F2-vector spaces. Since
both K and L have the same dimension as vector spaces over F2, this
inclusion must be an isomorphism.

Thus, all we need to do is provide some ring homomorphism ϕ : L→ K.
To do this, it suffices to find some element α ∈ K so that α3+α2+1 = 0.
We may uniquely write

α = A+Bx+ Cx2,

with A,B,C ∈ F2. Recall that we have the following identities:
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• x3 = x+ 1

• A2 = A, B2 = B, C2 = C

• 2 = 0.

Using these, we compute

α3 + α2 + 1 = (1 +BC +B + C) + x(AB +B + AC) + x2(AB +B).

For this element to be zero, we must solve the equations

1 +BC +B + C = 0

AB +B + AC = 0

AB +B = 0

with A,B,C ∈ F2. One possible solution is A = B = 1 and C = 0.
Since a solution exists, the desired α exists, and the result holds.
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3 Problem 4.3

Find all intermediate field extensions of Q ⊂ Q(
√

2,
√

3)

I claim that the only intermediate field extensions are Q(
√

2),Q(
√

3) and
Q(
√

6)
Consider some intermediate field Q ⊂ K ⊂ Q(

√
2,
√

3). In the last
homework I proved that Q(

√
3,
√

2) was a degree 4 extension of Q with basis
1,
√

2,
√

3,
√

6. Thus, by the multiplicative property of the degree, we have
that [K : Q] divides 4. Thus, it is either 1, 2, or 4. If [K : Q] is 1 or 4,
then we have K = Q or K = Q(

√
2,
√

3), respectively. So for the rest of this
problem we may assume that [K : Q] = 2.

First, we show that K is a simple extension of Q with a particularly nice
form.

Lemma 1. Let Q ⊂ K be any degree 2 field extension. Then K = Q(α), for
some α 6∈ Q with α2 ∈ Q.

Proof. Problem 6 on this homework yields that K = Q(β) for some β (just
take any β ∈ K \Q). Then there is an irreducible monic polynomial f(x) =
x2 + bx + c ∈ Q[x] with f(β) = 0. The rest will follow from completing the
square on f . Define

α = β + b/2.

Then α ∈ Q(β). Since Q(β) is a field containing α and Q, we have by
minimality of Q(α) that Q(α) ⊂ Q(β). We get the reverse containment
Q(β) ⊂ Q(α) similarly, so we have that K = Q(β) = Q(α). Since K is a
field strictly containing Q, we must have that α 6∈ Q, so all that remains to
be shown is that α2 ∈ Q.

To see this, note that by construction, α is a root of

f(x− b/2) = x2 + c− b2/4 =: g(x).

Further, this shows that

α2 = b2/4− c ∈ Q,

as desired.
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Resuming the original problem, we now know that we have some inter-
mediate field extension Q ⊂ Q(α) ⊂ Q(

√
2,
√

3), with α2 ∈ Q but α 6∈ Q.
We wish to show Q(α) ∈ {Q(

√
2),Q(

√
3),Q(

√
6)}.

Since 1,
√

2,
√

3,
√

6 forms a basis for Q(
√

2,
√

3), we may uniquely write

α = A+B
√

2 + C
√

3 +D
√

6,

with A,B,C,D ∈ Q. Our goal is to show that at most one of B,C, or
D are nonzero. To see why this suffices, note that if C = D = 0, then
α = A+B

√
2 ∈ Q(

√
2), so we get Q(α) ⊂ Q(

√
2), and since these fields have

the same degree over Q, they must be equal. The other claimed intermediate
fields show up for the other nonzero coefficients.

We compute

α2 = (A2+2B2+3C2+6D2)+
√

2(2AB+6CD)+
√

3(2AC+4BD)+
√

6(2AD+2BC)

By assumption, we have that α2 ∈ Q, so this sum also equals α2 · 1 +
0
√

2 + 0
√

3 + 0
√

6. Linear independence of 1,
√

2,
√

3,
√

6 over Q yields that
we have three equations

2AB + 6CD = 0 (1)

2AC + 4BD = 0 (2)

2AD + 2BC = 0 (3)

Suppose D 6= 0, we wish to show that B = C = 0. Dividing these equations
by D yields the equations

C =
−AB
3D

(4)

B =
−AC
2D

(5)

A =
−BC
D

. (6)

Plugging the first of these equations into the second yields

B =
A2B

6D2
.

If B 6= 0, then this yields 6 =
(
A
D

)2
, so
√

6 ∈ Q, which we’ve shown is not
true before. Thus, we must have that B = 0. Then equation (??) yields that
C = 0 as well, as desired. Similar reasoning holds if we start by assuming
B 6= 0 or C 6= 0, and so the result holds.
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4 Problem 4.4

(a) Note that 1 + 3
√

2 + 3
√

4 = 1 + 3
√

2 + ( 3
√

2)2, so we have the geometric
series formula

1 +
3
√

2 + (
3
√

2)2 =
( 3
√

2)3 − 1
3
√

2− 1
=

1
3
√

2− 1
.

Thus, if we let α = 1+ 3
√

2+ 3
√

4, this shows α ∈ Q( 3
√

2) and 3
√

2 ∈ Q(α).
Then by minimality we have Q(α) ⊂ Q( 3

√
2) and Q( 3

√
2) ⊂ Q(α), so

we have Q(α) = Q( 3
√

2). This field is readily seen to be degree 3 over
Q, with basis 1, 3

√
2, 3
√

4 (we showed this on the last homework).

(b) Let ζ = e
2πi
p . Then we have ζp = 1, so ζ is a root of xp − 1. Compute

xp − 1 = (x− 1)(1 + x+ x2 + · · ·+ xp−1).

Plugging in ζ yields

0 = (ζ − 1)(1 + ζ + ζ2 + · · ·+ ζp−1).

Since ζ 6= 1, we must have that ζ is a root of 1 + x + x2 + · · · + xp−1,
which we showed was irreducible in last week’s homework. Thus, this
is the minimal polynomial for ζ, and its degree is the degree of Q(ζ)/Q,
which is p− 1. Furthermore, we get that 1, ζ, ζ2, . . . , ζp−2 forms a basis
for Q(ζ)/Q.

(c) Let α =
√

10 + 4
√

6 Q(α,
√

6) = Q(
√

6). Note that

α2 − 10

4
=
√

6

so
√

6 ∈ Q(α), so adjoining
√

6 to Q(α) doesn’t change anything. Thus,
we get at least

Q(α,
√

6) = Q(α) ⊇ Q(
√

6).

For the reverse containment, note that 2+
√

6 ∈ Q(
√

6) and (2+
√

6)2 =
10 + 4

√
6, so α = 2 +

√
6 ∈ Q(

√
6), so Q(α) ⊂ Q(

√
6).

Thus, the field we’re considering is just Q(
√

6), which we’ve previously
shown is of degree 2 over Q, with basis 1,

√
6.
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5 Problem 4.5

(a) Let α = 1 + 3
√

2 + 3
√

4. By problem 4 (a) we just need to find a monic
degree 3 polynomial f(x) with f(α) = 0. That is, we seek rational
numbers A,B,C so that

α3 = A+Bα + Cα2.

We expand both sides and collect the coefficients of 3
√

2 and 3
√

4 and
obtain

19 · 1 + 15
3
√

2 + 12
3
√

4 = (A+B+ 5C) · 1 + (B+ 4C)
3
√

2 + (B+ 3C)
3
√

4.

On the last homework, we showed that 1, 3
√

2, 3
√

4 were linearly inde-
pendent over Q. Thus, we must have

19 = A+B + 5C

15 = B + 4C

12 = B + 3C.

This system of equations has solution A = 1, B = 3, C = 3. Thus, we
have the minimal polynomial

f(x) = x3 − 3x2 − 3x− 1

(b) In the previous problem, we figured out that√
10 + 4

√
6 = 2 +

√
6,

which is a root of the polynomial

(x− 2)2 − 6 = x2 − 4x− 2

For irreducibility, we can either use Eisenstein’s criterion at the prime
2, or just note that

Q(2 +
√

6) = Q(
√

6),

which is a degree 2 extension of Q. So any degree 2 polynomial that
the generator of this extension is a root of must be a unit multiple of
the irreducible minimal polynomial, and so irreducible.
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(c) Again, since
√

10 + 4
√

6 = 2 +
√

6, it is a root of the polynomial
x− 2−

√
6 ∈ Q(

√
6)[x], which is irreducible as it is of degree 1.

(d) First we figure out what degree the minimal polynomial should have
by figuring out the degree of the corresponding field extension is 4.

To do this, define

α =
√

3 +
√
π

β =
√

3−
√
π,

so we are investigating [Q(π, α) : Q(π)]. First we get a different set of
generators. Note that

αβ = 3− π,
so

β =
3− π
α
∈ Q(α, π).

Then note that

α + β

2
=
√

3

α− β
2

=
√
π.

Thus, we have that
√

3,
√
π ∈ Q(π, α). Since we also have π, α ∈

Q(
√

3,
√
π), we have

Q(π, α) = Q(
√

3,
√
π).

We are motivated to consider the following diagram of field extensions

Q(
√
π,
√

3)

Q(
√
π) Q(π,

√
3)

Q(π)

(7)

Every move vertically in this diagram is obtained by adjoining a square
root, which results in a degree 2 field extension so long as the square
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root doesn’t already exist inside the smaller field. We move along the
left half of this diagram to show that each intermediate extension is
indeed degree 2.

For the extension Q(π) ⊂ Q(
√
π), recall that π is transcendental over

Q, so Q(π) ∼= Q(t), the ring of rational functions over Q (ratios of
polynomials with nonzero denominator). So we suppose towards a
contradiction that

√
π ∈ Q(π). Then there exist polynomials f(π), g(π)

with g(π) 6= 0 so that (
f(π)

g(π)

)2

= π.

Then we have that
f(π)2 = π · g(π)2.

Recall that this means an equality of polynomials, that is all the coef-
ficients of various powers πi are the same on both sides. The degree on
the right hand side is 1+2 deg(g), which is odd. The degree on the left
hand side is 2 deg(f), which is even. Since no odd number can equal
an even number, we have a contradiction.

For the extension Q(
√
π) ⊂ Q(

√
π,
√

3), we first show that
√
π is tran-

scendental over Q. If not, then we would have that [Q(
√
π : Q] is

finite. Since Q(π) is a sub Q-vector space of Q(
√
π), this would yield

[Q(π) : Q] is finite as well. But then π would be algebraic over Q,
contradicting transcendentality of π.

So suppose towards a contradiction that we have
√

3 ∈ Q(
√
π). Then

there exist polynomials f(
√
π), g(

√
π) with g(

√
π) 6= 0 so that(

f(
√
π)

g(
√
π)

)2

= 3

f(
√
π)2 = 3g(

√
π)2.

Let A be the leading coefficient of f , and let B be the leading coefficient
of g (so B 6= 0). Then comparing leading coefficients on both sides
yields

A2 = 3B2,

so 3 = (A/B)2, contradicting irrationality of
√

3. Thus, we can fill in
some degrees in the field extension diagram
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Q(
√
π,
√

3) = Q(
√
π +
√

3)

Q(
√
π) Q(π,

√
3)

Q(π)

2

2

(8)

Then the multiplicative property of the degree yields [Q(
√
π +
√

3) :
Q(π)] = 4, with basis 1,

√
π,
√

3,
√

3π.

So we are on the hunt for some degree 4 polynomial which has
√
π+
√

3
as a root.

I claim that the minimal polynomial for
√
π +
√

3 is

f(x) = x4 − 2(3 + π)x2 + (π − 3)2.

Since f There are a couple of ways you could arrive at this minimal
polynomial. One way is to let f(x) be the minimal polynomial for√

3 +
√
π over Q(π) and guess that the other roots of f are

−
√

3 +
√
π,
√

3−
√
π, and −

√
3−
√
π,

so that

f(x) =
(
x−(
√

3+
√
π)
)(
x+(
√

3+
√
π)
)(
x−(
√

3−
√
π)
)(
x+(
√

3−
√
π)
)

Later we will motivate this guess further by noting that the other roots

of the minimal polynomial should be the orbit of
√√

π +
√

3 under the

action of the Galois group, which must also send
√
π and

√
3 to the

other roots of their minimal polynomials, which are −
√
π and −

√
3,

respectively.

If you just found this minimal polynomial and didn’t do the degree
considerations to show it was irreducible, you could show that it’s irre-
ducible by showing that first none of the 4 roots are in Q(π), and then
showing that no way of pairing up the linear factors given above into
two quadratics yields a factorization of f in Q(π)[x].
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For another approach, since the minimal polynomial is degree 4, we
seek A,B,C,D ∈ Q(π) so that

(
√

3 +
√
π)4 = A+B(

√
3 +
√
π) + C(

√
3 +
√
π)2 +D(

√
3 +
√
π)3

Expanding out both sides and collecting coefficients of 1,
√

3,
√
π, and√

3π yields

(9 + 18π + π2) + (4π + 12)
√

3π = (A+ 3C + Cπ) · 1 + (B + 3D + 3Dπ)
√

3

+ (B + 9D +Dπ)
√
π + 2C

√
3π

Since 1,
√

3,
√
π and

√
3π are linearly independent over Q(π), this yields

the equations

9 + 18π + π2 = A+ 3C + Cπ

0 = B + 3D + 3Dπ

0 = B + 9D +Dπ

4π + 12 = 2C

Solving this system of equations for A,B,C,D yields the given minimal
polynomial.
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6 Problem 6

Prove that a field extension K ⊂ L of prime degree is simple.

Proof. Throughout this proof, we make use of the following basic fact. A
field extension E ⊂ F has degree 1 if and only if E = F . There is something
to prove here, so please justify this for yourself.

Let p = [L : K]. Since p > 1, there is some α ∈ L with α 6∈ K. I claim
that L = K(α).

To see why this is the case, consider the chain of field extensions

K ⊂ K(α) ⊂ L.

Then by the multiplicative property of the degree, we have that

p = [L : K(α)] · [K(α) : K].

Since p is prime, exactly one of the following must hold

(1) [L : K(α)] = 1 and [K(α) : K] = p, or

(2) [L : K(α)] = p and [K(α) : K] = 1.

These conditions imply the following two conditions, respectively

(1’) L = K(α)

(2’) K(α) = K.

We know that (2’) does not hold, as α 6∈ K by assumption. Thus, (2) does
not hold, so (1) must hold, so (1’) holds, as desired.


